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Summary ix 

Summary 

Pyroptosis is a form of lytic cell death occurring downstream of inflammasome 

activation. Pattern recognition receptors from the NOD-like and AIM2-like families 

and Pyrin sense the cytosol of macrophages, monocytes, neutrophils, dendritic cells 

and other myeloid cell types and epithelial cells for danger- and pathogen-associated 

molecular patterns. Once activated, these receptors assemble in an ASC-dependent 

or -independent manner to form the inflammasome platform. Caspase-1 is produced 

in the cell as a zymogen, and recruitment to the inflammasome allows its proximity-

induced autoactivation. Active caspase-1 leads to pyroptotic cell death. Pyroptosis 

can also be executed by caspase-11, which is activated through the non-canonical 

inflammasome. Both caspase-1 and caspase-11 pathways converge at cleavage of 

GSDMD, the executor of cell permeabilization during pyroptosis. However, 

canonical and non-canonical inflammasomes differentially control cytokine 

processing. Active caspase-1 also cleaves and activates the pro-cytokines IL1β and 

IL18, while caspase-11 relies on downstream activation of caspase-1 to promote 

cytokine maturation.  

Pyroptotic cell death and lysis have been increasingly associated with the release of 

IL1β and IL18, while the pyroptotic corpse has been shown to contain intracellular 

pathogens, facilitating clearance by infiltrating neutrophils. Indeed, pyroptosis has 

been shown to mediate clearance of a variety of intracellular pathogens, but overt cell 

death and cytokine release also plays a role in autoinflammatory diseases. While the 

studies on the execution of cell lysis during pyroptosis have gained track during the 

past years, the organellar and biochemical mechanisms occuring during cell death 

execution are still undefined. Therefore, the current thesis aimed at describing the 
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organellar events happening during pyroptosis and defining the biochemical 

characteristics of this cell death.  

Through a single-cell based, live-cell imaging analysis of pyroptosis induction by the 

NLRC4, NLRP1b and non-canonical inflammasomes, we defined a set of organellar 

changes preceding plasma membrane permeabilization. Ionic fluxes, cellular 

swelling, mitochondrial and lysosomal damage were shared between these 

inflammasomes, demonstrating they are common pyroptotic-associated events. 

Furthermore, these observations suggested that a gradual increase in membrane 

permeabilization is the mechanism behind GSDMD-induced pyroptosis. Our 

biochemical analysis of NLRC4 and NLRP1b-mediated dying macrophages revealed 

activation of caspase-3 and -7, with detection of DEVDase activity and cleavage of 

ROCKI, Bid and p23. These data suggest that pyroptosis comprises a caspase-3/-7 

demolition program, previously associated only to apoptosis. In line with this, 

removal of GSDMD protein or its function after inflammasome triggering caused cell 

death associated with shrinkage and blebbing, typical of an apoptotic program. This 

phenotype was independent of the ASC speck, previously described to mediate 

caspase-8 activation and apoptosis in the absence of caspase-1. In the last part of the 

thesis, we screened a set pharmacological inhibitors for their ability to promote cell 

death and inflammasome activation. We demonstrated that inhibition of PRCP by 

Compound 8o leads to fast cell death. This was accompanied by IL1β release through 

the NLRP3 inflammasome. On the other hand, DPP8/DPP9 inhibition by Val-boroPro 

and 1G244 led to pyroptosis and IL1β release in mouse macrophages containing the 

129-associated allele of Nlrp1b. Macrophages lacking this allele still responded to 

1G244 and Val-boroPro, albeit with less intensity.  

This thesis defined the organellar morphological changes associated to pyroptosis 

and identified a gradual increase in membrane permeability as the mechanism of cell 

lysis. We also identified a caspase-3/-7 signature in pyroptotic cells, downstream of 

caspase-1 activation. Furthermore, we defined two groups of inhibitors for 

dipeptidases able to induce inflammasome activation and IL1β release in 

macrophages. 
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Samenvatting 

Pyroptose is een vorm van lytische celdood die optreedt na activatie van de 

inflammasoom signalisatie pathway. Receptoren die behoren tot de NOD-like en 

AIM2-like families alsook Pyrine surveilleren het cytosol van macrofagen en 

epitheelcellen, om zo signalen te detecteren die wijzen op niet-infectieus gevaar of de 

aanwezigheid van pathogenen. Eenmaal geactiveerd, assembleren deze receptoren 

op een ASC-afhankelijke of -onafhankelijke manier om het inflammasoom-platform 

te vormen. Caspase-1 wordt in de cel geproduceerd als een zymogeen, maar 

rekrutering door het inflammasoom maakt nabijheid-geïnduceerde autoactivatie 

mogelijk, waarbij actief caspase-1 leidt tot pyroptotische celdood. Pyroptose kan 

echter ook worden uitgevoerd door caspase-11, dat geactiveerd wordt door het niet-

canonieke inflammasoom. Zowel caspase-1- als caspase-11-gemedieerde signalisatie 

convergeren bij de verknipping van GSDMD, het eiwit verantwoordelijk voor 

celpermeabilisatie tijdens pyroptose. Beide caspasen divergeren echter op het niveau 

van cytokine maturatie. Actief caspase-1 verknipt en activeert de pro-cytokines IL1β 

en IL18, terwijl caspase-11 afhankelijk is van downstream activering van caspase-1 

om cytokine-maturatie te bevorderen. 

Pyroptotische celdood en lyse worden in toenemende mate geassocieerd met 

vrijstelling van IL1β en IL18, verder is echter ook aangetoond dat de celresten van 

pyroptotische cellen intracellulaire pathogenen bevat, wat klaring door infiltrerende 

neutrofielen vergemakkelijkt. Inderdaad, er is aangetoond dat pyroptose de klaring 

van een verscheidenheid aan intracellulaire pathogenen medieert, echter massale 

celdood en cytokine-vrijstelling spelen ook een belangrijke nefaste rol bij auto-

inflammatoire aandoeningen. Hoewel er de afgelopen jaren meer en meer studies 
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zijn gedaan naar de processen die aan de basis liggen van cel lyse tijdens pyroptose, 

zijn de biochemische mechanismen die plaatsvinden tijdens de uitvoering van 

celdood nog steeds niet gedefinieerd, alsook over de betrokkenheid van specifieke 

organellen is er nog veel onduidelijkheid. Daarom was het huidige proefschrift 

gericht op het beschrijven van de gebeurtenissen die plaatsvinden in specifieke 

organellen tijdens pyroptose en het definiëren van de biochemische kenmerken van 

deze pro-inflammatoire vorm van celdood.  

Door gebruik te maken van een single-cell benadering, en via live-imaging analyse 

van pyroptose geïnduceerd door de NLRC4, NLRP1b en niet-canonieke 

inflammasomen, hebben we een aantal organellaire veranderingen gedefinieerd die 

voorafgaan aan plasmamembraan permeabilisatie. Fluxen van ionen, cellulaire 

zwelling, mitochondriale en lysosomale schade werden teruggevonden na activatie 

van de verschillende inflammasomen, wat aantoont dat dit gebeurtenissen zijn die 

gelinkt zijn aan pyroptose in het algemeen. Bovendien suggereerden deze 

waarnemingen dat een geleidelijke toename in membraanpermeabilisatie het 

mechanisme is achter GSDMD-geïnduceerde pyroptose. Onze biochemische analyse 

van stervende macrofagen na activatie van het NLRC4 of NLRP1b inflammasoom 

onthulde een caspase-3/-7-handtekening, met DEVDase-activiteit en verknipping van 

ROCKI, Bid en p23. Deze bevindingen suggereren dat pyroptose een caspase-3/-7 

programma omvat, iets dat normaal gezien geassocieerd wordt met apoptose. In 

overeenstemming met onze biochemischie bevindingen konden we een apoptotisch 

fenotype waarnemen na het verwijderen van het GSDMD-eiwit of de inactivatie van 

de functie ervan. Dit fenotype was onafhankelijk van de ASC-speck, een fenomeen 

dat eerder beschreven werd om caspase-8-activering en apoptose te mediëren in de 

afwezigheid van caspase-1. Tot slot, in het laatste deel van het proefschrift, screenden 

we een aantal inhibitoren op hun vermogen om celdood en inflammasoom-

activering te bevorderen. We hebben aangetoond dat remming van PRCP door 

Compound 8o leidt tot snelle celdood. Dit ging gepaard met IL1β-vrijstelling via het 

NLRP3-inflammasoom. Aan de andere kant leidde DPP8/DPP9-remming door Val-

boroPro en 1G244 tot pyroptose en IL1β-vrijstelling in muizenmacrofagen die het 

129-geassocieerde allel van Nlrp1b bevatten. Macrofagen zonder dit allel reageerden 

nog steeds op 1G244 en Val-boroPro, zij het in beperktere mate.  

De huidige thesis definieerde dus specifieke morfologische veranderingen in 

organellen geassocieerd met pyroptose en identificeerde een geleidelijke toename in 

membraanpermeabiliteit als het mechanisme van cel lyse. Verder hebben we ook een 
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caspase-3/-7-handtekening geïdentificeerd in pyroptotische cellen, iets dat 

plaatsvindt na activering van caspase-1. Verder definieerden we twee groepen 

inhibitoren van dipeptidasen die in staat zijn om inflammasoom-activering en IL1β-

vrijstelling in macrofagen te induceren. 
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 1. Introduction 

Studies into regulated forms of cell death started with observations of apoptosis 

during development. Apoptotic cell death was defined as a highly regulated cellular 

process through which cells pack their contents into apoptotic bodies for efficient 

clearance, avoiding spillage of intracellular contents. This concept lead to the 

hypothesis that lysis of a cell was always an uncontrolled mechanism, related to an 

accidental cell death. However, more recent understanding of the tumor necrosis 

factor (TNF) receptor signaling pathway, and its ability to induce cell death in the 

absence of caspase activity, lead to the first description of a lytic regulated form of 

cell death, necroptosis. This allowed the cell death field to recognize that regulated 

cell death can also be lytic and potentially promote immune activation. The field of 

regulated necrosis grew and widened the scope of cell death to pathways such as 

parthanatos, cyclophilin D (CYPD)-regulated cell death, ferroptosis, NETosis and 

pyroptosis. Cell death plays a significant role during pathogen invasion by a variety 

of mechanisms. Dying of a cell allows the end of a pathogenic replication niche, 

while dead cell corpses or their derived molecules can trap pathogens to avoid 

spread. Furthermore, cell death accounts for the release of signaling molecules. 

However, cell death can be hijacked by the pathogen in order to aid its 

replication/life cycle, and extensive cell death accounts for tissue damage and 

underlies the pathology of some infectious and autoinflammatory diseases. 

Therefore, a better understanding of the cell death pathways is vital in the generation 

of new targets for infectious and autoinflammatory disorders. In this line, pyroptosis 

is unique as it shares features with both apoptosis and necroptosis. Furthermore, its 

close association to pathogen clearance and cytokine release has boosted the interest 

of this form of regulated cell death and its potential regulation. The current thesis 

focuses in the cell death mechanisms occurring downstream of pathogen and danger 

sensing in macrophages by inflammasomes. This introduction will focus on a 
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description of the best described forms of regulated cell death, namely apoptosis, 

necroptosis and netosis, ending with a focus in inflammasome-mediated cell death. 

1.1. Apoptosis 

Apoptosis is the prototype pathway of regulated cell death. Its name was first coined 

in 1972, in order to describe a cell dismantling process happening during 

development, with shrinkage of the cell body and nuclear condensation1. 

Apoptosis plays a role in development and homeostasis of multicellular organisms. 

Evidence that impairment of the apoptotic signaling alters immune homeostasis is 

seen in patients with autoimmune lymphoproliferative syndrome (ALPS)2. A 

germline mutation in the first apoptosis signal (Fas) gene, an apoptosis-inducing 

receptor, is the cause of 70% of the cases of ALPS, with the most common disease 

presentations being lymphadenopathy, splenomegaly, and potentially autoimmune 

complications in non immune organs. This autoimmune phenotype is recapitulated 

in mice carrying loss of function mutations at Fas or at Bcl2-interacting mediator of cell 

death (BIM) loci3,4, which encode pro-apoptotic proteins, and the clinical symptoms 

are associated to a low ability of apoptosis induction in immune cells5. 

Apoptotic control of the lymphocyte population and maintenance of their 

homeostasis is done by both induction of apoptosis of auto-reactive T lymphocytes 

and killing of T and B cells to return to the basal level after clonal expansion5. 

Apoptosis also acts as an effector response of the immune system, performed by 

cytotoxic T cells and natural killer cells. These rely on the death receptor Fas, 

together with the perforin system, to clear virus-infected target cells6,7. In addition, 

most cells of the immune system can be triggered to express the cytokine TNF-

related apoptosis-inducing ligand (TRAIL), an apoptosis inducer, as a soluble or 

membrane-bound protein8,9, in order to aid in clearance of tumor cells. Therefore, 

many of the immune effector functions can be understood by elucidating apoptotic 

signaling pathways and their regulation. 

1.1.1. Caspases 

Early studies on the apoptotic cell death pathway have distinguished a family of 

cysteine proteases, the caspases, as the responsible effectors for its signaling and 

execution10. Homologous caspase genes can be found throughout metazoans, where 

they regulate cell death and inflammation11. All caspases mediate cleavage of 
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substrates at an Aspartate and utilize the four amino acids – numbered as P4-P2 – 

upstream of the cleavage site for substrate recognition12. Caspases are produced in 

the cell as zymogens and are molecularly organized as prodomains plus a p20 and 

p10 subunits, which guard the catalytic activity. 

Caspases have been historically subdivided according to their cellular function as 

either apoptotic or inflammatory caspases13. In this context, human caspase-1, -4, -5 

and -12 are categorized as inflammatory caspases. Growing evidence supports that 

both human caspases -4 and -5 perform similar functions as murine caspase-11 and 

can be considered its homologue14-18. Human caspase-8, -9, -10, -3, -6 and -7 have 

been firstly implicated in the induction and execution of apoptosis, hence are 

referred to as apoptotic caspases13. However, recent implication of caspase-8 in the 

inhibition of necroptosis and, most importantly, in regulation of nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-kB) and inflammatory signaling 

contests its “apoptotic” classification19. Therefore, while this classification of caspases 

describes their most common – or canonical – functions, it poses challenges with the 

new understandings of caspases signaling cascades and its relationship to 

inflammation. 

In this sense, an alternative method for subdivision of caspases regards the nature of 

their prodomain20. As the length of the caspase prodomain determines its mode of 

activation, this classification also reveals the upstream and downstream players in a 

signaling cascade, and therefore is closely related to a functional role. Initiator 

caspases comprise the human caspase-1, -2, -4, -5, -8, -9, -10, -12 and -14 and murine 

caspase-11, which have long prodomains containing an oligomerization domain. 

These oligomerization domains belong to the superfamily of death domains (DD), 

and share a six-helical bundle in their structure21. DDs are present in many proteins 

to mediate protein-protein interaction, mostly in a homotypic manner. Caspase-1, -2 -

9 and -12 have a caspase activation and recruitment domain (CARD) domain (Figure 

1). Caspase-1, -2 and -9 interact with a CARD in apoptosis-associated speck-like 

protein containing CARD (ASC)22, RIP associated ICH-1/CED-3 homologous protein 

with a death domain (RAIDD)23 or apoptotic protease activating factor 1 (Apaf-1)24, 

while an interactor for caspase-12 remains elusive. Interestingly, human caspases -4, -

5 and murine caspase-11 also have a CARD domain, but in this scenario the death 

domain is used for intracellular lipopolysaccharide (LPS) sensing and self 

oligomerization25. Caspase-8 and -10 have two death effector domain (DED) domains 

in tandem, which mediates interaction with the DED on Fas-associated protein with 

death domain (FADD)26-28. It is known that oligomerization of initiator caspases in a 
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higher macromolecule complex, their dimerization, conformational changes and 

autoprocessing are all steps that play a role for full activation of the protease29-31. 

However, the exact molecular requirements for each of these steps in the activation 

process are still debated. As a general mechanism, caspase autoproteolysis lead by 

dimerization releases the active p20 and p10 domains which organize themselves 

into an heterotetramer and locks the caspase in an activated state20. However, for 

caspase-9, as an example, the catalytic activity of the p20/p10 heterotetramer is 

several folds higher when associated to the complex with Apaf-1 than when soluble, 

suggesting the active enzyme remains trapped in the complex32. Furthermore, 

mutations on caspase-1 hampering its autocleavage demonstrated that full length 

caspase-1 is able to mediate cell death, but not to efficiently process interleukin(IL)-

1β, its canonical substrate33. Similarly, caspase-8 bears pro-survival activity while in 

its unprocessed form34-36. For both caspase-1 and caspase-8, their full-length activity 

seems to be restricted to local or high affinity substrates. Both maintenance of highly 

active caspases in a complex, as for caspase-9, or of the full-length protein with 

partial activity, as for caspase-8 and -1, suggests that caspases can have their activity 

regulated in some instances through local substrate availability. 

 

Figure 1. Caspases present in human (H) and mouse (M) systems. Initiator caspases have interacting 

domains from the DD family, represented by either CARD or DED, used for either sensing and self-

oligomerization (hcaspase-4, -5 and mcaspase-11) or for recruitment to macromolecular complexes (caspase-1, 

-2, -9, -8, -10). An interactor for caspase-12, here shown on its long form (L), is still unknown. Executioner 

caspases are activated by cleavage. Active caspases organize as heterotetramers containing two p20 and two -

10 subunits. 
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The other group of caspases, the executioners caspase-3, -6 and -7, have a short 

prodomain and rely on cleavage for activation13 (Figure 1). Maturation of executioner 

caspases is done by either an initiator caspase or other protease during a signaling 

pathway. 

Initiation of apoptosis is mostly understood via either an intrinsic pathway, initiated 

at the mitochondria, or an extrinsic pathway, initiated through death receptors at the 

plasma membrane. These two signaling mechanisms are further outlined below. 

1.1.2. Extrinsic pathway 

The extrinsic pathway links extracellular signaling to initiation of apoptosis through 

engagement of members of the TNF receptor (TNFR) superfamily located at the 

plasma membrane37. Within these, the death receptors (DR) share an extracellular 

domain rich in cysteines and a cytoplasmic tail containing a DD, essential for 

recruitment of apoptotic factors and downstream signaling. DR signaling culminates 

in the formation of a macromolecular complex, the death inducing signalling 

complex (DISC), through engagement of FADD and caspase-821. FADD recruitment 

to the DR – or its complex – is mediated by its DD domain38. This homotypic 

interaction causes conformational changes in FADD, exposing its DED domain for 

recruitment of procaspase-8. Tandem interactions of procaspase-8 DED domains 

precipitate the formation of a filament structure, where catalytic domains dimerize 

and allow proximity-induced autoactivation38,39. The active caspase-8 is released from 

the DISC as a p18/p10 heterotetramer and cleaves procaspase-3, -7 and -6, activating 

these procaspases37. Presence or absence of cellular FLICE-like inhibitory protein 

(cFLIP) at the DISC further regulates caspase-8 activity, dictating if a cell undergoes 

apoptosis or survives after death receptor engagement38,39. 

The DR Fas and TRAIL receptor (TRAILR)1/2 are normally expressed at the plasma 

membrane as trimers40. Association of these receptors with their cognate ligands, Fas 

ligand (FasL) and TRAIL respectively, induces conformational changes in their 

cytoplasmic tail which allows direct recruitment of FADD for DISC formation and 

downstream apoptotic signaling37.  

Activation of caspase-8 through the DR TNFR1, though, involves more steps for 

DISC formation40. Ligation of TNF-α to TNFR1 primarily leads to the formation of a 

membrane-bound complex, complex I, with the recruitment of TNFR1-associated 

death domain protein (TRADD), receptor-interacting serine/threonine-protein kinase 

(RIPK)1, TNF receptor-associated factor (TRAF) 2, cellular inhibitor of apoptosis 



Introduction 6 

 

(cIAP) 1/2 and linear ubiquitin chain assembly complex (LUBAC) complex41-43. Once 

in complex I, cIAP1/2 and LUBAC attach ubiquitin-chains to (mostly) RIPK1, which 

serve as scaffold for recruitment of transforming growth factor beta-activated kinase 

1 (TAK1)/ TAK1-binding protein (TAB) 2/TAB3 and inhibitor of nuclear factor 

kappa-B kinase (IKK)a/b/NF-κB essential modulator (NEMO)43. Therefore, signaling 

through TNFR1 normally leads to mitogen-activated protein kinase (MAPK) and NF-

kB-dependent survival signaling and cytokine production19 (Figure 2). Nonetheless, 

several scenarios can deviate from the initial pro-survival effect of TNFR1 

stimulation. First, continued signaling on TNFR1 eventually leads to the release of 

RIPK1 from complex I, which act as a seed to assemble a cytosolic platform, complex 

IIa or ripoptosome, containing RIPK1, FADD and caspase-842. In presence of a 

functional NF-κB response, complex IIa also contains cFLIP, which forms an 

heterotetramer with caspase-8 to promote cell survival19. However, under low levels 

of cFLIP, procaspase-8 homooligomerization at complex IIa drives its activation and 

initiation of apoptosis. The apoptotic response triggered by complex IIa can also be 

regulated by RIPK1 ubiquitination status44. Deubiquitination of RIPK1 by either 

ubiquitin carboxyl-terminal hydrolase CYLD (CYLD) or TNF alpha-induced protein 

3 (A20) promotes RIPK1 dissociation from complex I, favoring complex IIa 

assembly45,46 (Figure 2). Both CYLD and A20 are also transcriptionally regulated by 

NF-κB, and therefore represent a negative feedback control to hamper TNR1-

mediated transcription. RIPK1 – and the cell death downstream – can also be 

regulated by phosphorylation. MAP kinase-activated protein kinase 2 (MK2) 

activation after TNFR1 signaling leads to phosphorylation of the cytosolic pool of 

RIPK1 and its incorporation into TNFR1 signaling limits cell death induction47,48. 

Further, IKKa/b can also phosphorylate RIPK1, preventing its signaling to cell 

death49. 

The extrinsic apoptotic pathway is tightly controlled by an efficient NF-κB response 

through the means of cFLIP transcription. cFLIP is a homologue of caspase-8, but it is 

either expressed as a short form (cFLIPs) bearing only the tandem DED domains, or 

as a long form (cFLIPL) with a high homologue sequence to procaspase-8, but 

harboring mutations which hampers its catalytic activity19. Both isoforms of cFLIP 

are recruited to the death receptor signaling complex through interaction with 

procaspase-8 by means of DED/DED assemblies38,39. cFLIPs is a well-defined inhibitor 

of procaspase-8 activation and has been proposed to avoid procaspase-8 

homodimerization and autoactivation by preventing procaspase-8 homodimerization 

at the filament by direct or indirect means39. Furthermore, overexpression studies 
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have demonstrated that at high concentrations, cFLIPS can act as a cap at the 

filament, preventing its further elongation38. At high concentrations as in 

overexpression studies, cFLIPL can also have an inhibitory function of caspase-8 

activity by competing with it for the filament38. However, the physiological role of 

cFLIPL seems to be of an activator of procaspase-834. Heteroligomerization of cFLIPL 

and procaspase-8 at the DISC induces conformational changes in caspase-8 which 

allows its activation without cleavage36. This local active caspase-8 cleaves RIPK1 and 

RIPK3, also at the complex, preventing these kinases to continue cell death signaling 

to necroptosis35,50. Active caspase-8 also generates a p43 cFLIPL form, which regulates 

NF-κB and ERK signaling pathways downstream51. Therefore, low and local caspase-

8 activity is associated to survival. Additionally, once cFLIPL p43 fragment leaves the 

complex, caspase-8 loses its activity38, further ensuring a survival commitment of the 

cell.  

Finally, absence or low levels of both cFLIPS and cFLIPL allow homodimerization of 

procaspase-8 at the DISC filament, self-activation and gain of full activity38,39. The 

p18/p10 heterotetramer leaves the DISC complex to cleave its cytoplasmic substrates, 

procaspase-3, -7 and -8. As the survival role for caspase-8 activity is a growing 

understanding, it would be interesting to understand whether these signaling 

pathways are a constant mechanism happening inside the cell or whether they are 

signaling-induced. 

1.1.3. Intrinsic pathway 

The intrinsic apoptotic pathway unifies a plethora of intracellular stresses into a 

signaling cascade initiated at the mitochondria. The convergence of signals such as 

DNA damage, cytoskeleton perturbations, endoplasmic reticulum (ER) stress, mitotic 

stress and withdrawal of growth hormone to the mitochondria is performed by a 

group of proteins from the B-cell lymphoma-2 (Bcl-2) family52. 

Bcl-2 proteins have between one and four Bcl-2-homology (BH) domains, and control 

apoptosis initiation by promoting or avoiding the release of proapoptotic factors 

from the intermembrane mitochondrial space (IMM)53. The Bcl-2 family can be 

further subdivided into three subfamilies, according to their function in the apoptotic 

cascade. The pro-apoptotic Bcl-2 proteins, Bcl-2 homologous antagonist killer (Bak), 

Bcl-2-associated X protein (Bax) and Bcl-2 related ovarian killer (Bok) have four BH 

domains and a transmembrane domain used for integration to organellar 

membranes20. These three proteins are able to directly cause mitochondrial outer 
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membrane permeabilization (MOMP) by permeabilizing the outer mitochondrial 

membrane (OMM) to allow passage of proteins of even 100 kDa53. The other two Bcl-

2 subfamilies comprise proteins that regulate the function of Bax, Bak and Bok. In 

one hand, anti-apoptotic proteins Bcl-extra large (Bcl-XL), induced myeloid leukemia 

cell differentiation protein Mcl-1 (MCL-1), Bcl-2, Bcl-2-like protein 2 (Bcl-w) and Bcl-

2-related protein A1 (A1) hinder Bax/Bak – and potentially Bok – pore formation at 

the OMM53. On the other hand, Bax/Bak can be activated by BH3-only proteins, the 

third subfamily, represented by BH3-interacting domain death agonist (Bid), Noxa, 

p53 up-regulated modulator of apoptosis (Puma), Bcl2-associated agonist of cell 

death (Bad), Bcl-2-interacting killer (Bik), activator of apoptosis harakiri (Hrk), Bim 

and Bcl-2-modifying factor (Bmf)52. 

BH3-only proteins represent the most apical Bcl-2 proteins in a signaling pathway 

and therefore lie at the crossroads between cellular stress and apoptotic signaling. As 

such, PUMA and Noxa have their protein levels regulated by p53, thereby linking 

DNA damage to intrinsic apoptosis54. On the other hand, augmented levels of BIM 

lead to apoptotic initiation after cytokine deprivation or cross-linking of B and T cell 

receptors52. Further, Bid interconnects the extrinsic and intrinsic apoptotic pathways, 

once it is cleaved by caspase-8, generating its truncated and active version, tBid55,56. 

These BH3-only proteins can directly engage the pro-apoptotic Bcl-2 proteins, Bax 

and Bak, to promote conformational changes essential for their activation. However, 

they also sequester different sets of Bcl-2 anti-apoptotic proteins to sensitize cells to 

the apoptotic stimuli52. Direct interaction between Bcl-2 family members leads to a 

complex signaling network that dictates cell fate after stress, by finally controlling 

MOMP occurrence. 

Each of the pro-apoptotic Bcl-2 family members, the final controllers of MOMP, is 

subject to regulation through a specific mechanism, representing their distinct roles 

in apoptosis initiation. Though a low level of Bak shuttles between the OMM and 

cytosol, the high hydrophobicity of its tail anchor favors this dynamics towards the 

OMM57, where interaction with the anti-apoptotic Bcl-2 members Bcl-XL and MCL-1 

keeps Bak in an inactive state58. A transient interaction of Bak with an activating 

BH3-only protein – and the conformational changes induced thereof –, allows Bak 

homodimerization through mutual insertion of BH3-domains in the partner’s 

groove59. Further oligomerization of these BH3:groove dimers causes reorganization 

of the OMM and eventually leads to the formation of a proteolipidic pore, 

responsible for the MOMP60. 
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Bax undergoes a similar activation procedure, with priming by a BH3-only protein 

causing conformational changes leading to the BH3:groove dimer and pore 

assembly60,61. However, Bax counts on the control of its intracellular localization as an 

extra step for activation. Bax is shuttled from the OMM to the cytosol very efficiently 

by Bcl-XL; thus, it is mainly found in the cytosol62,63. Stress signals cause BH3-only 

proteins to sequester anti-apoptotic Bcl-2 members, which stops Bax 

retrotranslocation and allows its accumulation at the OMM62. Though this is not 

enough for activation, accumulation of Bax at the OMM is the first step in apoptotic 

sensitization. 

A similar role for accumulation at the OMM has also been suggested to control the 

activity of Bok. However, in this case, mere accumulation of Bok protein level could 

suffice for oligomerization and MOMP, which would be insensitive to regulation by 

anti-apoptotic Bcl-2 family members64. While overt ER-stress was proposed as one of 

the pathways for building up Bok protein level64, ovarian carcinoma cells have been 

also shown to be prone to Bok-mediated apoptosis through other intrinsic triggers65. 

Remarkably, though dimers of Bax and Bak can associate for final pore formation, 

Bok, Bak and Bax can induce MOMP by themselves, and single knockout of these 

proteins is insufficient to protect cells to intrinsic apoptotic stimuli52. However, 

developmental intrinsic apoptosis has been shown to strongly rely on Bax/Bak, as 

double knockout mice die prematurely, with accumulation of cells in diverse organs 

and failure to remove interdigital membranes66. So far, a developmental role of Bok 

has only been shown in clearance of follicles when in a Bax deficient background67, 

though further understanding the role of this Bcl-2 member in apoptosis initiation 

might highlight other developmental functions. 

Finally, MOMP allows the release of several apoptogenic factors in the cytosol, such 

as cytochrome c, second mitochondria-derived activator of caspase (SMAC)/ direct 

IAP-binding protein with low pI (DIABLO) and high temperature requirement 

protein A2 (Htr2)68. Cytochrome c normally resides in the IMM, where it participates 

in the cascade of adenosine triphosphate (ATP) production21. Once released in the 

cytosol, cytochrome c interacts with Apaf-1, allowing its oligomerization dependent 

on (d)ATP69. This macromolecular structure formed by cytochrome c and Apaf-1 is 

called the Apoptosome21. Through CARD-CARD interactions between Apaf-1 and 

pro-caspase-9, this caspase is recruited to the Apoptosome, where it undergoes 

dimerization and activation. Active caspase-9, then, cleaves caspase-3/-7/-6 to execute 

apoptosis. SMAC/DIABLO70,71 and Hrt272, also released during MOMP, act 
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downstream on the signaling pathway, inhibiting IAPs to allow efficient caspase 

activation and apoptosis execution, as commented further below. 

1.1.4. Execution phase of apoptosis and clearance 

Extrinsic and intrinsic apoptotic signaling pathways converge at the level of 

activation of the executioners’ caspases, by proteolytic cleavage of procaspase-3, -7 

and -6 by caspase-8 and caspase-973. Interestingly, despite efficient cleavage of 

procasase-3 and -7 by caspase-8, signaling through the extrinsic apoptotic pathway is 

not sufficient to promote apoptosis in certain cell types. In the so-called type II cells, 

distinctively represented by hepatocytes, intrinsic and extrinsic pathways act in a 

concerted way to determine apoptotic cell death74. The connection between the two 

pathways happens at the level of caspase-8, which cleaves the Bcl-2 protein BID, 

leading to its active truncated version, tBID55,56. At the mitochondria, tBID sequesters 

Bcl2 and allows Bax/Bak pore formation56. Mitochondrial release of SMAC/DIABLO 

and its inhibition of X-linked IAP (XIAP) are essential for caspase-3 and -7 to acquire 

full activity and induce cell death75. XIAP is a cytosolic protein, part of the IAP family 

containing three tandem baculovirus IAP repeat (BIR) domains. XIAP interacts with 

active caspase-3 and -7, inhibiting their catalytic pocket and downstream apoptosis76. 

Therefore, type II cells are defined by their high levels of XIAP75. Interestingly, 

though cytochrome c, Apaf-1 and caspase-9 aid in the downstream signaling for 

apoptosis, the mitochondrial signaling to apoptosis after DR engagement in type II 

cells does not rely on them. In fact, knockout of XIAP in hepatocytes is sufficient to 

reestablish their ability to undergo DR-induced cell death without mitochondrial 

signaling75. In marked contrast to type II cells, type I cells, such as lymphocytes, are 

efficient in undergoing DR-dependent cell death in the absence of mitochondrial 

signaling, given their low level of XIAP. Regulation of apoptosis by type I and type II 

cells interestingly exemplifies how basal cellular protein regulation determines cell 

fate. 

Finally, cleavage of substrates by caspase-3, -7 and -6 determines the apoptotic 

phenotypic characteristics of cell demise20. More than 1000 substrates for executioner 

caspases have been described to this date, demonstrating the complexity of the 

apoptotic program. Morphologically, shrinkage and cell rounding are some of the 

bona fide features of apoptosis implemented by executioner caspases20. Cleavage of 

gelsolin by caspase-3 produces an active n-terminal fragment, able to promote 

polymerized actin to dissociate independently of Ca2+77. The consequent disruption of 
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the actin structure causes apoptotic cell rounding. Caspase-3 and -7 also cleave and 

activate Rho-associated protein kinase 1 (ROCKI) by removal of its auto-inhibitory c-

terminal domain78-80. Active ROCKI phosphorylates myosin light chain (MLC), 

increasing contraction of the actomyosin system and causing membrane blebbing, 

another apoptotic defining feature. 

Apoptosis is classically defined as a silent form of cell death, since the plasma 

membrane structure is not compromised during its execution73. Cell rounding, 

blebbing of the plasma membrane and packaging of the intracellular contents into 

apoptotic bodies help in a fast clearance by neighboring cells. Furthermore, an 

important characteristic of apoptotic cells is the early exposure of phosphatidylserine 

(PS) in the external face of the plasma membrane bilayer81. In healthy cells, 

transmembrane proteins called flippases actively keep PS in the inner leaflet of the 

plasma membrane. However, caspase-3 cleaves and inactivates flippases, while also 

constitutively activating scramblases, to promote fast and irreversible loss of lipid 

asymmetry and exposure of PS in early apoptotic cells82. PS is an efficient signal for 

phagocytosis and, in combination with the rounded and packaged cell body, 

promotes rapid uptake and clearance of apoptotic cells81, further supporting its 

immunologically silent role. 

Nuclear structure and DNA integrity are also compromised in apoptosis by activity 

of executioner caspases20. Active caspase-3 and -6 cleave laminins, disrupting the 

nuclear envelope83, and lead to DNA fragmentation through cleavage of the inhibitor 

of caspase-activated DNAse (ICAD)84. Proteasomal degradation of ICAD releases its 

partner, the caspase-activated DNAse (CAD), which translocates to the nucleus 

where it cleaves the DNA in internucleossomal regions84. 

The enzyme poly(ADP)ribose polymerase 1 (PARP1) plays important roles in DNA 

damage repair and its regulation is essential for the progress of programmed cell 

death85. PARP1 is recruited to DNA damage where it catalyses the polymerization of 

ADP-ribose and bridges the recruitment of DNA-repair factors. However, poly(ADP) 

ribose synthesis happens at great expense of the intracellular stores of NAD+ and 

ATP. In apoptosis, PARP1 is readily cleaved by caspases -3 and -7, rendering it 

inactive, in order to maintain intracellular levels of ATP to execute the apoptotic 

program83. 

Caspase-3 seems to be the most efficient executioner caspase in cleavage of apoptotic 

substrates on the studied mechanisms so far83. This is further confirmed on the 

severity of phenotype observed in mice lacking caspase-3, which suffer either from 
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perinatal lethality or mild phenotypic impairments, depending on their genetic 

background86. Contrastingly, Caspase-7-/- and Caspase-6-/- knockout mice develop 

normally87,88. Further, while the presentation of the apoptotic pathway follows a 

linear signaling pathway, the physiological pathway might be more complex, with 

feedback loops and compensatory mechanisms playing a role in the activation of 

caspases88,89.  

Interestingly, in a screening for inhibitors of caspases based on tetrapeptidic 

sequences, DEVD has been shown to be a major consensus sequence for both 

caspase-3 and -790, suggesting that these caspases would have overlapping roles. 

Indeed, absence of both caspases in mice leads to early embryonic lethality87. 

However, while in most systems caspase-3 and caspase-7 seem to indeed overlap, 

analysis of their substrates suggests that caspase-7 might need the recognition of 

longer peptide stretches despite the P1-P4 consensus sequence in physiological 

substrates91,92. Furthermore, attempts to understand the differential roles of 

executioner caspases have demonstrated that there might be indeed preferentiality in 

substrate according to the executioner caspase. For example, the cochaperone p23 has 

been shown to be a preferential substrate of caspase-7, while gelsolin seem to be 

specifically cleaved by caspase-379. This suggests that the embryonic lethality seen in 

Caspase-3-/-Caspase-7-/- double knockout mouse could also be related to 

complementary functions of these caspases in development, possibly affecting 

different cell types. 

In the human body, as millions of cells die each day without triggering a constant 

immune response93, it confirms that immune suppression is indeed the default 

mechanism to apoptotic clearance. The activity of caspases seems to be an essential 

step for eliciting a local immune suppression. First, executioner caspases control PS 

exposure, which is a potent signal for efferocytosis. Highlighting that PS exposure is 

a sufficient signal for uptake, liposomes with PS exposed are readily taken up by 

neighboring cells93. Secondly, caspases may act in a cell intrinsic manner to prevent 

immune triggering initiated during apoptosis. For example, later stages of Bax/Bak 

mitochondrial channels allow herniation of inner mitochondrial membrane and 

release of mitochondrial DNA for intracellular sensing by the cyclic GMP-AMP 

synthase (cGAS) - stimulator of interferon genes protein (STING) pathway94. This 

response only happens in a caspase-independent setting and promotes 

interferon(IFN)β secretion and an anti-viral signature on the triggered cell95,96. While 

it is still unclear how exactly caspases prevent cGAS-signaling and IFNβ release, it is 

tempting to speculate either that their direct cleavage of a mediator is responsible for 
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dampening inflammation or that their fast activity terminates storages of 

intracellular signaling platforms. Further, immune silencing during apoptosis is also 

a cell-extrinsic event. In homeostatic conditions, uptake of apoptotic cells elicits the 

release of the immunosuppressant cytokines IL10 and transforming growth 

factor(TGF)β from the phagocyte97.  

Though immunosuppression is the norm after apoptotic uptake, apoptotic cells can 

also mediate inflammatory response in conditions of infections. Concomitant 

stimulation of dendritic cells (DC) with Toll-like receptor (TLR) ligands and 

apoptotic corpses causes additional secretion of IL6 and IL23 by the DC98. The 

combination of IL6, IL23 and TGFβ promotes differentiation and expansion of the 

highly inflammatory Th17 CD4 T helper cells. As a result, conditioned media from 

DCs that had been co-stimulated with TLR agonists and apoptotic cells promoted the 

polarization of naïve CD4 T cells to Th17 profile, while conditioned media of DCs 

that were fed only apoptotic cells promoted a Treg phenotype98. Thus, addressing the 

role of cell death in the context of pathogen invasion seems imperative to fully 

understand the immune response elicited. 

1.2. Regulated necrosis 

Initial descriptions of necrotic cell death focused on the fact that this cell demise 

terminates on release of intracellular content, as in marked contrast to apoptotic cell 

death. For 30 years it was largely assumed that apoptotic cell death was the only 

form of regulated cell death, while necrosis largely represented an accidental death99. 

Studies on the roles of TNF-α have, however, majorly contributed to debunk this 

concept. Discovered in the 1980s, TNF-α took its name from the necrotic activity it 

could cause in tumour cells100. Interestingly, in 2008, Degterev and colleagues 

described a drug, Necrostatin-1 (Nec-1), which could inhibit TNF-α toxicity, therefore 

defining that a necrotic death could be regulated101. Soon after, the kinase activity of 

RIPK1 was described to be the target of Nec-1 inhibition102, initiating the studies into 

necroptotic cell death mechanisms and further establishing this as a regulated form 

of cell death. 

1.2.1. Necroptosis 

Necroptosis can be defined as a necrotic cell death which relies on mixed lineage 

kinase domain-like protein (MLKL)103. TNFR1, Fas, TRAILR, TLRs, IFNγR and Z-

DNA-binding protein 1 (ZBP1)/DAI were demonstrated to lead to necroptotic 
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signaling downstream when engaged in absence of caspase activity99. Though these 

lead to similar initiation and regulation of necroptosis, TNFR1 activation is the 

prototypical necroptotic signaling pathway, and thus the example used herein. 

As described earlier, a cell can execute multiple downstream decisions upon 

engagement of the TNFR1 by TNFα. First, NF-κB and MAP kinase kinase (MKK)-

dependent survival responses are initiated on the establishment of the membrane-

bound complex I and RIPK1 ubiquitination42,43. Disengagement of RIPK1 from the 

membrane-bound complex forms the cytosolic structure called complex II (Figure 2). 

In presence of NF-κB signaling levels sufficient to upregulate cFLIPL, this protein is 

incorporated to complex IIa, and the cFLIPL/caspase-8 heterotetramer cleaves RIPK1 

and RIPK3 also at the complex, maintaining the survival signal19. Absence of NF-κB 

signaling and cFLIPL upregulation leads to accumulation of caspase-8 at complex IIa 

and induction of apoptosis. On the opposite side of the spectrum, in absence of 

caspase-8 on protein level or its catalytic inhibition, RIPK1 and RIPK3 are no longer 

inhibited, and their association through their RIP homotypic interaction motif 

(RHIM) domains in complex IIb, or necrosome, promotes their phosphorylation104. 

MLKL is recruited to complex IIb and phosphorylated by RIPK3105, which induces 

conformational changes that exposes its 4-helical bundle domain, with high affinity 

for membranes106,107. Oligomerization of MLKL and its association with 

phosphatidylinositol’s at the plasma membrane are essential steps for necroptosis106-

108. 

 

Figure 2. Multiple signaling pathways are possible downstream of TNFR1. Engagement of TNFR1 leads 

prominently to recruitment of TRADD, RIPK1, cIAP1/2 and LUBAC to complex I. Ubiquitination of RIPK1 

TNFR1

Caspase-8

Apoptosis

Complex I
TRADD

TRAF2

cIAP1/2

LUBAC

TAK1
TAB2 TAB3

IKKa

NEMO

IKKb

Survival
Cytokine production

CYLD

A20

Complex IIa

Ubiquitin

FADD

cFLIPL

RIPK1

RIPK3

MLKL

Necroptosis

Complex IIb

High cFLIPLLow cFLIPL

Plasma membrane 
translocation



Introduction 15 

 

allows the recruitment of NEMO/IKKα/β and TAK1/TAB2/TAB3 for a survival signal and cytokine 

production. Release of RIPK1 from complex I can be modulated by deubiquitination by CYLD and A20, and 

promotes the formation of a cytosolic complex II. Presence of cFLIPL at complex IIa determined whether the 

outcome of its signaling is to maintain survival or induce caspase-8-dependent apoptosis. Absence of caspase-

8 or its inhibition allows the formation of complex IIb, where RIPK3 recruits MLKL and phosphorylates it. 

Phosphorylated MLKL translocates to the plasma membrane and mediates necroptosis. 

Whereas the indispensable role of MLKL in necroptosis execution in well defined, 

the molecular mechanisms responsible for cell lysis are still not fully elucidated. The 

role of diverse ion influxes have been contested on necroptotic cell death107,109-111 and 

in some cells MLKL seem to rely on plasma membrane-associated channels to 

terminally execute lysis108. Conversely, cell rounding has been widely described as a 

morphological feature of necroptosis in diverse cell lines, happening downstream of 

MLKL111,112. Furthermore, mitochondrial hyperpolarization and reactive oxygen 

species (ROS) production have been shown to anticipate plasma membrane lysis 

during necroptosis of mouse fibroblast cells, L929112. Interestingly, despite 

canonically being associated to apoptosis, loss of membrane asymmetry and PS 

translocation to the outer leaflet is an event downstream of MLKL activation; 

nonetheless it precedes membrane permeabilization113,114. Furthermore, cells 

undergoing necroptosis shed damaged pieces of membrane as vesicles containing PS 

at the extracellular side113,114, thereby delaying fatal plasma membrane commitment 

and promoting uptake by neighbouring cells. This self-repair mechanism relies on 

the activation of MLKL and its association to proteins of the endosomal sorting 

complexes required for transport (ESCRT) machinery113,115. Since this phenomenon 

has been implicated in allowing an efficient NF-κB response113, it would be 

interesting to evaluate the possible consequences of lack of the ESCRT components in 

in vivo disease models.  

Fas and TRAILR lead to similar initiation and regulation of necroptosis as in the 

context of TNFR199. However, IFNγR seems to rely on signal transducer and 

activator of transcription 1 (STAT1) for necroptosis induction99 and TLR3 and TLR4 

recruit RIPK3 based on TIR-domain-containing adapter-inducing interferon-β (TRIF) 

signaling downstream116. 

1.2.1.1. Necroptosis in development and immunity 

A developmental role for necroptosis was further pursued in studies with knockout 

mice for its main players. Of note, the ability to undergo necroptosis is not essential 

for development, as RIPK3-/- and MLKL-/- single knockouts develop normally and 

show no spontaneous phenotype117,118. However, absence of RIPK3 rescues the 
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lethality observed in Caspase-8-/- and allows fully development to adulthood119,120. 

Caspase-8-/- mice have long been recognized to succumb around embryonic stage 

E10.5 given their inability to vascularize the yolk salc121. The survival of RIPK3-/- 

Caspase-8-/- double knockouts reveals that the ability of this caspase in blocking 

necroptosis is essential for fully embryonic development. Of note, consistent with the 

role of caspase-8 in inhibiting RIPK3 when in a heterocomplex with cFLIP, transgenic 

mice bearing the uncleavable mutant caspase-8 are viable, while their thymocytes are 

protected from toxicity of Fas injection122. 

Contrasting RIPK3-/- and MLKL-/- mice, lack of RIPK1 reveals a lethal phenotype and 

mice die right after birth by an overt systemic inflammation, suggesting RIPK1 has a 

physiological role of dampening inflammation123. Notably, mice bearing either the 

D138N or K45A mutations on RIPK1 express catalytic mutant proteins but are viable 

and survive to adulthood with no reported spontaneous phenotype124,125. Thus, the 

autoinflammatory phenotype observed in RIPK1-/- mice is due to lack of the scaffold 

function of RIPK1. Given the requirement for the kinase activity of RIPK1 in 

necroptosis induction, this further supports that necroptosis is not essential during 

development. 

RIPK1-/- mice die mostly by consequences of skin and intestinal impairments123,126. 

Each affected compartment on RIPK1-/- mice correlates with the dual role of RIPK1 in 

controlling caspase-8 and RIPK3, and a full protection is observed in RIPK1-/-RIPK3-/-

Caspase-8-/- triple knockout mice123,126.  

The intestinal effects of the lack of RIPK1 seem to be associated to overt caspase-8-

mediated apoptosis induction of epithelial cells127,128. Commitment of the intestinal 

barrier, translocation of bacteria, myeloid differentiation primary response 88 

(MyD88) and TNFR signaling were all shown to play a role in theses’ mice inability 

to thrive123,127,128, and absence of RIPK3 could not rescue the absence of RIPK1127,128. 

On the other hand, the skin abnormalities of RIPK1-/- mice are prevented by lack of 

RIPK3 or MLKL128-130. While this firmly establishes that necroptosis is the main driver 

of the skin inflammation observed in these mice, it also surprisingly reveals that 

RIPK1 can in fact act as an inhibitor of necroptosis. Indeed, absence of RIPK1 seems 

to unleash the necroptotic ability of ZBP1. While absence of ZBP1 delays the 

necroptotic phenotype in the skin of the mice, RIPK3 or MLKL completely rescues 

them, indicating that RIPK1 also prevents other necroptotic signaling from occurring 

besides ZBP1129. In fact, dual deletion of TRIFF and ZBP1 phenocopies RIPK3 
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deletion, indicating both proteins can engage RIPK3-necroptotic signaling in the 

absence of RIPK1130.  

ZBP1 contains two DNA/RNA sensing domains in tandem and two RHIM domains, 

used in the RHIM/RHIM interaction with RIPK3130,131. Besides its role in 

development, ZBP1 also functions during viral detection, though also in a still 

elusive mechanism. ZBP1 is required for cell death induction of macrophages during 

influenza A viral infection132. Furthermore, murine cytomegalovirus (MCMV) 

bypasses host defenses by expressing a RHIM interacting protein, vIRA, which 

impairs the association between ZBP1 and RIPK3131. MCMV lacking vIRA induces 

inflammation in WT animals, in a ZBP1-dependent manner131,133. 

Remarkably, an Escherichia coli effector, EpsL, was demonstrated to degrade RIPK1, 

RIPK3, TRIF and ZBP1, thereby preventing necroptotic signaling in vitro134. 

Furthermore, Citrobacter rodentium lacking the EpsL effector are less efficient in 

colonizing murine intestines134. Thus, targeting the necroptotic pathway might be an 

evasion mechanism shared between viruses and bacteria. Further suggesting a role 

for necroptosis in immune response, inhibition of necroptosis during in vivo infection 

by Staphyloccocus aureus worsens pathology135. Necroptotic signaling as an immune 

response is also indicated by the ability of TLR4 and TLR3 to lead to TRIF-mediated 

RIPK3 activation and cell death in conditions of caspase inhibition116. It is still to be 

determined whether caspase inactivation happens physiologically, and in which 

conditions. Overall, understanding particularly which cells are targeted and what are 

the immunological consequences of necroptosis induction would aid in the further 

characterization of the role of necroptosis in infection models. 

1.2.2. Emerging pathways of regulated necrosis 

Other forms of regulated necrosis which do not rely on RIPK3 and RIPK1 activities 

have been described. While parthanatos and CYPD-dependent regulated necrosis kill 

by depletion of the intracellular levels of NAD+, ferroptosis is a mechanism in which 

excessive intracellular iron leads to lipid peroxidation and cell death99. Further 

understanding of their potential participation in immunity and host-pathogen 

interaction is still to be reached. 

Neutrophils, and their cell death by NETosis, though, have a clear role in pathogen 

clearance136. Neutrophils are one of the first immune cells to reach a challenge site, 

and their effector responses to pathogens relies on release of intracellular granules, 

phagocytosis, cytokine release and release of neutrophil extracellular traps (NET). 
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These traps are composed by DNA, histones and neutrophilic proteases137. NETs 

have been demonstrated to selectively trap large pathogens to avoid microbial 

spread and help clearance138. Furthermore, recently they have been shown to also act 

as scaffold for the neutrophilic proteases cathepsin G and elastase to act on 

extracellular cytokine processing139. NET formation relies mainly in the activity of 

neutrophil elastase (NE)140. Once a neutrophil starts to degranulate, its DNA 

decondenses and is released in the cytoplasm, where it binds to granular proteins. 

The DNA, together with histones and granular proteins are finally released 

extracellularly. So far, ROS production is the most upstream player identified in NET 

formation, and it activates myeloperoxidase (MPO) to induce degranulation140. MPO 

then releases NE, which translocates to the nucleus where it degrades histones to 

promote DNA decondensation. MPO and other granular proteins aid in DNA 

decondensation but inhibiting NE activity is sufficient to prevent NET formation140, 

demonstrating its key role in the process.  

While many reports have shown NET occurring during neutrophilic cell death, 

termed NETosis, there has been descriptions of phagocytic activity of a neutrophil 

after it has shed a NET137. Further, a report has implicated an upstream necroptotic 

signaling pathway to NET formation141. Further research is needed to uncover 

whether NET formation lies at the downstream signaling pathway of other lytic 

forms of cell death, and it might represent a common response of neutrophil to lytic 

forms of cell death. 
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1.3. Cell death and the inflammasomes 

1.3.1. Cell death initiated at the inflammasome 

complex 

 

Section 1.3.1.  is modified from the review: de Vasconcelos, N.M., Van 

Opdenbosch, N.; Lamkanfi, M. 2016. Inflammasomes as polyvalent cell 

death platforms. Cellular and Molecular Life Sciences. 73(11-12). 

p.2335-2347. 

 

1.3.1.1. Abstract 

Inflammasomes are multi-protein platforms that are organized in the cytosol to cope 

with pathogens and cellular stress. The pattern-recognition receptors NLRP1, 

NLRP3, NLRC4, AIM2 and Pyrin all assemble canonical platforms for caspase-1 

activation, while caspase-11-dependent inflammasomes respond to intracellular 

Gram-negative pathogens. Inflammasomes are chiefly known for their roles in 

maturation and secretion of the inflammatory cytokines IL1β and IL18, but they can 

also induce regulated cell death. Activation of caspases -1 and -11 in myeloid cells 

can trigger pyroptosis, a lytic and inflammatory cell death mode. Pyroptosis has been 

implicated in secretion of IL1β, IL18 and intracellular alarmins. Akin to these factors, 

it may have beneficial roles in controlling pathogen replication, but become 

detrimental in the context of chronic autoinflammatory diseases. Inflammasomes are 

increasingly implicated in induction of additional regulated cell death modes such as 

pyronecrosis and apoptosis. In this review, we overview recent advances in 

inflammasome-associated cell death research, illustrating the polyvalent roles of 

these macromolecular platforms in regulated cell death signaling. 
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1.3.1.2. Canonical and non-canonical inflammasome 

platforms 

Inflammasomes are cytosolic multiprotein complexes that are assembled when the 

cell encounters pathogens, toxins, crystals and a diversity of other agents that may 

harm the host142,143. These potentially cytotoxic agents or the ensuing cellular stress 

are monitored by a set of intracellular pattern recognition receptors (PRRs) that auto-

oligomerize and recruit additional inflammasome components. Similar to the death-

inducing signaling complexes that activate the apoptotic initiator caspases -8 and -

10144, and the caspase-9-activating apoptosome145, oligomerization of inactive 

procaspase-1 zymogens in inflammasomes results in the proximity-induced 

autoactivation of the protease142. The CARD- and pyrin domain (PYD)-containing 

adaptor protein ASC bridges the recruitment of procaspase-1, although 

inflammasomes of CARD-containing PRRs may also recruit the inflammatory 

protease directly33,146,147. Once active, caspase-1 matures and releases the pleiotropic 

inflammatory cytokines IL1β and IL18, thereby contributing importantly to 

inflammatory and immune responses148. Caspase-1 also induces pyroptosis, a lytic 

regulated cell death mode of myeloid cells that is emerging as a critical host defense 

mechanism against microbial pathogens149. On the other hand, excessive and 

unwarranted pyroptosis induction is linked to autoinflammatory disease 150-153. Also, 

activation of murine caspase-11 and its human orthologs caspases -4 and -5 in the 

non-canonical inflammasome pathway induces pyroptosis14,15,154. Furthermore, 

inflammasome-induced cell death responses are increasingly recognized to extend 

well beyond caspase-1- and -11- induced pyroptosis, and encompass apoptosis and 

pyronecrosis as discussed in the following paragraphs. 

The canonical inflammasomes 

By definition, the canonical inflammasomes activate caspase-1. Most canonical 

inflammasomes are assembled by PRRs that belong to the nucleotide-binding 

oligomerization domain-like receptor (NLR) family155, but Pyrin143 and HIN200 

protein absent in melanoma 2 (AIM2)156,157 also engage well-defined inflammasomes. 

The roles and signaling mechanisms of the different inflammasomes have been 

reviewed extensively142,158-160, and they will only be briefly discussed here in the 

context of their roles in regulated cell death signaling. 

Akin to other NLRs, NLRP3 possesses a central nucleotide-binding NAIP, CIITA, 

HET-E and TP1 (NACHT) domain and a number of C-terminal leucine-rich repeat 
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(LRR) domains that are thought to regulate NLR activation. NLRP3 is a 

representative member of the NLRP subfamily, which are characterized by a PYD 

domain in the amino-terminus. The NLRP3 inflammasome is activated in response to 

a broad variety of pathogen- and danger-related activators that includes Gram-

negative bacteria, Staphylococcus aureus, RNA viruses, pore-forming toxins, 

ionophores, crystals, etc.161 (Figure 3). As it is unlikely for NLRP3 to physically bind 

such a diverse set of activators, it is commonly thought that these stimuli may 

converge on production of a secondary messenger that is monitored by NLRP3. K+ 

efflux, Ca2+ signaling, mitochondria-derived ROS, cytosolic release of mitochondrial 

DNA and cardiolipin, release of lysosomal cathepsins and microtubule-assisted 

relocation of the NLRP3 inflammasome to mitochondria-ER foci all are mechanisms 

that may possibly contribute to NLRP3 activation162-168, but further research is 

required to fully understand NLRP3 activation mechanisms.  

The human NLRP1 inflammasome has been implicated in Vitiligo-associated 

autoimmune disease169, autoimmune Addison’s disease170, type I diabetes171,172, and 

autoinflammation173. Importantly, humans possess only one Nlrp1 gene, whereas the 

mouse genome contains Nlrp1a, Nlrp1b and Nlrp1c genes. A number of studies have 

shown that NLRP1a and NLRP1b assemble inflammasomes that non-redundantly 

activate caspase-1 in hematopoietic progenitor cells infected with lymphocytic 

choriomeningitis virus (LCMV)174, and in macrophages intoxicated with Bacilllus 

anthracis lethal toxin (LeTx), respectively175. LeTx consists of two subunits: the 

protective antigen (PA) subunit attaches to plasma membrane-bound host receptors 

and assists in cytosolic translocation of the zinc metalloproteinase subunit lethal 

factor (LF). In the cytosol, LF protease activity triggers assembly of the NLRP1b 

inflammasome through mechanisms that are not entirely clear yet176,177 (Figure 3).  

NLRC4 is another NLR protein that assembles a canonical inflammasome178. Unlike 

NLRP3, NLRC4 contains an amino-terminal CARD. The NLRC4 inflammasome 

plays an important role in host defense against Salmonella enterica serovar 

Typhimurium (S. Typhimurium), Legionella pneumophila, Pseudomonas aeruginosa, 

Shigella flexneri and Burkholderia thailandensis161,179,180. Members of the NAIP subfamily 

- which are characterized by amino-terminal BIR motifs - bind flagellin or 

components of bacterial type III secretion systems (T3SS) of pathogenic bacteria that 

gain access to the cytosol (Figure 3)181-183. NAIP5-independent phosphorylation of 

NLRC4 is also required for engagement of flagellin-induced inflammasome 

signaling184,185. Importantly, while rodents encode multiple NAIP genes, humans 
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express different isoforms from a single NAIP gene that detect flagellin and T3SS 

components, respectively186. 

Also the HIN200 family member AIM2 assembles a well-characterized 

inflammasome. Through its dsDNA-binding HIN200 domain, AIM2 detects the 

presence of viral and bacterial pathogens in the cytosolic compartment 187-189 . AIM2 

mediates host defense against cytomegalovirus and influenza virus, but also restricts 

Fancisella tularensis. Guanylate-binding proteins (GBPs) appear dispensable for AIM2 

detection of transfected DNA and cytomegalovirus infection, but they are required 

for responding to AIM2-activating bacterial pathogens190,191. This is explained by the 

notion that these type I IFN-induced GTPases mediate lysis of bacteria-encapsulating 

vacuoles or the bacterial cell wall, thereby exposing F. tularensis DNA to AIM2 

detection.  

 

Figure 3. Schematic representation of the inflammasome pathways resulting in pyroptosis’. Pyroptosis as a 

regulated lytic cell death mode of myeloid cells is induced in response to a wide variety of endogenous, 

environmental and pathogen-derived triggers downstream of inflammasome-associated activation of 

caspases 1 or 11 in mice, or that of the orthologous caspases -1, -4 and -5 in humans. While the PYD-based 

NLRP3, AIM2 and Pyrin platforms require the bipartite adaptor protein ASC to recruit and activate caspase-

1, the CARD-based NLRP1b and NLRC4 inflammasomes trigger caspase-1-dependent pyroptosis 

independently of ASC. Both caspases -1 and -11 engage pyroptosis directly by cleaving its substrate GSDMD. 

The mechanism by which GSDMD triggers pyroptosis is currently unknown.  

Pyrin is the latest addition to the list of pattern recognition receptors (PRRs) that 

engages a canonical inflammasome. Pyrin is mutated in familial Mediterranean Fever 
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(FMF) patients, and the protein was recently shown to respond to bacterial toxins 

that post-translationally modify members of the Rho GTPase family 143,192. Pathogens 

such as Clostridium difficile, Clostridium botulinum, Vibrio parahaemolyticus, Histophilus 

somni, and Burkholderia cenocepacia express such toxins and induce Pyrin-dependent 

caspase-1 activation (Figure 3). In light of the reported association of Pyrin with the 

cell cytoskeleton193, this suggests that Pyrin may guard disrupted Rho signaling 

indirectly, possibly by monitoring remodeling of the cytoskeleton downstream of 

toxin-induced inhibition of the GTPase 143.  

The non-canonical inflammasome 

Akin to the role of caspase-1 in canonical inflammasomes, caspase-11 acts as the 

effector protease of the non-canonical inflammasome 154. Notably, this inflammasome 

pathway has emerged only recently with the unexpected observation that widely 

used caspase-1 knockout mice were also deficient in caspase-11 expression 154. The 

non-canonical inflammasome pathway targets Gram-negative bacteria that gain 

access to the cytosolic compartment (Figure 3). Direct binding of cytosolic LPS was 

shown to promote caspase-11-mediated pyroptosis as a host defense response that is 

thought to be important for disposal of macrophages that are infected with E. coli, 

Citrobacter rodentium, Vibrio cholerae and other Gram-negative pathogens25,154. Akin to 

their role in lysis of F. tularensis-containing vacuoles to license AIM2 inflammasome 

activation, GBP GTPases act upstream of caspase-11 for inducing pyroptosis of 

infected macrophages194,195. Caspase-11 cannot mature IL1β and IL18 directly196, but it 

nevertheless promotes secretion of bioactive IL1β and IL18 indirectly through 

engagement of the NLRP3 inflammasome 154.  

1.3.1.3. Mechanisms of inflammasome-induced pyroptosis 

Caspases are well-known for their chief roles in apoptosis signaling37. Unlike their 

apoptotic counterparts, the inflammatory caspase subset – i.e. human caspases -1, -4 

and -5, and murine caspases -1 and -11 - triggers pyroptosis. Maturation of the 

apoptotic executioner caspases -3 and -7, internucleosomal DNA fragmentation and 

cleavage of PARP1 are considered hallmarks of apoptosis. However, these events 

may not be apoptosis-selective biomarkers as terminal deoxynucleotidyl transferase 

dUTP nick end labeling (TUNEL)-activity is also detected in S. Typhimurium-

infected macrophages197-199, and occurs downstream of caspase-1200 (Figure 4). 

Similarly, inflammasome activation promotes caspase-1- dependent maturation of 

caspase-7, and cleavage of PARP1200-202 (Figure 4). Unlike caspase-1, however, 
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deletion of neither caspase-7 nor PARP1 halted pyroptosis by the NLRP3 and NLRC4 

inflammasomes200,201, suggesting that caspase-7 and PARP1 may contribute to other 

inflammasome-linked events. In this regard, caspase-7 activation by the NLRC4 

inflammasome was shown to promote endolysosomal destruction of Legionella 

pneumophila in infected macrophages203, and caspase-7-mediated PARP1 cleavage 

enhanced transcription of NF-κB-dependent target genes202. Despite these 

overlapping molecular characteristics, apoptotic and pyroptotic cells differ markedly 

in other aspects. Apoptosis features cell body shrinkage (pyknosis) and formation of 

apoptotic body formation, whereas pyroptotic cells undergo cytoplasmic swelling, 

consequently leading to opposing immunological outcomes. While apoptosis is an 

immunologically silent regulated cell death mode in which the plasma membrane 

integrity of the dying cell is not compromised before cells are phagocytosed, 

pyroptosis represents a lytic regulated cell death mode that is characterized by early 

membrane rupture and extracellular release of the intracellular contents. Because 

these hallmarks do not distinguish pyroptosis from other lytic regulated cell death 

modes such as necroptosis99, pyroptosis is better defined as ‘a lytic regulated cell death 

mode that relies on the enzymatic activity of inflammatory caspases’. The term ‘pyroptosis’ 

combines the Greek roots ‘pyros’ and ‘ptosis’ - which respectively stand for ‘fire’ and 

‘falling’ - to highlight the inflammatory nature of this cell death mode204. Although 

the term pyroptosis was coined only in 2001, reports describing caspase-1-mediated 

regulated cell death of S. Typhimurium- and S. flexneri-infected macrophages date 

back to as early as 1996, even though at the time these events were designated as 

apoptotic or necrotic cell death205-209. In contrast, caspase-11 only recently emerged as 

a caspase that shares with caspase-1 the ability to induce pyroptosis in Gram-

negative-infected macrophages154.  

Though still incompletely understood, understanding of the molecular mechanisms 

of pyroptosis has gained significant traction lately. The increasingly detailed 

description of the mechanisms driving caspase-1 and -11 activation in the canonical 

and non-canonical inflammasome pathways have clarified how pyroptosis is 

induced by microbial pathogen-associated molecular patterns (PAMPs) and cellular 

danger signals161. Moreover, the recent discovery that gasdermin D (GSDMD) 

cleavage is critical for both caspase-1- and -11-induced pyroptosis revealed a shared 

pyroptosis execution mechanism in the canonical and non-canonical inflammasome 

arms16,210. Little is currently known about the physiological roles of GSDMD and 

other gasdermin family members, but cleavage of human GSDMD after Asp275 

(corresponding to Asp276 in mouse GSDMD) by caspases-1 and the caspase-11 



Introduction 25 

 

orthologues caspases -4 and -5 releases an amino-terminal fragment that suffices to 

induce pyroptosis when overexpressed (Figure 4). GSDMD is present in humans, 

mouse, rat and genomes of other mammals, but absent in birds, insects, amphibians 

and fish. Notably, the amino-terminal domains of other gasdermin proteins also 

induce cell death when ectopically expressed, but GSDMD appears the sole family 

member in which the regulatory carboxy-terminal domain is physically detached 

from the amino-terminal region by caspase-1/-11 cleavage 16,210. It would therefore be 

interesting to examine whether the cell death-inducing properties of other 

gasdermins may be exposed by alternative post-translation modifications in the 

flexible linker region, and whether this contributes to pyroptosis and/or other lytic 

cell death modes in macrophages and other cell types.  

 

Figure 4. Scheme of the morphological and biochemical features of pyroptosis and apoptosis. These forms 

of cell death represent two very distinct forms of regulated cell death in terms of their final outcome, but 

share some important characteristics related to their signalling events (highlighted in green boxes). 

Remarkably, while hundreds of caspase cleavage events coordinately orchestrate 

apoptotic cell death211-213, caspase-11-mediated pyroptosis appears to rely solely on 

GSDMD cleavage because GSDMD-deficient macrophages are fully protected from 

caspase-11-induced pyroptosis16,210. Because GSDMD deletion conferred only a 

temporal protection from caspase-1-induced pyroptosis210, it is likely that cleavage of 

additional substrates contributes to caspase-1-mediated pyroptosis. This also 

suggests that cleavage events associated with pyroptosis via the canonical and non-

canonical inflammasomes may overlap significantly because caspase-11-mediated 
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GSDMD cleavage indirectly engages caspase-1 downstream of the NLRP3 

inflammasome 16,210.  

A central outstanding question concerns the mechanism(s) by which caspase-1/-11 

cleavage of GSDMD engages pyroptosis1. Given the early plasma membrane rupture 

in pyroptotic cells, the amino-terminal GSDMD domain may oligomerize to form a 

membrane pore akin to how MLKL may act during necroptosis106,214. Alternatively, 

the pyroptotic GSDMD domain may induce cell lysis indirectly by damaging 

intracellular organelles that result in disruption of mitochondrial respiration and 

ATP synthesis. In this regard, activation of the NLRP3 and AIM2 inflammasomes 

was shown to be associated with caspase-1-mediated mitochondrial damage that was 

accompanied by cleavage of the pro-apoptotic Bcl-2 family member Bid and cytosolic 

release of mitochondrial cytochrome c215 (Figure 4). However, transgenic expression 

of Bcl-2 and deletion of apoptosis-associated mitochondrial outer membrane 

permeabilization inducers Bid, Bok, Bax and Bak do not alter the course of 

pyroptosis induced by the NLRP3 or AIM2 inflammasomes215,216, suggesting that 

mitochondrial destabilization in pyroptotic cells may occur through other 

mechanisms. 

Inflammasome-induced GSDMD cleavage may also induce pyroptosis by 

modulating ion fluxes from intracellular stores and/or plasma membrane-bound ion 

channels, which could explain osmosis and the plasma membrane rupture of 

pyroptotic cells. In this regard, pyroptosis was suggested to be accompanied by 

caspase-1-induced formation of transmembrane pores of approximately 1.1-2.4 nm 

prior to cell lysis197 (Figure 4). Unlike caspase-1, caspase-11 was proposed to cleave 

and degrade the plasma membrane-bound cationic channel subunit transient 

receptor potential channel 1 (TRPC1) to stimulate unconventional IL1β secretion 217, 

but how this integrates with the essential role of caspase-11-mediated GSDMD 

cleavage for IL1β secretion in the context of non-canonical inflammasome activation 

requires further investigation (Figure 4). Without doubt, coming years will provide 

important progress in understanding the mechanisms driving pyroptosis 

downstream of caspases -1 and -11, and this is likely to reveal interesting similarities 

and differences by which the canonical and non-canonical inflammasomes 

coordinate pyroptotic cell death. 

                                                                 

1 An up to date discussion on GSDMD function is presented in Section 1.3.2. 
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1.3.1.4. Pyroptosis in inflammation and anti-microbial host 

defense  

Inflammasome activation provides protection against bacterial, viral, fungal and 

protozoan pathogens, and pyroptosis induction is thought to contribute importantly 

to anti-microbial host defense149,154,218-221. It is hypothesized that it does so by 

eliminating intracellular replication niches and by externalizing intracellular 

pathogens for immune recognition and clearance. In addition, recent reports suggest 

that pyroptosis may also represent a mechanism for the passive extracellular release 

of bioactive IL1β and IL18. Unlike conventional cytokines, IL1β and the related 

cytokine IL18 are secreted independently of the ER-Golgi secretory pathway, but 

instead are synthesized as cytosolic precursors that await their proteolytic cleavage 

by caspase-1221. IL1β promotes fever and infiltration of inflammatory cells indirectly 

through inflammatory mediators such as prostaglandin E2 (PGE2), nitric oxide 

species (NOS) and adhesion molecules. In addition, it modulates T and B cell 

responses by inducing Th2 and Th17 polarization of naïve CD4 T cells148. IL18 also 

regulates T cell maturation by polarizing the response towards Th1 or Th2 patterns 

in conjunction with IL12148. By monitoring caspase-1 activity using an engineered 

fluorescence resonance energy transfer (FRET) sensor in parallel with extracellular 

IL1β at the single-cell level, secretion of IL1β was shown to correlate fully with 

pyroptosis induction by the NLRP3, NLRC4 and AIM2 inflammasomes222. Moreover, 

although a role for GSDMD in active secretion of these cytokines cannot be ruled out, 

the observation that its deletion delayed pyroptosis induction by the canonical 

inflammasomes along with extracellular release of mature IL1β and IL18 suggests a 

causal link between these inflammasome outcomes 16,210.  

In addition to IL1β and IL18, pyroptosis has been associated with externalization of 

intracellular danger-associated molecular patterns (DAMPs). In particular, release of 

IL1β and high mobility group box 1 (HMGB1) have been linked to pyroptosis 

induction by the canonical and non-canonical inflammasomes154,223. IL1α is a cytokine 

highly related to IL1β, but with the contrasting difference that it does not need to be 

cleaved to be functional148. Therefore, release of bioactive IL1β likely is a common 

feature of lytic cell death modes, and may account for some of their inflammatory 

properties. Also, release of HMGB1 has been documented not only during 

pyroptosis154,223, but also in the context of necroptosis224,225. Intracellular HMGB1 

regulates chromosome architecture in the nucleus, and although its intracellular roles 

confound its analysis as an extracellular DAMP in conditionally-targeted mice226-228, 
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studies using antibody-based HMGB1 neutralization have implicated it in a variety 

of inflammatory disease models. For example, lethality in the caspase-11-dependent 

LPS-induced endotoxemia model154,229 was more effectively prevented by 

neutralization of HMGB1 than by the combined deletion of IL1β and IL18154,223,230. It is 

thought that extracellular HMGB1 may act as a chemokine that engages receptor for 

advanced glycation endproducts (RAGE) and possibly as a TLR ligand in 

conjunction with PAMPs231. 

In addition to these DAMPs, pyroptotic cells have been suggested to release ASC 

specks to increase local inflammatory responses or to amplify inflammasome 

signaling when these aggregates are phagocytosed by neighboring cells232,233. In the 

extracellular space, ASC specks continue to promote caspase-1 proteolysis of pro-

IL1β, and phagocytosed ASC specks serve as a platform for nucleating 

inflammasome activation in bystander cells232,233. Thus, by promoting release of ASC 

specks and DAMPs such as IL1α, IL1β, IL18 and HMGB1, pyroptosis is increasingly 

regarded as a major effector mechanism by which inflammasomes contribute to 

inflammatory and host defense responses.  

1.3.1.5. Inflammasome-induced apoptosis and pyronecrosis  

Although inflammasomes have primarily been linked with induction of pyroptosis, 

mounting evidence suggests that they can elicit additional cell death modes, namely 

apoptosis and pyronecrosis. Similar to pyroptosis, pyronecrosis is a lytic cell death 

mode that relies on inflammasome adaptors, namely NLRP3 and ASC, but unlike 

pyroptosis it proceeds independently of caspase-1 activity234,235. Instead, this 

inflammatory cell death mode possibly relies on the lysosomal cathepsins to induce 

cell lysis and HMGB1 release in the context of Shigella flexneri- and Neisseria 

gonorrhoeae-infected THP1 cells and human peripheral blood mononuclear cell 

(PBMC)-derived monocytes 234,235.  

Current understanding of pyronecrosis is incomplete, but our knowledge on how 

inflammasomes engage apoptosis is gradually increasing. The first description of 

apoptosis induction by inflammasomes emerged from studies with ectopically 

expressed NLRC4 and ASC in HEK293T cells, which lack caspase-1. In this system, 

NLRC4 and ASC formed a complex that recruited endogenous caspase-8 and 

induced apoptosis236. ASC was proposed to engage in direct heterotypic CARD/DED 

interactions with caspase-8 for apoptosis induction236-238, although the possibility of a 

still unidentified component mediating their interaction cannot be ruled out. 
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Caspase-8 is intimately connected with inflammasome responses, as in addition to its 

role in mediating inflammasome-associated apoptosis, it mediates transcriptional 

upregulation of proIL1β in response to TLR4 engagement, thus also serving as a 

checkpoint for efficient inflammasome-induced cytokine responses239. Moreover, 

caspase-8 is recruited to NLRP3 and NLRC4-engaged ASC specks in the context of 

pyroptosis signaling239-241. Additionally, it was shown to promote IL1β maturation 

and secretion from macrophages independently of inflammasomes under conditions 

of ER stress, fungal infection, death receptor engagement and chemotherapy 

treatment242-245.  

Apoptosis induction with endogenous inflammasome components was more 

recently demonstrated in caspase-1 and -11-deficient S. Typhimurium-infected 

mouse macrophages246. Using pharmacological caspase-1 inhibition, caspase-1 

protease activity was suggested to actively suppress apoptosis in S. Typhimurium-

infected macrophages, although the mechanism involved remains unknown246. 

Apoptosis induction in the absence of caspase-1 activity was relayed by the 

inflammasome adaptors Nlrc4 and Nlrp3 in this context246. In a similar manner, 

caspase-1/11-deficient macrophages that have been exposed to canonical NLRP3 and 

AIM2 stimuli also responded with delayed induction of apoptosis237,238. Apoptosis 

was accompanied by caspase-8 recruitment to ASC specks, but caspase-8 could only 

be fully activated in the absence of caspase-1237,238. It is interesting to note in this 

respect that ASC was originally cloned as an aggresome-forming protein in retinoic 

acid- and etoposide-treated apoptotic human promyelocytic leukemia HL-60 cells247, 

and its expression is suppressed in close to half of primary human breast cancers, 

suggesting that it may act as a tumor suppressor that induces apoptosis248.  

However, formation of ASC specks is not confined to apoptotic cells, but also 

observed in the context of inflammasome-induced pyroptosis. ASC deletion prevents 

both pyroptosis and apoptosis induction in the context of the NLRP3 and AIM2 

inflammasomes, but it is difficult to establish whether ASC-dependent apoptosis 

induction emerges from ASC specks or the ASC-containing inflammasome platforms 

because ASC is critical for bridging the interaction between NLRP3 and AIM2 with 

caspase-1 in their respective inflammasomes161. Indeed, the formation of the 1-2 

micrometer-sized ASC aggregates is considered a hallmark of inflammasome 

engagement, and their prion-like physicochemical properties are well-

documented249,250. ASC specks are also formed in the context of the NLRC4 and 

NLRP1b inflammasomes, but as both NLRC4 and NLRP1b have a CARD domain, 

these sensors can directly engage caspase-1 in the absence of ASC utilizing 
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homotypic CARD interactions33,146,147. Consequently, pyroptosis induction by the 

NLRC4 and NLRP1b inflammasomes is unhampered in the absence of ASC, whereas 

ASC is essential for pyroptosis in the context of the PYD-based NLRP3 and AIM2 

inflammasomes33,146,147. The observations described above suggest that 

inflammasome-associated pyroptosis and apoptosis induction may generate 

profoundly different systemic outcomes, and modulation of these cell death 

responses may offer novel approaches for treating inflammasome-associated 

diseases. In conclusion, significant progress was made in recent years in 

characterizing inflammasome-associated apoptosis, but more work is needed to 

examine when and how they contribute to inflammasome signaling in vivo.  

1.3.1.6. Inflammasome-induced cell death in infection and 

autoinflammation 

While understanding the relevance of inflammasome-mediated apoptosis in vivo is 

still in its infancy, a clearer picture on how pyroptosis induction by caspases -1 and -

11 contributes to host defense against microbial pathogens, and detrimental 

inflammation in autoinflammatory diseases is emerging. Pyroptosis has been 

particularly linked to in vivo protection against infection with Bacillus anthracis 

spores, B. thailandensis, B. pseudomalle, S. Typhimurium, Legionella pneumophila and F. 

tularensis219,251,252. In S. Typhimurium infection, the combined absence of IL1β and IL18 

failed to fully recapitulate the more severe phenotype of caspase-1/-11-deficient mice 

in agreement with the notion that pyroptosis not only promotes secretion of IL1β and 

IL18, but also exposes pathogens to extracellular immune recognition219,252.  

However, generalized pyroptosis may also become detrimental to the host. For 

instance, extensive caspase-1-driven pyroptosis was identified as a major cause of 

immunodepletion in HIV patients that targets CD4 T cells that have been 

unproductively infected with the virus253,254. Also, caspase-11-mediated pyroptosis in 

the absence of caspase-1-dependent cytokine production was suggested to be 

disadvantageous to the host in terms of efficiently clearing S. Typhimurium in vivo255. 

Excessive caspase-11-associated pyroptosis may also be pathogenic during LPS-

induced endotoxemia because caspase-11 knockout mice are highly resistant to LPS-

induced lethality, while animals lacking IL1β and IL18 remain largely sensitive154,229. 

Nevertheless, detailed analysis of the in vivo roles of pyroptosis was hampered by the 

absence of specific biomarkers, but the recent identification of GSDMD cleavage as a 
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pyroptosis-selective event offers a potentially suitable biomarker for monitoring 

pyroptosis in vivo. 

Nevertheless, inflammasome-induced cell death is suspected to contribute to 

inflammatory pathology in inflammasomopathies, which are hereditary periodic 

fever syndromes caused by gain-of-function mutations in genes coding for 

inflammasome components151,256. Cryopyrin-associated periodic syndromes (CAPS) 

is frequently caused by mutations in and around the central NACHT domain of the 

inflammasome adaptor NLRP3257. Patients diagnosed with these diseases can be 

distributed across a spectrum of severity of their clinical outcomes, in which Familial 

cold autoinflammatory syndrome (FCAS) patients present the mildest form, Muckle–

Wells syndrome (MWS) correlates with an intermediate phenotype, while Neonatal 

onset multisystem inflammatory disease (NOMID) is very severe. CAPS patients 

exhibit the symptoms of general inflammation, suffering with rash, fever, headache 

and fatigue that can be triggered by cold exposure, stress or, in its most serious form, 

even be present in a chronic manner. Severe presentations of CAPS can progress to 

hearing impairment or even neurological sequelae due to aseptic meningitis257. Some 

Nlrp3 SNPs that are associated with CAPS have been shown to render NLRP3 

constitutively active, which explains the high levels of inflammation experienced by 

the patients256. CAPS patients highly benefit from IL1 inhibitors that are already 

prescribed in the clinic257. However, in mouse models of CAPS, combined blockade 

of IL1R/IL18R signaling provided less protection from postnatal lethality than 

caspase-1 deletion, reinforcing the notion that pyroptosis-related DAMPs may 

contribute to pathology in this autoinflammatory model150. 

Inflammasome-associated cell death may also be an important driver of pathology in 

recently described autoinflammatory diseases that are caused by activating 

mutations in NLRC4151-153. In all studied cases, recurrent fever began early in life, but 

the other symptoms were variable, including rash and intestinal-commitment. High 

levels of IL18 in the serum of patients, together with other inflammatory markers, 

confirmed the correlation of NLRC4-activating mutations with disease onset. In 

accordance with the clinical presentation, these diseases were termed NLCR4-MAS, 

SCAN4 and NLRC4-FCAS, respectively151-153. IL1β neutralization improved a subset 

of symptoms in NLCR4-MAS patients and in a mouse model of NLRC4-FCAS, but 

could not rescue the high levels of circulating IL18. The latter suggests that excessive 

NLRC4-induced cell death linked with IL18 secretion and macrophage activation 

syndrome may be an important cause of pathology in NLRC4-associated 

autoinflammation151-153. These findings undoubtedly warrant a thorough 
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investigation of inflammasome-induced cell death responses and its roles in CAPS 

and NLRC4-associated autoinflammation. 

1.3.1.7. Concluding remarks: inflammasomes as polyvalent 

cell death controllers 

We illustrated throughout this review that inflammasomes may regulate several cell 

death modes and inflammatory mechanisms (Figure 5). That a signaling platform 

would control a variety of downstream cell death pathways is not unprecedented. 

The death receptor family member TNFR1 can engage at least three different 

complexes, termed complex I, II and IIb, with each complex promoting a distinct 

cellular response. Complex I induces NF-κB- and AP-1-dependent transcription of 

pro-inflammatory cytokines and the apoptosis inhibitor cFLIP, therefore constituting 

a pro-survival signal. When complex I-dependent responses are impaired, assembly 

of complex II activates caspase-8 for induction of apoptosis. When caspase-8 

activation fails, complex IIb leads to induction of necroptosis through RIPK1 and 3. 

Therefore, signaling through TNFR1 is highly regulated, thereby skewing cellular 

responses to TNF stimulation depending on the cellular context225. Similarly, 

inflammasome responses appear to be regulated by an exquisite range of regulatory 

mechanisms. Although induction of pyroptosis downstream of caspase-1 may be an 

all–or–none response222, inflammasome activation itself is tightly controlled at both 

the transcriptional and post-translational levels. A prime example of transcriptional 

control is presented by the NF-κB-dependent induction of NLRP3, proIL1β and 

caspase-11 levels in order to license inflammasome assembly, pyroptosis, and the 

release of mature IL1β161. Inflammasome activation is also regulated directly through 

post-translational modifications, as illustrated by the necessity for NLRP1b 

autocleavage258, and NLRC4 phosphorylation 184,185 for inflammasome activation. 

Primate-specific CARD-only and Pyrin-only proteins represent yet another level of 

inflammasome regulation259. Overall, tight regulation of inflammasome activation 

may serve to ensure that cells respond adequately to intracellular pathogen invasion 

while minimizing as much as possible the collateral damage induced by excessive 

cell death and inflammatory responses.  
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Figure 5. Representation of inflammasomes as cell death switches. While engagement of NLRP3, AIM2 and 

NLRC4 leads to pyroptosis in the presence of caspase-1, lack of this inflammatory caspase deviates the 

response towards caspase-8-dependent apoptosis. Importantly, NLRC4 is able to activate caspase-1 in the 

absence of the adaptor ASC, but the apoptotic phenotype is highly dependent on the adaptor protein. 

Considering the downstream effects of pyroptosis and apoptosis, inflammasome engagement could 

potentially play contrasting roles in immune response depending on the expression level of caspase-1. 
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1.3.2. GSDMD as the pore mediator of pyroptosis 

The plasma membrane alterations of pyroptosis have remained so far the most 

studied feature of this cell death, for its potential to release DAMPs and to cause an 

immune response in neighboring cells. Through studies with osmoprotectant 

solutions, caspase-1 was suggested to induce pores between 1.1 to 2.4nm in size at 

the plasma membrane, with osmotic pressure accounting for total cell lysis197. 

Accordingly, further attempts to characterize the pyroptotic pore formation 

demonstrated that in the presence of glycine as an osmoprotectant, propidium iodide 

(PI) – a nuclear dye impermeable to intact membranes – can be detected in pyroptotic 

cells while bigger contents – tracked by lactate dehydrogenase (LDH) – are still 

retained in the cytoplasm260. However, advance in understanding the pyroptotic lysis 

only gained traction with the identification of GSDMD as the executor of pyroptosis.  

Cleavage of GSDMD by either caspase-1, mouse caspase-11 or human caspase-4 and 

-5 releases the pore-forming N-terminal domain (GSDMDN) from its inhibitory C-

terminal fragment16,261. GSDMDN then oligomerizes through intramolecular disulfide 

bonds and integrates into membranes262-265. In overexpression systems, the GSDMDN 

pore has variable sizes, ranging from 10 to 20nm in internal diameter263-265. This pore 

assembly could potentially allow even large proteins to flux through, which lead to 

the suggestion that pyroptotic cells do not undergo osmotic pressure during lysis266. 

However, further physiological characterizations of the GSDMD pore would aid in 

the understanding of the pyroptotic cell lysis.  

While GSDMDN demonstrates specificity for phospholipids of the cytoplasmic leaflet 

of the plasma membrane (i.e. Phosphatidylinositol 4-phosphate, Phosphatidylinositol 

(4,5)-biphosphate and Phosphatidylserine), it can also be found across practically any 

membrane-bound organelle262-265. This suggests that GSDMDN mediated killing is 

programmed to happen from the “inside-out” of cells and might involve pore 

formation in other organelles besides the plasma membrane. 

Interestingly, the toxic activity of the N-terminal fragment of GSDMD is a common 

feature between the gasdermin family members263. The gasdermin family had 

previously been identified in the skin and gastrointestinal tract, hence its naming267. 

The founder member of the family, GSDMA1, was described as the causative gene of 

skin anomalies in mice. There are four gasdermin proteins in humans, named 

gasdermin A (GSDMA), gasdermin B (GSDMB), gasdermin C (GSDMC) and 

GSDMD268. Mice do not have a homologue for GSDMB, but both GSDMA and 
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GSDMC are represented by three and four paralogues, respectively. All gasdermin 

proteins are highly homologous and contain several leucine-rich motifs throughout 

their structure268. Resolution of the structure of GSDMA3 demonstrated that the 

previously called Gasdermin-domain is in fact composed by two globular domains, 

linked by an unstructured loop263. Three-D structures of the other gasdermin family 

members are not available yet, though given their high homology, it is assumed that 

all gasdermin proteins are organized in the same way. 

While in one hand the gasdermins gene are highly homologous, they present 

different spectra of tissue expression. GSDMA1, GSDMA2, GSDMD and GSDMC1-4 

have high expression level in the gastrointestinal tract of mice, while absent or low 

expressed in heart, brain, liver, skeletal muscles and lungs268. Interestingly, 

throughout the gastrointestinal tract, high mRNA level of each gasdermin family 

member is found confined to specific locations. GSDMA1 and GSDMA2 are more 

expressed in the stomach, while GSDMD has higher expression in small intestine and 

GSDMC’s are mostly present in the colon268. In all cases, these GSDMs are expressed 

in differentiated cells of the epithelial layer269. In contrast to them, human GSDMB 

shows higher mRNA levels in stem cells of esophagus and stomach269. Considering 

the gasdermins intrinsic ability to cause cell death, validation of this data on the 

protein level and further characterization in specific cell types could shed light into 

which cell death signaling plays a role in the maintenance or immune response of the 

different tissues. 

The gasdermin family members have close proximity of domain to their distant 

relative deafness associated tumor suppressor (DFNA5)268, initially identified as the 

gene bearing a mutation causative of nonsyndromic hearing impairment270. In fact, 

DFNA5 also shares the ability to induce a lytic form of cell death through its N-

terminal fragment263, and a gain of function mutation might be at the foundation of 

its role in deafness. Despite DFNA5 being initially described as a separate branch in 

the gasdermin phylogenetic tree268, given its shared ability to induce cell death it was 

recently proposed that DNFA5 is renamed to gasdermin E (GSDME)271. 

While the activation of GSDMD is through caspase-1 and -11/-4/-5-mediated cleavage 

in Aspartate 276/27516,261, it is still unknown how the other gasdermins are activated. 

Remarkably, the GSDMD cleavage site lies in its unstructured loop, where all 

gasdermins have lower level of homology268. This suggests that each gasdermin 

protein is potentially activated by a different mechanism. Indeed, DFNA5/GSDME is 

cleaved in this same region by caspase-3271,272. Cleavage of DFNA5/GSDME by 
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caspase-3 has been suggested to lead to secondary necrosis of cells triggered by 

apoptotic stimuli272. In some systems, however, secondary necrosis was shown to 

occur normally even in the absence of DFNA5/GSDME273. This suggests that there 

might be a stimuli-dependency for DFNA5/GSDME function. Interestingly, cells 

bearing a high expression level of DFNA5/GSDME were shown to skip the normal 

features of apoptosis, such as cell shrinkage and blebbing, and to undergo direct lytic 

cell death after signaling of the apoptotic program271. Particularly, the 

DFNA5/GSDME–mediated lytic cell death would be behind the inflammatory side 

effects in lungs and intestines after treatment with chemotherapy drugs271. An 

extensive characterization of what constitutes the threshold of DFNA5/GSDME 

expression level to allow apoptotic blebbing or lysis of the plasma membrane to 

occur could help understand when homeostatic and pathological cell death follows. 

Furthermore, understanding tissue and cell type-associated expression of 

DFNA5/GSDME might shed light into the local roles of this protein in cell death. 

In conclusion, despite great recent advance in understanding the function of 

gasdermins, the field is still left with major fundamental questions. Most of the 

characterizations done so far have relied on overexpression systems, which might 

overlook fine-tuned regulations and functions of the gasdermins. Therefore, there 

should be a focus in establishing in vivo physiological roles of gasdermins. Further 

studies on the regulation and activation mechanisms of the gasdermins will allow a 

better understanding of cell death regulation and its potential contribution to 

homeostasis and pathology. 
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 2. Aims 

Pyroptosis is a lytic form of regulated cell death happening in myeloid and epithelial 

cells. Cell death by pyroptosis releases DAMPs such as HMGB1 and IL1α but is also 

regarded as a secretion mechanism for the leaderless cytokines IL1β and IL18. 

Furthermore, the pyroptotic cell corpse has been shown to contain pathogens to 

facilitate their clearance by infiltrating immune cells. While pyroptosis aids in innate 

immunity signaling and clearance in response to bacterial, fungal and viral 

pathogens, extensive cell death and cytokine release might participate in the 

pathology of autoinflammatory disorders. 

Caspase-1 is a cysteine protease responsible for pyroptotic cell death induction. 

Further, caspase-1 cleaves and activates the pro-cytokines IL1β and IL18. While 

activation of caspase-1 is controlled by the macromolecular structures called 

canonical inflammasomes, pyroptosis can also be initiated by caspase-11, in a non-

canonical inflammasome activation. Caspase-1 and caspase-11 signaling for 

pyroptosis converge on cleavage of GSDMD. The newly formed N-terminal fragment 

of GSDMD translocates to the plasma membrane and oligomerizes, forming a pore 

responsible for cell lysis. To this date, the intracellular mechanisms happening 

during pyroptosis are not fully understood. In terms of organellar changes, most of 

the focus on pyroptosis execution has been placed in understanding the alterations at 

the plasma membrane. However, whether other organelles participate on cell death 

execution is currently unknown. Furthermore, in addition to GSDMD, IL1β and IL18, 

caspase-1 has been shown to cleave several other substrates, whose functions for 

pyroptosis execution have not been described yet. In fact, lack of GSDMD merely 

delays cell death after caspase-1 activation. Thus, we hypothesized that cell death on 

the GSDMD-/- cells after inflammasome trigger could be reminiscent of a more 
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complex biochemical program already present in the wild type condition, and that an 

underlying complex pyroptotic program could be happening in addition to the 

GSDMD pore during cell death execution.  

In order to first address the issue of defining the organellar features of pyroptosis, we 

undertook a live imaging-based analysis to morphologically describe cell death 

execution. We addressed NLRC4 and NLRP1b-triggered cell death side by side, with 

the assumption that organellar events happening downstream of caspase-1 activation 

would be shared between the two inflammasomes. Furthermore, since macrophage 

cell death after canonical inflammasome triggering could not be rescued by GSDMD 

ablation, we studied the non-canonical inflammasome, dependent on caspase-11, for 

questioning the roles of GSDMD in organellar changes observed. In a second stage, 

we aimed at characterizing the biochemical aspects of pyroptosis execution 

downstream, utilizing again the NLRC4 and NLRP1b inflammasomes. Particularly 

for the biochemical studies, these inflammasomes has an extra potential as these 

receptors contain a CARD domain and engage caspase-1 even in the absence of ASC. 

Thus, this allowed us to segregate the biochemical events which are ASC-dependent 

or -independent. Finally, we characterized the ability of inhibitors targeting serine 

proteases of the prolyl dipeptidase extended family to promote inflammasome 

activation, IL1β release and cell death in macrophages. 
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 3. Results 

The goal of this doctoral project was to characterize pyroptotic cell death at the 

morphological and biochemical level. For this end, the canonical inflammasomes 

NLRP1b and NLRC4 were selected as models for studying downstream cell death 

induction. 

Transgene expression of an NLRP1b allele derived from 129 mice confers 

macrophages of C57/BL6 mice susceptibility to toxicity by LeTx from Bacillus 

anthracis175. LeTx is composed of two subunits: PA, which forms a pore for shuttling 

the metalloprotease, LF, to the cytosol. Cytosolic presence of catalytically active LF 

triggers the NLRP1b inflammasome274, though through a still undefined mechanism. 

Furthermore, it is known that proteasomal activity is a requirement for NLRP1b 

activation274, and that the receptor can promote caspase-1 activation even in the 

absence of ASC146,147. 

The NAIP5/NLRC4 system senses presence of flagellin in the cytosol182. To 

accomplish cytosolic delivery of flagellin, a system based on the B. anthracis toxin has 

been devised in which the N-terminal fragment of LF (LFn) was fused at the N-

terminal side of flagellin of Legionella pneumophila, allowing PA recognition of the 

chimeric protein (LFn-FlaA) and its shuttling to the cytosol275. Co-treatment of 

macrophages with PA and LFn-FlaA (called FlaTox) triggers NAIP5, which engages 

NLRC4 oligomerization and downstream ASC-caspase-1 activation. NLRC4 is also 

able to directly activate caspase-1 in the absence of ASC through CARD/CARD 

interactions33. 

To define which intracellular events could be happening before plasma membrane 

rupture during pyroptotic cell demise, as initial steps we focused on analyzing 

organellar morphological changes after activation of the NLRP1b and NLRC4 
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inflammasomes. Given our observation during these studies that GSDMD-/- 

macrophages die with same kinetics as wild type cells after canonical inflammasome 

activation, in this section we also studied caspase-11-driven pyroptosis to 

differentiate GSDMD-dependent and -independent mechanisms. The single cell 

analyzes used for this purpose are described in Section 3.1 of Results. 

While focused on the first part of the project, we observed caspase-3/-7 activity on 

pyroptotic cells, based on DEVDase reporter, suggestive of a signaling pathway 

happening in parallel to the GSDMD pore formation. Thus, Section 3.2 of Results 

comprises the characterization of the molecular events happening in pyroptosis 

independently of the GSDMD-mediated plasma membrane damage.  

Finally, we addressed the role of small compounds targeting the extended dipeptidyl 

peptidase(DPP)-4 family members on their ability to promote cell death and 

inflammasome activation. For clarity, these results were separated in two sub-

sections: the results on lysosomal Pro-X carboxypeptidase (PRCP) inhibition by 

Compound 8o are described in Section 3.3.1 of Results; the other DPP inhibitors are 

combined in Section 3.3.2 of Results.  

Each section is in the form of a manuscript, thus containing a specific introduction, 

description of results and discussion. A combined discussion of all results presented 

in the thesis is provided in Section 4. 
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3.1. A morphological, single cell-based, 

analysis of pyroptosis 

Section 3.1. is modified from the research paper: de Vasconcelos, N.M., 

Van Opdenbosch, N.; Van Gorp, H; Parthoens, E.; Lamkanfi, M.; 

Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-

mediated subcellular events that precede plasma membrane rupture. 

Cell Death and Differentiation, 2018. 

 

3.1.1. Abstract 

Pyroptosis is rapidly emerging as a mechanism of anti-microbial host defense, and of 

extracellular release of the inflammasome-dependent cytokines IL1β and IL-18, 

which contributes to autoinflammatory pathology. Caspases 1, 4, 5 and 11 trigger this 

regulated form of necrosis by cleaving the pyroptosis effector GSDMD, causing its 

pore-forming amino-terminal domain to oligomerize and perforate the plasma 

membrane. However, the subcellular events that precede pyroptotic cell lysis are ill 

defined. In this study, we triggered primary macrophages to undergo pyroptosis 

from three inflammasome types and recorded their dynamics and morphology using 

high-resolution live-cell spinning disk confocal laser microscopy. Based on 

quantitative analysis of single-cell subcellular events, we propose a model of 

pyroptotic cell disintegration that is initiated by opening of GSDMD-dependent ion 

channels or pores that are more restrictive than recently proposed GSDMD pores, 

followed by osmotic cell swelling, commitment of mitochondria and other 

membrane-bound organelles prior to sudden rupture of the plasma membrane and 

full permeability to intracellular proteins. This study provides a dynamic framework 

for understanding cellular changes that occur during pyroptosis, and charts a 

chronological sequence of GSDMD-mediated subcellular events that define 

pyroptotic cell death at the single-cell level.  



 42 

 

3.1.2. Introduction 

Pyroptosis is a lytic form of regulated cell death that is induced by inflammatory 

caspases -1, -4, -5 and -11 1,2. Various infectious agents, cellular stress conditions and 

environmental cues may trigger assembly of cytosolic multiprotein platforms termed 

inflammasomes that recruit caspase-1 and facilitate its proximity-induced 

autoactivation3. Murine caspase-11 and its human orthologs caspases -4 and -5 are 

activated by cytosolic LPS, and indirectly promote activation of caspase-1 through 

the non-canonical inflammasome pathway 4. Caspase-1 cleaves the biologically inert 

precursor proteins IL1β and IL-18 into the mature, secreted inflammatory cytokines3. 

Unlike for IL-1β and IL-18, each of the aforementioned inflammatory caspases can 

induce pyroptosis directly by cleaving GSDMD at the central linker peptide, which 

separates the pore-forming amino-terminal domain (GSDMDN) from the inhibitory 

carboxy-terminal (GSDMDC) domain5-8. This cleavage event causes GSDMDN to 

oligomerize and insert in the plasma membrane, giving rise to rapid cell lysis. 

Pyroptosis deprives intracellular pathogens from their replicative niches, and is 

thought to trap infectious agents in the cellular debris in order to facilitate bacterial 

clearance by recruited neutrophils9. In addition, it is considered an inflammatory 

form of regulated necrosis because cell rupture promotes the extracellular release of 

cytosolic proteins such as the leaderless cytokines IL-1β and IL-18 and the nuclear 

alarmin HMGB1 that may attract and stimulate secondary innate immune cells5,8,10,11. 

Pyroptosis as a cell biological phenomenon was first reported in the context of 

macrophages that had been infected with the Gram-negative bacterial pathogens S. 

flexneri and S. Typhimurium, respectively12-14. However, the term pyroptosis was 

coined only in 2001 to distinguish this inflammatory form of caspase-1-regulated 

necrosis from accidental necrosis and apoptosis15. Notably, pyroptosis is thought to 

share features with both apoptosis and necroptosis, another form of regulated 

necrosis that relies on RIPK3 and its substrate MLKL for cell death execution16-18. 

Akin to apoptosis, pyroptosis is controlled by caspases, and both are thought to be 

accompanied by fragmentation of nuclear DNA12,13,19,20. Similar to necroptosis, 

however, pyroptosis is associated with cytosolic swelling, cell rounding, absence of 

chromatin condensation and early plasma membrane rupture associated with spill 

out of the cytosolic contents21. To the best of our knowledge, there has been no 

detailed characterization of the morphology and subcellular dynamics that precede 

pyroptotic cell lysis. Here, we triggered primary macrophages to undergo pyroptosis 

from two inflammasome types and recorded their dynamics and morphology using 
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high-resolution live-cell spinning disk confocal laser microscopy. Our findings show 

that pyroptosis differs from necroptosis, and that it proceeds by a determined 

sequence of subcellular events for cellular disintegration irrespective of the engaged 

inflammasome pathway. 

3.1.3. Results 

Myosin II-independent blebbing and differential cell detachment during pyroptosis and 

necroptosis  

Pyroptosis and necroptosis both are lytic forms of regulated cell death, but it is 

unclear whether they differ in particular features. C57BL/6J mouse bone marrow-

derived macrophages (BMDMs) that express a functional Nlrp1b allele (B6NLRP1b+) can 

be induced to undergo caspase-1-dependent pyroptosis when stimulated with B. 

anthracis LeTx22. Stimulation with TNF+BV6+zVAD-fmk (TBz) induces necroptosis in 

macrophages and other cell types23. We used these cytotoxic agents to compare the 

morphological features of B6NLRP1b+ BMDMs undergoing necroptosis and pyroptosis. 

As previously reported in necroptotic L929sAhFas cells24, TBz-treated B6NLRP1b+ 

macrophages readily detached from the adherent surface and rounded up prior to 

losing plasma membrane integrity and becoming Sytox Green-positive (Fig. 1a and 

Supplemental Movie 1). The membrane appeared smooth during this process, and 

formation of balloon-like protrusions of the plasma membrane that were reminiscent 

of blebs were seen concomitant with the loss of plasma membrane integrity (Fig. 1a). 

Unlike necroptotic cells, pyroptotic macrophages remained attached to the adherent 

surface until they became Sytox Green-positive (Fig. 1b and Supplemental Movie 2). 

As during necroptosis, however, plasma membrane rupture was accompanied by the 

formation of blebs (Fig. 1b). The ROCK-I inhibitor Y27632 and the selective inhibitor 

of non-muscle myosin II ATPases (-)-blebbistatin inhibited blebbing in apoptotic cells 

(data not shown). However, inhibition of ROCK-I and myosin-II had no effect on 

pyroptotic and necroptotic blebbing (Fig. 1c, d). 

Phosphatidylserine exposure is closely associated with plasma membrane rupture during 

pyroptosis 

Early PS exposure is a hallmark of apoptosis that attracts engulfing cells25. Recent 

studies showed that also mammalian cell lines undergoing necroptosis, as well as 

necrotic cells in the nematode Caenorhabditis elegans actively present PS on their outer 

surfaces prior to cell lysis in order to recruit phagocytes26,27. To study the kinetics of 
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PS exposure relative to plasma membrane rupture during pyroptosis, LeTx-treated 

B6NLRP1b+ BMDMs were quantified for Annexin-V-FITC and PI positivity over time. 

 Figure 1. Cell detachment and blebbing during necroptosis and pyroptosis. a, BMDMs were stimulated 

with TNF+BV6+zVAD-fmk (TBz) and imaged in culture media containing Sytox Green. b, rCTB stained 

BMDMs were stimulated with LeTx and imaged as in (a). a, b, Confocal images were acquired every three 

minutes. c, d, BMDMs pretreated with Y27632 (10 μM) (c) or (-)-blebbistatin (10 μM) (d) were stimulated with 

LeTx or TBz and imaged. Fluorescent micrographs show the maximum intensity projection (Sytox Green) or 

the single plane (rCTB) of a representative cell from three independent experiments (TBz n=30; LeTx n=30; 

LeTx+Y27632 n=25; TBz+Y27632 n=23; LeTx+(-)-blebbistatin n=19; TBz+(-)-blebbistatin n=20). In all panels time 

point zero indicates the first detection of Sytox Green. All scale bars, 10 µm. 

This analysis indicated that Annexin-V positivity preceded plasma membrane 

rupture with approximately 9-12 minutes during LeTx-induced pyroptosis (Fig. 2a, 

b, Supplemental Figure 1a and Supplemental Movie 3). Exposure of untreated Figure 1
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B6NLRP1b+ BMDMs failed to yield signals for Annexin-V and PI during this time 

interval, demonstrating specificity of these findings (Supplemental Movie 4). 

 Figure 2. PS exposure happens during pyroptosis. a-d, BMDMs were stimulated with LeTx (a, b) or FlaTox 

(c, d) and imaged in culture media containing Annexin-V-FITC and PI. Confocal images were acquired every 

3 minutes. Graphs show the percentage of mean fluorescence intensity (MFI) calculated as described in Online 

Methods, and values represent the mean ± SD of all individual cells that were imaged in three independent 
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experiments (LeTx n=18; FlaTox n=21). Single cell plots are shown in Supplemental Figure 1. Fluorescent 

micrographs show the maximum intensity projection of a representative. In all panels time point zero 

indicates the first detection of PI. All scale bars, 10 µm. 

To understand whether Annexin-V staining prior to cell lysis is a shared feature of 

pyroptosis when routed through other inflammasomes, we repeated the analysis for 

LFn-FlaA-treated B6NLRP1b+ BMDMs. LFn-FlaA selectively triggers NAIP5/NLRC4 

inflammasome-dependent pyroptosis and consists of Legionella pneumophila flagellin 

(FlaA) fused to the N-terminal domain of B. anthracis lethal factor (LFn) to enable B. 

anthracis protective antigen (PA)-assisted cytosolic delivery of the fusion protein28. 

Quantification of data from 21 cells from several independent experiments showed 

that Annexin-V staining was observed in B6NLRP1b+ BMDMs treated with PA + LFn-

FlaA (here called FlaTox) approximately 3 minutes before cells became PI-positive 

(Fig. 2c, d, Supplemental Figure 1b and Supplemental Movie 5). Future studies will 

need to confirm that this corresponds to active PS exposure to the outer leaflet of the 

plasma membrane, given that the confocal micrographs do not allow enough 

resolution to differentiate between inner or outer staining of PS. However, we favour 

the latter hypothesis given that Annexin-V staining could be observed while the 

plasma membrane was still impermeable to PI (Fig. 2b, d). We conclude from these 

studies that PS exposure happens in pyroptosis, and is closely associated with 

plasma membrane rupture. 

Mitochondrial commitment independently of the apoptotic Bax/Bak pore 

Mitochondria play a central role during apoptosis with the release of cytochrome c 

and other molecules that reside in the mitochondrial intermembrane space 

promoting assembly of the apoptosome and caspase-mediated cellular dismantling29. 

In contrast, the role of mitochondria in inflammasome signalling is contentious. 

Mitochondrial damage has been proposed to occur downstream of the NLRP3 and 

AIM2 inflammasomes, with caspase-1 activation and IL-1β secretion proceeding 

independently of the Bcl2-regulated Bax/Bak pore, Parkin-mediated mitophagy, and 

the Cyclophilin D-dependent mitochondrial permeability transition pore30. 

Mitochondrial damage and dismantling of the organelle have also been suggested to 

occur upstream of the NLRP3 inflammasome because blockade of mitochondrial 

voltage-dependent anion channels (VDAC) and Bcl2 overexpression in macrophages 

selectively inhibited caspase-1 activation and IL-1β secretion by the NLRP3 

inflammasome31. We performed a longitudinal live cell analysis of mitochondrial 
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 Figure 3. Mitochondria are damaged during pyroptosis. a, BMDMs were preloaded with Mitotracker Red 

CMXRos and stimulated with LeTx in culture media containing Sytox Green (n=50). Confocal images were 

acquired every 3 minutes. b-e, BMDMs were preloaded with TMRM and stimulated with either LeTx (b, c) or 

FlaTox (d, e) and imaged as in (a). Graphs show the percentage of mean fluorescence intensity (MFI) 

calculated as described in Online Methods, and values represent the mean ± SD of all individual cells that were 

imaged in five independent experiments (LeTx, n=28; FlaTox n=28). Single cell plots are shown in 

Supplemental Figure 3. Fluorescent micrographs show the maximum intensity projection (TMRM and Sytox 

Green) or the single plane (Mitotracker) of a representative cell. In all panels time point zero indicates the first 

detection of Sytox Green. All scale bars, 10 µm. 

dynamics to better understand the role of this organelle in pyroptosis. Active 

mitochondria of B6NLRP1b+ macrophages were labelled with the membrane potential 
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(ΔΨm)-insensitive dye MitoTracker Red CMXRos. Consistent with mitochondrial 

commitment during pyroptosis, the tubular mitochondrial network seen in mock-

treated cells (Supplemental Fig. 2) was lost following LeTx challenge (Fig. 3a and 

Supplemental Movie 6). Notably, mitochondria appeared rounded and fragmented 

before cell rupture, marked by Sytox Green internalization, was evident (Fig. 3a). A 

quantitative analysis of TMRM fluorescence, a mitochondrial membrane potential 

(ΔΨm)-sensitive dye, confirmed that LeTx-induced mitochondrial membrane 

depolarization occurred approximately 18-21 minutes before plasma membrane 

rupture (Fig. 3b, c, Supplemental Figure 3a and Supplemental Movie 7). As 

reported for the AIM2 and NLRP3 inflammasomes32, the pro-apoptotic Bcl2 family 

member BID was cleaved when pyroptosis was induced in LeTx-intoxicated B6NLRP1b+ 

macrophages (Supplemental Fig. 4a). However, LeTx-induced caspase-1 maturation 

and LDH release were unaffected in BMDMs from transgenic mice that overexpress 

the Bax/Bak pore antagonist Bcl2 under control of the H2K promoter (Supplemental 

Fig. 4b, c).  

Bcl2-transgenic BMDMs were also shown to induce normal caspase-1 activation and 

IL-1β secretion in response to NLRP3-activating stimuli30. Moreover, we found that 

the kinetics of LeTx-induced TMRM signal decay in Bcl2-overexpressing B6NLRP1b+ 

macrophages was comparable to that of B6NLRP1b+ macrophages, consistent with 

mitochondrial outer membrane permeabilization during pyroptosis occurring 

independently of the Bax/Bak pore (Supplemental Fig. 4d, e). Notably, the kinetics of 

mitochondrial decay induced by the NLRC4 inflammasome was remarkably 

consistent with that of LeTx-treated macrophages, both featuring a loss of TMRM 

signal approximately 20 minutes before plasma membrane rupture (Fig. 3d, e, 

Supplemental Figure 3b and Supplemental Movie 8). Thus, Bcl2-insensitive 

mitochondrial damage is a conserved feature of pyroptotic cell dismantling. 

Lysosome decay precedes pyroptotic plasma membrane rupture  

To document the fate of lysosomes during pyroptosis, we stained B6NLRP1b+ 

macrophages with LysoTracker, a fluorescent probe that is highly selective for acidic 

organelles, and imaged the lysosomal fluorescence over time. Lysosome staining 

remained relatively stable following LeTx stimulation until LysoTracker fluorescence 

declined gradually 6-9 minutes before the plasma membrane ruptured (Fig. 4a, b, 

Supplemental Figure 5a and Supplemental Movie 9). These results are in line with a 

previous report demonstrating that LeTx induced a loss of lysosomal acidity which 

depended on expression of a LeTx-responsive NLRP1b allele33. Lysosome decay was 
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not restricted to LeTx because we also observed a decrease in LysoTracker staining 

when pyroptosis was induced through the NLRC4 inflammasome (Fig. 4c, d, 

Supplemental Figure 5b and Supplemental Movie 10). The kinetics of lysosome 

destabilization in FlaTox-treated macrophages was closely aligned with that of LeTx-

intoxicated cells, with LysoTracker signal decay occurring around 6-9 minutes before 

cells became Sytox Green-positive (Fig. 4c, d). Together, these results demonstrate 

that lysosome decay is a conserved feature of pyroptosis that precedes plasma 

membrane damage by about 10 minutes.  

 Figure 4. Lysosomes decay prior to pyroptotic cell lysis. a-d, BMDMs preloaded with Lysotracker and 

stimulated with LeTx (a, b) or FlaTox (c, d) were imaged throughout cell death in culture media containing 

Sytox Green. Confocal images were taken every 3 minutes. Graphs show the percentage of mean fluorescence 

intensity (MFI) calculated as described in Online Methods, and values represent the mean ± SD of all 

individual cells that were imaged in three independent experiments (LeTx, n=27; FlaTox n=19). Single cell 

plots are shown in Supplemental Figure 5. Fluorescent micrographs show the maximum intensity projection 

of a representative cell out of at least 19 imaged cells. In all panels time point zero indicates the first detection 

of Sytox Green. All scale bars, 10 µm. 
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Nuclear condensation and internucleosomal DNA fragmentation are hallmark 

features of apoptosis. Early studies of pyroptosis suggested that caspase-1 activation 

in S. Typhimurium-infected macrophages triggers a diffuse pattern of DNA 

fragmentation in the absence of nuclear condensation12,19. In agreement, several 

reports documented terminal deoxynucleotidyl transferase-mediated dUTP-biotin 

nick end-label (TUNEL) activity in S. Typhimurium-infected macrophages12,19,20,34. 

However, little is known about the dynamics of early and late-stage nuclear events 

during pyroptosis.  

We stained nuclear DNA of B6NLRP1b+ macrophages with Hoechst 33342 (Hoechst) 

stain, and imaged cells to track the shape and size of the nucleus following LeTx 

challenge. Pyroptotic macrophages retained an ellipsoid-shaped nucleus until they 

became Sytox Green-positive (Fig. 5a and Supplemental Movie 11). In agreement, 

examination of sphericity – a measure of how close the shape of an object is to a 

perfect sphere – using the Imaris microscopy image analysis platform confirmed that 

the macrophage nucleus rounded up concurrently to the loss of plasma membrane 

integrity (Fig. 5b and Supplemental Figure 6a). From these analyses, we also noted 

that the nucleus appeared more condensed following plasma membrane rupture.  

Consistently, a kinetic analysis of the nucleus’ Feret diameter - a measure of an object 

size along a specified direction – showed that nuclear condensation is a late-stage 

pyroptotic event that occurs together with plasma membrane rupture (Fig. 5c and 

Supplemental Figure 6b). Similarly, pyroptosis induction in FlaTox-treated  

macrophages was accompanied by nuclear rounding and condensation around the 

time when cells turned Sytox Green-positive (Fig 5d-f, Supplemental Figure 6c, d 

and Supplemental Movie 12). These results demonstrate that nuclear rounding and 

condensation are late-stage pyroptotic events. 

 Cell swelling during pyroptosis  

Cell volume depends on the osmotic movement of water across the plasma 

membrane, which is fundamentally regulated by ion and voltage gradients and 

balanced by active ion transport across membranes35. Dissipation of cellular ionic 

gradients increases intracellular osmotic pressure, leading to water influx, cell 

swelling and sudden bursting of the cell membrane. Pyroptotic cells have long been 

recognized to swell20, but the current model that pyroptosis is induced by the 

insertion in the plasma membrane of large pre-assembled non-selective GSDMD 

pores suggests that simultaneous exchange of ions and proteins across the plasma 
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membrane should maintain osmolarity during pyroptosis36. To gain more insight in 

this process, we studied the cell volume dynamics of primary macrophages 

undergoing pyroptotic cell death. 

Figure 5. Nuclei round up and condense during pyroptosis. a-e, BMDMs were preloaded with Hoechst dye 

and stimulated with LeTx (a, b, c) or FlaTox (c, d, e) before imaging in culture media containing Sytox Green. 

Confocal images were acquired every 10 minutes. Graphs show the percentage of mean fluorescence intensity 
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(MFI) of Sytox Green and nuclear sphericity or the Feret’s diameter based on Hoechst staining, all calculated 

as described in Online Methods. Values represent the mean ± SD of individual cells imaged in three 

independent experiments (LeTx: Sphericity n=24, Feret’s diameter n= 18; FlaTox: Sphericity n=26, Feret’s 

diameter n=20). Single cell plots are shown in Supplemental Figure 6. Fluorescent micrographs show the 

maximum intensity projection of a representative cell. In all panels time point zero indicates the first 

detection of Sytox Green. All scale bars, 10 µm. 

The plasma membrane of B6NLRP1b+ macrophages was stained with Cholera Toxin 

Subunit B (rCTB) coupled to the fluorescent dye Alexa594. Cells were subsequently 

stimulated with LeTx to induce pyroptosis by the NLRP1b inflammasome, and we 

recorded single-cell volume changes in real-time until cell lysis was evident by Sytox 

Green staining. Contrary to mock-treated macrophages, LeTx induced a gradual 

increase in cell volume starting approximately 13 minutes before cell rupture (Fig. 6a, 

b, Supplemental Fig. 7a and Supplemental Movie 13). The cell volume increased by 

up to 50% before contracting again after cell lysis (Fig. 6a, b). Pyroptosis following 

FlaTox-induced activation of the NLRC4 inflammasome also was associated with cell 

swelling before cellular internalization of Sytox Green was observed (Fig. 6c, d, 

Supplemental Fig. 7b and Supplemental Movie 14). Under these conditions, cells 

swelled up to 30% (Fig. 6d). A recent study proposed the pomegranate-derived 

polyphenolic compound punicalagin to inhibit NLRP3 and AIM2 inflammasome-

induced IL-1β secretion by preventing plasma membrane permeability downstream 

of inflammasome activation37. Punicalagin inhibited release of LDH in the culture 

medium and PI internalization by LeTx-intoxicated B6NLRP1b+ macrophages 

(Supplemental Fig. 8a, f), but in our hands was associated with upstream blockade 

of caspase-1 maturation, calcium influx and cell swelling (Supplemental Fig. 8). 

Punicalagin also interfered with FlaTox-induced caspase-1 maturation and LDH 

release in a dose-dependent manner (Supplemental Fig. 9a-e), suggesting that this 

compound interferes with pyroptosis and IL-1β secretion by upstream blockage of 

inflammasome activation. Although these findings undermined punicalagin’s further 

use for probing pyroptosis execution mechanisms, our results demonstrate that 

osmotic swelling occurs in advance of cell lysis. 

Pyroptosis features ion fluxing prior to cell lysis  

An early report estimated pyroptotic membrane pores in S. Typhimurium-infected 

macrophages to be 1.1-2.4 nm in diameter based on the size range of osmoprotectant 

molecules that prevented cell lysis20. More recent studies showed that GSDMDN 
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Figure 6. Cell swelling precedes pyroptotic cell rupture. a-d, BMDMs stained with Cholera Toxin subunit B-

Alexa 594 (rCTB) were stimulated with LeTx (a, b) or FlaTox (c, d) and imaged in culture media containing 

Sytox Green. Confocal images were acquired every 1.5 minutes. Graphs show the percentage of mean 

fluorescence intensity (MFI) of Sytox Green and cell volume quantifications based on rCTB-Alexa 594 

staining, both calculated as described in Online Methods. Values represent the mean ± SD of individual cells 

imaged in three independent experiments (LeTx, n=26; FlaTox n=16). Fluorescent micrographs show the 

maximum intensity projection (Sytox Green) or the single plane (rCTB) of a representative cell. Single cell 

plots are shown in Supplemental Figure 7. In all panels time point zero indicates the first detection of Sytox 

Green. All scale bars, 10 µm. 

pores with inner diameters of 10-20 nm formed in liposomes, suggesting that 

pyroptosis may be associated with assembly of pyroptotic pores that are sufficiently 

large to theoretically allow passage of IL-1β, IL-18 and other cytosolic proteins6,7,38,39.  
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Figure 7. Ca2+ influx occurs prior to total membrane permeabilization in pyroptosis.  a-d, BMDMs 

preloaded with the cell-permeant Ca2+ indicator Fluo4 were imaged after stimulation with LeTx (a, b) or 

FlaTox (c, d) in culture media containing PI. Confocal images were acquired every 1.5 minutes. Graphs show 

the percentage of mean fluorescence intensity (MFI) calculated as described in Online Methods, and values 

represent the mean ± SD of individual cells imaged in four independent experiments (LeTx, n=24; FlaTox 

n=23). Single cell plots are shown in Supplemental Figure 10. Fluorescent micrographs show the maximum 

intensity projection of a representative cell. In all panels time point zero indicates the first detection of PI. All 

scale bars, 10 µm. 

However, GSDMDN oligomers formed in 293T cells overexpressing GSDMDN 

appeared more heterogeneous in size39. Our observation that pyroptotic cells 

undergo cell volume increase up to 10 minutes before total lysis (Fig. 6), suggested 

pyroptotic cells have permeability of their plasma membrane prior to total lysis, as 

marked by Sytox Green. We therefore hypothesized that pyroptosis may proceed in a 

sequential manner with defined ion-restrictive pores or channels opening prior to 
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assembly of large, non-selective GSDMDN pores that lead to catastrophic cell lysis. To 

probe the size dynamics of pyroptotic pores under physiological conditions, LeTx-

stimulated B6NLRP1b+ macrophages were pre-loaded with Fluo4, a cell-permeant 

fluorogenic probe that fluoresces strongly upon Ca2+ binding, and tracked for 

internalization of Ca2+ (Mw = 40 Da; van der waals radius = 0,23 nm) relative to uptake 

of the DNA intercalating agent PI (Mw = 668 Da). In agreement with our hypothesis, 

we observed an increase in Fluo4 staining that preceded PI incorporation by 

approximately 12-15 minutes (Fig. 7a, b, Supplemental Fig. 10a and Supplemental 

Movie 15). Echoing these results, induction of pyroptosis through the NLRC4 

inflammasome in FlaTox-treated BMDMs also was associated with Ca2+ entry prior to 

PI-positivity. Under these conditions, an increased Fluo4 signal was noted 6-9 

minutes before cells became PI-positive (Fig. 7c, d, Supplemental Fig. 10b and 

Supplemental Movie 16), in line with FlaTox-induced cell volume increase being 

slightly delayed relative to LeTx-treated cells (Fig. 6). Notably, internalization of the 

DNA-intercalating agent ethidium bromide (Mw = 394 Da) occurred only slightly 

ahead of Sytox Green (Mw = 609 Da) uptake (Supplemental Fig. 11 and 

Supplemental Movie 17), suggesting that pyroptotic ion fluxing was mediated by a 

channel or pore that excludes molecules sized 400 Da and more, and that DNA-

intercalating dyes enter pyroptotic cells sequentially according to their molecular 

weight.  

GSDMD mediates early ionic flux and mitochondrial decay in pyroptotic cells 

GSDMDN pores were recently reported to have inner diameters of 10-20 nm when 

assembled in vitro in liposomes6,7,38,39. However, our observations demonstrate that 

pyroptotic Ca2+ influx precedes plasma membrane rupture and involves a pore or 

channel that excludes entry of DNA-intercalating agents with Mw of 394-609 Da. We 

hypothesized that early ionic flux and cell swelling during pyroptosis is mediated by 

GSDMD pores of lower stoichiometry while the larger structures that form in 

liposomes may represent a terminal steady-state phase of GSDMD pore assembly 

associated with catastrophic cell lysis. Empirical analysis of the hypothesis that 

GSDMD pores mediated early pyroptotic Ca2+ influx was vitiated by the observation 

that LeTx and FlaTox treatment of GSDMD-/- macrophages induced apoptosis with 

kinetics matching those of pyroptosis induction in GSDMD-sufficient B6NLRP1b+ and 

C57BL/6J (B6) macrophages, respectively (Supplemental Fig. 12a, b). Apoptosis has 

previously also been documented in GSDMD-/- macrophages following stimulation 
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Figure 8. GSDMD-deficiency prevents LPS transfection-induced early Ca2+ influx and mitochondrial 

decay. a, c, Pam3csk4-primed BMDMs of the indicated genotypes were preloaded with the cell-permeant Ca2+ 

indicator Fluo4 and imaged after transfection with LPS (Fugene+LPS), treated with Fugene alone, or “mock”-

treated in culture media containing PI. Confocal images were acquired every 2 minutes. Fluorescent 

micrographs show the maximum intensity projection of a representative cell. b, e, BMDMs of the indicated 

genotypes were preloaded with TMRM and imaged after transfection with LPS (Fugene+LPS), treated with 
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Fugene alone, or “mock”-treated in culture media containing Sytox Green. Confocal images were acquired 

every 3 minutes. Fluorescent micrographs show the maximum intensity projection of a representative cell. d, 

f, Graphs show the percentage of mean fluorescence intensity (MFI) calculated as described in Online 

Methods, and values represent the mean ± SD of individual cells imaged in three or four independent 

experiments (Fluo4: WT n=18, GSDMD-/- n=28; TMRM: WT n=18, GSDMD-/- n=29). Single cell plots are shown 

in Supplemental Figure 14. In all panels time point zero indicates the first detection of PI/Sytox Green. All 

scale bars, 10 µm. 

with LPS + nigericin and upon infection with S. Typhimurium40. Therefore, the 

kinetics of apoptosis induction in GSDMD-/- macrophages that align with pyroptosis 

timelines impeded examination of the role of GSDMD pores in early pyroptotic ion 

fluxing following treatment with the above canonical inflammasome agonists. 

LPS transfection is a non-canonical inflammasome stimulus that triggers caspase-11- 

and GSDMD-mediated pyroptosis5,8. LPS transfection-induced pyroptosis was 

associated with a robust Fluo4 signal in wildtype macrophages, indicating that early 

Ca2+ influx is a shared commonality of pyroptosis induction by the non-canonical and 

canonical inflammasome pathways (Fig. 8a). LPS transfection also resulted in a loss 

of TMRM signal and mitochondrial decay prior to cell lysis (Fig. 8b), akin to our 

observations with the canonical inflammasome agonists LeTx and FlaTox (Fig. 3). 

Having established that pyroptosis induction by the non-canonical inflammasome 

shares Ca2+ influx and mitochondrial decay as early features with pyroptosis induced 

through canonical inflammasome pathways, we next addressed the role of GSDMD 

in these processes. Contrary to canonical inflammasome agonists (LeTx and FlaTox) 

that triggered fast induction of apoptosis in GSDMD-/- macrophages (Supplemental 

Fig. 12), incorporation of PI by LPS-transfected GSDMD-/- macrophages was delayed 

by approximately 5 hours relative to pyroptotic wildtype macrophages 

(Supplemental Fig. 13), thus providing a suitable time window for examining the 

potential role of GSDMD in pyroptosis-associated early Ca2+ influx and 

mitochondrial decay. Notably, GSDMD-deficiency not only protected against 

pyroptotic plasma membrane rupture during the timeframe of imaging, but also 

abolished the early Ca2+ influx seen in LPS-transfected wildtype macrophages (Fig. 

8a, c, d, Supplemental Fig. 14a and Supplemental Movie 18). LPS-transfected 

GSDMD-/- macrophages also maintained their mitochondrial polarization during the 

imaging timeframe, unlike LPS-transfected wildtype macrophages that lost their 

mitochondrial membrane potential during pyroptosis induction (Fig. 8b, e, f, 

Supplemental Fig. 14b and Supplemental Movie 19). To conclude, we show that 

both early Ca2+ influx and mitochondrial decay are conserved mechanisms of 
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pyroptotic cell demise that are mediated by GSDMD and precede plasma membrane 

rupture.  

Pyroptosis causes non-selective extracellular release of cytosolic and organellar proteins  

The extracellular release of host-derived DAMPs that are normally kept in the 

intracellular milieu is considered a major mechanism by which necrotic cell death 

promotes inflammation. In addition to IL1β and IL18, pyroptotic cells are known to 

release the cytosolic protein LDH – the enzymatic activity of which in culture media 

is often used as a surrogate marker of plasma membrane rupture – and the nuclear 

DAMPs HMGB1 and IL1α4,10. Pyroptotic cells were recently shown to contain 

organelles and microbial pathogens inside the ‘pore-induced intracellular trap’9, but 

whether proteins that reside in membrane-bound organelles are spilled 

extracellularly is unclear. To address this question, we stimulated macrophages with 

LeTx or FlaTox for the indicated durations (Fig. 9a, b) before the extracellular 

medium and total cell lysates were analysed by Western blotting for a suite of 

organellar proteins. In parallel, the extracellular medium was analysed for LDH 

 

Figure 9. Pyroptosis triggers non-selective release of cytosolic and organellar proteins. Culture 

supernatants and cell lysates of BMDMs stimulated with LeTx (a) or FlaTox (b) for the depicted durations 

were analysed by Western blotting for the indicated proteins. (c, d) Culture supernatants used in (a, b) were 

assayed for LDH activity. Data are representative of three independent experiments. 

activity, near-maximal values of which were reached 120 and 90 minutes post-

treatment for LeTx- and FlaTox-stimulated cells, respectively (Fig. 9c, d). The 
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extracellular levels of procaspase-3 raised concurrent herewith, whereas the cellular 

pool of this cytosolic protein diminished accordingly over time (Fig. 9c, d). β-actin 

and the nuclear DAMP HMGB1 were also retrieved in supernatants of both LeTx- 

and FlaTox-stimulated cells. Moreover, mitochondrial cytochrome c and lysosomal 

cathepsin B were spilled with comparable kinetics in the extracellular space (Fig. 9a, 

b), consistent with our observation that both mitochondria and lysosomes are 

damaged during pyroptosis. Together, these results highlight that a broad set of 

proteins and potential DAMPs originating from damaged organelles and the cytosol 

alike are targeted for non-selective extracellular release during pyroptosis. 

3.1.4. Discussion 

The requirement for the proteolytic activity of inflammatory caspases fundamentally 

distinguishes pyroptosis from apoptosis, necroptosis and accidental necrosis. It has 

long been recognized that the induction of pyroptosis in parallel to caspase-1-

mediated maturation of IL-1β and IL-18 may constitute a powerful defense 

mechanism of the host against microbial pathogens15. Pyroptosis is now thought to 

not only remove the replicative niche of intracellular pathogens, but was also shown 

to promote the passive release of IL-1β, IL-18 and DAMP molecules that attract 

neutrophils and contribute to a pro-inflammatory environment that contribute to 

pathogen clearance5,11,40. In addition, engulfed bacteria were recently demonstrated to 

get trapped in the pyroptotic cell corpse, which has been coined the ‘pyroptotic 

intracellular trap’, as a mechanism to counter pathogen spreading and to facilitate 

efferocytosis by infiltrating neutrophils9.  

Despite its evident role in anti-microbial host defense and the recent identification of 

GSDMD as a key pyroptosis effector molecule, the distinguishing features and 

subcellular dynamics of pyroptotic cells have remained largely unmapped. 

Comparing necroptotic and pyroptotic macrophage cell death, we found that 

contrary to necroptosis, cells that undergo pyroptosis remain attached to the 

adherent surface throughout the entire cell death process. This suggests that cell 

adhesion molecules such as integrins, selectins, syndecans and cadherins may be 

disrupted during necroptosis, but not in pyroptosis. It would also be interesting in 

this respect to investigate whether this differential feature of pyroptotic and 

necroptotic cell death leads to distinct consequences to the surrounding tissue in an 

in vivo context.  We also showed that myosin-II and ROCK-I activity are dispensable 

for pyroptotic and necroptotic blebbing, whereas they are known to be essential for 
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blebbing during apoptosis. Future studies should explore whether pyroptotic and 

necroptotic blebbing are passively induced by osmotic pressure, or actively regulated 

processes that involve specific enzymes.  

Our single-cell analysis of pyroptosis kinetics revealed that pyroptosis is 

characterized by ionic fluxing and cell swelling that is accompanied by 

mitochondrial depolarization and lysosome leakage well before cells ultimately lost 

their plasma membrane integrity concomitant with evidence of late-stage nuclear 

condensation. We thus observed a conserved sequence of subcellular events that 

preceded plasma membrane rupture by up to 20 minutes, challenging the current 

model that pyroptosis is induced by the insertion in the plasma membrane of pre-

assembled large non-selective GSDMD pores with inner diameters of 10-20 nm. Pores 

of this size would likely maintain osmolarity by allowing the simultaneous passage 

of ions, small molecules and proteins, and thus would not be able to account for the 

early cell swelling we observed. Important in this regard is our demonstration that 

Ca2+ influx could precede the uptake of cell-impermeant fluorescent dye molecules 

(sized 400 Da or more) and plasma membrane rupture by 12-15 minutes, arguing that 

pyroptosis is executed by an increasing permeability of the plasma membrane and 

that formation of large non-selective GSDMD pores is a late-stage pyroptotic event 

that is associated with the breakdown of the plasma membrane. Consistently, an 

early estimate of the pyroptotic membrane pore diameter in S. Typhimurium-

infected macrophages suggested it to be 1.1-2.4 nm in diameter, although the identity 

of such pores have not been defined20. Considering our demonstration that GSDMD 

is required for early Ca2+ influx and mitochondrial membrane depolarization of LPS-

transfected macrophages, it is tempting to speculate that GSDMDN monomers insert 

in membranes individually or as small oligomers that further assemble into higher 

order oligomers, reminiscent of the mechanism used by Bax in the mitochondrial 

outer membrane and cation-selective actinoporin pores41. Such ‘non-concerted’ 

membrane insertion model for GSDMDN pore assembly would account for both early 

ion-selective fluxing and late-stage non-selective GSDMDN pore formation. 

Moreover, GSDMDN oligomers formed in GSDMDN-overexpressing 293T cells were 

reported to be heterogeneous in size39.  

We further observed that pyroptotic plasma membrane rupture is kinetically closely 

associated with Annexin-V-positivity. Considering that phosphatidylserine is an ‘eat-

me’ signal for phagocytes, it will be interesting to determine the timeframe by which 

extracellular release of IL1β and IL18 precedes efferocytosis of the pyroptotic corpse, 
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and to study the role of PS in this process. We also showed that pyroptosis is 

associated with an apparently non-discriminatory extracellular spilling of proteins 

from both the cytosolic and organellar compartments. The latter suggests that 

enzymes and DAMPs that normally reside in membrane-bound organelles such as 

the nucleus, mitochondria and lysosomes might potentially exert specific roles and 

contribute to an inflammatory milieu following their release from pyroptotic cells.  In 

conclusion, this study charted a chronological sequence of subcellular events that 

define pyroptotic cell death at the single-cell level, and provides a dynamic 

framework for understanding cellular changes that occur during pyroptosis. 

3.1.5. Methods 

Mice. B6NLRP1b+ 22, H2K-Bcl2Tg 42 and GSDMD-/- 5 mice have been reported. C57BL/6J 

mice were originally bought from the Jackson Laboratories and bred in-house. Mice 

were housed in individually ventilated cages and kept under pathogen-free 

conditions at the animal facilities of Ghent University. All animal experiments were 

conducted with permission of the ethics committee on laboratory animal welfare of 

Ghent University. 

Reagents. Recombinant expression and purification of LFn-FlaA was performed as 

described28. B. anthracis protective antigen (PA) and lethal factor (LF) were acquired 

from List Biologicals. Tetramethylrhodamine (TMRM, T668), Lysotracker (L7528), 

Sytox Green (S7020), Mitotracker (M7512), Fluo4 (F14217), Pluronic F-127 (P6867), 

Hoechst 33342 Trihydrochloride Trihydrate (H1399), Propidium Iodide (P3566) and 

Cholera Toxin Subunit B (CTB) coupled to Alexa 594 (C22842) or 647 (C34778) were 

purchased from Thermo Scientific. Propidium Iodide (PI) solution (556463) and 

Annexin-V-FITC (556419) were from BD Biosciences. The antibodies used in the 

study were anti-caspase-1 (AG-20B-0042-C10, Adipogen), anti-Cathepsin B (31718S, 

Cell Signaling Technology), anti-Cytochrome c (11940S, Cell Signaling Technology), 

anti-HMGB1 (ab18256, Abcam), anti-caspase-3 (9662S, Cell Signaling Technology), 

anti-β-Actin-HRP (sc-47778, Santa Cruz Biotechnology), anti-BID (AF860, R&D 

systems). HRP-conjugated secondary antibodies were acquired from Jackson 

Immunoresearch Laboratories and enhanced chemiluminescence solution was from 

Thermo Scientific. Punicalagin (P0023) was from Sigma Aldrich and the CytoTox 96 

Non-Radioactive Cytotoxicity Assay (G1780) and FugeneHD Transfection Reagent 

were purchased from Promega. Y27632 and (-)-blebbistatin were acquired from 
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Selleckchem. Pam3-csk4 (tlrl-pms) and LPS-SM (tlrl-smlps) were acquired from 

Invivogen.  

Macrophage differentiation and stimulation. Macrophages were differentiated by 

culturing bone marrow progenitor cells in Iscove’s modified Dulbecco’s medium 

(IMDM; Lonza) containing 10% (v/v) heat-inactivated FBS, 30% (v/v) L929 cell-

conditioned medium, 1% (v/v) non-essential amino acids (Lonza), 100 U/ml penicillin 

and 100 mg/ml streptomycin at 37 °C in a humidified atmosphere containing 5% CO2 

for six days. Bone marrow-derived macrophages (BMDMs) were then seeded into 8-

well µ-slides (Ibidi) or in multiple wells plates as needed, in IMDM containing 10% 

FBS, 1% non-essential amino acids and antibiotics. For NLRP1b inflammasome 

activation, cells were stimulated with LeTx (1 µg/ml PA combined with 0,5 or 1 

µg/ml LF). The NLRC4 inflammasome was activated in BMDMs treated with FlaTox 

(1 µg/ml PA combined with 1 µg/ml LFn-FlaA). Necroptosis was induced with 

mTNFα (20 ng/ml), BV6 (2 µM) and zVAD-fmk (50 µM). In some experiments, 

BMDMs were treated with Y27632 (10µM), (-)-blebbistatin (10µM) or punicalagin (25 

or 50 µM) before inflammasome stimuli. For the non-canonical inflammasome 

activation, BMDMs were primed with Pam3-csk4 (1ug/ml) for 6h in Opti-MEM 

medium. Then, cells were either mock treated or stimulated with 0,25% (v/v) Fugene 

with or without LPS (2ug/ml). 

Live cell imaging. BMDMs were incubated with TMRM (400 nM), Lysotracker (50 

nM), Mitotracker (25 nM) and Hoechst (20 ng/ml) for 30 min at 37°C, after which 

they were washed to fresh culture media. For plasma membrane labelling, cells were 

incubated with CTB Alexa 594 or CTB Alexa 647 (10 µg/ml) for 30 min at 4°C and 

then washed with fresh media. In other experiments, Fluo4 (5 µM) was mixed in a 1:1 

(v/v) ratio with Pluronic F-127 (20% w/v in DMSO) before adding the mixture to cells 

in HBSS. Cells were incubated with Fluo4 solution for 30 min at room temperature 

and washed to fresh media containing Fluo4 (2.5 µM). Imaging was performed in 

culture media containing Sytox Green (10 nM) or PI (0.5 µg/ml). 

Image acquisition and processing. In each experiment, 2-3 fields/condition were 

selected for time-lapse imaging using an observer Z.1 spinning disk microscope 

(Zeiss, Zaventem, Belgium) equipped with a Yokogawa disk CSU-X1. Cells were 

incubated in a chamber with a 5% CO2 atmosphere at 37°C throughout the 

experiment. DIC and fluorescence images were acquired at regular intervals ranging 

from 1 to 10 minutes apart, with the use of a pln Apo 40x/1.4 oil DIC III objective and 

a Rolera em-c2 camera. Image acquisition started at the moment of stimulation with 
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LeTx, FlaTox and TBz; and after 2h of LPS transfection for pyroptosis induction by 

the non-canonical inflammasome pathway. Cells were imaged at least until they 

became positive for Sytox Green or PI. Z-stacks consisted of 5 or 8 planes with a Z-

interval of 2µm. Mock-treated cells were imaged in parallel to ensure that imaging 

and staining procedures were not cytotoxic. 

Representative images and movies were extracted and edited in Fiji software. Image 

quantifications were performed on the 3D images through voxel-based quantification 

of the mean fluorescence intensity (MFI), volume and sphericity in Imaris x64 7.7.2 

(Bitplane) software package. Obtained fluorescence data were normalized for 

bleaching against the corresponding time points of mock-treated cells that were 

imaged in parallel. Cell volume and MFI percentages were plotted relative to each 

cell’s initial value, except for Annexin-V, Sytox Green and PI percentages, which 

were plotted against the maximum noted values. The Feret diameter of Hoechst-

stained nuclei was determined for each Z-slice using Fiji software, and the highest 

value obtained for each time point was retained and shown. All graph data on main 

figures depict the mean of multiple cells that were quantified in each independent 

experiment ± SD. All graph data on supplementary figures depict the individual 

values obtained for each cell after normalization. The time indication in presented 

graphs and image panels is relative to the moment when cells became positive for 

Sytox Green or PI. Time zero in movie stills refers to the start of imaging. 

Western Blotting. Unless otherwise stated, cell lysates and culture supernatants were 

combined for Western blotting. Protein samples were denatured in Laemmli buffer, 

boiled at 95 °C for 10 min, separated by SDS-PAGE and transferred to PVDF 

membranes. PBS supplemented with 0.05% Tween-20 (v/v) and 3% nonfat dry milk 

(w/v) was used for blocking and washing of membranes. Immunoblots were 

incubated overnight with primary antibodies against cathepsin B and cytochrome c 

(1:1000 in TBS, 0,1% Tween-20, 5% BSA), HMGB1 or caspase-3 (1:1000 in PBS, 0,1% 

Tween-20, 5% nonfat dry milk), caspase-1 or BID (1:1000 in PBS, 0,05% Tween-20, 3% 

nonfat dry milk), followed by HRP-conjugated secondary antibodies raised against 

mouse, goat or rabbit (1:5000). The β-Actin-HRP antibody was used at 1:5000 in PBS 

0,1% Tween-20, 5% nonfat dry milk. All proteins were detected by enhanced 

chemiluminescence. 

Kinetic of LDH release. The supernatant of cells stimulated at various time points 

was collected and centrifuged at 300xg for 5min to remove cellular debris. LDH 

measurement was performed with the CytoTox 96 Non-Radioactive Cytotoxicity 
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Assay kit according to the manufacturers’ instructions, in samples diluted 1:5 in PBS. 

Data was plotted considering the O.D. value obtained in a well treated with Triton-

x100 as 100%. 

Cell permeabilization kinetics (Incucyte). BMDMs were plated and stimulated in a 

96-well plate in media containing PI (0,1 ug/ml) and data was acquired with a 10x 

objective using the Incucyte Zoom system (Essen BioScience) in a CO2 and 

temperature controlled environment. Each condition was run in (technical) 

duplicates. The number of fluorescent objects was counted with Incucyte ZOOM 

(Essen BioScience) software and was plotted considering as 100% the highest value 

obtained in a well treated with Triton-x100.  

3.1.6. Suplementary data 

 

Supplemental Figure 1. PS exposure during pyroptosis. a, b B6Nlrp1b+ BMDMs were stimulated with LeTx (a) 

or FlaTox (b) and imaged in culture media containing Annexin-V-FITC and PI. Confocal images were 

acquired every 3 minutes. Graphs show the percentage of mean fluorescence intensity (MFI) of single cells 

(LeTx n=18; FlaTox n=21), calculated as described in Methods, of Annexin-V (upper panel) or PI (lower panel) 

signals. In all panels time point zero indicates the first detection of PI. Relates to Figure 2b, d. 
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Supplemental Figure 2. Mitochondrial morphology of mock-treated BMDMs. B6Nlrp1b+ BMDMs preloaded 

with Mitotracker Red CMXRos were imaged in culture media containing Sytox Green (n=50). A single plane 

of a representative cell is shown. Scale bars, 10 µm. 

 

 

Supplemental Figure 3. Mitochondrial damage during pyroptosis. a, b B6Nlrp1b+ BMDMs were preloaded 

with TMRM and stimulated with either LeTx (a) or FlaTox (b) and imaged in culture media containing Sytox 

Green. Confocal images were acquired every 3 minutes. Graphs show the percentage of mean fluorescence 

intensity (MFI) of single cells (LeTx, n=28; FlaTox n=28), calculated as described in Methods, of TMRM (upper 

panel) or Sytox Green (lower panel) signals. “Mock” lines represent the average of the values obtained in 

Suppl Fig 2
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unstimulated cells, imaged in parallel. In all panels time point zero indicates the first detection of Sytox Green. 
Relates to Figure 3c, e. 

 

Supplemental Figure 4. Bax/Bak pores are dispensable for pyroptosis-associated mitochondrial damage. a 

Protein lysates of B6Nlrp1b+ BMDMs stimulated with LeTx for 60, 120 or 180 minutes were analysed by Western 

blotting for BID. a-c, Protein lysate of B6Nlrp1b+ and B6Nlrp1b+H2K-Bcl2Tg BMDMs that have been stimulated with 

LeTx for 90 or 180 minutes were assayed by Western blotting for caspase-1 maturation (b), and their culture 

supernatants were assayed for LDH activity (c). d, e B6Nlrp1b+ and B6Nlrp1b+H2K-Bcl2Tg BMDMs were loaded 

with TMRM and stimulated with LeTx in culture media containing Sytox Green. Confocal images were 

acquired every 3 minutes. Graphs show the percentage of mean fluorescence intensity (MFI) calculated as 

described in Methods, and values represent the mean ± SD of individual cells imaged in 3 independent 

experiments (B6Nlrp1b+ n=26; B6Nlrp1b+H2K-Bcl2Tg n=21). Fluorescent micrographs show the maximum intensity 

projection of a representative cell. In panels d, e time point zero indicates the first detection of Sytox Green. 

All scale bars, 10 µm. 
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Supplemental Figure 5. Lysosomes decay prior to pyroptotic cell lysis. a, b B6Nlrp1b+ or B6 BMDMs preloaded 

with Lysotracker and stimulated with LeTx (a) or FlaTox (b), respectively, were imaged throughout cell death 

in culture media containing Sytox Green. Confocal images were taken every 3 minutes. Graphs show the 

percentage of mean fluorescence intensity (MFI) of single cells (LeTx, n=27; FlaTox n=19), calculated as 

described in Methods, of Lysotracker (upper panel) or Sytox Green (lower panel) signals. “Mock” lines represent 

the average of the values obtained in unstimulated cells, imaged in parallel. In all panels time point zero indicates 

the first detection of Sytox Green. Relates to Figure 4b, d. 
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Supplemental Figure 6. Nuclei round up and condense during pyroptosis. a-d B6Nlrp1b+ BMDMs were 

preloaded with Hoechst dye and stimulated with LeTx (a, b) or FlaTox (c, d) before imaging in culture media 

containing Sytox Green. Confocal images were acquired every 10 minutes. Graphs show values for nuclear 

sphericity (a, c, upper panels) or Feret’s diameter (b, d, upper panels) based on Hoechst staining or the 

percentage of mean fluorescence intensity (MFI) of Sytox Green signal (lower panels) of single cells (LeTx: 

Sphericity n=24, Feret’s diameter n= 18; FlaTox: Sphericity n=26, Feret’s diameter n=20), calculated as 

described in Methods. “Mock” lines represent the average of the values obtained in unstimulated cells, imaged in 

parallel. In all panels time point zero indicates the first detection of Sytox Green. Relates to Figure 5b, c, d, e. 
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Supplemental Figure 7. Cell swelling precedes pyroptotic cell rupture. a, b B6Nlrp1b+ or B6 BMDMs stained 

with Cholera Toxin subunit B-Alexa 594 (rCTB) were stimulated with LeTx (a) or FlaTox (b), respectively, and 

imaged in culture media containing Sytox Green. Confocal images were acquired every 1.5 minutes. Graphs 

show the percentage of cell volume quantifications based on rCTB-Alexa 594 staining (upper panel) or the 

mean fluorescence intensity (MFI) of Sytox Green signal (lower panels) of single cells (LeTx, n=26; FlaTox 

n=16), calculated as described in Methods. “Mock” lines represent the average of the values obtained in 

unstimulated cells, imaged in parallel. In all panels time point zero indicates the first detection of Sytox Green. 
Relates to Figure 6b, d. 
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Supplemental Figure 8. Punicalagin inhibits LeTx-induced pyroptosis caspase-1 activation. a, b B6Nlrp1b+ 

BMDMs were pretreated with Punicalagin at the indicated concentrations (µM) and stimulated with LeTx for 

90 min. Culture supernatants were assayed for LDH (a), and protein lysates for caspase-1 by Western blotting 

(b). (c, d) BMDMs were pretreated with Punicalagin (50 µM) and stimulated with LeTx for 90 or 180 minutes. 

Culture supernatants were assayed for LDH (c), and protein lysates for caspase-1 by Western blotting (d). (e, 

f) B6Nlrp1b+ BMDMs that had been preloaded with the Ca2+ indicator Fluo4 and stained with CTB-Alexa 647 

(rCTB) were incubated with Punicalagin (50 µM) or vehicle control before cells were stimulated with LeTx 

and imaged in culture media containing PI. Confocal images were acquired every 1.5 minutes. Graphs show 
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the percentage of mean fluorescence intensity (MFI) of PI (upper panel, left axis) and Fluo4 (lower panel) and 

cell volume quantifications based on rCTB-Alexa 647 staining (upper panel, right axis), all calculated as 

described in Methods. Values represent the mean ± SD of 2 independent experiments (LeTx n=11; 

Punicalagin+LeTx n=9). Fluorescent micrographs show the maximum intensity projection (PI and Fluo4) or 

the single plane (rCTB) of a representative cell. All scale bars, 10 µm. 

 

Supplemental Figure 9. Punicalagin inhibits FlaTox-induced caspase-1 activation. a, b B6Nlrp1b+ BMDMs 

were pretreated with Punicalagin at the indicated concentrations (µM) and stimulated with FlaTox for 30 

min. Culture supernatants were assayed for LDH (a), and protein lysates for caspase-1 by Western blotting 

(b). BMDMs were pretreated with Punicalagin (50 µM) and stimulated with FlaTox for 30 or 60 minutes. 

Culture supernatants were assayed for LDH (c), and protein lysates for caspase-1 by Western blotting (d). 

Data are representative of 2 independent experiments.  
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Supplemental Figure 10. Pyroptotic Ca2+ influx occurs prior to total membrane permeabilization.  a-d 

B6Nlrp1b+ BMDMs preloaded with the cell-permeant Ca2+ indicator Fluo4 were imaged after stimulation with 

LeTx (a) or FlaTox (b) in culture media containing PI. Confocal images were acquired every 1.5 minutes. 

Graphs show the percentage of mean fluorescence intensity (MFI) of single cells (LeTx, n=24; FlaTox n=23), 

calculated as described in Methods, of Fluo4 (upper panel) or PI (lower panel) signals. “Mock” lines represent 

the average of the values obtained in unstimulated cells, imaged in parallel. In all panels time point zero indicates 

the first detection of PI. Relates to Figure 7b, d. 

 

Suppl Fig 10

a b

-2
7

-2
4

-2
1

-1
8

-1
5

-1
2 -9 -6 -3 0 3 6 9

0

2 0 0

4 0 0

6 0 0

8 0 0

T im e  to  P I  p o s it iv ity  (m in )

F
lu

o
4

 M
F

I
 (

%
)

C e ll 1

C e ll 2

C e ll 3

C e ll 4

C e ll 5

C e ll 6

C e ll 7

C e ll 8

C e ll 9

C e ll 1 0M o c k

C e ll 1 1

C e ll 1 2

C e ll 1 3

C e ll 1 4

C e ll 1 5

C e ll 1 6

C e ll 1 7

C e ll 1 8

C e ll 1 9

C e ll 2 0

C e ll 2 1

C e ll 2 2

C e ll 2 3

C e ll 2 4

-2
7

-2
4

-2
1

-1
8

-1
5

-1
2 -9 -6 -3 0 3 6 9

0

5 0

1 0 0

1 5 0

T im e  to  P I  p o s it iv ity  (m in )

P
I

 M
F

I
 (

%
)

-2
7

-2
4

-2
1

-1
8

-1
5

-1
2 -9 -6 -3 0 3 6 9

0

2 0 0

4 0 0

6 0 0

8 0 0

T im e  to  P I  p o s it iv ity  (m in )

F
lu

o
4

 M
F

I
 (

%
)

C e ll 1

C e ll 2

C e ll 3

C e ll 4

C e ll 5

C e ll 6

C e ll 7

C e ll 8

C e ll 9

C e ll 1 1

C e ll 1 2

M o c k C e ll 1 0

C e ll 1 3

C e ll 1 4

C e ll 1 5

C e ll 1 6

C e ll 1 7

C e ll 1 8

C e ll 1 9

C e ll 2 0

C e ll 2 1

C e ll 2 2

C e ll 2 3

-2
7

-2
4

-2
1

-1
8

-1
5

-1
2 -9 -6 -3 0 3 6 9

0

2 0

4 0

6 0

8 0

1 0 0

T im e  to  P I  p o s it iv ity  (m in )

P
I

 M
F

I
 (

%
)



 73 

 

 

Supplemental Figure 11. Pyroptotic cells provide sequential permeability to Ethidium Bromide and Sytox 

Green. a, b B6Nlrp1b+ BMDMs were stimulated with LeTx and imaged in culture media containing Ethidium 

Bromide and Sytox Green. Confocal images were acquired every 1 minute. Graph shows the percentage of 

mean fluorescence intensity (MFI) calculated as described in Methods, and values represent the mean ± SD of 

individual cells imaged in 3 independent experiments (n=50). Fluorescent micrographs show the maximum 

intensity projection of a representative cell. In all panels time point zero indicates the first detection of Sytox 

Green. All scale bars, 10 µm. 
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Supplemental Figure 12. Canonical inflammasome stimuli induce apoptosis in GSDMD-deficient 

macrophages with kinetics similar to pyroptosis induction in WT cells. a, b BMDMs of indicated genotypes 

were stimulated with LeTx (a) or FlaTox (b). Images show the bright field of representative cells (LeTx n=20; 

FlaTox n=18). All scale bars, 10 µm. 

 

 

 

Supplemental Figure 13. Delayed membrane permeabilization following non-canonical inflammasome 

activation in GSDMD-deficient macrophages. Pam3csk4-primed GSDMD-deficient and –sufficient B6 

BMDMs were transfected with LPS (2 µg/ml, Fugene+LPS), treated with Fugene alone or kept without 

treatment and imaged in media containing PI. The number of positive cells was quantified relative to a 

Triton-x100-treated well (considered 100%) of each genotype. Values represent mean ± SD of technical 

duplicates of a representative experiment out of 3 independent experiments. 
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Supplemental Figure 14. GSDMD deficiency recues Ca2+ influx and mitochondrial decay associated with 

activation of the non-canonical inflammasome. a, b Pam3csk4-primed BMDMs of WT (a) and GSDMD-/- (b) 

mice were preloaded with the cell-permeant Ca2+ indicator Fluo4 and imaged after transfection with LPS (2 

µg/ml, Fugene+LPS), Fugene alone or mock-treated in culture media containing PI. Confocal images were 

acquired every 2 minutes. c, d BMDMs of WT (c) and GSDMD-/- (d) mice were preloaded with TMRM and 

imaged after transfection with LPS (2 µg/ml, Fugene+LPS), Fugene alone or mock-treated in culture media 

containing Sytox Green. Confocal images were acquired every 3 minutes. Graphs show the percentage of 

mean fluorescence intensity (MFI) of single cells (Fluo4: WT n=18, GSDMD-/- n=28; TMRM: WT n=18, GSDMD-

/- n=29), calculated as described in Methods, of Fluo4 and TMRM (upper panels) or PI and Sytox Green (lower 
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panels) signals. “Mock” lines represent the average of the values obtained in unstimulated cells that were 

imaged in parallel. In all panels time point zero indicates the first detection of PI. Relates to Figure 8d, f. 
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3.2. A biochemical perspective of pyroptosis 

Section 3.2. is structured as the manuscript: de Vasconcelos, N.M.* and 

Van Opdenbosch, N.*; Van Gorp, H; Lamkanfi, M. Caspase-1-

dependent pyroptosis comprises an apoptotic program. In preparation. 

*contributed equally to the work 

 

3.2.1. Abstract 

Inflammasomes are key elements of the innate immune response to bacterial and 

viral pathogens1. However, uncontrolled inflammasome activation can also be the 

causing mechanism of hereditary inflammatory disorders2. Canonical 

inflammasome-activated cells still undergo cell death in the absence of GSDMD3, and 

previous studies have shown caspase-7 to be a substrate of caspase-14. Here we show 

that caspase-1 activates a caspase-3 and -7-mediated apoptotic program during the 

execution of pyroptosis downstream of the NLRC4 and NLRP1b inflammasomes. 

DEVDase activity, considered a hallmark of apoptosis, was present in pyroptotic 

bone marrow-derived macrophages, and pyroptosis was accompanied by cleavage of 

typical apoptotic markers ROCKI, p23, PARP1 and Bid. Absence of GSDMD revealed 

an apoptotic phenotype, which was insensitive to the ablation of ASC or to TLR-

priming. Double deficiency for caspase-3 and -7 rescued the observed DEVDase 

activity and delayed plasma membrane permeabilization for 4h. Overall, we 

conclude that both caspase-1 and caspase-8 can mediate an apoptotic program 

downstream of the inflammasome. We propose a model in which inflammasome 

activation leads to several parallel death programs: caspase-8 and -1-mediated 

apoptosis and caspase-1-induced pore formation through GSDMD. All these 

pathways act in a concerted manner in WT macrophages, and therefore are key 

molecular constituents of pyroptosis. The existence of these parallel cell death 

pathways suggests redundancy in cell death induction mechanisms of an infected 

macrophage to ensure pathogenic disease resolution. 
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3.2.2. Main text 

Anthrax lethal toxin (LeTx) elicits NLRP1b inflammasome activation and pyroptosis 

in B6 BMDMs containing the LeTx-sensitive Nlrp1b allele of 129 mice5. Analysis of 

the caspase maturation profile in B6Nlrp1b+ BMDMs treated for 2h with LeTx 

demonstrated caspase-1 conversion into its mature p20 form (Fig. 1a). Confirming 

what has been observed with NLRP3 and NLRC4 inflammasomes4, caspase-3 and -7 

were cleaved to their active form after LeTx triggering of B6Nlrp1b+ macrophages. 

Activation of the NLRC4 inflammasome can be accomplished by a system employing 

the N-terminal fragment of B. anthracis Lethal Factor fused to Flagellin from 

Legionella pneumophila for its cytoplasmic delivery through combination with 

Protective Antigen (FlaTox)8. After 2h of FlaTox treatment, we could detect caspase-1 

maturation in BMDMs (Fig. 1a). Interestingly, in the context of NLRC4 activation, the 

p43 and p18 forms of caspase-8 was detected 2h post treatment. Further confirming 

the published data, caspase-3 and caspase-7 were matured after FlaTox treatment. 

To probe whether caspase-3 and -7 cleavages in pyroptotic macrophages correlated 

to their activation, we employed a time-kinetics analysis with a fluorogenic probe 

containing the caspase-3 and caspase-7-target substrate sequence, DEVD, using the 

imaging-based Incucyte system. Treatment of B6Nlrp1b+ BMDMs with LeTx led to PI 

staining, indicative of the pyroptosis-induced permeabilization of the plasma 

membrane, after only 1h30 (Fig. 1b). The DEVD-based probe stained LeTx-triggered 

cells with similar kinetics and at comparable level as PI. Similarly, intoxication of 

BMDMs with FlaTox lead to DEVDase activity, which was concomitant to membrane 

permeabilization, detected through PI staining. Both the extrinsic and intrinsic 

apoptotic pathways converge into activation of caspase-3 and -7, and therefore 

DEVDase activity is considered a hallmark of apoptosis. NLRP1b and NLRC4-

induced pyroptosis generated DEVD-activity at comparable levels to the well 

described apoptotic trigger, Staurosporine (Fig. 1b). DEVD activity was specific for 

downstream activation of inflammasomes, because triggering BMDMs lacking the 

Nlrp1b transgene with LeTx did not induce any DEVD signal in the cells (Fig. 1c). 

Similarly, NLRC4-/- BMDMs were unable to induce DEVD signal after FlaTox 

treatment (Fig. 1d). During the extrinsic apoptotic pathway, activation of caspase-8 at 

the death receptor complex leads to downstream activation of caspase-3 and -7 and 

apoptotic dismantling of the cell. Ablation of ASC has been shown to impair caspase-

8 activation in the speck downstream of NLRP1b and NLRC4 inflammasomes, while 

caspase-1 continued to induce pyroptosis6,7. Indeed, B6Nlrp1b+ASC-/- BMDMs 
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Figure 1. NRLP1b and NLRC4-induced pyroptosis is associates to a Caspase-3/-7 signature. a, f, B6Nlrp1b+ or 

B6 macrophages were treated with LeTx and FlaTox, respectively, for 2h and lysates run on WB for detection 

of the indicated proteins. b, B6Nlrp1b+ macrophages treated with either LeTx, FlaTox or Staurosporine in media 

containing DEVD-probe and PI were imaged on an Incucyte platform. c, B6Nlrp1b+ and B6 macrophages were 

treated with LeTx and assayed as in (b). d, B6 and NLRC4-/- macrophages were treated with FlaTox and 

assayed as in (b). e, B6Nlrp1b+ and B6Nlrp1bASC-/- macrophages were treated with LeTx or FlaTox and assayed as 

in (b). In all conditions, the number of positive cells was quantified relative to a PI stained, Triton-x100-
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treated well (considered 100%). Values represent mean ± SD of technical duplicates of a representative 

experiment from three biological repeats. 

underwent plasma membrane permeabilization with same kinetics as B6Nlrp1b+ after 

LeTx or FlaTox triggering (Fig. 1e). Similarly, ablation of ASC in BMDMs did not 

hamper DEVDase activity or its kinetics after both NLRP1b and NLRC4 

inflammasomes, suggesting this event is not mediated by caspase-8 activation at the 

ASC speck (Fig. 1e). 

To confirm the DEVDase activity in pyroptotic cells was not an off-target effect of 

other active caspases, we analyzed lysates of either LeTx of FlaTox-triggered cells for 

substrates normally cleaved during the execution phase of apoptosis. ROCKI, p23 

and Bid were cleaved in BMDMs triggered with LeTx and FlaTox (Fig. 1f) into 

similar cleavage fragments than reported during apoptosis. These data establish that 

caspase-3 and -7 are activated during pyroptosis in an ASC-independent manner and 

contribute to biochemical aspects of this form of cell death. 

We hypothesized that the rapid lysis of the plasma membrane mediated by GSDMD 

would stop intracellular signaling and decided to use GSDMD-/- BMDMs to examine 

the caspase-3 and -7 cleavage events in more detail. B6Nlrp1b+GSDMD-/- BMDMs were 

hampered in LDH release after stimulation of the NLRP1b inflammasome with LeTx 

(Fig. 2a). However, further microscopic evaluation of B6Nlrp1b+GSDMD-/- macrophages 

demonstrated these not to be protected from cell death, as the cells appeared 

shrunken and displayed blebbing, consistent with apoptosis induction (Fig. 2b). 

Previous reports have shown that lack of GSDMD after engagement of a caspase-1-

dependent inflammasome does not protect from cell death, as macrophages undergo 

apoptosis3,9. Flow cytometry of B6Nlrp1b+GSDMD-/- macrophages triggered with LeTx 

demonstrated a population positive for Annexin-V while impermeable to PI 

(AnnenV+/PI-) (Fig. 2c), consistent with apoptosis. Activation of the NLRP1b 

inflammasome was not altered by lack of GSDMD, and the total populations of dead 

cells were comparable between GSDMD-deficient and sufficient cells. NLRC4 

engagement in the absence of GSDMD lead to a similar pattern, with lack of LDH 

being associated to an apoptotic phenotype and cells staining as AnnenV+/PI- (Fig. 

2d-f).  

Analysis of the profile of caspase maturation in GSDMD-/- cells demonstrated that 

caspase-8 is strongly matured into its p18 forms in the presence of LeTx or FlaTox 

(Fig. 2g). Similarly, caspase-3 was robustly matured into the active p17 fragment. 

Interestingly, the level of caspase-7 maturation in apoptotic cells was comparable to 
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those of pyroptotic cells. We had previously shown that morphological changes in 

GSDMD-/- BMDMs proceed with a kinetic similar to pyroptotic changes. Analysis of 

Figure 2. Lack of GSDMD reveals an apoptotic phenotype after NRLP1b and NLRC4 inflammasome 

activation. a-g, B6Nlrp1b+ or B6 macrophages with or without GSDMD were treated with either LeTx or FlaTox, 
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respectively, for 2h and their supernatants probed for LDH activity (a, d), imaged under a confocal 

microscope (b, e), cells collected for FACS analysis of Annexin V/PI positivity (c, f), and lysates run on WB for 

detection of the indicated proteins (g). h, B6Nlrp1b+ or B6 macrophages with or without GSDMD were treated 

with either LeTx or FlaTox, respectively, in media containing DEVD-probe and PI were imaged on an 

Incucyte platform. i, GSDMDI105N knock-in homozygous (GSDMDI105Nki/ki) or WT (GSDMDI105N+/+) 

macrophages were treated with FlaTox in media containing DEVD-probe and PI were imaged on an Incucyte 

platform. The number of positive cells was quantified relative to a PI stained, Triton-x100-treated well 

(considered 100%) for each genotype. Values represent mean ± SD of technical duplicates of a representative 

experiment from three biological repeats. 

DEVDase activity on GSDMD-/- macrophages showed similar levels to their WT 

counterparts when stimulated with either LeTx or FlaTox, though GSDMD-/- BMDMs 

had a delay in comparison to GSDMD sufficient cells (Fig. 2h). Kinetics of DEVDase 

activity on GSDMD-/- macrophages followed the same as PI internalization, an 

indication of secondary necrosis in this case. A possible explanation for the delayed 

DEVDase activity versus the observation of comparable caspase-7 maturation levels 

is that the substrate is not efficient in entering cells with an intact plasma membrane. 

Therefore, the rapid lysis of pyroptotic cells causes a faster accumulation of the dye 

than in apoptotic ones. However, together with the ROCK1, PARP1 and Bid 

cleavage, we conclude that the probe displays specificity for caspase-3 and -7 

activities. 

In order to understand whether it was the lack of GSDMD or of its function that 

allowed the apoptotic phenotype to appear in GSDMD-/- cells, we have made use of 

the ENU-generated mouse knockin GSDMDI105N, in which GSDMD is expressed but 

unable to cause cell lysis3. Activation of GSDMDki/ki BMDMs with FlaTox led to 

apoptosis with similar kinetics than GSDMD-/- BMDMs (Fig. 2i), establishing that the 

lack of function of GSDMD is sufficient to reveal the apoptotic phenotype. Of note, 

also on the GSDMD-/- background, inflammasome signaling through NLRP1b was 

essential for activation of caspase-1, -3, -7 and -8 plus the detection of DEVDase 

activity, after LeTx stimulation (Sup. Fig. 1). 

Caspase-8 activation during inflammasome triggering of caspase-1-deficient 

macrophages has been shown to occur in the ASC speck7. Given that cells lacking 

GSDMD contained active caspase-1, we analyzed whether the apoptotic phenotype 

observed in the absence of GSDMD expression was related to the described caspase-8 

arm. Surprisingly, lack of ASC could also not protect from LeTx or FlaTox induced 

apoptosis, and allowed blebbing and cell shrinkage, concomitant to the appearance 

of an AnnenV+/PI- population similar to B6Nlrp1b+GSDMD-/- dying macrophages (Fig. 

3a, b). Kinetics of DEVDase activity and PI incorporation of B6Nlrp1b+ASC-/-GSDMD-/- 



 85 

 

triggered with LeTx led, however, to a 20% decay in the maximum number of 

stained cells (Fig. 3d). FlaTox-intoxicated BMDMs showed a 50% reduction in their 

 Figure 3. Lack of ASC does not impair apoptosis in the GSDMD-deficient genotype after NRLP1b and 

NLRC4inflammasome activation. a-c, B6Nlrp1b+GSDMD-/- or B6Nlrp1b+GSDMD-/-ASC-/- macrophages were treated 

with either LeTx or FlaTox for 2h and imaged under a confocal microscope (a), cells collected for FACS 

analysis of Annexin V/PI positivity (b), and lysates run on WB for detection of the indicated proteins (c). d, e, 

B6Nlrp1b+GSDMD-/- or B6Nlrp1b+GSDMD-/-ASC-/- macrophages were treated with either LeTx (d) or FlaTox (b) in 

media containing DEVD-probe and PI were imaged on an Incucyte platform. The number of positive cells 

was quantified relative to a PI stained, Triton-x100-treated well (considered 100%) for each genotype. Values 

represent mean ± SD of technical duplicates of a representative experiment from three biological repeats.  

DEVDase maximum activity and PI incorporation (Fig. 3e). While caspase-1 is 

activated in the absence of ASC after NLRP1b and NLRC4 inflammasomes, its p20 

form is no longer detectable5,10. However, ablation of ASC in the GSDMD-/- 

background restored the maturation of caspase-1 into its p20 (Fig. 3c). Further, while 
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caspase-8 was still processed in B6Nlrp1b+ASC-/-GSDMD-/- triggered for NLRP1b 

inflammasome activation, lack of ASC lead to a significant reduction of caspase-8 

maturation after FlaTox triggering (Fig. 3c), confirming the more pronounced need of 

the NLRC4 inflammasome for ASC. Interestingly, we could not detect any reduction 

on the cleavage pattern of caspase-3 and caspase-7 in the absence of ASC. Overall, 

the data indicate that in the GSDMD-deficient background, caspase-8 can be 

activated outside of the ASC speck after inflammasome triggers. 

To address the role for caspase-3 and -7 in the apoptotic phenotype observed, we 

made immortalized B6Nlrp1b+GSDMD-/-Casp3flox/floxCasp7flox/floxLysM-Cre+ myeloid 

progenitor cells and differentiated them to BMDMs (iBMDMs). DEVDase activity 

was abolished and the signal was diminished below threshold levels in 

B6Nlrp1b+GSDMD-/-Casp3flox/floxCasp7flox/floxLysM-Cre+ immortalized macrophages 

stimulated with LeTx, while control B6Nlrp1b+GSDMD-/- showed DEVDase staining 

when undergoing pyroptosis, further proving the specificity of the probe in our 

system (Fig. 4a). Remarkably, there was a delay of 4h in PI incorporation by these 

cells when compared to B6Nlrp1b+GSDMD-/-. FlaTox-intoxication of iBMDMs showed a 

similar pattern, demonstrating the importance of caspase-3 and -7 for the apoptotic 

phenotype in GSDMD-deficient macrophages (Fig. 4b). Despite a significant 

reduction of DEVDase activity, Western blot analysis demonstrated that caspase-3 

and -7 excisions were not complete in LysM-Cre+ cells (Fig. 4c). Interestingly, 

caspase-1 and caspase-8 were activated at similar levels in caspase-3 and -7-defficient 

and sufficient cells, following treatment with LeTx and FlaTox.  

Figure 4. Caspase-3/-7 control apoptosis downstream of NRLP1b and NLRC4 inflammasomes in the 

GSDMD-deficient genotype. a, B6Nlrp1b+GSDMD-/- or B6Nlrp1b+GSDMD-/-Casp3Flox/FloxCasp7Flox/FloxLysM-Cre+ 
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immortalized macrophages were treated with either LeTx or FlaTox for 2h and lysates run on WB for 

detection of the indicated proteins. b, c, B6Nlrp1b+GSDMD-/- or B6Nlrp1b+GSDMD-/-Casp3Flox/FloxCasp7Flox/FloxLysM-

Cre+ immortalized macrophages were treated with either LeTx (b) or FlaTox (c) in media containing DEVD-

probe and PI were imaged on an Incucyte platform. The number of positive cells was quantified relative to a 

PI stained, Triton-x100-treated well (considered 100%) for each genotype. Values represent mean ± SD of 

technical duplicates of a representative experiment from three biological repeats. 

In conclusion, in this work we have shown that NLRP1b and NLRC4 inflammasome 

activation leads to a signature of caspase-3 and -7 activity in pyroptotic cells, and lack 

of GSDMD reveals this apoptotic program. In the GSDMD-/- background, caspase-8 

maturation was not prevented by lack of ASC, suggesting a caspase feedback loop 

could be responsible for activating caspase-8. Thus, inflammasome-dependent 

apoptosis in GSDMD deficient cells is a distinct mechanism than apoptosis 

happening in the absence of caspase-1 (Figure 5). The data presented here 

demonstrates that pyroptosis comprises a concerted coordination of a caspase 

cascade, in parallel to the pore formation by GSDMD. Defining the role of this 

apoptotic cascade happening during inflammasome activation may highlight 

alternative targets for treatment of inflammasome-mediated diseases. 

 

Figure 5. A model for the molecular pathways downstream of the inflammasome. Engagement of the 

inflammasome by cytosolic recognition of PAMPs or DAMPs activates caspase-1. Caspase-1 cleaves GSDMD 

for pore membrane formation, but also activates executioner caspases downstream, mainly caspase-7, 

accounting for an apoptotic substrate signature. The contribution of each executioner caspase to the DEVDase 

profile in WT cells remains to be determined, but given the high levels of caspase-7 activation it is tempting to 

speculate this is the responsible caspase. Absence of GSDMD reveals an apoptotic phenotype which is 
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unimpaired by absence of ASC, suggesting caspase-8 activation at the ASC speck is not the driver of 

apoptosis. However, both caspase-3 and caspase-7 participate on the apoptotic phenotype of GSDMD-

deficient cells. 

3.2.3. Methods 

Mice. B6Nlrp1b+ 11, GSDMD-/- 12 and ASC-/- 13 mice have been described before. C57BL/6J 

mice were originally purchased from Charles River, and bred in-house. Animals 

were housed in individually ventilated cages under specific pathogen-free 

conditions, and studies were conducted under protocols approved by Ghent 

University Committee on Use and Care of Animals. 

Macrophage differentiation and stimulation. BMDMs were generated by culturing 

mouse bone marrow cells in L-cell-conditioned IMDM supplemented with 10% FBS, 

1% non-essential amino acids and 1% penicillin-streptomycin for 6 days in a 

humidified atmosphere containing 5% CO2. BMDMs were seeded in 12-well plates, 

and the next day either left untreated or stimulated with anthrax protective antigen 

(PA, 1 µg/ml, Quadratech) and lethal factor (LF, 500 ng/ml, Quadratech) or LFn-

Flag14 (1 µg/ml). Alternatively, BMDMs were treated with the proteasome inhibitor 

MG132 (10 µM, Calbiochem) for 30 minutes prior to LeTx incubation.  

Western blotting. Cell lysates were incubated with cell lysis buffer (20 mM Tris HCl 

pH 7.4, 200 mM NaCl, 1% NP-40) and denatured in laemmli buffer. For detection of 

caspase-1, ASC, caspase-3 and caspase-7, p23, ROCKI and Bid a part of the 

supernatant was kept with the cell lysates. Subsequently the protein samples were 

boiled at 95°C for 10 min and separated by SDS-PAGE. Separated proteins were 

transferred to nitrocellulose membranes. Blocking, incubation with antibody and 

washing of the membrane were done in PBS supplemented with 0.05% or 0.2% 

Tween-20 (v/v) and 3% non-fat dry milk. Immunoblots were incubated overnight 

with primary antibodies against caspase-1 (AG-20B-0042-C100, Adipogen), caspase-8 

(ALX-804-447-C100, 1G12, Enzo Life Sciences; 8592S, D5B2, Cell signaling), caspase-3 

(9662, Cell Signaling; 9664S, 5A1E, Cell signaling), ASC (AG-25B-0006, Adipogen), 

caspase-7 (9491, Cell Signaling; 9492, Cell Signaling), ROCKI (ab45171, Abcam), p23 

(MA3-414, Thermo Scientific) and Bid (AF860, R&D systems). Horseradish 

peroxidase-conjugated goat anti-mouse (115-035-146, Jackson Immunoresearch 

Laboratories), anti–rabbit (111-035-144, Jackson Immunoresearch Laboratories) or 

anti-rat (112-035-143, Jackson Immunoresearch Laboratories) secondary antibodies 

were used to detect proteins by enhanced chemiluminescence (Thermo Scientific). 
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Cell death kinetic measurements. A plate-based fluorescent assay (Incucyte, 

Essenbio) was used to quantify cell permeabilization with PI incorporation 

(Propidium Iodide, Thermo Scientifc, final concentration 0,1 µg/ml) and caspase-3/7 

activation (CellEvent Caspase3/7 Green substrate, Invitrogen) according to the 

manufacturers’ instructions. Data were acquired and analyzed using the Incucyte 

Zoom system (Essenbio). Briefly, cells were stimulated in a 96-well plate and 

incubated in a CO2 and temperature-controlled environment that allowed 

measurement of fluorescent signals over a time span of 10 hrs. 

FACS Annexin V measurements 

Annexin V (BD Pharmingen) staining on cells was performed according to the 

manufacturer’s instructions. Flow cytometry was used to measure stained cells and 

data were analyzed with FlowJo Software.  

3.2.4. Supplementary data 

Supplementary Figure 1. Upstream signaling of NLRP1b inflammasome controls the apoptotic phenotype 
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of GSDMD-deficient BMDMs. a-c, B6Nlrp1b+GSDMD-/- or GSDMD-/- macrophages were treated with either 

LeTx for 2h and imaged under a confocal microscope (a), cells collected for FACS analysis of Annexin V/PI 

positivity (b), and lysates run on WB for detection of the indicated proteins (c). d, B6Nlrp1b+ or B6 macrophages 

treated with LeTx in media containing DEVD-probe and PI were imaged on an Incucyte platform. e, B6Nlrp1b+ 

macrophages pretreated or not with MG132 were triggered with LeTx in media containing DEVD-probe and 

PI and imaged on an Incucyte platform. The number of positive cells was quantified relative to a PI stained, 

Triton-x100-treated well (considered 100%) for each genotype. Values represent mean ± SD of technical 

duplicates of a representative experiment from three biological repeats. 
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3.3. Effects of the inhibition of serine 

proteases on cell death induction and 

inflammasome activation 

3.3.1. PRCP inhibitor Compound 8o activates the 

NLRP3 inflammasome 

Section 3.3.1. is structured as the manuscript: de Vasconcelos, N.M.; 

Van Opdenbosch, N.; Vliegen, G.; Van Der Veken, P.; De Meester, I.; 

Lamkanfi, M. Lysosomal Prolyl carboxypeptidase antagonist 

Compound 8o induces macrophage cell death and NLRP3 

inflammasome-dependent IL1β release. In preparation.  

3.3.1.1. Abstract 

Despite the suggested role for Prolyl carboxypeptidase (PRCP) in inflammation, its 

function in macrophage biology has not been addressed yet. Here we made use of a 

PRCP antagonist, Compound 8o, to profile the response of bone marrow-derived 

macrophages. We found that Compound 8o induced high toxicity of macrophages 

and IL1β secretion. Cell death occurred independently of necroptosis, extrinsic 

apoptosis and pyroptosis, while IL1β release was rescued in the absence of the 

NLRP3 inflammasome components. Thus, inhibition of PRCP by Compound 8o 

triggers cell death and NLRP3-dependent IL1β release. 
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3.3.1.2. Main text 

Prolyl carboxypeptidase (PRCP) is a lysosomal serine protease that cleaves off the 

most carboxy-terminal amino acid of its substrates (proteins and peptides) when this 

is preceded by Proline residue1. Angiotensin II and III and prekallikrein are 

established substrates of PRCP, linking this carboxypeptidase to regulation of blood 

pressure and cardiovascular functions2. Notably, polymorphisms in the gene 

encoding PRCP were shown to significantly increase the risk for preeclampsia in 

patients with a history of hypertension3. Furthermore, PRCP has been detected in the 

synovial fluids of atherosclerotic lesions, although its impact on the disease has not 

been fully elucidated4. Because of its clinical association with cardiovascular disease, 

understanding of PRCP biology has focused primarily on its roles in endothelial 

cells. However, PRCP-like protease activity has also been reported in macrophages4,5. 

Considering that PRCP has been implicated in initiation of inflammatory responses, 

and given the central role macrophages play in inflammatory responses, we set out 

to investigate the role of PRCP in macrophage biology using pharmacological tool 

agents.  

To inhibit the carboxypeptidase activity of PRCP in macrophages, we took advantage 

of Compound 8o, a previously discovered small molecule that reversibly antagonizes 

PRCP protease activity with high specificity and efficacy6. BMDMs were treated with 

Compound 8o and then analyzed microscopically to observe morphological changes. 

Interestingly, we found that BMDMs treated with Compound 8o displayed 

extensively swollen cytoplasmic vacuoles within 3h post-treatment (Fig. 1a). To 

probe whether inhibition of PRCP in macrophages lead to cytotoxicity, we tracked 

the incorporation of Sytox Green over time using the IncuCyte platform. Sytox Green 

is a cell-impermeant dye that enters cells and stains nuclear DNA only when the 

plasma membrane is permeabilized, a defining feature of necrotic cell death. 

Notably, treatment of BMDMs with Compound 8o led to a rapid cell death response 

that proceeded in a concentration-dependent manner. Compound 8o killed close to 

100% of BMDMs after 6h of incubation with 25 µM, while 10 μM of Compound 8o 

triggered about 50% of BMDMs to undergo cell death by 24h (Fig. 1b). A component 

of the extracellular wall of bacteria, LPS, can act as a survival signal in macrophages 

by signaling through TLR4 to induce expression of NF-κB-dependent anti-apoptotic 

proteins. However, priming BMDMs for 2h with LPS prior to Compound 8o 

stimulation did not alter the level or kinetics of cell death induction by Compound 8o 
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at neither 25 μM and 10 μM of the inhibitor (Fig. 1c), suggesting that Compound 8o 

induces a cell death pathway that is insensitive to TLR4-induced survival signaling. 

Several forms of regulated lytic cell death have recently been uncovered, with 

different effects on immune stimulation. Necroptosis is regulated by two members of 

the RIP kinase family, RIPK1 and RIPK3. Activation of these kinases downstream of 

death receptors and intracellular sensor proteins leads to phosphorylation of 

pseudokinase MLKL, the translocation of which to the plasma membrane triggers 

lysis of the cell7. To address whether PRCP inhibition with Compound 8o was 

mediated by the necroptosis machinery, we treated macrophages from RIPK1 D138N 

(RIPK1 KD) mutant macrophages, which lack RIPK1 kinase activity, with Compound 

8o. Abrogation of the kinase activity of RIPK1 has been demonstrated to impair its 

functions for necroptosis induction, while allowing NF-κB signaling to occur8. 

Interestingly, RIPK1 kinase deficiency was unable to stop cell death from LPS-

primed BMDMs treated with Compound 8o (Fig. 2a), suggesting that necroptosis is 

dispensable for Compound 8o-induced cytotoxicity. Consistent herewith, we found 

that MLKL-deficient BMDMs underwent plasma membrane permeabilization with 

unchanged kinetics relative to wildtype macrophages that had been treated with 

Compound 8o (Fig. 2a). 

Figure 1. Compound 8o leads to toxicity of bone marrow-derived macrophages. a, BMDMs were treated 

with 10uM of Compound 8o or kept without treatment. DIC images were acquired at the beginning of the 

experiment and after 3h. b, BMDMs were treated with 10 µM or 25 µM of Compound 8o or mock-treated and 

imaged on an INCUCYTE in media containing Sytox Green. c, BMDMs were initially primed with LPS 

(100ng/ml) for 3h and then treated as in (b). The number of positive cells was quantified relative to a Triton-
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x100-treated well (considered 100%). Values represent mean ± SD of technical duplicates of a representative 

experiment from three biological repeats. 

Activation of death receptors can also lead to caspase-8-dependent apoptosis9. 

Apoptotic cells typically pack their contents into apoptotic bodies and undergo cell 

death without spill out of cytoplasmic material. Nonetheless, failure in clearance of 

apoptotic cells, as occurs in cell culture models and patients with functional defects 

in the phagocytic machinery, eventually leads to a process called secondary necrosis, 

in which the plasma membrane of the apoptotic cell is compromised, and its 

intracellular cargo is released10. To examine the role of extrinsic apoptosis in the 

plasma membrane permeabilization observed after Compound 8o treatment, we 

studied whether caspase-8 deletion interferes with Compound 8o-induced cell death 

in macrophages. Importantly, lack of caspase-8 is perinatally lethal, but mice are 

rescued from lethality by a RIPK3-deficient background11. However, we found that 

combined deficiency in caspase-8 and RIPK3 failed to protect BMDMs from 

Compound 8o-induced cytotoxicity (Fig. 2b), indicating that simultaneous blockade 

of both extrinsic apoptosis as well as necroptosis did not prevent cell death induction 

downstream of PRCP inhibition.  

Figure 2. Compound 8o toxicity is not mediated by necroptosis. a, b, WT, RIPK1 D138N (RIPK1 KD), MLKL-

/- (a), RIPK3-/- and RIPK3/Casp8-/- (b) BMDMs were initially primed with LPS (100ng/ml) and treated with 25 

µM of Compound 8o or kept without treatment and imaged on an INCUCYTE in media containing Sytox 

Green. The number of positive cells was quantified relative to a Triton-x100-treated well (considered 100%) 

for each genotype. Values represent mean ± SD of technical duplicates of a representative experiment from 

three biological repeats. 

Pyroptosis is a distinct mechanism of lytic cell death that proceeds downstream of 

inflammasome activation. Inflammasomes are a set of cytosolic protein complexes 

that induce activation of caspase-1 in myeloid cells and epithelial cells. Caspase-1 

subsequently cleaves its high affinity substrate, GSDMD12,13. The free N-terminal 

GSDMDN fragment then translocates to the plasma membrane and its 

oligomerization leads to highly structured GSDMDN pores which are responsible for 
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lysis of the cell14-17. Active caspase-1 also cleaves the inactive precursor forms of 

cytokines pro-IL1β and pro-IL18.  Both cytokines lack an ER-Golgi targeting 

sequence, and therefore are not secreted through the classical ER-Golgi secretory 

system18. Instead, several reports suggest a role for cell death in secretion of these 

active cytokines13,19,20. To understand whether Compound 8o triggers inflammasome 

activation in macrophages, we analyzed supernatants of Compound 8o-treated 

BMDMs for IL1β release. Notably, IL1β was readily detected in the supernatants of 

BMDMs that had been stimulated with Compound 8o for 4h (Fig. 3a). Longer 

treatments of 8h and 24h with Compound 8o did not increase the level of IL1β 

release, consistent with the high toxicity of the compound. Considering these results, 

we next addressed whether pyroptosis plays a role in the cell lysis observed with 

Compound 8o. We made use of Caspase-1-/-/Caspase-11-/- BMDMs to prevent 

downstream inflammasome activation. Following treatment with Compound 8o, 

however, these cells underwent cell death with similar kinetics and at similar levels 

relative to wildtype macrophages (Fig. 3b). Yet, lack of caspase-1 and caspase-11 

completely abrogated IL1β release, demonstrating that PRCP inhibition with 

Compound 8o induces inflammasome-dependent IL1β release parallelly to 

inflammasome-independent cell death (Fig. 3c). 

Figure 3. Compound 8o activates the NLRP3 inflammasome in macrophages. a, BMDMs were initially 

primed with LPS (100ng/ml) for 3h, then treated with 10 µM or 40 µM Compound 8o for either 4h, 8h and 

24h, and their supernatants were assayed for IL1β. b, e, WT and Caspase1/11-/- (b), NLRP3-/- and ASC-/- (e) 
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BMDMs were initially primed with LPS (100ng/ml) and treated with 25 µM of Compound 8o or kept without 

treatment and imaged on an INCUCYTE in media containing Sytox Green. The number of positive cells was 

quantified relative to a Triton-x100-treated well (considered 100%) for each genotype. c, d, WT, Caspase1/11-/- 

(c), NLRP3-/- and ASC-/- (d) BMDMs were initially primed with LPS (100ng/ml) for 3h, then treated with 40uM 

Compound 8o for 4h, and their supernatants were assayed for IL1β release. Values represent mean ± SD of 

technical duplicates of a representative experiment from three biological repeats. 

Caspase-1 activation can be elicited from several intracellular inflammasome 

receptors, with NLRP3 sensing a diverse variety of stimuli, including pore forming 

toxins, ATP, particulate matter and lysosomal damage18. NLRP3 associates with the 

bipartite protein ASC to form a cytosolic speck to which caspase-1 is recruited. 

NLRP3 activation has been shown to also occur downstream of lytic forms of cell 

death, such as caspase-11-triggered pyroptosis21 and MLKL-mediated necroptosis20. 

In these systems, abrogation of either NLRP3, its binding partner ASC or caspase-1 

stops IL1β release but does not influence the cell death program elicited. To 

understand if NLRP3 could be responsible for the IL1β release after PRCP inhibition, 

we probed WT, ASC-/- and NLRP3-/- BMDMs with Compound 8o. Interestingly, in the 

absence of ASC or NLRP3 we could no longer detect IL1β in the supernatant of 

Compound 8o-treated BMDMs (Fig. 3d), establishing that the NLRP3 inflammasome 

is responsible for IL1β release in Compound 8o-treated macrophages. However, 

NLRP3 deletion did not alter toxicity of Compound 8o in macrophages supporting 

the notion that inflammasome activation is not responsible for the cell death elicited 

by this PRCP antagonist (Fig. 3d). 

In conclusion, we have shown that use of a PRCP inhibitor, Compound 8o, leads to a 

fast and lytic form of cell death in macrophages. This cell death was independent of 

RIPK1 kinase function, MLKL and RIPK3, discarding necroptosis as its mechanism. 

Furthermore, lack of caspase-8 and caspase-1/caspase-11 could not rescue BMDMs 

from Compound 8o-induced cytotoxicity, demonstrating that extrinsic apoptosis and 

pyroptosis are dispensable for the cell death observed. Importantly, in the context of 

inflammasome signaling, lack of caspase-1 has been demonstrated to allow a shift to 

a caspase-8-dependent pathway, merely delaying death of triggered 

macrophages22,23. However, in this scenario, caspase-8 and the cell death induced are 

under control of NF-kB signaling for survival, and thus can be prevented by TLR 

stimulation23,24. In our experimental settings, macrophages were primed with LPS 

before triggering cell death with Compound 8o. Therefore, we believe the lack of 

effect is not due to a rapid cell death switch, but rather reflects that caspase-1 is not 

essential for the cell death program triggered by PRCP inhibition. 
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Interestingly, macrophages treated with Compound 8o matured and secreted IL1β in 

a NLRP3, ASC and caspase-1/-11-dependent manner. In vivo, IL1β has been shown to 

be able to promote neutrophilia in the context of a bacterial infection in order to 

promote pathogen clearance but can also contribute to overt local inflammation18. 

Our finding that IL1β is released from macrophages treated with Compound 8o 

suggests that PRCP inhibition can have inflammatory effects in vivo. Furthermore, 

the NLRP3 response observed after PRCP inhibition occurred either downstream or 

independently of the cell death program. Further understanding of the cell death 

mechanism triggered after PRCP inhibition could answer its relationship to NLRP3 

activation. Overall, to our knowledge, our research for the first time investigated the 

role of PRCP inhibition in macrophages and interrogated the contribution of the well 

described cell death pathways (i.e. necroptosis, pyroptosis and extrinsic apoptosis) to 

its toxicity. The high toxicity observed suggests that PRCP may regulate important 

physiological pathways, and its inhibition might have detrimental effects in vivo. 

Indeed, previous reports have suggested that downregulation of PRCP is related to 

reduction in cell proliferation and increased cell death, though this was considered to 

be independent on PRCP activity25. Future research into PRCP targeting for clinical 

applications should take into consideration the possible toxic effects of Compound 8o 

in macrophages. 

3.3.1.3. Methods 

Mice. Casp8/RIPK3-/- 26, RIPK1 D138N (RIPK1 KD)27, RIPK3-/- 28, MLKL-/- 29, NLRP3-/- 30, 

ASC-/- 31, Casp1/11-/- 32 mice have been reported. C57BL/6J mice were originally bought 

from the Jackson Laboratories and bred in-house. Mice were housed in individually 

ventilated cages and kept under pathogen-free conditions at the animal facilities of 

Ghent University. All animal experiments were conducted with permission of the 

ethics committee on laboratory animal welfare of Ghent University. 

Primary macrophage differentiation and stimulation. Macrophages were 

differentiated by culturing bone marrow progenitor cells in Iscove’s modified 

Dulbecco’s medium (IMDM; Lonza) containing 10% (v/v) heat-inactivated FBS, 30% 

(v/v) L929 cell-conditioned medium, 1% (v/v) non-essential amino acids (Lonza), 100 

U/ml penicillin and 100 mg/ml streptomycin at 37 °C in a humidified atmosphere 

containing 5% CO2 for six days. Bone marrow-derived macrophages (BMDMs) were 

then seeded into 96 or 24 well plates as needed, in IMDM containing 10% FBS, 1% 

non-essential amino acids and antibiotics. On the next day, cells were changed to 
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fresh media and either primed or not with LPS (100ng/ml) for 3h prior to treatment 

with Compound 8o (water) at either 10, 25 or 40 µM. 

Imaging of macrophages. BMDMs grown on 8-well µ-slide chambers (Ibidi) were 

either left untreated or received 10 µM of Compound 8o. DIC images were acquired 

using an observer Z.1 spinning disk microscope (Zeiss, Zaventem, Belgium) 

equipped with a Yokogawa disk CSU-X1. 

Cell death kinetics (Incucyte). Analysis of cell death was performed through 

incorporation of 500 nM of Sytox Green dye (S7020, Thermo Scientific) in a 96-well 

format assay. Data was acquired with a 10x objective using the IncuCyte Zoom 

system (Essen BioScience) in a CO2 and temperature-controlled environment. Each 

condition was run in (technical) duplicates. The number of fluorescent objects was 

counted with Incucyte ZOOM (Essen BioScience) software and was plotted 

considering as 100% the highest value obtained in a well treated with Triton-x100. 

Cytokine analysis. Unless otherwise stated, cell supernatant was collected after 4h of 

stimulation, and the culture medium was measured by magnetic bead-based 

multiplex assay using Luminex technology (Bio-Rad) according to the 

manufacturer’s instructions. 
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3.3.2. DPP8/DPP9 inhibitors as activators of 

NLRP1b 

Section 3.3.2. is structured as the manuscript: de Vasconcelos, N.M.; 

Van Opdenbosch, N.; Vliegen, G.; Van Der Veken, P.; De Meester, I.; 

Lamkanfi, M. Inhibition of DPP8/DPP9 elicits an NLRP1b-dependent 

inflammasome activation. In preparation. 

 

3.3.2.1. Abstract 

The dipeptidases DPP8 and DPP9 have been implicated in a number of inflammatory 

pathologies, but their role remains elusive. Recently, pharmacological inhibition of 

DPP8/DPP9 was suggested to trigger inflammasome-dependent cytokine release, 

although the mechanism involved is ill-defined. Here we demonstrate that transgenic 

expression of the 129S-allele of Nlrp1b in C57/BL6 (B6Nlrp1b+) sensitizes mouse 

macrophages to cell death after inhibition of DPP8/DPP9 by Val-boroPro or 1G244. 

The cytotoxic effects observed are accompanied by enhanced IL1β and IL18 release, 

consistent with an inflammasome-dependent response. 1G244 triggered cell death 

and cytokine release in B6Nlrp1b1+ macrophages were partially hampered by pre-

treatment with the proteasomal inhibitor, MG132. Further, ablation of ASC in a 

B6Nlrp1b1+ background still allowed cell death to proceed after either Val-boroPro or 

1G244 treatments, while lack of caspase-1 delayed cell death and prevented IL1β and 

IL18 release. Therefore, inhibition of DPP8/DPP9 activates the Nlrp1b 

inflammasome. 
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3.3.2.2. Introduction 

Serine proteases from the prolyl oligopeptidases family cleave dipeptides after a 

Proline located, mostly, at the N-terminal site of a protein sequence. DPPIV, FAP, 

DPP8, DPP9, DPP2 and PREP can be broadly considered within the same family, 

given their shared substrate specificity and high level of homology1. These proteases 

have been shown to play distinct roles in inflammation and immune responses, 

acting in the regulation of T cell activation, bioavailability of chemokines and tissue 

remodelling2. Inhibition of prolyl oligopeptidases are a promising target given their 

roles in disease pathologies with inflammatory components such as atherosclerosis. 

Nevertheless, inhibitor specificity within the family has been a challenging issue1. 

While the substrates and roles of DPP2 and PREP are still elusive1, the prototypical 

member of the family DPPIV is used as a target in the clinic for control of type 2 

diabetes3,4. FAP, on the other hand, has collagenase activity and plays roles in wound 

healing and tumorigenesis2. Clinical trials have been undertaken with a FAP 

inhibitor, Val-boroPro (VBP), for therapy of advanced non-small cell lung carcinoma 

and melanoma5,6. While there was a therapeutic response with VBP administration, 

concerns on its safety lead to termination of the study2. Indeed, VBP is also a potent 

inhibitor of DPP8, DPP9 and DPP4. 

DPP8 and DPP9 are the most homologous proteases in the family. Control of protein 

turnover, antigen presentation and inflammation are some of the functions 

associated to DPP9 activity7,8. However defining DPP8/DPP9 roles in physiological 

conditions is a challenging endeavour2.  

Inflammasomes play important roles during inflammatory responses against 

pathogenic invasion9. These cytosolic platforms rely on the sensing of a variety of 

intracellular danger or pathogen associated molecules by pattern recognition 

receptors of the Nod-like receptors and AIM2-like receptors families and Pyrin10. 

Once triggered, they assemble with the bipartite molecule ASC to form the 

inflammasome platform. Caspase-1 is a serine protease produced as a zymogen in 

the cytosol and relies on the recruitment to inflammasomes for proximity-induced 

autoactivation9. Active caspase-1 cleaves and activates the pro-form cytokines pro-

IL1β and pro-IL189. Further, caspase-1 cleaves GSDMD11,12, releasing an N-terminal 

fragment which translocates to the plasma membrane and perforates it during 

pyroptotic cell death13-16. Therefore, caspase-1 acts to both activate IL1β and IL18 and 

to promote their release through GSDMD-mediated pyroptotic cell death. 
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Remarkably, Val-boroPro (VBP) and its activity in DPP8 and DPP9 inhibition has 

been suggested to induce procaspase-1-dependent cell death in the human 

monocytic-like cell THP1, seemingly in the absence of an upstream inflammasome 

receptor17. While caspase-1 can be activated in the absence of cleavage, this 

mechanistically is associated to the lack of ASC after engagement of CARD-

containing receptors18-20. Therefore, it remained unclear how VBP engaged caspase-1 

independently of inflammasome sensors and how it activates caspase-1 without 

induced autocleavage in THP1 cells. 

A further publication suggested a role for the NLRP1b inflammasome in VBP 

activity21. Most of the data on VBP activity is done in RAW cells, a macrophage cell 

line originated from Balb/c mice. However, in vivo studies and analysis of primary 

macrophages are in cells derived from C57BL/6J mice, which express a Nlrp1b allele 

that is considered inactive22. While humans only have one Nlrp1 gene, mice have 

three orthologues: Nlrp1a, Nlrp1b and Nlrp1c. Nlrp1c is regarded as a pseudogene, 

whereas an activating mutation on Nlrp1a has been shown to be linked to 

inflammasome assembly and pyroptosis in hematopoietic progenitor cells23. The best 

characterized mouse Nlrp1 orthologue is Nlrp1b, whose activation and 

inflammasome assembly have been shown to occur after Bacillus anthracis derived 

LeTx triggering22,24. Furthermore, five different alleles of Nlrp1b are encoded in 

various mice strains22. Allele 1, found in 129S and Balb/c mice, and allele 5, found in 

the CAST/EiJ line, promote susceptibility of their macrophages to LeTx intoxication. 

On the other hand, allele 2, found in A/J and C57BL/6J mice together with alleles 3 

and 4 in other inbred strains, confer resistance of macrophages from these mouse 

strains to LeTx. 

Cleavage of the allele 1 of NLRP1b (for clarity, here called NLRP1b1) at its FIIND 

domain, LeTx catalytic activity and proteasome function are the determinants of 

NLRP1b1 inflammasome activation25,26, though it is still not understood how these 

events relate to one another. Therefore, the current work aimed at clarifying the 

ability of DPP8/DPP9 inhibition to activate an inflammasome, to determine the 

inflammasome receptor responsible for the IL1β and IL18 release and the mechanism 

of cell death induction. 

3.3.2.3. Results 

DPP8/DPP9 inhibitors induce macrophage cell death and IL1β and IL18 release 
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To validate the ability of VBP to induce toxicity in murine primary macrophages, 

bone marrow-derived macrophages (BMDMs) were treated with increasing 

concentrations of VBP, and the kinetics of cell death was tracked on an Incucyte 

platform. Staining by Sytox Green, a membrane-impermeable dye, was used as a 

marker for lytic cell death. When analysed for 24h for incorporation of Sytox Green, 

VBP induced a low, but consistent levels of BMDM cell death, accounting for at most 

30% of toxicity at 24h at all concentrations tested (Fig. 1a). A modification at the n-

terminal end of VBP has been shown to hamper its inhibitory activity. Interestingly, 

N-acetyl-VBP (NacVBP) failed to induce toxicity in BMDMs (Fig. 1b), suggesting 

VBP toxic effects are due to its inhibition of the catalytic activity of DPP proteases. 

However, an alteration to a cyclic form shown to improve VBP (CyclicVBP) stability 

also failed to induce BMDM toxicity up to 24h (Fig. 1c).  

VBP has been shown to not specifically inhibit DPP8 and DPP9, also acting on DPP4 

and FAP with similar affinity. To understand whether the effect we observed was 

specific to any of these dipeptidases, we made use of inhibitors with a more confined 

selectivity profile and analysed BMDM cell death. Sitagliptin, UAMC0039, 

UAMC01110, KYP-2047/UAMC0714 have been shown to specifically inhibit DPP4, 

DPP2, FAP and PREP, respectively. However, none of these inhibitors were able to 

induce BMDM cell death when used in similar concentrations than VBP (Fig. 1d-g). 

This suggests that the toxicity observed with VBP treatment is related to its inhibition 

of DPP8/DPP9. Confirming this hypothesis, 1G244, which is regarded as a specific 

DPP8/DPP9 inhibitor, induced cell death in BMDMs more efficiently than VBP (Fig. 

1h). Therefore, DPP8/DPP9 inhibition is toxic to BMDMs. 

Inhibition of DPP8 and DPP9 leads to IL1β release in NLRP1b1-dependent and independent 

pathways 

Macrophage cell death is often regarded as a mechanism of cytokine secretion, 

particularly for IL1β and IL18 through activation of inflammasomes. Furthermore, 

VBP has been shown to induce IL1β and IL18 secretion in human macrophages, 

though through a still ill-defined mechanism. Therefore, to validate VBP activities in 

BMDMs, we primed macrophages with LPS and subsequently treated them with 

VBP. VBP treatment led to a low, but consistent secretion of IL1β and IL18 in the 

supernatant of BMDMs, particularly at 24h post stimulation (Fig. 2a, b). NacVBP was 

unable to induce IL1β secretion up to 24h post-treatment (Fig. 2c), suggesting VBP 

needs to inhibit a catalytic activity to activate an inflammasome. Correlating with our 

previous cell death data, CyclicVBP also did not induce any IL1β release, but IL1β 
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Figure 1. Inhibition of DPP8/DPP9 by Val-boroPro and 1G244 is toxic to primary BMDMs. a-h, B6 BMDMs 

were treated with 10, 25 or 40 µM of Val-boroPro (a), N-acetyl-Val-boroPro (b), Cyclic-Val-boroPro (c), 

Sitagliptin (d), UAMC0039 (e), UAMC01110 (f), KYP-2047/UAMC0714 (g) or 1G244 (h) or mock-treated and 

imaged on an INCUCYTE platform in media containing Sytox Green. The number of positive cells was 

quantified relative to a Triton-x100-treated well (considered 100%). Values represent mean ± SD of technical 

duplicates of a representative experiment from three biological repeats. 

could be readily detected in the supernatant of 1G244-treated macrophages from 8h 

post-stimulation (Fig. 2d, e). IL18 could not be detected in the supernatant of 

NacVBP, CyclicVBP and 1G244 treated BMDMs (data not shown).  
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Figure 2. BMDMs treated with Val-boroPro or 1G244 release IL1β and IL18. a, c-e, B6 BMDMs were initially 

primed with LPS (100ng/ml) for 3h, then treated with 10 µM or 40 µM of Val-boroPro (a, b), N-acetyl-Val-

boroPro (c), Cyclic-Val-boroPro (d) or 1G244 (e). Collected supernatants after 4h, 8h and 24h were assayed for 

IL1β (a, c-e) or IL18 (b). Values represent mean ± SD of technical duplicates of a representative experiment 

from three biological repeats. 

While we could detect low levels of IL1β after VBP treatment, these were not in line 

with previous reports of DPP8/DPP9 inhibition on THP1 human cells. All 

inflammasome receptors are similarly represented in human and mouse 

macrophages, except for the NLRP1 family members. Humans have only one Nlrp1 

gene, but mice have three orthologues Nlrp1a, Nlrp1b and Nlrp1c. Furthermore, from 

the five Nlrp1b alleles existing throughout mice strains, the allele 1 found in 129S 

mice confers susceptibility to B. anthracis-derived LeTx, while allele 2 present in 

C57BL/6J hinders their response to LeTx. To compare the role of NLRP1b in C57BL/6J 

macrophages, we made use of transgene expression of the 129S-derived Nlrp1b allele 

(Nlrp1b1) in B6 macrophages which has been shown to render these sensitive to LeTx 

intoxication. Similarly, B6Nlrp1b1+ macrophages were sensitized to DPP8/DPP9 

inhibition by VBP, CyclicVBP and 1G244 (Fig. 3a, c, d). Furthermore, NacVBP still 

had no effects on B6Nlrp1b1+ BMDMs (Fig. 3b), confirming that the effects observed are 

due to catalytic inhibition of DPP8/DPP9. Cytokine analysis detected IL1β and IL18 

on supernatant of B6Nlrp1b1+ BMDMs 4h after treatment by VBP and 1G244 (Fig. 3 e, f, 

j, k), which accumulated up to 24h. Furthermore, CyclicVBP induced IL1β and IL18 

release in B6Nlrp1b1+ BMDMs, while NacVBP failed to do so (Fig. 3g-i). Therefore, 
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Figure 3. Presence of 129-derived allele of Nlrp1b sensitises macrophages to DPP8/DPP9 inhibition. a-d, 

B6Nlrp1b1+ BMDMs were treated with 10, 25 or 40 µM of Val-boroPro (a), N-acetyl-Val-boroPro (b), Cyclic-Val-

boroPro (c) or 1G244 (d) or mock-treated and imaged on an INCUCYTE platform in media containing Sytox 

Green. The number of positive cells was quantified relative to a Triton-x100-treated well (considered 100%). 

Values represent mean ± SD of technical duplicates of a representative experiment from three biological 

repeats. e-k, B6Nlrp1b1+ BMDMs were initially primed with LPS (100ng/ml) for 3h, then treated with 10 µM or 40 
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µM of Val-boroPro (e, f), N-acetyl-Val-boroPro (g), Cyclic-Val-boroPro (h, i) or 1G244 (j, k). Supernatants 

collected after 4h, 8h and 24h were assayed for IL1β (e, g, h, j) or IL18 (f, i, k). Values represent mean ± SD of 

technical duplicates of a representative experiment from three biological repeats. 

inhibition of DPP8/DPP9 by VBP or 1G244 leads to NLRP1b inflammasome 

activation, when in presence of Nlrp1b allele 1. 

DPP8/DPP9-mediated Nlrp1b1 activation is not hampered by absence of ASC but partially 

requires proteasomal activity for activation 

Inhibition of the proteasome by MG132 hampers activation of the NLRP1b 

inflammasome by its canonical trigger LeTx. To understand if the proteasome 

requirement was a shared event after DPP8/DPP9 inhibition, we pre-treated B6Nlrp1b1+ 

BMDMs with MG132 prior to 1G244 stimulation. Interestingly, MG132 delayed cell 

death after 1G244 treatment in B6Nlrp1b1+ BMDMs, but was unable to fully protect cells 

(Fig. 4a). Release of IL1β and IL18 cytokines, on the other hand, was reduced to 

background levels when cells were treated with MG132 prior to 1G244 (Fig. 4b, c), 

suggesting a conserved upstream pathway of the NLRP1b inflammasome activation. 

NLRP1b and NLRC4 proteins contain CARD domains. Therefore, these receptors are 

unique as they do not fully depend on the adaptor molecule ASC to bridge their 

interaction with caspase-1. As it was shown after LeTx-triggering, B6Nlrp1b1+ASC-/- 

BMDMs still underwent cell death after both VBP and 1G244 stimulation, though at 

diminished levels (Fig. 4d, e). Thus, our results so far established that the upstream 

requirements for NLRP1b activation, namely the need for proteasomal activity but 

not ASC, are shared between LeTx intoxication and DPP8/DPP9 inhibition.  

DPP8/DPP9 inhibition leads to pyroptosis in Nlrp1b1 sufficient cells 

Inflammasomes act as platforms for caspase-1 activation, which cleave its high 

affinity substrate GSDMD for pyroptotic cell death. Treatment with VBP and 1G244 

led to a lytic form of cell death which was mostly NLRP1b-dependent (Fig. 1 and Fig. 

2). Therefore, we hypothesized that DPP8/DPP9 inhibition could promote caspase-1-

dependent pyroptosis. Indeed, B6Nlrp1b1+ BMDMs deficient for caspase-1/-11 were 

protected from cell death after both VBP and 1G244 treatments (Fig. 4d, e). Lack of 

caspase-1/-11 in the B6Nlrp1b1+ background also prevented release of IL1β and IL18 in 

the supernatant of BMDMs treated with 1G244 (Fig. 4f, g). Interestingly, triggering 

NLRP1b inflammasome with LeTx in the absence of caspase-1/-11 has been shown to 

only delay cell death, promoting a switch to a caspase-8-dependent apoptosis. In this 

scenario, either lack of both ASC and caspase-1/-11 or TLR-stimulation abrogates cell 
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death by impairing caspase-8 activation. However, after VBP and 1G244 treatment, 

ablation of caspase-1/-11 was sufficient to protect BMDMs from cell death during the 

time analysed, demonstrating a toxicity curve similar to the ASC/Caspase-1/Caspase-

11-/- cells (Fig. 4d, e). Therefore, DPP8/DPP9 inhibition by VBP and 1G244 represents 

a canonical NLRP1b inflammasome trigger, causing downstream caspase-1-

dependent pyroptosis and IL1β and IL18 release. 

 

Figure 4. DPP8/DPP9 inhibition leads to MG-132-mediated, ASC independent and caspase-1/11-dependent 

activation of the NLRP1b inflammasome. a, B6Nlrp1b1+ BMDMs were triggered with 10 µM 1G244 or mock-

treated in presence or absence of MG132 and imaged on an INCUCYTE platform in media containing Sytox 

Green. The number of positive cells was quantified relative to a Triton-x100-treated well (considered 100%). 

Values represent mean ± SD of technical duplicates of a representative experiment from two biological 

repeats. b, c, LPS-primed B6Nlrp1b1+ BMDMs were treated as in (a) and supernatants collected after 4h for IL1β 

(b) or IL18 (c) measurement in the supernatant. Values represent mean ± SD of technical duplicates of a 

representative experiment from two biological repeats. d, e, B6Nlrp1b1+, B6Nlrp1b1+ASC-/-, B6Nlrp1b1+Caspase-1/-11-/-, 

B6Nlrp1b1+ASC-/-Caspase-1/-11-/- BMDMs were treated with 10 µM of either 1G244 (d) or Val-boroPro (e) or 

mock-treated and imaged on an INCUCYTE platform in media containing Sytox Green. The number of 

positive cells was quantified relative to a Triton-x100-treated well (considered 100%) for each genotype. 
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Values represent mean ± SD of technical duplicates of one biological repeat. f, g, LPS-primed B6Nlrp1b1+ and 

B6Nlrp1b1+Caspase-1/-11-/-  BMDMs were treated as in (d) and supernatants collected after 24h for IL1β (f) or 

IL18 (g) measurement in the supernatant. Values represent mean ± SD of technical triplicates of one biological 

repeat. 

3.3.2.4. Discussion 

In the current study, we have demonstrated that DPP8 and DPP9 inhibition is a 

trigger for inflammasome activation. In NLRP1b1+ cells, containing the 129 allele 1, 

treatment with VBP and 1G244 led to fast cell death and IL1β and IL18 release, both 

events being controlled by caspase-1. Furthermore, ASC deficiency was unable to 

hamper cell death after 1G244 and VBP treatment, while proteasome inhibition by 

MG132 partially impaired cell death and cytokine release. Therefore, in NLRP1b 

competent cells, inhibition of DPP8 and DPP9 leads to a canonical NLRP1b 

inflammasome activation and pyroptosis, sharing conserved regulatory mechanisms 

with the LeTx trigger. These results suggest that the NLRP1b inflammasome is a 

sensor of DPP8/DPP9 activity. Whether the activity of DPP8/DPP9 in the NLRP1b 

protein is direct or indirect is still to be determined. Our results also demonstrated 

that absence of NLRP1b delayed cell death and cytokine production, but both effects 

were still present at 24h post treatment. Further studies will be needed to delineate 

the contribution of other inflammasome receptors in B6 cells after DPP8/DPP9 

inhibition. 

While DPP8 function is still elusive, DPP9 activity has been implicated in cell 

viability of T lymphocytes and human skin cells27,28. In line with our results in which 

primary macrophages derived from either B6Nlrp1b1+ or pure B6 have differential 

responses after DPP8/DPP9 inhibition, toxicity of DPP8/DPP9 inhibition has been 

demonstrated to be more prominent in the J774.A macrophage cell line, originated 

from Balb/c mice, than in C57BL/6J primary macrophages29. Furthermore, a S739A 

point mutation hampers DPP9 proteolytic activity and prevents mice from 

developing passed neonatal stage30. Remarkably, DPP9S739A/S739A mice were developed 

in C57BL/6J background. Our observation that B6 macrophages die upon DPP8/DPP9 

inhibition and release IL1β suggests that the lethality observed in DPP9S739A/S739A mice 

might be related to an overt cell death and immune overactivation. A more in-depth 

analysis of the immune compartments of DPP9S739A/S739A mutant mice would be 

needed to understand the physiological functions for DPP9 activity. 

In conclusion, DPP8/DPP9 proteases control inflammasome-dependent responses, 

which are enhanced in an NLRP1b-dependent manner. Characterization of 
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pathogens able to inhibit DPP8/DPP9 could shed light on the physiological roles of 

the NLRP1b inflammasome. Further studies on the role of DPP8/DPP9 in the B6 

background could aid in understanding its developmental role. 

3.3.2.5. Methods 

Mice. ASC-/- 31, Casp1/11-/- 32 and B6Nlrp1b1+ 33 mice have been reported, and the 

genotypes thereof obtained by breeding. C57BL/6J mice were originally bought from 

the Jackson Laboratories and bred in-house. Mice were housed in individually 

ventilated cages and kept under pathogen-free conditions at the animal facilities of 

Ghent University. All animal experiments were conducted with permission of the 

ethics committee on laboratory animal welfare of Ghent University. 

Reagents. Recombinant expression and purification of B. anthracis protective antigen 

(PA) was performed as described. B. anthracis lethal factor (LF) was acquired from 

List Biologicals. Sytox Green (S7020) was purchased from Thermo Scientific. The 

antibody for caspase-1 (AG-20B-0042-C10) was acquired from Adipogen. HRP-

conjugated secondary antibody was acquired from Jackson Immunoresearch 

Laboratories and enhanced chemiluminescence solution was from Thermo Scientific. 

LPS-SM (tlrl-smlps) was acquired from Invivogen.  

Primary macrophage differentiation and stimulation. Macrophages were 

differentiated by culturing bone marrow progenitor cells in Iscove’s modified 

Dulbecco’s medium (IMDM; Lonza) containing 10% (v/v) heat-inactivated FBS, 30% 

(v/v) L929 cell-conditioned medium, 1% (v/v) non-essential amino acids (Lonza), 100 

U/ml penicillin and 100 mg/ml streptomycin at 37 °C in a humidified atmosphere 

containing 5% CO2 for six days. Bone marrow-derived macrophages (BMDMs) were 

then seeded into 96 or 24 well plates as needed, in IMDM containing 10% FBS, 1% 

non-essential amino acids and antibiotics. On the next day, cells were changed to 

fresh media and either primed or not with LPS (100ng/ml) for 3h prior to treatment 

with Sitagliptin (water), 1G244 (DMSO), UAMC0039 (water), UAMC01110 (DMSO), 

Val-boroPro (0,1%TFA in DMSO), N-acetyl Val-boroPro (DMSO), Cyclic Val-boroPro 

(0,1%TFA in DMSO) or KYP-2047/UAMC0714 (DMSO) at either 10, 25 or 40uM 

(Table 1). For NLRP1b inflammasome activation, cells were stimulated with LeTx (1 

µg/ml PA combined with 0,5 µg/ml LF). 

Table 1. Summary of the inhibitors used in the study and their IC50 values for 

DPPIV family members. Values represent IC50 (nM). 
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 DPP-IV DPP8 DPP9 FAP PREP DPP-II Ref 

Val-boroPro 4 11 560 390 >100,000 n/a 34 

1G244 >100,000 14 53 >100,000 n/a n/a 35 

Sitagliptin 10 48000 >100000 >100000 n/a n/a 36 

UAMC01110 >100000 >100000 >100000 11 >50000 n/a 37 

UAMC00039 165000 142 000 78600 n/a n/a 0.48 38 

KYP-2047 >100000 n/a >100000 >100000 6 >100000 39 

 

Cell death kinetics (Incucyte). Analysis of cell death was performed through 

incorporation of 500 nM of Sytox Green dye in a 96-well format assay. Data was 

acquired with a 10x objective using the Incucyte Zoom system (Essen BioScience) in a 

CO2 and temperature-controlled environment. Each condition was run in (technical) 

duplicates. The number of fluorescent objects was counted with Incucyte ZOOM 

(Essen BioScience) software and was plotted considering as 100% the highest value 

obtained in a well treated with Triton-x100. 

Cytokine analysis. Cell culture supernatant was collected after 4h, 8h and 24h of 

stimulation, and the culture medium was measured by magnetic bead-based 

multiplex assay using Luminex technology (Bio-Rad) according to the 

manufacturer’s instructions. 
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 4. Discussion and 

Perspectives 

Pyroptosis is a form of regulated cell death happening in macrophages and epithelial 

cells linked to inflammasome activation276. Cytosolic receptors belonging to the 

families of the Nod-like receptors, AIM2-like receptors and Pyrin sense intracellular 

damage or pathogen associated patterns. Their activation and assembly to the 

bipartite protein ASC forms the inflammasome platform. Procaspase-1 is recruited to 

this platform for proximity-induced autoactivation161. Furthermore, a non-canonical 

inflammasome directed by caspase-11 can independently execute pyroptotic cell 

death154. Remarkably, both caspase-1 and caspase-11 converge on activation of the 

same substrate, GSDMD, to mediate plasma membrane rupture during 

pyroptosis16,261. While in the last 15 years there has been much advance in 

understanding the upstream inflammasome players, the mechanisms governing cell 

death are still elusive.  

In the presented organellar analysis of pyroptosis (Section 3.1), we defined a 

conserved set of organellar changes associated to pyroptotic cell death execution. 

Ionic fluxing, cellular swelling, mitochondrial depolarization and lysosomal leakage 

all preceded final plasma membrane lysis, as reported by Sytox Green or PI uptake. 

These events anticipated membrane rupture after both NLRP1b and NLRC4 

inflammasome activation. Furthermore, non-canonical inflammasome activation 

directed a similar demise program, with mitochondrial depolarization and ionic 

fluxes happening prior to membrane commitment, in a GSDMD-dependent way. 

Hence, these represent pyroptotic shared events. 
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In combining these data, we propose a model in which pyroptosis undergoes 

through a gradual increase in plasma membrane permeability in a GSDMD-

dependent manner. This effect could be accomplished by insertion of GSDMDN in 

the plasma membrane as either single molecules or oligomers of low orders of 

magnitude, which would account for early alterations in cellular permeability 

(Figure 1). Further oligomerization of GSDMDN at the plasma membrane and 

formation of the highly organized pore of 10-20 nm in diameter262-265 would account 

for final stages of pyroptotic permeability and release of intracellular contents. 

 

Figure 1. A schematic overview of the morphological changes associated to pyroptosis induction after 

NLRP1b and NLRC4 inflammasome activation. Caspase-1 activation after canonical triggers leads to 

pyroptosis compassing mitochondrial depolarization and fragmentation, lysosomal decay and nuclear 

rounding. At the plasma membrane, cell death downstream of the inflammasome is accompanied by a 

gradual increase in permeability, demonstrated by ionic fluxing and cellular swelling which preceded 

incorporation of nuclear dyes PI or Sytox Green. Furthermore, caspase-11 and the non-canonical 

inflammasome activation converge at the level of GSDMD cleavage. Non-canonical inflammasome-mediated 

cell death was similarly accompanied by ionic fluxing and mitochondrial decay, which were dependent on 

the presence of GSDMD. At final cell lysis (4), intracellular contents are release with no specificity.  
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The close temporal associations between phosphatidylserine exposure in pyroptotic 

cells and plasma membrane rupture could guarantee rapid and efficient uptake of 

the cell corpse, avoiding pathogen spread. Pyroptotic cell corpses have been shown 

to contain intracellular pathogens to facilitate removal by infiltrating neutrophils in 

structures called PITs277. It is tempting to speculate that PS exposure on the 

pyroptotic cell corpse helps in the uptake of the PITs and pathogen removal, and it 

would be interesting to address what are the potential pathological consequences of 

lack of PS exposure in pyroptotic cells during an infection in vivo. On our analysis of 

intracellular components that are released after NLRP1b and NLRC4 inflammasome 

activation, we found that there is no selectivity towards which intracellular proteins 

are released during pyroptotic cell rupture. This reinforces the concept that the 

maintenance of pathogens in the PITs is probably a reflection of their size, as 

organelles are also maintained in the cellular corpse. However, it suggests that 

pathogen-derived proteins could also be released in the extracellular milieu and 

activate neighboring cells. 

Presence of cathepsin B, cytochrome c and HMGB1 in the supernatants of pyroptotic 

macrophages suggests that organellar damage is a marked feature of pyroptosis, and 

accounts for release of proteins without selectivity during cell death. Interestingly, 

GSDMDN has been found to be present across most intracellular membranes262,263,265, 

consistent with our observed dependency for GSDMDN in mitochondrial damage. 

However, GSDMDN damage of the plasma membrane could also account for damage 

on mitochondria and lysosomes, by unbalancing electrochemical gradients imposed 

by the plasma membrane. A temporal analysis of intracellular localization of 

GSDMDN during cell death could aid in answering whether pyroptotic organellar 

damage is directly mediated by GSDMDN or reflects the plasma membrane damage 

cause by GSDMDN. 

Further, through our analysis of biochemical events downstream of NLRC4 and 

NLRP1b inflammasome activation, we demonstrated that DEVDase activity can be 

detected in pyroptotic cells, which is accompanied by cleavage of substrates typically 

associated to apoptosis, namely ROCK1, Bid and p23 (Section 3.2). This suggests that 

pyroptotic cell death happening downstream of the canonical inflammasome is a 

combination of an apoptotic signature (DEVDase) and pore formation at the plasma 

membrane, executed by GSDMD. Interestingly, caspase-7 was chiefly activated in 

pyroptotic cells, as it has previously been reported200. Thus, it is tempting to 

speculate that caspase-7 is the executioner caspase responsible for the pyroptotic 
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DEVDase signature. GSDMD-/- cells triggered for the NLRC4 and NRLP1b 

inflammasomes undergo apoptosis with same kinetics as WT cells undergo 

pyroptosis (Section 3.1). Furthermore, GSDMD-/- macrophages triggered with FlaTox 

and LeTx demonstrated similar levels of DEVDase activity than WT cells. This 

suggests that the apoptotic phenotype observed in GSDMD-/- cells relies on caspase-1 

and represents the program of executioner caspases happening in WT cells during 

pyroptosis. Indeed, ablation of ASC, known to mediate caspase-8 recruitment to the 

inflammasome and its activation in conditions of lack of caspase-1278,279, could not 

rescue GSDMD-/- macrophages from apoptosis after LeTx and FlaTox. Of note, 

caspase-3 was found to be weakly activated in NLRP1b and NLRC4-triggered 

pyroptotic cells, but was markedly maturated in GSDMD-/- cells after the same 

stimuli. This suggests that caspase-3 and caspase-7 are either matured at different 

moments or by a different mechanism upstream, which would be more markedly 

present in GSDMD-/--triggered macrophages. It remains to be determined whether 

each of the executioner caspases has a prominent role in the DEVDase activity of 

NLRP1b and NLRC4-triggered pyroptotic cells and whether both executioner 

caspases are needed for the apoptotic phenotype in NLRP1b and NLRC4-triggered 

GSDMD-/- macrophages. 

In conclusion, activation of the inflammasome leads to a complex network of caspase 

activation downstream. Activation of caspase-1 at the ASC speck, leads to processing 

of several substrates such as IL1β, IL18, GSDMD and executioner caspases, in either a 

direct or indirect way. Caspase-8 recruitment to the ASC speck also happens, though 

in a slower manner, being more obvious in conditions of delayed cell rupture, as in 

absence of caspase-1 or its catalytic activity278,279. Therefore, engagement of a 

canonical inflammasome would account for three parallel signaling pathways to cell 

death: a caspase-1-dependent membrane rupture by GSDMD; a caspase-1-dependent 

apoptotic program, through cleavage of executioner caspases; and a slower ASC-

dependent recruitment of caspase-8 and apoptosis.  

Interestingly, some of the morphological events observed in pyroptosis are 

reminiscent of apoptosis (Table 1), namely mitochondrial fragmentation and 

depolarization, phosphatidylserine exposure on the outer leaflet of the plasma 

membrane and DNA degradation. We have shown that, during non-canonical 

inflammasome activation, mitochondrial depolarization depends on GSDMD 

(Section 3.1). Considering caspase-11 also activates NLRP3 and caspase-1 

downstream, and that lack of GSDMD after caspase-11 activation not only impairs 
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pyroptosis, but also prevents caspase-1 activation downstream of NLRP3261, it 

remains unclear whether the mitochondrial depolarization is dependent on caspase-

11 or caspase-1. Next steps on pyroptosis research could address which of the 

pyroptotic morphological events which are shared with apoptosis are dependent on 

caspase-7 and caspase-3 activation downstream of the canonical inflammasome. 

Table 1. Comparison of morphological alterations in pyroptotic and apoptotic 

cells. 

Morphological Feature Pyroptosis Apoptosis 

Mitochondrial 

fragmentation 
Yes Yes20 

Mitochondrial 

membrane potential 
Depolarization Depolarization20 

Lysosomal membrane 

permeabilization 
Yes Yes280 

DNA fragmentation 
Yes, as a diffuse TUNEL 

staining207 

Yes, condensed TUNEL 

staining207 

Nuclear morphology Condensation (late onset) 
Condensation and 

fragmentation20 

Annexin-V staining Yes (late onset) Yes20 

Cellular morphology 
Swelling and rupture, 

while attached 

Contraction of cell body 

and blebbing20 

Vesicle 

shedding/apoptotic 

bodies 

To be determined Apoptotic bodies20 

Release of intracellular 

contents 

Yes, including organellar 

proteins 
No20 

 

Contrary to pyroptosis, apoptosis is regarded as a silent form of cell death, not 

accounting for the induction of an inflammatory signaling in the local tissue73. 

Interestingly, mutations in genes of inflammasome receptors can cause genetic 

autoinflammatory diseases, commonly named as inflammasomopathies, due to an 

overt inflammasome activation. One of the most common presentations of 

inflammasomopathies are recurrent fever attacks, and patients normally experience a 

health improve when treated with IL1 antagonists257. This suggests that IL1β, and 

potentially IL1α, signaling is one of the most detrimental effects of the excessive 

inflammasome activation in these patients. For example, mutations in MEFV, the 

gene encoding the inflammasome receptor Pyrin, is the causative agent of FMF, and 

patients also benefit from IL1 inhibition281. An FMF-knock-in mouse engineered to 

contain a human domain of the MEFV gene and its autoactivation mutation is 
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completely protected when in an IL1β-null background282. Remarkably, lack of 

GSDMD in these MEFV mice also completely protects from pathology283. This 

suggests that targeting GSDMD in the clinic might be an efficient alternative 

approach for treating patients with inflammasomopathies. However, given our 

knowledge that GSDMD-/- macrophages still undergo cell death after inflammasome 

activation, it would be interesting to address the long-term effects of absence of 

GSDMD in inflammasomopathies models. 

While inflammasome-mediated responses have been shown to be protective to a 

number of bacterial infections142, it is still unclear how absence of GSDMD in 

macrophages could alter their response to infections in vivo. Furthermore, future 

research could address whether pathogens could differentially regulate each of the 

cell death pathways downstream of inflammasome activation. 

Finally, in the last part of the current thesis, we characterized how inhibition of two 

proteases from the extended prolyl dipeptidases family could cause inflammasome 

activation (Section 3.3). PRCP inhibition by Compound 8o led to a lytic form of cell 

death with fast kinetics, independently from the major cell death players of 

necroptosis, extrinsic apoptosis and pyroptosis. In addition, Compound 8o elicited 

NLRP3 inflammasome activation and release of IL1β in treated BMDMs. Description 

of the cell death mediator could elucidate whether NLRP3 activation is downstream 

of parallel to PRCP inhibition. 

DPP8/DPP9 inhibition also led to cell death induction and IL1β release, more 

pronounced in BMDMs containing the 129-associated allele of Nlrp1b. NLRP1b-

sufficient cells relied on caspase-1 for cell death and IL1β released, establishing Val-

boroPro and 1G244 as NLRP1b inflammasome activators and pyroptosis inducing 

agents. It remains to be analyzed how human cells, which possess only one Nlrp1 

locus, behave as. Overall, these results demonstrate that use of PRCP or DPP8/DPP9 

inhibitors can in fact have inflammatory roles in vivo. This should be taken into 

consideration when assessing their potential for clinical use. 
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cell cycle, proliferation and transfection efficiency. 

Biochemistry  Western blotting, cytokine measurements (ELISA, 

Luminex) 

Microscopy Experimental setup, acquisition and analysis of live cell 

imaging assays or immunocytochemistry; confocal 

microscopy on ZEISS and LEICA-based platforms. 

 Image analysis and quantification with ImageJ, Volocity 

and Imaris.  

Molecular Biology Restriction enzyme-based cloning, genomic PCR. 

Others  Graph Pad Prism, Microsoft Word, Excel and Power Point. 

Animal training at the level of FELASA C. 

Collaborations  

(my contribution 

between brackets) 

Mass spectrometry – Shotgun and COFRADIC analysis 

(sample preparation and data analysis) 

Recombinant protein production (inducing bacterial 

expression, His-tag-based purification) 

Maintenance of mice (managing breeding) 

Laboratory supervision One 1st year Master student (2016) 

Presentations in Conferences  

2017 25th Euroconference on Apoptosis – European Cell Death 

Organization 

 Leuven, Belgium 
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 Flash Talk: High-Resolution Time-Lapse Analysis of 

Organelle Dynamics During Pyroptosis 

2016 IMMUNO 2016, XLI Congress of the Brazilian Society of 

Immunology 2016 

 Campos do Jordão, Brazil 

 10 min-Express Presentation: High-Resolution Time-Lapse 

Analysis of Organelle Dynamics During Pyroptosis. 

2016 10th EWCD – Death never Dies 

 Fiuggi, Italy 

 Poster: High-Resolution Time-Lapse Analysis of 

Subcellular Organelle Dynamics During Pyroptosis 

Awards 

2017 Best Flash Talk presentation on the 25th Euroconference 

on Apoptosis – European Cell Death Organization 

2013 PhD Scholarship – CAPES, Brazil 

2012 Masters’ Scholarship – CNPq, Brazil 

2011 Scientific Initiation Scholarship – CNPq, Brazil 

2009 Scientific Initiation Scholarship – CNPq, Brazil 

2008  Scientific Initiation Scholarship – CNPq, Brazil 
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