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planes. Aśı mismo, quiero dar gracias al Consejo Nacional de Ciencia y Tecnoloǵıa
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Erdely. De plus, je souhaite remercier les membres du jury d’avoir lu attentivement
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qui é'tait assis devant moi pendant ma première année de doctorat, pour les

conseils que tu m'as donnés alors et pour les bons moments quand nous avons

xii



Dankwoord/Remerciements
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Finalement, je voudrais remercier toute ma famille, particulièrement mes oncles et
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General Introduction

Background

Copulas have become very popular over the last years since they facilitate the study

of the relationship between a given n-distribution function and its one-dimensional

marginals. The word “copula” was not used until it was introduced by A. Sklar [189]

in 1959, although the ‘idea’ of a copula already appeared in previous works such

as [80]. In [189], the famous Sklar theorem was formulated, which allows one to

build an n-dimensional distribution function with given marginals.

Unfortunately, at that time the statistics community paid little attention to the

concept of an n-copula. In fact, during a long period of time, Chapter 6 of the

book of Schweizer and Sklar [185] was the only available reference for results about

copulas, even though Schweizer and Wolff had already written some articles [186,

187] that were relevant to the statistics community.

As a consequence of the lack of interest in n-copulas from the statistics community,

most of the early results about n-copulas were obtained in the framework of

probabilistic metric spaces and distribution functions with given marginals.

The poor diffussion of the concept of an n-copula gradually changed in the nineties.

The first edition of the book of Nelsen [152] and the book of Joe [102] helped to

diffuse the topic of copulas to a wider audience. However, the major reason for this

increase of interest is due to the successful application of copulas in several fields as

stated in the words of Nelsen [62] when he was asked the question “When did you

realize that copulas have become so popular?”: “ About the time when I began to

see papers with applications in finance, actuarial science, hydrology, etc.”. Some

examples of fields where n-copulas have been applied are finance [86, 139], actuarial

science [82], hydrology [178, 179], biostatistics [24, 96], machine learning [70] and

imprecise probability theory [149].

As a consequence, several researchers started to study n-copulas more extensively

and, as is usual in mathematics, found that there are several previously studied

topics that could be analysed from a copula-perspective, mainly because of the

flexibility that n-copulas provide to model dependence concepts, as Sklar’s theorem

allows one to separate the effect of the marginal distributions from the multivariate

dependence structure. The use of n-copulas helped to bring new insights to

the concept of dependence of random variables, which unlike the concept of

independence had not been properly studied before, as remarked by Nelsen [62]:

“For me it’s like the negative definition of an irrational number, it’s a real number

that is not rational. Similarly dependence has a negative definition, it is any
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General introduction

relation between random variables other than independence”. Hereunder are some

examples of dependence concepts that can be studied using copulas.

(i) Exchangeable random variables and other types of symmetry, such as radial

symmetry, can be characterized in terms of n-copulas [152].

(ii) Orthant dependence (known as quadrant dependence in the bivariate case),

sometimes called concordance order [102], can be described using n-copulas

equipped with the pointwise ordering of functions.

(iii) Several concordance dependence measures have been studied using n-copulas.

In 1981 Schweizer et al. [186], have already obtained analytical expressions

for the well-known Spearman rho and Kendall tau that only depend on

the associated 2-copula of the random variables. Some examples of further

studies of measures of concordance in the framework of n-copulas can be

found in [47, 83, 182, 190, 191].

(iv) Tail dependence between two random variables was studied in the framework

of 2-copulas by Joe [103] by using the tail dependence coefficients. These

coefficients only depend on the associated 2-copula of the random variables

and can be computed in terms of what it is called the diagonal section

of a 2-copula [152]. More recently, several authors have studied possible

generalizations to higher dimensions, see for example [104, 105, 127].

(v) Darsow et. al [27] proved a characterization of Markov process in terms of

2-copulas. This characterization has been generalized to higher order Markov

processes [98] and multi-dimensional Markov processes [129].

Due to the relevance of n-copulas in the framework of dependence modelling, it is

deemed important to have a wide range of families of n-copulas available, in order

to have more tools in practice. There are several methods to obtain families of

n-copulas. One such approach to construct families of n-copulas is to use Sklar’s

theorem in order to identify the copula of a well-known probability distribution.

Elliptical n-copulas [69] and Marshal-Olkin n-copulas [134] are obtained by using

this approach.

Another approach, which is also inspired by Sklar’s theorem, is to apply some

construction methods of probability distributions to n-copulas. Extreme-value n-

copulas [69] and vine copulas [1, 14] can be obtained by using this approach.

Other families of n-copulas were introduced in the framework of probabilistic

metric spaces and originally did not have a probabilistic interpretation. The

most famous example is the family of Archimedean n-copulas, that latter became

quite popular [69] due to their simple form, nice properties and the wide range of

dependence structures that can be modelled with them.

Other construction methods of n-copulas focus on obtaining copulas with given

analytical properties, for example, the construction of n-copulas with a given set of
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values [117] or n-copulas that are obtained through linearly interpolating between

a given set of values [56].

Finally, other methods consist in applying a transformation to one or more n-

copulas in order to obtain a new one. Some examples of such transformations

are the ordinal sums of n-copulas [143], shuffles of n-copulas [66], patchworks of

copulas [51, 65, 90], orthogonal grid constructions [30], among others.

As a mathematical object, n-copulas have been studied from different angles. For

example, Olsen et. al [163] proved that Markov operators and 2-copulas are

isomorphic. Studying the set of n-copulas with different metrics has also been a

topic of interest due to the relevance of the use of approximations of n-copulas

in applications [126, 147, 148]. Other authors have studied an algebraic group of

transformations of n-copulas that are induced by certain types of transformations

on random variables [84, 85]. The lattice structure of the set of n-copulas has

been studied in [72, 161]. Finally, several authors have focused on the statistical

properties of n-copulas, such as methods to simulate them [134] and parametric

and non-parametric inference methods [101].

Closely related to the concept of an n-copula is that of an n-quasi-copula. Before

the nineties, the characterization of a certain class of (bivariate) operations on

distribution functions was deemed to be of great interest (see, for example, [5,

184, 185]). The concept of a 2-quasi-copula was introduced in [4] in order to

characterize such operations. In 1996, Nelsen et al. [160] generalized the concept

of a 2-quasi-copula to the higher-dimensional case. However, little attention was

paid to n-quasi-copulas, just as in the case of n-copulas. Additionally, the original

definition of an n-quasi-copula was too impractical to use, making it hard to study

their properties.

However, in 1999 Genest et al. [88] proved a purely algebraic characterization of

2-quasi-copulas that has become the de facto definition of a 2-quasi-copula and the

most natural way of studying them. Two years later, this result was generalized to

the higher-dimensional case by Cuculescu et al. [26].

With the help of the previous characterization, some authors began studying

properties of n-quasi-copulas. For example, Nelsen et al. [159] studied additional

algebraic properties of n-quasi-copulas (see also [172]). Later, Nelsen et al. [161]

and Fernández-Sánchez et al. [72] were interested in studying the lattice structure of

the set of n-quasi-copulas. Fernández-Sánchez et al. [73, 75], Nelsen et al. [158] and

Durante et al. [53] studied whether or not n-quasi-copulas induce signed stochastic

measures, while Nelsen et al. [159] and De Baets et al. [36] studied how negative

the volume of an n-box induced by an n-quasi-copula can be.

The main application of n-quasi-copulas in the field of n-copulas has been to

derive bounds on sets of n-copulas. In 2004, Nelsen et al. [155] proved that

the pointwise supremum and pointwise infimum of any set of 2(-quasi)-copulas
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are 2-quasi-copulas. One year later, this result was generalized to the higher-

dimensional case by Rodŕıguez-Lallena et al. [170]. Inspired by the previous two

articles, several other authors began to study bounds on sets of n-copulas with

a given set of values with the help of n-quasi-copulas (see, for example, [36, 37,

117, 136, 168, 177]). Other authors studied similar bounds while paying more

attention to financial applications [16, 17, 130, 131, 167, 192]. However, there are

several other applications of n-quasi-copulas outside the framework of n-copulas,

for example, they have become increasingly popular in fuzzy set theory and

aggregation function theory due to their 1-Lipschitz continuity property (see, for

example, [31, 39, 78, 99, 122, 124]).

As can be seen, n-copulas and n-quasi-copulas provide a new way to study several

probabilistic and statistic concepts from different perspectives. Conversely, it is

also possible that one can also look at n-copulas and n-quasi-copulas from different

angles. It is the main purpose of this dissertation to present several new and

relevant results in the theory of n-copulas and n-quasi-copulas that were obtained

while observing n-copulas and n-quasi-copulas from different points of view, i.e.,

as if one would be looking at them through a kaleidoscope.

Structure of the dissertation

Hereunder we give a more detailed description of the structure of this disserta-

tion.

This dissertation consists of two parts. The first part of this dissertation consists

of Chapters 1, 2 and 3. In these chapters we focus our attention on the study of

n-copulas.

More specifically, in Chapter 1 we recall some concepts and review several results

that are necessary for the rest of this dissertation. We start by recalling the

concepts of an n-copula, survival copula and diagonal sections of an n-copula.

Additionally, we review important properties and results about n-copulas that are

relevant to the development of this dissertation, such as some basic dependence

concepts and several families of n-copulas.

In the following two chapters, instead of studying n-copulas in a general frame-

work, we study two construction methods: one of them is a generalization to the

multivariate case of an algebraic construction method of 2-copulas, while the other

has the objective of constructing n-copulas that have a special type of symmetry,

more specifically, radial symmetry.

In Chapter 2, we focus our attention on the construction of an n-copula given

its diagonal section, more specifically we propose a generalization of the well-

known class of upper semilinear 2-copulas [60] to higher dimensions. We start
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by recalling the definition of upper and lower semilinear 2-copulas and we propose

a generalization of this construction method to the multivariate case. Next, we

provide necessary and sufficient conditions on these diagonal sections that guarantee

that the upper semilinear construction method yields an n-copula. Additionally,

we provide some examples of the upper semilinear construction method.

Next, we change our attention to the property of radial symmetry in Chapter 3

and propose a construction method of radially symmetric n-copulas. To this end, we

first prove a representation theorem for symmetric and radially symmetric n-copulas.

Thereafter, with the help of the representation theorem, we propose a construction

method for higher-dimensional radially symmetric copulas using an auxiliary

function. Afterwards, we provide several examples of our construction method in

the trivariate case when the auxiliary function is obtained using the nesting of

2-copulas, when the auxiliary function is constructed using a generalization of the

˚-product of copulas or when the auxiliary function is a product-type extension of

a 2-copula.

In the second part of this dissertation we focus our attention to the concept of an

n-quasi-copula.

Going into detail, the purpose of Chapter 4 is to recapitulate the various results

that have been proven in the literature about n-quasi-copulas. First, we present

the concept of an n-quasi-copula as it was originally introduced. Subsequently

we review all the characterizations of n-quasi-copulas that have been proved in

the literature, while stressing the differences that occur between the case n “ 2

and n ě 3. Next, we discuss the lattice structure of the set of n-quasi-copulas

and its relationship to n-copulas and note that there are several results that

cannot be extended to higher dimensions (n ě 3). Finally, we recall results in the

literature related to the mass distribution of n-quasi-copulas and stochastic signed

measures.

In Chapter 5 we look through the kaleidoscope of n-quasi-copulas and ‘observe an

image that has never been considered before’, more specifically, we study super-

modular n-quasi-copulas and we propose a generalization of supermodularity

for quasi-copulas in higher dimensions. In the bivariate case, it is known that

2-increasingness is equivalent to supermodularity. However, we show that this is no

longer true for n ě 3 and, as a consequence, the class of supermodular n-copulas is

different from n-copulas. We study the properties of the newly introduced class

of supermodular n-quasi-copulas. Next, we recall a characterization of 2-quasi-

copulas and an open problem on a certain class of n-quasi-copulas that inspired

us to introduce other new classes of n-quasi-copulas. We characterize the new

classes of n-quasi-copulas and use them to solve the previously mentioned open

problem.

In the following chapters, we continue to show that n-quasi-copulas are more closely

related to supermodular functions than to n-copulas. In particular, we focus our
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attention to the smallest n-quasi-copula with a given diagonal section, to the set of

supermodular n-quasi-copulas when endowed with the uniform metric and to the

lattice structure of the set of supermodular n-quasi-copulas.

Chapter 6 consists of two main parts. First, we work in the more general framework

of aggregation functions to study the analytical expressions to compute the

smallest and the greatest M -Lipschitz continuous n-ary aggregation functions

with a given diagonal section and provide some examples. Thereafter, we identify

necessary and sufficient conditions to guarantee that the smallest and the greatest

M -Lipschitz continuous n-ary aggregation functions have a neutral element and

an absorbing element. We then study the supermodularity and submodularity

properties of the smallest and the greatestM -Lipschitz continuous n-ary aggregation

functions and as a byproduct we prove that the smallest n-quasi-copula with a

given diagonal section, called the Bertino n-quasi-copula, is supermodular

for any n ě 2.

In the second part of Chapter 6 we work again in the framework of n-quasi-copulas.

We present some complementary results on the marginal k-quasi-copulas of a

Bertino n-quasi-copula. Next, we introduce the concept of a regular n-diagonal

function. The rest of Chapter 6 is concerned with the characterisation of the

sets of regular n-diagonal functions for which there exists an n-dimensional Bertino

copula whose diagonal section coincides with the given n-diagonal function.

Chapter 7 also consists of two parts. First, we study the set of supermodular

n-quasi-copulas when endowed with the uniform metric and we show that it

has similar properties as the metric space of n-copulas endowed with the uniform

metric. The second part of Chapter 7 studies the lattice structure of the set of

supermodular n-quasi-copulas. This part contains the most relevant results of this

chapter, namely that the set of supermodular n-quasi-copulas is join-dense in the

set of n-quasi-copulas, even though the set of n-quasi-copulas is not isomorphic

to the Dedekind-MacNeille completion of the poset of supermodular n-quasi-

copulas. To this end, we first develop some additional results that are needed to

prove the main theorem of this chapter, before studying the lattice structure of the

poset of supermodular n-quasi-copulas.

Finally, in Chapter 8 we present the general conclusions of this dissertation, discuss

some open questions and identify future research lines.

It is important to remark that it is not necessary to read this dissertation sequen-

tially, as shown in Figure I.1. Chapter 1 is necessary for those readers who are

not familiar with the concept of an n-copula, as the rest of the chapters of this

dissertation require a good understanding of the concept of an n-copula. The

results of Chapters 2 and 3 are independent from the following chapters of this

dissertation and, consequently, Chapters 2 and 3 can be read separately from the

following chapters of this dissertation. Chapter 4 is required for those readers who

are not familiar with the concept of an n-quasi-copula, as the second part of the
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dissertations focuses heavily on this concept. Chapter 5 is required to read the

following two chapters of this dissertation, since Chapter 5 introduces a new class

of n-quasi-copulas that is further studied in Chapters 6 and 7. Finally, the results

of Chapters 6 and 7 are independent from each other.

Figure I.1: Structure of this dissertation
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PART I

COPULAS

1





1 Copulas: Basic definitions and

properties

In this chapter we provide all tools from copula theory that will be necessary for

this dissertation. First, we give the definition of an n-copula, as well as some of its

basic properties that are relevant for this dissertation. Next, we give some examples

of well-known copula families. Finally, we provide some examples of dependence

concepts that can be studied using of copulas.

1.1. First definitions

Definition 1.1. [152] A function F : D Ă r0, 1sn Ñ r0, 1s is called n-increasing

if for any n-box P “
Śn

j“1rxj , yjs Ď r0, 1s
n such that rxi, yjs P D for any i, j P

t1, 2, . . . , nu, it holds that

VF pPq “
ÿ

zPverticespPq

p´1qSpzqF pzq ě 0 , (1.1)

where Spzq “ #tj P t1, 2, ..., nu | zj “ xju. VF pPq is called the F -volume of P.

Here #A denotes the cardinality of the set A.

Note that an n-increasing function with n “ 1 is simply an increasing func-

tion.

We now recall the formal definition of a distribution function and a survival

function.

Definition 1.2. A function F : r´8,8sn Ñ r0, 1s (resp. F̄ : r´8,8sn Ñ r0, 1sq

that satisfies

(1) F p8, . . . ,8q “ 1 (resp. F̄ p´8, . . . ,´8q “ 1).

(2) F pxq “ 0 (resp. F̄ pxq “ 0) if x is such that xj “ ´8 (resp. xj “ 8) for some

j P t1, 2, ..., nu.

(3) F (resp. F̄ ) is right continuous in each argument.

(4) F (resp. p´1qnF̄ ) is n-increasing.

is called a joint distribution function (resp. joint survival function).

Now we recall the definition of an n-copula.

Definition 1.3. [152] An n-copula Cn is a r0, 1sn Ñ r0, 1s function that satisfies

3



Chapter 1. Copulas: Basic definitions and properties

(c1) Cnpxq “ 0 if x is such that xj “ 0 for some j P t1, 2, ..., nu.

(c2) Cnpxq “ xj if x is such that xi “ 1 for all i ‰ j.

(c3) Cn is n-increasing.

We will denote by Cn the set of all n-copulas.

Note that by properly extending an n-copula to a function on Rn, we obtain an

n-dimensional distribution function. If X1, . . . , Xn are random variables that have

Cn as their joint distribution function, then Xj has a uniform distribution on r0, 1s

for any j P t1, . . . , nu.

When n ´ k of the arguments of an n-copula are set equal to 1, we obtain a

k-dimensional marginal of the n-copula, which itself is a k-copula. More generally,

we have the following definition.

Definition 1.4. For any a P r0, 1sn and any set of indices A Ă t1, 2, . . . , nu with

0 ă #A “ k ă n, the k-dimensional section of an n-copula Cn with fixed values

given by a in the positions determined by A is the function Ca,A : r0, 1sk Ñ r0, 1s

given by Ca,Apxq “ Cnpyq, where yj “ xj if j P A and yj “ aj if j R A.

Note that only the coordinates of a whose indices are not in A are relevant to the

definition of a section.

Remark 1.1. If C is an n-copula, then it is easy to see that for any a P r0, 1sn

and any set of indices A Ă t1, 2, . . . , nu with 0 ă #A “ k ă n, the k-dimensional

section Ca,A is k-increasing. For any x P r0, 1sr, Ca,A represents both the Ca,A-

volume of
Śr

j“1r0, xjs and the C-volume of the n-box P1 “
Śn

j“1r0, x
1
js where

r0, x1js “ r0, xjs if j P A and r0, xjs “ r0, ajs if j R A.

For any permutation σ on the set t1, . . . , nu and for any copula Cn, we will denote

by Cσn the n-copula given by

Cσnpxq “ Cnpxσp1q, . . . , xσpnqq .

The probabilistic interpretation of Cσn is simple: if the copula of the random vector

pX1, X2, . . . , Xnq is Cn, then Cσn is the copula of the random vector pXσ´1p1q,

Xσ´1p2q, . . . , Xσ´1pnqq. The following definition concerns n-copulas that are invari-

ant under permutations.

Definition 1.5. An n-copula Cn is called symmetric if for any permutation σ of

t1, 2, . . . , nu and for any x P r0, 1sn it holds that

Cnpxq “ Cσnpxq .

Symmetric copulas are the copulas associated to exchangeable random variables.

Note that if an n-copula is symmetric, then all of its k-dimensional marginals

coincide for any k P t1, 2, . . . n´ 1u.
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For any copula Cn and for any i P t1, . . . , nu, the copula Cin given by

Cinpxq “ Cnpx1, . . . , xi´1, 1, xi`1, . . . , xnq ´ Cnpx1, . . . , xi´1, 1´ xi, xi`1, . . . , xnq

is called the reflection of Cn in the i-th argument. The reflection of n-copulas has

a probabilistic interpretation: if pX1, X2, . . . , Xnq has the n-copula Cn as its joint

distribution function, then the joint distribution function of the random vector

pX1, X2, . . . Xi´1, 1´Xi, Xi`1, . . . , Xnq is the reflection of Cn in the i-th argument.

The probabilistic interpretation of reflections and permutations of n-copulas has

led to several studies of the transformations of copulas that are induced by certain

types of transformations on random variables [84, 85, 120].

For a given n-copula Cn, C̄n denotes the associated survival n-copula, which itself

is an n-copula, and is given by

C̄npx1, . . . , xnq “
n
ÿ

i“1

xi ´ pn´ 1q `
n
ÿ

iăj

Cnp1, . . . , 1´ xi, . . . , 1´ xj , . . . , 1q

´

n
ÿ

iăjăk

Cnp1, . . . , 1´ xi, . . . , 1´ xj , . . . 1´ xk, . . . , 1q ` . . .

`p´1qnCnp1´ x1, 1´ x2, . . . , 1´ xnq . (1.2)

Survival copulas have a clear probabilistic interpretation: if the joint distribution

function of the random vector pX1, . . . Xnq is the copula Cn , then C̄n is the joint

distribution function of the random vector p1´X1, . . . , 1´Xnq , i.e., the result of

applying the reflection transformation to all of its arguments.

The following theorem explains the importance of copulas in the framework of

dependence modelling [189].

Theorem 1.1. Let Gn be an n-dimensional joint distribution function with margins

F1,1, . . . , F1,n. Then there exists an n-copula Cn such that for all x P r´8,8s it

holds that

Gnpxq “ CnpF1,1px1q, . . . , F1,npxnqq . (1.3)

If F1,j is continuous for all j P t1, . . . , nu, then Cn is unique; otherwise, it is unique

on
Śn

j“1 Ran F1,j, where Ran denotes the range.

Conversely, if Cn is an n-copula and pF1,jq
n
j“1 are univariate distribution functions,

then Gn defined as

Gnpxq “ CnpF1,1px1q, . . . , F1,npxnqq

is an n-dimensional joint distribution function.

This theorem is known as Sklar’s theorem. Note that Sklar’s theorem states that a
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Chapter 1. Copulas: Basic definitions and properties

continuous multivariate distribution function can be expressed in terms of its n

univariate marginals by means of a unique n-copula. Sklar’s theorem can also be

reformulated in terms of survival functions.

Theorem 1.2. Let Ḡn be an n-dimensional joint survival function with margins

F̄1,1, . . . , F̄1,n. Then there exists an n-copula Cn such that for all x P r´8,8s it

holds that

Ḡnpxq “ CnpF̄1,1px1q, . . . , F̄1,npxnqq . (1.4)

If F̄1,j is continuous for all j P t1, . . . , nu, then Cn is unique; otherwise, it is unique

on
Śn

j“1 Ran F̄1,j.

Conversely, if Cn is an n-copula and pF̄1,jq
n
j“1 are univariate survival functions,

then Ḡn defined as

Ḡnpxq “ C̄npF1,1px1q, . . . , F̄1,npxnqq

is an n-dimensional joint survival function.

Some well-known examples of n-copulas are:

(i) The product copula Πnpxq “
śn
i“1 xi. Given a random vector pX1, . . . , Xnq

defined on a probability space pΩ,F ,Pq, the copula of the random vari-

ables X1, . . . , Xn is Πn if and only if the random variables X1, . . . , Xn are

independent.

(ii) The comonotonic copula Mnpxq “ minpx1, . . . , xnq. Given a random vector

pX1, . . . , Xnq defined on a probability space pΩ,F ,Pq, the copula of the

random variables X1, . . . , Xn is Mn if and only if there exist a random variable

X defined on pΩ,F ,Pq and n strictly increasing functions f1, . . . , fn : RÑ R
such that the equality f1pXq “ f2pXq “ ¨ ¨ ¨ “ fnpXq holds almost surely.

(iii) The countermonotonic copula for n “ 2, W2px1, x2q “ px1`x2´ 1q` , where

u` “ maxpu, 0q. Given a random vector pX1, X2q defined on a probability

space pΩ,F ,Pq, the copula of the random variables X1, X2 is W2 if and only

if there exists a strictly decreasing function f : RÑ R such that the equality

X1 “ fpX2q holds almost surely.

As we will see in Section 1.4 and in Chapter 4, the comonotonic copula represents

the strongest notion of positive dependence, while for n “ 2 the countermonotonoic

copula represents the strongest notion of negative dependence.

1.2. The diagonal section of an n-copula

The concept of the diagonal section of an n-copula will be a topic of interest

for this dissertation. For any n-copula Cn, its diagonal section is the function

6



§1.3. Some families of copulas

d : r0, 1s Ñ r0, 1s given by dpxq “ Cnpx, x, . . . , xq. The diagonal section of an

n-copula satisfies some nice properties, as is shown in the proposition below.

Proposition 1.1. Let Cn be an n-copula and d its diagonal section. Then

(d1) d is increasing.

(d2) pnx´ pn´ 1qq
`
ď dpxq ď x.

(d3) d is n-Lipschitz continuous, i.e.,

|dpxq ´ dpyq| ď n|x´ y| .

Note that condition (d2) implies that dp0q “ 0 and dp1q “ 1.

The following definition is based on the properties that a diagonal section satis-

fies.

Definition 1.6. [69] A function d : r0, 1s Ñ r0, 1s that satisfies (d1), (d2) and (d3),

for some positive integer n, is called an n-diagonal function.

It can be shown that for any n-diagonal function d, there exists an n-copula that

has d as diagonal section [100].

The diagonal section has an interesting probabilistic interpretation: it is the

distribution function of the maximum of the uniform random variables on r0, 1s

that have the given n-copula as joint distribution function. Also the probabilistic

concept of tail dependence between random variables can be related to the diagonal

section of their joint distribution (see [152]).

Therefore, many studies have been devoted to the construction of n-copulas with

given diagonal section. These studies have mainly focused on the 2-dimensional case

and have led to a rich variety of construction techniques (see e.g. [61, 81, 154, 157]).

Unfortunately, for n ě 3, the situation is more complicated, as it is no longer easy

to propose construction techniques that work for any diagonal section(see [71]).

Indeed, to the authors’ knowledge, only in [100] a universal construction method

(given a diagonal section) with an explicit form of an n-copula has been given. In

Chapters 2 and 6 we will study a generalization of two methods for constructing

an n-copula given its diagonal section.

1.3. Some families of copulas

A family of n-copulas is usually described as a mapping from a set Θ to the set of

n-copulas Cn [69]. The elements of Θ are called parameters. According to Joe [102],

it is desirable that a family of n-copulas has the following properties that we now

describe in order to be used in statistical applications. First, the family of n-copulas

should have a probabilistic interpretation. Second, the family of copulas should

7



Chapter 1. Copulas: Basic definitions and properties

be able to describe a wide range of dependence structures. Finally, it should be

‘manageable’, in the sense that it ought to have a closed analytical form, or at least

numerically tractable. Hereunder, we recall some families of n-copulas.

Archimedean copulas

The class of Archimedean n-copulas is a well-known class of copulas. Their

popularity is due to their simple form and nice properties. We recall some definitions

that are needed in order to give the definition of an Archimedean n-copula.

Definition 1.7. Let ϕ : r0, 1s Ñ r0,8s be a continuous, strictly decreasing function

such that ϕp1q “ 0. The pseudo-inverse of ϕ is the function ϕr´1s : r0,8s Ñ r0, 1s

given by

ϕr´1sptq “

$

&

%

ϕ´1ptq , if 0 ď t ă ϕp0q ,

0 , if ϕp0q ď t ď 8 ,
(1.5)

where ϕ´1 is the usual inverse function.

The function ϕr´1s has some interesting properties, for example, ϕr´1s is a con-

tinuous decreasing function and for any t P r0, 1s it holds that ϕr´1spϕptqq “ t.

Furthermore, it holds that ϕpϕr´1sptqq “ minpt, ϕp0qq, and, if ϕp0q “ 8, then

ϕr´1s “ ϕ´1. The following result can be found in [156] (see also [152]).

Lemma 1.1. Let ϕ,ϕr´1s be defined as in Definition 1.7. Define the function

Cn,ϕ : r0, 1sn Ñ r0, 1s as:

Cn,ϕpxq “ ϕr´1s

˜

n
ÿ

j“1

ϕpxjq

¸

.

Then Cn,ϕ satisfies conditions (c1) and (c2).

Cn,ϕ is the n-ary form of an Archimedean continuous t-norm (see [121] for more

details). If Cn,ϕ is an n-copula, then we say that Cn,ϕ is an Archimedean n-copula.

In such case, ϕ is called an additive generator of Cn,ϕ (which is unique up to a

strictly positive multiplicative constant). Note that Archimedean n-copulas are

symmetric.

Archimedean n-copulas are also associative. Hence, for any n ě 2 and x P r0, 1sn`1,

it holds that

Cn`1,ϕpxq “ C2,ϕpx1, Cn,ϕpx2, . . . , xn`1qq

“ C2,ϕpCn,ϕpx1, . . . , xnq, xn`1q .

Before introducing the characterization of the additive generators of Archimedean

n-copulas, let us recall the concept of an n-monotone function [140].
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§1.3. Some families of copulas

Definition 1.8. A function f : ra, bs Ñ R is called n-monotone if it is differentiable

up to the order n´ 2 and its derivatives satisfy p´1qkf pkqptq ě 0 for any t P sa, br

and k P t0, 1, . . . , n´ 2u and p´1qn´2f pn´2q is decreasing and convex on r0, 1s.

A function is f : ra, bs Ñ R is called completely monotone if f is n-monotone for

any n ě 2.

Remark 1.2. Note that the concepts of n-monotonicity and n-increasingness

should not be confused, since n-increasingness is a property of an n-dimensional

function, while n-monotonicity is a property of a univariate function.

The generators of Archimedean n-copulas were characterized in [140].

Theorem 1.3. Let ϕ,ϕr´1s be defined as in Definition 1.7. Then, Cn,ϕ is an

n-copula if and only if ϕr´1s is n-monotone on r0, 1s.

It is well known that an Archimedean 2-copula is also an Archimedean continuous t-

norm, and the 1-Lipschitz continuity is equivalent to the convexity of the generator;

for further details we refer to [6, 144].

Hereunder we give some examples of Archimedean n-copulas [69, 152].

(i) The Frank family of n-copulas,

Cnpxq “ ´
1

α
ln

˜

1`

śn
i“1pe

´αxi ´ 1q

pe´α ´ 1q

n´1
¸

.

The additive generator of the Frank n-copula is given by

ϕptq “
1

α
ln
`

1´ p1´ e´αqe´t
˘

.

Its additive generator is completely monotone if α ě 0.

(ii) The Gumbel family of n-copulas, given by

Cnpxq “ exp

˜

´

˜

n
ÿ

i“1

p´ lnpxiqq
α

¸¸

.

The additive generator of the Gumbel family of n-copulas is given by

ϕptq “ exp
´

expp´tq1{α
¯

.

Its additive generator is completely monotone if α ě 1.

(iii) The Clayton family of n-copulas, given by

Cnpxq “

˜

n
ÿ

i“1

x´αi ´ pn´ 1q

¸`

.

9
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The additive generator of the Clayton family of n-copulas is given by

ϕptq “
´

p1` αtq
`
¯´1{α

.

Its additive generator is completely monotone if α ě 0.

Elliptical copulas

Elliptical n-copulas are constructed from a direct application of Sklar’s theorem,

in the sense that one starts with a continuous random vector with a given joint

distribution function, and then one identifies the copula associated to the joint

distribution function of the random vector.

We first recall that a random vector pX1, . . . , Xnq is said to have an elliptical

distribution if pX1, . . . , Xnq has the same distribution as µ`RAU, with

(i) µ P Rn.

(ii) A an nˆ k matrix, such that rankpΣq “ k ď n with Σ “ AAT ;

(iii) U “ pU1, . . . , Unq a random vector such that it has uniform distribution on

the sphere tx P Rn |
řn
j“1 u

2
j “ 1u.

(iv) R a positive random variable that is independent of pU1, . . . , Unq.

We can now recall the definition of an elliptical n-copula.

Definition 1.9. An n-copula Cn is said to be elliptical, if there exists a random

vector pX1, . . . , Xnq which has an elliptical distribution and is such that Cn is

the n-copula associated to the joint distribution function of the random vector

pX1, . . . , Xnq.

Two of the most well-known elliptical copulas are the Gaussian copula and the

t-copula. The Gaussian copula is the n-copula associated to a random vector

pX1, . . . , Xnq which follows a Gaussian distribution, while the t-copula is the n-

copula associated to a random vector pX1, . . . , Xnq which follows a multivariate

Student t-distribution. For both the Gaussian copula and the t-copula it is not

possible to write their expression in closed form.

Extreme-value copulas

Extreme-value (EV) n-copulas have a probabilistic interpretation in terms of the

componentwise maximum of a stationary stochastic process [69]. They can be

easily characterised in analytical terms as follows.
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Definition 1.10. An n-copula Cn is called an extreme-value copula if there exists

an n-copula Dn such that for any x P r0, 1sn it holds that

Cnpxq “ lim
mÑ8

´

Dnpx
1{m
1 , . . . , x1{m

n q

¯m

.

We have the following alternative characterisation.

Proposition 1.2. An n-copula Cn is an EV n-copula if and only if for any

x P r0, 1sn and m ě 1 it holds that

Cnpxq “
´

Cnpx
1{m
1 , . . . , x1{m

n q

¯m

.

The above proposition describes the concept of a max-stable n-copula. EV n-

copulas and max-stable n-copulas were introduced as different families of n-copulas,

but it has recently been proved that they are the same family [93].

The most well-known EV n-copula is the Galambos copula, that can be computed

as

Cnpxq “ exp p lαp´ lnpx1q, . . . ,´ lnpxnqq ,

with

 lα “
ÿ

H‰AĎt1,...,nu

p´1q#A`1

˜

ÿ

iPA

x´αi

¸

.

Marshall-Olkin copulas

Marshall-Olkin n-copulas arise naturally in the framework of exchangeable exoge-

nous shock models, i.e., models that consider the arrival times of shocks that can

affect one or more components of a given system [134]. More specifically, consider a

probability space pΩ,F ,Pq and for every non-empty subset A Ď t1, . . . , nu let ZA
be an exponentially distributed random variable with parameter λA ą 0 defined on

pΩ,F ,Pq. Additionally, suppose that the 2n´ 1 random variables are independent.

For any i P t1, . . . , nu define Xi as

Xi “ min pZA | i P Aq .

Then the survival n-copula associated to the joint survival function of the random

vector pX1, . . . , Xnq is given by [134]

C̄npxq “
ź

H‰AĎt1,...,nu

min

ˆ

x
λA

ř

B:iPB λB

i | i P A

˙

. (1.6)
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Definition 1.11. An n-copula Cn belongs to the Marshal-Olkin family if Cn has

Eq. (1.6) as its analytical expression.

1.4. Some basic dependence concepts

In this section, we give some examples of how n-copulas can be used to study

multivariate dependence structures. Since independence is a concept that has been

extensively studied in Probability Theory, it is not a surprise that the product

copula is often used as a reference point for various notions of dependence. The

following concepts of dependence compare pointwisely a given n-copula with the

product copula.

Definition 1.12. An n-copula Cn is said to be

(1) Positively lower orthant dependent, PLOD (resp. negatively lower orthant

dependent, NLOD) if for any x P r0, 1sn it holds that Cnpxq ě Πnppxqq (resp.

Cnpxq ď Πnppxqq).

(2) Positively upper orthant dependent, PUOD (resp. negatively upper orthant

dependent, NUOD) if for any x P r0, 1sn it holds that C̄npxq ě Πnppxqq (resp.

C̄npxq ď Πnppxqq).

(3) Positively orthant dependent, POD (resp. negatively orthant dependent,

NOD) if it is both PLOD and PUOD (resp. NLOD and NUOD).

In the bivariate case, it is common to find the previous concepts using the term

‘quadrant’ instead of ‘orthant’. It is also important to remark that in the bivariate

case positively lower quadrant dependent and positively upper quadrant dependent

are equivalent (resp. negatively lower quadrant dependent and negatively upper

quadrant dependent).

Sometimes it is also useful to compare two n-copulas, instead of only comparing

one n-copula with the product copula.

Definition 1.13. Let Cn,1, Cn,2 be two n-copulas.

(1) Cn,1 is more PLOD than Cn,2 if for any x P r0, 1sn it holds that Cn,1pxq ě

Cn,2pxq.

(2) Cn,1 is more PUOD than Cn,2 if for any x P r0, 1sn it holds that C̄n,1pxq ě

C̄n,2pxq.

(3) Cn,1 is more POD than Cn,2 if Cn,1 is more PLOD than Cn,2 and Cn,1 is

more PUOD than Cn,2.

Since Mn is associated to the strongest notion of positive dependence, it is not

difficult to see that Mn is more POD than Cn, for any n-copula Cn. Analogously,

for the bivariate case, C2 is more POD than W2 for any 2-copula C2.
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§1.4. Some basic dependence concepts

Another way to measure dependence is through the use of measures of concordance.

In the bivariate case, the measures of concordance provide an idea of how ‘large’

(resp. ‘small’) values of one variable are associated with the ‘large’ (resp. ‘small’)

values of the other variable. We now give the definition of a bivariate measure of

concordance.

Definition 1.14. A measure of concordance is a mapping µ : C2 Ñ r´1, 1s that

satisfies the following conditions:

(1) µpM2q “ 1 and µpΠ2q “ 0.

(2) µpC2,1q ě µpC2,2q if C2,1 is more PLOD than C2,2.

(3) µpC1
2 q “ µpC2

2 q “ ´µpC2q.

(4) µpC2q “ µpC̄2q.

(5) µpC2q “ µpCσ2 q for the only permutation σ on t1, 2u different from the

identity.

(6) For any sequence of copulas pC2,iq
8
i“1 that converges uniformly to a copula

C2,L, the following equality holds: limiÑ8 µpC2,iq “ µpC2,Lq.

Hereunder we present a list of the most well-known measures of concordance in

the bivariate case [152].

(1) Spearman’s rho:

ρpC2q “ 12

ż

r0,1s2
pCpx, yqqdxdy ´ 3 .

(2) Kendall’s tau:

τpC2q “ 4

ż

r0,1s2
Cpx, yqdCpx, yq ´ 1 .

(3) Gini’s gamma:

γpC2q “ 4

˜

ż

r0,1s

Cpx, 1´ xqdx´

ż

r0,1s

px´ Cpx, xqq dx

¸

.

(4) Blomqvist’s beta:

βpC2q “ 4Cp
1

2
,

1

2
q ´ 1 .

In the multivariate case the situation is more complicated. Several studies have

been made in order to better understand multivariate measures of concordance.

For example, in [47, 190] a copula-based definition of measure of concordance was

introduced, while a construction method of multivariate measures of condordance

was proposed in [83].
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Additionally, some multivariate generalizations of Spearman’s rho, Kendall’s tau,

Gini’s gamma and Blomqvist’s beta were studied in [182] and in the references

therein. However, there are still several relevant questions that have to be answered

on this topic, as remarked in [191].

Other measures of dependence that are commonly used are the tail dependence

coefficients. For convenience, we will give first the definition in the bivariate

case [102, 103].

Definition 1.15. Let pX,Y q be two random variables with joint distribution

function given by the 2-copula C2.

(1) The lower tail dependence coefficient λL of pX,Y q is computed as

λL “ lim
tÑ0`

PpX ď t | Y ď tq “ lim
tÑ0`

C2pt, tq

t
,

provided that the limit exists.

(2) The upper tail dependence coefficient λU of pX,Y q is computed as

λU “ lim
tÑ1´

PpX ą t | Y ą tq “ lim
tÑ0`

C̄2pt, tq

t
,

provided that the limit exists.

The coefficient λL (resp. λU q represents the probability that one variable is smaller

(resp. larger) than a given small (resp. large) value, given that the other variable is

already smaller (resp. larger) than the given value. Hence, these coefficients have

been used to study extreme events [183].

In higher dimensions, the situation is more complicated since more variables are

involved. A common approach is to use the lower and upper tail dependences

functions [104, 105, 127] that we define hereunder.

Definition 1.16. Let Cn be an n-copula.

(1) The lower tail dependence function bp¨, Cnq is given by

bpw, Cnq “ lim
tÑ0`

Cnpw1t, w2t, . . . , wntq

t
,

for the values of w P Rn such that the limit exists.

(2) The upper tail dependence function b˚p¨, Cnq is given by

b˚pw, Cnq “ lim
tÑ0`

C̄npw1t, w2t, . . . , wntq

t
,

for the values of w P Rn such that the limit exists.
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§1.4. Some basic dependence concepts

When we evaluate the lower tail dependence function (resp. upper tail dependence

function) at the point w “ 1 we obtain the multivariate generalization of the lower

tail dependence coefficient λL (resp. upper tail dependence coefficient λU ).
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2 A multivariate generalization of upper

semilinear copulas

2.1. Introduction

Recall that for any n-diagonal function d, there exists an n-copula that has d as

diagonal section. In the bivariate case, several methods are available to construct

copulas with a given diagonal section. Some examples are:

(i) The diagonal copula [154], given by:

Dd2px1, x2q “ min

ˆ

x1, x2,
d2pxq ` d2pyq

2

˙

,

is the greatest (pointwisely) symmetric 2-copula with given diagonal section

d2.

(ii) The Bertino copula [81], given by:

Bd2
px1, x2q “ min px1, x2q ` suptd2ptq ´ t | t P rminpx1, x2q,maxpx1, x2qsu ,

is the smallest 2-copula with given diagonal section d2.

As mentioned in Chapter 1, there exist several other ways of constructing bivariate

copulas with a given diagonal section, such as the upper semilinear construction

method, which is the main source of inspiration for the results in the present chapter.

Semilinear copulas were first introduced by Durante et al. in [56]. These copulas

are constructed by linearly interpolating between the values at the lower boundaries

(condition (c1)) or upper boundaries (condition (c2)) of the unit square and the

values at the diagonal given by the 2-diagonal function d2. Several generalizations of

this approach have been proposed, for example, construction methods that linearly

interpolate on other segments of the unit square ([34, 41, 106, 107, 108, 110, 112])

or construction methods that use a polynomial interpolation ([77, 109, 111]); see

also [76] for other generalizations.

The aim of this chapter is to study the possible generalization of the upper semilinear

2-copulas to the n-dimensional case. First, we recall the definition of upper and

lower semilinear 2-copulas and later, we present a construction method for the

multivariate case. Several of the following results can also be found in [9].
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2.2. The construction method

Semilinear copulas were first introduced by Durante et al. in [60]. A 2-copula C is

called upper semilinear if the mappings

h1 : rt0, 1s Ñ r0, 1s, h1pxq “ Cpx, t0q

v1 : rt0, 1s Ñ r0, 1s, v1pxq “ Cpt0, xq

are linear for all t0 P r0, 1s. It has been proven that the bivariate function Ud2
,

defined by

Ud2
px1, x2q “

pxp2q ´ xp1qqxp1q ` p1´ xp2qqd2pxp1qq

1´ xp1q
, (2.1)

where xp1q “ minpx1, x2q and xp2q “ maxpx1, x2q and the convention 0{0 “ 1 is

adopted, is the upper semilinear 2-copula with diagonal section d2, provided that

the following conditions hold:

(i) The function νd2
: r0, 1r ,Ñ r0,8r , defined by νd2

pxq “ px´ d2pxqq{p1´ xq,

is increasing.

(ii) The function φd2
: r0, 1r ,Ñ r0,8r , defined by φd2

pxq “ p1´2x`d2pxqq{p1´

xq2, is increasing.

Analogously, a 2-copula C is called lower semilinear if the mappings

h2 : r0, t0s Ñ r0, 1s, h2pxq “ Cpx, t0q

v2 : r0, t0s Ñ r0, 1s, v2pxq “ Cpt0, xq

are linear for all t0 P r0, 1s. The bivariate function Ld2
, defined by

Ld2px1, x2q “
xp1q

xp2q
d2pxp2qq ,

where the convention 0{0 “ 0 is adopted, is the lower semilinear 2-copula with

diagonal section d2, provided that the following conditions hold:

(i) The function ν˚d2
: s0, 1s Ñ r0,8r , defined by ν˚d2

pxq “ d2pxq{x, is increasing.

(ii) The function φ˚d2
: s0, 1s Ñ r0,8r , defined by φ˚d2

pxq “ d2pxq{x
2, is decreas-

ing.

Following the idea underlying upper semilinear 2-copulas, we propose a similar

construction method for higher dimensions. Given a vector x, we denote by xpjq
its j-th ordered component, i.e.,

minpx1, x2, ..., xnq “ xp1q ď xp2q ď ... ď xpnq “ maxpx1, x2, ..., xnq .
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We illustrate the construction method in the 3-dimensional case. Suppose we are

given a 3-diagonal function d3 and the upper semilinear 2-copula Ud2
with diagonal

section d2. Let a “ pa1, a2, a3q be a point in r0, 1s3 such that a1 ď a2 ď a3. The

parametric equation of the line that passes through the point a and the point

b “ pa1, a1, a1q is given by:

px1, x2, x3q “ pa1, a1, a1q ` λ

ˆ

0,
p1´ a1qpa2 ´ a1q

a3 ´ a1
, p1´ a1q

˙

.

Note that the given point a is obtained by choosing λ “ pa3´ a1q{p1´ a1q. Setting

λ “ 1 we obtain the point q “ pa1, a1 ` p1 ´ a1qpa2 ´ a1q{pa3 ´ a1q, 1q, i.e., the

intersection point of the line with a face of the cube. To the point a, we attribute

the value that is obtained by linearly interpolating between the values in the points

b and q, respectively situated on the main diagonal and on an upper face of the

cube. In this way, by symmetrization, we build the so-called upper semilinear

function given by

UD3
pxq “

1´ xp3q

1´ xp1q
d3pxp1qq `

xp3q ´ xp1q

1´ xp1q
Ud2

px*q ,

where D3 is shorthand for pd2, d3q and x* is a 2-dimensional vector with j-th

coordinate given by

x˚j “ xp1q `
pxpjq ´ xp1qqp1´ xp1qq

xp3q ´ xp1q
.

Substituting Ud2 by its analytical expression (2.1), we can rewrite UD3 as:

UD3
pxq “

p1´ xp3qqd3pxp1qq ` pxp3q ´ xp2qqd2pxp1qq ` pxp2q ´ xp1qqxp1q

1´ xp1q
.

We call UD3
the upper semilinear 3-variate function with given diagonal sections d2

and d3. By repeating this procedure recursively in higher dimensions, we get the

following expression for the upper semilinear function UDn in n dimensions:

UDnpxq “
1´ xpnq

1´ xp1q
dnpxp1qq `

xpnq ´ xp1q

1´ xpnq
UDn´1

px*q ,

where Dn is shorthand for pd2, d3, . . . , dnq and x* is an pn´ 1q-dimensional vector

with j-th coordinate given by:

x˚j “ xp1q `
pxpj`1q ´ xp1qqp1´ xp1qq

xpnq ´ xp1q
.

Solving the recurrence equation gives us the following explicit expression for UDn :
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Chapter 2. A multivariate generalization of upper semilinear copulas

UDnpxq “
1

1´ xp1q

«

p1´ xpnqq dnpxp1qq `
n´1
ÿ

j“1

`

xpj`1q ´ xpjq
˘

djpxp1qq

ff

, (2.2)

where the conventions d1pxq “ x and 0{0 “ 1 are adopted. Note that UDn is a

symmetric function by construction. In the following section, we identify necessary

and sufficient conditions that guarantee this function to be an n-copula, and as a

byproduct, guarantee the compatibility of the given diagonal functions, i.e., when

there exists an n-copula such that the diagonal sections of its lower-dimensional

marginals are the given diagonal functions.

Remark 2.1. Note that the expression in Eq. (2.2) is a weighted average. For

a given point x P r0, 1sn, the values xp1q, d2pxp1qq, . . . , dn´1pxp1qq, dnpxp1qq have

corresponding weights
xp2q´xp1q

1´xp1q
,
xp3q´xp2q

1´xp1q
, . . . ,

xpnq´xpn´1q

1´xp1q
,

1´xpnq
1´xp1q

, which are easily

verified to add up to one. Hence, when UDn is an n-copula, we can interprete

Eq. (2.2) as a mixture of distributions. Indeed, if X1, ..., Xn are random variables

with joint cumulative distribution function given by Eq. (2.2), then the variables

are exchangeable, due the symmetry of UDn . Hence, for any x P r0, 1sn, it holds

PpX1 ď x1, . . . , Xn ď xnq “
1´ xpnq

1´ xp1q
PpmaxpX1, . . . , Xnq ď xp1qq `

n´1
ÿ

j“1

xpj`1q ´ xpjq

1´ xp1q
PpmaxpX1, . . . , Xjq ď xp1qq .

Note that this is not a mixture of distributions of the order statistics associated to

X1, ..., Xn.

Remark 2.2. The above construction yields a generalization of upper semilinear

2-copulas. Following the same reasoning for the lower semilinear case, it turns out

that the lower semilinear function LDn in n dimensions is given by:

LDnpxq “
xp1qdnpxpnqq

xpnq
.

Note that this expression only depends on dn. There is a simple probabilistic

argument that proves that this lower semilinear function is an n-copula if and only

if dnpxq “ x, whence LDn “ Mn. Indeed, from the expression of LDn it follows

that the pn´ 1q-marginal LDn´1 (putting xpnq “ 1) is Mn´1. This implies that if

X1, ..., Xn are random variables with joint distribution LDn , then the equalities

X1 “ X2 “ ¨ ¨ ¨ “ Xn´1 hold almost surely (a.s.) and since LDn is a symmetric

function, it follows that the equalities X1 “ X2 “ ¨ ¨ ¨ “ Xn hold a.s., i.e., the

random variables are perfectly positive dependent and, hence, the n-copula of the

random vector pX1, X2, ..., Xnq must be Mn. It thus follows that the only lower

semilinear n-copula is Mn if n ě 3.

20
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The above observation is not in conflict with the result obtained in [54], where

Durante et al. also constructed an n-dimensional copula that reduces to the

bivariate lower semilinear copula when setting n “ 2. However, their construction

is not based on linear interpolation between the diagonal and the lower faces.

Remark 2.3. Another generalization of lower bivariate semilinear copulas was

proposed in [136]. It is not based on linear interpolation between the diagonal and

the lower faces, but rather on the study of exogenous shock models. More precisely,

the survival copula corresponding to an exchangeable exogenous shock model is

characterized in terms of functions that can be regarded as quotients of diagonal

functions. As a consequence, the construction method in [133] is one of the first

attempts to build an n-copula given both the diagonal section of the n-copula and

the diagonal sections of all of its marginals.

2.3. Characterization

For the characterization of upper semilinear n-copulas, we need some combinatorial

identities. First, recall that for n, k P Z, the binomial coefficient is defined as:

ˆ

n

k

˙

“

$

’

’

’

’

’

&

’

’

’

’

’

%

1

k!

k´1
ś

j“0

pn´ jq , if k ą 0,

1 , if k “ 0,

0 , if k ă 0.

Note that if n is a positive integer and k ą n, it follows from this definition that
`

n
k

˘

“ 0. The following identities, which we will use in the proof of the next theorem,

were taken from [91].

Lemma 2.1. For any positive integers n and k, it holds that:

k
ÿ

j“0

p´1qj
ˆ

n

j

˙

“ p´1qk
ˆ

n´ 1

k

˙

.

Note that for k “ n, we retrieve the well-known identity
n
ř

j“0

p´1qj
`

n
j

˘

“ 0.

Remark 2.4. Note that any n-box can be decomposed in smaller boxes of the

form:
n
ą

j“1

raj , bjs ,

where for all i ‰ j either aj ě bi, ai ě bj or rai, bis “ raj , bjs holds. Due to the

symmetry of UDn , the UDn -volume of any such box is equal to the UDn -volume of
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Chapter 2. A multivariate generalization of upper semilinear copulas

a box of the type:
r

ą

j“1

raj , bjs
mj with

r
ÿ

j“1

mj “ n , (2.3)

where for all i ă j, the inequality aj ě bi holds.

Theorem 2.1. The function UDn defined in Eq. (2.2) is an n-copula if and only

if:

(i) For any m P t1, 2, ..., n´ 1u, the function ν
pmq
Dn : r0, 1rÑ r0,8r , defined by:

ν
pmq
Dn pxq “

1

1´ x

m
ÿ

j“0

p´1qj
ˆ

m

j

˙

dn´m`jpxq ,

is increasing. Note that p1 ´ xqν
pmq
Dn pxq represents the UDn-volume of the

n-box r0, xsn´m ˆ rx, 1sm.

(ii) The function ζDn : r0, 1s Ñ r0, 1s, defined by

ζDnpxq “ 1`
n
ÿ

j“1

p´1qj
ˆ

n

j

˙

djpxq

is decreasing. Note that ζDnpxq represents the UDn-volume of the n-box

rx, 1sn.

(iii) The inequality
ˆ

dnpxq

1´ x

˙1

ě
1´ ζDnpxq

p1´ xq2
(2.4)

holds almost everywhere with respect to the Lebesgue measure on s0, 1r.

Proof. It suffices to compute the volume of n-boxes of the form described in

Eq. (2.3). We split the proof in three parts. In the first part, we will compute the

volume of n-boxes of the form P “ ra1, b1s
n´m ˆ ra2, b2s

m with a2 ě b1, and we

will prove that the positivity of the volume of this type of n-boxes is equivalent to

the monotonicity of ν
pmq
Dn . In the second part, we will prove that the other types of

n-boxes that are asymmetric, and are not of the form described in the first part,

have UDn-volume zero. Finally, in the third part, we will compute the volume of

n-boxes that are centered around the main diagonal, where we will deduce the

necessity and sufficiency of conditions (ii) and (iii).

Part 1

In this case, we will compute the UDn-volume of asymmetric n-boxes of the type

P “ ra1, b1s
n´m ˆ ra2, b2s

m with a2 ě b1. Note that for the vertex x such that
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§2.3. Characterization

Spxq “ 0 (all the coordinates are of the type bj), it holds that

UDnpxq “
p1´ b2qdnpb1q ` pb2 ´ b1qdn´mpb1q

1´ b1
.

Among the vertices x such that Spxq “ 1 (just one coordinate is of the type aj),

there are
`

n´m
0

˘`

m
1

˘

vertices that have one coordinate equal to a2; for these vertices,

it holds that

UDnpxq “
p1´ b2qdnpb1q ` pb2 ´ a2qdn´m`1pb1q ` pa2 ´ b1qdn´mpb1q

1´ b1
.

The remaining
`

n´m
1

˘`

m
0

˘

vertices such that Spxq “ 1 have one coordinate equal to

a1, and hence, for those vertices it holds that

UDnpxq “
p1´ b2qdnpa1q ` pb2 ´ b1qdn´mpa1q ` pb1 ´ a1qa1

1´ a1
.

For the vertices such that Spxq “ 2 (exactly two coordinates are of the type aj),

the value

p1´ b2qdnpb1q ` pb2 ´ a2qdn´m`2pb1q ` pa2 ´ b1qdn´mpb1q

1´ b1

is assigned to
`

n´m
0

˘`

m
2

˘

vertices, the value

p1´ b2qdnpa1q ` pb2 ´ a2qdn´m`1pb1q ` pa2 ´ b1qdn´mpa1q ` pb1 ´ a1qa1

1´ a1

to
`

n´m
1

˘`

m
1

˘

vertices, whereas in the remaining
`

n´m
2

˘`

m
0

˘

vertices the value is

p1´ b2qdnpa1q ` pb2 ´ b1qdn´mpa1q ` pb1 ´ a1qd2pa1q

1´ a1
.

Continuing this procedure, we obtain that for vertices x such that Spxq “ s for

any 0 ď s ď n, there are
`

n´m
0

˘`

m
s

˘

vertices where UDn takes the form

UDnpxq “
p1´ b2qdnpb1q ` pb2 ´ a2qdn´m`spb1q ` pa2 ´ b1qdn´mpb1q

1´ b1
,

whereas in the remaining
`

n´m
k

˘`

m
s´k

˘

vertices (k P t1, 2, ...,mu), UDn is given by

UDnpxq “
p1´ b2qdnpa1q ` pb2 ´ a2qdn´m`s´kpa1q

1´ a1

`
pa2 ´ b1qdn´mpa1q ` pb1 ´ a1qdkpa1q

1´ a1
.
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Chapter 2. A multivariate generalization of upper semilinear copulas

Hence, the UDn -volume of the n-box P is given by

VUDn
pPq “

ÿ

xPverticespPq

p´1qSpx)UDnpxq

“

n
ÿ

s“0

p´1qs
ˆ

m

s

˙

p1´ b2qdnpb1q ` pb2 ´ a2qdn´m`spb1q ` pa2 ´ b1qdn´mpb1q

1´ b1

`

n
ÿ

k“1

n
ÿ

s“k

p´1qs
ˆ

n´m

k

˙ˆ

m

s´ k

˙„

p1´ b2qdnpa1q ` pb2 ´ a2qdn´m`s´kpa1q

1´ a1



`

n
ÿ

k“1

n
ÿ

s“k

p´1qs
ˆ

n´m

k

˙ˆ

m

s´ k

˙„

pa2 ´ b1qdn´mpa1q ` pb1 ´ a1qdkpa1q

1´ a1



.

Observe that in the first summation, the terms p1´ b2qdnpb1q{p1´ b1q and pa2 ´

b1qdn´mpb1q{1´ b1 are constant with respect to the summation index and, hence,

have a coefficient equal to zero due to Lemma 2.1. Next, we note that in the second

and third summations, if the coefficients k and s are such that at least one of

the inequalities k ą n´m or s ą m` k holds, then the respective combinatorial

coefficient is zero, and hence:

VUDn
pPq “

ÿ

xPverticespPq

p´1qSpx)UDnpxq

“

n
ÿ

s“0

p´1qs
ˆ

m

s

˙

pb2 ´ a2qdn´m`spb1q

1´ b1

`

n´m
ÿ

k“1

m`k
ÿ

s“k

p´1qs
ˆ

n´m

k

˙ˆ

m

s´ k

˙„

p1´ b2qdnpa1q ` pb2 ´ a2qdn´m`s´kpa1q

1´ a1



`

n´m
ÿ

k“1

m`k
ÿ

s“k

p´1qs
ˆ

n´m

k

˙ˆ

m

s´ k

˙„

pa2 ´ b1qdn´mpa1q ` pb1 ´ a1qdkpa1q

1´ a1



.

By applying the change of variable t “ s´ k in the second and third summations,

we obtain

VUDn
pPq “

m
ÿ

s“0

p´1qs
ˆ

m

s

˙

pb2 ´ a2qdn´m`spb1q

1´ b1

`

n´m
ÿ

k“1

m
ÿ

t“0

p´1qs`t
ˆ

n´m

k

˙ˆ

m

t

˙

pb2 ´ a2qdn´m`tpa1q

1´ a1

“ pb2 ´ a2q

«

ν
pmq
Dn pb1q `

n´m
ÿ

k“1

p´1qk
ˆ

n´m

k

˙

ν
pmq
Dn pa1q

ff

.

Since due to Lemma 2.1 it holds that

0 “
n´m
ÿ

k“0

p´1qk
ˆ

n´m

k

˙

“ 1`
n´m
ÿ

k“1

p´1qk
ˆ

n´m

k

˙

,
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we get

VUDn
pPq “ pb2 ´ a2q

”

ν
pmq
Dn pb1q ´ ν

pmq
Dn pa1q

ı

.

From this equality, it follows that VUDn
pPq is positive if and only if ν

pmq
Dn is increasing

for all m P t1, 2, ..., n´ 1u.

Part 2

Next, we prove that the other types of asymmetric n-boxes, which are not of the

form described in the first part, have UDn -volume zero. Let P be an n-box of the

form described in Eq. (2.3), with r ě 3 (the case r “ 2 is treated in Part 1). Using

a similar reasoning as in the previous part, we can show that for the
`

n
s

˘

vertices

such that Spxq “ s, the value

p1´ brqdnpa1q `

r
ÿ

j“1

pbj ´ ajqdřj´1
k“1 mk`rj

pa1q `

r
ÿ

j“1

paj`1 ´ bjqdřj
k“1 mk

pa1q

1´ a1

is assigned to
r
ź

j“1

ˆ

mj

ij

˙

with
r
ÿ

j“1

ij “ s and i1 ą 0 ,

vertices. Similarly, the value

p1´ brqdnpb1q `
r
ÿ

j“1

pbj ´ ajqdřj´1
k“1 mk`rj

pb1q `
r
ÿ

j“1

paj`1 ´ bjqdřj
k“1 mk

pb1q

1´ b1

is assigned to
r
ź

j“2

ˆ

mj

ij

˙

with
r
ÿ

j“2

ij “ s ,

vertices. Hence, the UDn -volume of the n-box P is given by:

VUDn
pPq “ V

p1q
UDn

pPq ` V
p2q
UDn

pPq ,

where

V
p1q
UDn

pPq “
n
ÿ

s“0

p´1qs
ÿ

iPAs

«

r
ź

k“1

ˆ

mk

ik

˙

ff

UDnpxiq ,

with

As “ tpi1, i2, . . . , irq P t0, 1, 2, . . . , su
r | i1 ą 0 and

r
ÿ

j“1

ij “ su ,

and

V
p2q
UDn

pPq “
n
ÿ

s“0

p´1qs
ÿ

iPBs

«

r
ź

k“1

ˆ

mk

ik

˙

ff

UDnpxiq ,
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with

Bs “ tpi1, i2, . . . , irq P t0, 1, 2, . . . , su
r | i1 “ 0 and

r
ÿ

j“1

ij “ su .

For the first term, V
p1q
UDn

pPq, note that there are r summations involved, since i is

of dimension r, and so, by rearranging the terms in a similar way as in the first

part, we get:

V
p1q
UDn

pPq “
m1
ÿ

i1“1

m2
ÿ

i2“0

...
n
ÿ

s“mr´
řr´1
j“1 ij

p´1qs

«

r´1
ź

k“1

ˆ

mk

ik

˙

ff

ˆ

mr

s´
řr´1
j“1 ij

˙

UDnpxiq .

By applying the change of variable ir “ s´
r´1
ÿ

j“1

ij , we can rewrite V
p1q
UDn

pPq as

V
p1q
UDn

pPq “
m1
ÿ

i1“1

m2
ÿ

i2“0

...
mr
ÿ

ir“0

p´1qi1`i2`...`ir

«

r
ź

k“1

ˆ

mk

ik

˙

ff

p1´ brqdnpa1q

1´ a1

`

m1
ÿ

i1“1

m2
ÿ

i2“0

...
mr
ÿ

ir“0

p´1qi1`i2`...`ir

«

r
ź

k“1

ˆ

mk

ik

˙

ff

r
ÿ

j“1

pbj ´ ajqdřj´1
k“1 mk`rj

pa1q

1´ a1

`

m1
ÿ

i1“1

m2
ÿ

i2“0

...
mr
ÿ

ir“0

p´1qi1`i2`...`ir

«

r
ź

k“1

ˆ

mk

ik

˙

ff

r
ÿ

j“1

paj`1 ´ bjqdřj
k“1 mk

pa1q

1´ a1
.

From this expression, it obviously follows with Lemma 2.1 that V
p1q
UDn

pPq equals

zero. Using a similar reasoning, it can be proven that also V
p2q
UDn

pPq equals to zero.

Part 3

Finally, we will compute the volume of an n-box P “ ra, bsn centered around the

main diagonal. It is easy to see that in this case, if a vertex is such that Spx) “ s,

with s P t1, 2, ..., n´ 1u, then

UDnpxq “
p1´ bqdnpaq ` pb´ aqdspaq

1´ a
.

It then follows immediately that

VUDn
pPq “ dnpbq ` p´1qndnpaq `

n´1
ÿ

j“1

p´1qj
ˆ

n

j

˙

p1´ bqdnpaq ` pb´ aqdjpaq

1´ a
,

which can be rewritten as

VUDn
pPq “ dnpbq`p´1qndnpaq´p1`p´1qnq

p1´ bqdnpaq

1´ a
`

n´1
ÿ

j“1

p´1qj
ˆ

n

j

˙

pb´ aqdjpaq

1´ a
,
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which reduces to

dnpbq ´
p1´ bqdnpaq

1´ a
`

n
ÿ

j“1

p´1qj
ˆ

n

j

˙

pb´ aqdjpaq

1´ a
.

Hence, the positivity of the UDn -volume of the n-box P is equivalent to

dnpbq

1´ b
´
dnpaq

1´ a
ě ´

n
ÿ

j“1

p´1qj
ˆ

n

j

˙

pb´ aqdjpaq

p1´ aqp1´ bq
,

which can be rewritten as

dnpbq

1´ b
´
dnpaq

1´ a
ě
pb´ aqp1´ ζDnpaqq

p1´ aqp1´ bq
. (2.5)

Now, if UDn is a copula, then it is clear that (ii) holds, and by dividing both sides

of Eq. (2.5) by b´a and taking the limit as bÑ a, we get that condition (iii) holds.

For the sufficiency, suppose that conditions (i), (ii) and (iii) hold. Clearly, the

function ζDn is absolutely continuous, since it is a linear combination of diagonal

functions, which are absolutely continuous. Hence, by integrating from a to b in

both sides of Eq. (2.4), we get

dnpbq

1´ b
´
dnpaq

1´ a
ě

ż b

a

1´ ζDnptq

p1´ tq2
dt ě

ż b

a

1´ ζDnpaq

p1´ tq2
dt “

pb´ aqp1´ ζDnpaqq

p1´ aqp1´ bq
.

The second inequality is justified by condition (ii). Note that this last expression

implies that Eq. (2.5) holds, which is in turn equivalent to VUDn
pPq ě 0.

Remark 2.5. Recall that the function ζDnpxq represents the UDn-volume of

the n-box rx, 1sn. This function can also be used to compute one of the tail

dependence coefficients. Some elementary computations show that λL “ d1np0
`q

and λU “ ζ 1Dnp1
´q, provided that the limits exist.

We now study the particular case when the n-copula UDn and all of its lower

dimensional marginals have the same diagonal section, i.e., when d2 “ d3 “

... “ dn “ d. This case also appeared in [8], where it was proven that for a specific

type of diagonal functions, the associated n-dimensional Bertino copula is such

that all of its lower dimensional marginals have the same diagonal section as the

Bertino n-copula itself.

Note that if d2 “ d3 “ ... “ dn “ d, then the expression in Eq. (2.2) reduces to:

UDnpxq “

`

1´ xp2q
˘

d
`

xp1q
˘

`
`

xp2q ´ xp1q
˘

xp1q

1´ xp1q
. (2.6)

For the expression given in Eq. (2.6), the conditions of Theorem 2.1 can be

reformulated as follows.
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Corollary 2.1. Let UDn be defined as in Eq. (2.6). Then UDn is an n-copula if

and only if the function ζn,d : r0, 1s Ñ r0, 1s is decreasing and the functions νn,d,

φn,d : r0, 1rÑ R are increasing, where

ζn,dpxq “ 1´ nx` pn´ 1qdpxq

φn,dpxq “
1´ nx` pn´ 1qdpxq

p1´ xqn

νn,dpxq “
x´ dpxq

1´ x
.

Proof. Some elementary calculations show that φn,d is increasing if and only if the

inequality
n´ 1

p1´ xqn´1

ˆ

d1pxq

1´ x
` n

dpxq ´ x

p1´ xq2

˙

ě 0 (2.7)

holds almost everywhere with respect the Lebesgue measure in s0, 1r . The latter

inequality is also equivalent to

d1pxq

1´ x
`

dpxq

p1´ xq2
´

1´ ζn,dpxq

p1´ xq2
ě 0 ,

which is precisely condition (iii) of Theorem 2.1. The other conditions follow

immediately from Theorem 2.1.

2.4. Examples

Example 2.1. Consider the function dpa, λ;xq given by

dpa, λ;xq “

$

’

&

’

%

λx , if 0 ď x ď a ,

p1´ λaqx´ ap1´ λq

1´ a
, if a ă x ď 1 .

This function is an n-diagonal function if and only if λ P r0, 1s and a P r0, pn ´

1q{pn´ λqs.

Let λ1 “ 1. It is clear that, independently of the value of a, dpa, λ1;xq “ x. Now

choose λ2, λ3, . . . , λn such that the following inequalities are satisfied:

(a) For any m P t1, 2, . . . ,m´ 1u, it holds that

m
ÿ

j“0

p´1qj
ˆ

m

j

˙

λn´m`j ě 0 , (2.8)
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(b) The parameter a is upper bounded as follows

a ď
λn

řn
j“1p´1qj`1

`

n
j

˘

λj
, (2.9)

Then Dn “ pdpa, λ2; ¨q, dpa, λ3; ¨q, ..., dpa, λn; ¨qq satisfies the conditions of Theo-

rem 2.1. Indeed, note that the function ν
pmq
Dn is given by

ν
pmq
Dn pxq “ min

ˆ

x

1´ x
,

a

1´ a

˙ m
ÿ

j“0

p´1qj
ˆ

m

j

˙

,

which is clearly increasing if inequality (2.8) holds. Now, note that

ζDnpxq “

$

’

’

’

’

&

’

’

’

’

%

1` x
n
ÿ

j“1

p´1qj
ˆ

n

j

˙

λj , if 0 ď x ď a ,

1´ nx`
n
ÿ

j“2

p´1qj
ˆ

n

j

˙ˆ

p1´ λjaqx´ ap1´ λjq

1´ a

˙

, if a ă x ď 1 .

We will show that this function is decreasing. Clearly

ζ 1Dnpxq “
n
ÿ

j“1

p´1qj
ˆ

n

j

˙

λj , (2.10)

on the interval s0, ar. We will show by induction that this expression is negative.

For n “ 2, it is clear that Eq. (2.10) reduces to ´2` λ2, which is always negative.

For n “ 3, we have

ζ 1D3
pxq “ ´3` 3λ2 ´ λ3 “ ´p1´ 2λ2 ` λ3q ` pλ2 ´ 2q .

The first term is negative due to Eq. (2.8), while the second term is negative due

to the previous step. In general, by using the identity
`

n´1
j´1

˘

`
`

n´1
j

˘

“
`

n
j

˘

, we can

rewrite Eq. (2.10) as

ζ 1Dnpxq “
n
ÿ

j“1

p´1qj
ˆ

n

j

˙

λj “
n´1
ÿ

j“0

p´1qj`1

ˆ

n´ 1

j

˙

λj `
n´1
ÿ

j“1

p´1qj
ˆ

n´ 1

j

˙

λj .

Once again, the first summation is negative due to Eq. (2.8) and the second

summation is negative due to the induction hypothesis. Next, for x P sa, 1r, we

have

ζ 1Dnpxq “ ´n`
n
ÿ

j“2

p´1qj
ˆ

n

j

˙

p1´ λjaq

1´ a
“ ´n`

n´ 1` a
řn
j“2p´1qj`1

`

n
j

˘

λj

1´ a
.
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Chapter 2. A multivariate generalization of upper semilinear copulas

Using inequality (2.9), we get

ζ 1Dnpxq ď ´n`
n´ 1` λn ´ na

1´ a
“
λn ´ 1

1´ a
ď 0 .

Hence, it follows that ζ 1Dn ď 0 almost everywhere in s0, 1r and since ζDn is

continuous, we can conclude that ζDn is decreasing. We now verify condition (iii)

of Theorem 2.1. This condition states that for x P s0, as, it should hold that

λn
1´ x

`
λnx

p1´ xq2
ě

řn
j“1p´1qj`1

`

n
j

˘

λjx

p1´ xq2
.

Some simple computations show that this is equivalent to inequality (2.9). Fur-

thermore, for x P sa, 1s, it should hold that

1´ λna

1´ x
`
p1´ λnaqx´ ap1´ λnq

p1´ xq2
ě

řn
j“1p1´ λjaqx´ ap1´ λjq

p1´ xq2

“
x´ a` ap1´ xq

řn
j“1p´1qj`1

`

n
j

˘

λj

p1´ xq2
.

After some elementary computations, this last inequality is seen to be equivalent to

a ď
1

řn
j“1p´1qj`1

`

n
j

˘

λj
,

which is satisfied since inequality (2.9) holds.

Example 2.2. Let dnpxq “ xα. Some elementary calculations show that the

conditions of Corollary 2.1 are fulfilled if and only if α P r1, n{pn´ 1qs.

Example 2.3. Consider the n-diagonal function defined by dnpxq “
λx

1´p1´λqx ,

with λ P r1{2, 1s. The conditions of Corollary 2.1 are satisfied if and only if

λ P rpn ´ 1q{n, 1s. Indeed, some simple computations show that the sign of the

derivative of φn,dn only depends on

λ´ nxp1´ λqp1´ p1´ λqxq .

The latter expression is always decreasing if λ ą 1{2. Hence, the minimum is

attained at x “ 1, from which we get the condition that φn,dn is increasing if and

only if λ ě pn´ 1q{n. If λ ď 1{2, then the function has a minimum at 1{r2p1´ λqs,

where it is easy to see that the derivative is negative in an open interval centered

around this value. The other conditions are trivially satisfied.

Example 2.4. In this example, we find the smallest dn such that the function φnd
from Corollary 2.1 is increasing. From Eq. (2.7) it follows that φn,d is increasing if
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and only if
d1nptq

p1´ tqn
`

dnptq

p1´ tqn`1
´

nt

p1´ tqn`1
ě 0

holds almost everywhere. Integrating the left and right side of this last inequality

from 0 to x, we get that the following inequality holds almost everywhere in s0, 1r:

dnpxq ě
p1´ xqn ` nx´ 1

n´ 1
“ dn,0pxq .

Since both dn,0 and dn are continuous, the inequality holds for all x P r0, 1s. Some

easy computations show that dn,0 is an n-diagonal function, ζn,dn,0 is a decreasing

function and the functions φn,dn,0 and νn,dn,0 are increasing. Hence, by construction,

dn,0 is the smallest n-diagonal function such that UDn defined as in Eq. (2.6) is an

n-copula.

Remark 2.6. Note that dn,0pxq ě xn. To see this, note that if n ě 2 is an integer,

then for any x P r0, 1s it holds that

p1´ xqn´1 rpn´ 2qx` 1s ď p1´ xqn´2 rpn´ 3qx` 1s .

This inequality is equivalent to:

dn´1,0pxq “
p1´ xqn´1 ` pn´ 1qx´ 1

n´ 2
ď
p1´ xqn ` nx´ 1

n´ 1
“ dn,0pxq .

Since d2,0pxq “ x2, it follows from the last expression that dn,0pxq ě xn. As a

consequence, for any dn that satisfies the conditions of Corollary 2.1, the inequality

UDnpxq ě Πnpxq

holds for any x P r0, 1sn, where UDn is defined as in Eq. (2.6). This generalizes

the well-known result that for n “ 2, the upper semilinear 2-copulas are positively

quadrant dependent.
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3 A construction method for radially

symmetric copulas in higher

dimensions

3.1. Introduction

For this chapter, we rotate the kaleidoscope of copulas and switch our attention

from the diagonal section of an n-copula to the concept of radial symmetry.

The concept of symmetry of a random variable is uniquely defined. A random

variable X is said to be symmetric about a if X ´ a has the same distribution

as a´X. In the multivariate case, the situation is more complicated, as there

are several ways to generalize the notion of univariate symmetry (see, for exam-

ple, [188]). One such possible generalization is the concept of radial symmetry. An

n-dimensional random vector pX1, . . . , Xnq is said to be radially symmetric about

pa1, . . . , anq if the random vector pX1´ a1, . . . , Xn´ anq has the same distribution

as the random vector pa1 ´X1, . . . , an ´Xnq.

One of the advantages of radial symmetry is that it is a rank invariant property [153]

and, as a consequence, it can be studied on the basis of the associated n-copula

of the random vector. It can be easily shown that a continuous random vector

pX1, . . . , Xnq is radially symmetric about pa1, . . . , anq if and only if, for any j P

t1, . . . , nu, Xj´aj has the same distribution as aj´Xj , and Cn “ C̄n, where Cn is

the copula associated to the random vector pX1, . . . , Xnq and C̄n its survival copula

as defined in Chapter 1. Due to this characterization, we say that an n-copula Cn
is radially symmetric if it satisfies the identity Cn “ C̄n. Clearly, radial symmetry

of an n-copula implies the radial symmetry of its lower dimensional marginals,

however, the converse statement is not true. For example, the Frank 3-copula is

not radially symmetric, even though all its 2-dimensional marginals are radially

symmetric.

Radially symmetric copulas have a particular importance in stochastic simulation

and statistics, as they can be used, in certain situations, in the multivariate version

of the antithetic variates method, which is a variance reduction technique used in

Monte Carlo methods [134]. Additionally, there has also been a growing interest in

developing statistical tests for testing the presence of radial symmetry [2, 19, 42,

87, 95, 162, 173].

In the bivariate case, well-known examples of families of copulas that are radi-

ally symmetric are the Frank family and the Farlie-Gumbel-Morgenstern (FGM)
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Chapter 3. A construction method for radially symmetric copulas in higher dimensions

family [152]. However, there are only a few families of n-copulas that are radially

symmetric for n ě 3, elliptical copulas being the best known [134].

Even well-known methods to construct n-copulas in higher dimensions are not

useful to construct radially symmetric n-copulas, such as, for example, associative

extensions of 2-copulas. Recall that a 2-copula is associative if for any x, y, z P r0, 1s

the equality C2px,C2py, zqq “ C2pC2px, yq, zq holds, thus allowing to extend it

recursively to higher dimensions by defining for any n ě 2 and x P r0, 1sn`1,

Cn`1pxq “ C2px1, Cnpx2, . . . , xn`1qq “ C2pCnpx1, . . . , xnq, xn`1q .

However, we now show that radial symmetry can be rather restrictive if we focus

only on associative copulas. To see this, note that if a 2-copula is radially symmetric,

then for any x, y P r0, 1s, it holds that

C2px, yq ` p1´ C2p1´ x, 1´ yqq “ x` y . (3.1)

If C2 is an associative copula, the latter equation is a particular case of a functional

equation studied by Frank in [79], where it is proven that the only functions

F : r0, 1s2 Ñ r0, 1s that satisfy conditions (c1) and (c2) of a 2-copula and are such

that both F px, yq and Gpx, yq “ x` y ´ F px, yq are associative, are the members

of the Frank family of 2-copulas or ordinal sums of members of this family. We

first recall the concept of an ordinal sum. Let pCn,jqjPJ be a family of n–copulas.

For any x, denote by xj the point in r0, 1sn given by

xj “

ˆ

ppx1 ^ bjq ´ ajq
`

bj ´ aj
, . . . ,

ppxn ^ bjq ´ ajq
`

bj ´ aj

˙

.

The ordinal sum Cn of pCn,jqjPJ with respect to the family of intervals psaj , bjrqjPJ
is defined for all x P r0, 1sn as

Cnpxq “

$

&

%

aj ` pbj ´ ajqCn,jpx
jq , if Mnpxq P saj , bjr for some j P J ,

Mnpxq , otherwise .

Now, let us recall that the bivariate Frank family is given by:

F pαqpx, yq “ ´
1

α
ln

ˆ

1`
pe´αx ´ 1qpe´αy ´ 1q

e´α ´ 1

˙

,

where α P RY t´8,8u.

The latter result was complemented in [120] by showing that the only 2-copulas

that are both associative and radially symmetric are the members of the Frank

family of 2-copulas or ordinal sums of the form C2 “ pxaj , bj , F
pαjq
j yqjPJ , such

that for any j, there exists ij with the property that αj “ αij , aj “ 1 ´ bij and

bj “ 1´ aij .
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§3.2. The representation theorem and resulting construction method

Note that if a radially symmetric 3-copula is an associative extension of a 2-copula,

then its 2-dimensional marginals must also be radially symmetric. Unfortunately,

as shown in [125], for n ě 3 the only copulas that are obtained as an associa-

tive extension of a 2-copula and that are radially symmetric, are the product

copula Πn and the upper Fréchet-Hoeffding bound Mn or ordinal sums thereof.

As a consequence, we must drop the associativity property, as simultaneously

requiring associativity and radial symmetry is too restrictive. As a consequence,

the well-known Archimedean n-copulas cannot be radially symmetric for n ě 3,

with the exception of the product copula.

The purpose of this chapter is to provide a representation theorem for symmetric

and radially symmetric copulas. Then, we use this theorem to construct such

copulas in higher dimensions, more specifically, given a symmetric and radially

symmetric pn´ 1q-copula Cn´1, we construct a symmetric and radially symmetric

n-copula Cn, with the property that its pn ´ 1q-dimensional marginal coincides

with Cn´1. Most of the results of this chapter can be found in [10].

3.2. The representation theorem and resulting con-

struction method

The study of transformations of copulas has been a topic of great interest [84,

85, 121]. The following characterization of radially symmetric 2-copulas, which

can be easily generalized to higher dimensions, was proven by Klement et al.

in [120].

Theorem 3.1. An n-copula Cn is radially symmetric if and only if there exists

an n-copula Dn such that for any x P r0, 1sn it holds that

Cnpxq “
Dnpxq ` D̄npxq

2
. (3.2)

The latter characterization has been used in financial applications [97, 165] in

order to construct 2-copulas that are radially symmetric starting from well-known

families of 2-copulas. We now give an alternative representation of symmetric

and radially symmetric copulas in terms of a function that does not necessarily

have to be a copula. While we will formulate the following characterization for

symmetric copulas only, the results in the rest of this section can be extended to

non-symmetric copulas easily, albeit by introducing more tedious notations and

performing more extensive computations. In the following, xA in Rn´#A denotes

the vector whose components take the values of the elements x1, . . . , xn, except for

those elements xj for which j belongs to the index set A. We also remark that the

notations C2, C3, . . . , Cn´1 used further on make sense, since we will construct
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symmetric copulas and, hence, all the k-dimensional marginals are equal for any

k P t2, 3, . . . , n´ 1u.

Theorem 3.2. Let Cn be a symmetric n-copula. Then Cn is radially symmetric

if and only if there exists a symmetric function H : r0, 1sn Ñ R that satisfies the

following four properties

(1) For any x, the following equality holds

Cnpxq “
1

2

“

n
ÿ

i“1

xi ´ n` 1`
n
ÿ

iăj

C2p1´ xi, 1´ xjq

´

n
ÿ

iăjăk

C3p1´ xi, 1´ xj , 1´ xkq ` . . .

`p´1qn´1
n
ÿ

i“1

Cn´1p1´ x1, . . . , 1´ xi´1, 1´ xi`1, . . . , 1´ xnq
‰

`
1

2
rHpxq ` p´1qnHp1´ xqs , (3.3)

where Ck denotes the k-dimensional marginal of Cn.

(2) If x is such that xj “ 0 for some j P t1, 2, ..., nu, then Hpxq “ 0.

(3) If x is such that xj “ 1 for some j P t1, 2, ..., nu, then Hpxq “ Cn´1pxtjuq.

(4) For any n-box P “
Śn

i“1rai, bis Ď r0, 1s
n, it holds that VHpPq`VHp1´Pq ě

0, where 1´P “
Śn

i“1r1´ bi, 1´ ais.

Remark 3.1. Note that the right-hand side of Eq. (3.3) can be written as

1

2

`

C̄npxq ` p´1qn`1Cnp1´ xq `Hpxq ` p´1qnHp1´ xq
˘

.

We will split the proof of Theorem 3.2 in several parts. First, we identify suffi-

cient conditions that guarantee that the boundary conditions of an n-copula are

satisfied.

Proposition 3.1. Let Cn´1 be a symmetric and radially symmetric pn´ 1q-copula

and denote by Ck the k-dimensional marginal of Cn´1 and let H : r0, 1sn Ñ R be a

symmetric function. Define the function SCn´1,H : r0, 1sn Ñ R as

SCn´1,Hpxq “
1

2

“

n
ÿ

i“1

xi ´ n` 1`
n
ÿ

iăj

C2p1´ xi, 1´ xjq

´

n
ÿ

iăjăk

C3p1´ xi, 1´ xj , 1´ xkq ` . . .
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`p´1qn´1
n
ÿ

i“1

Cn´1p1´ x1, . . . , 1´ xi´1, 1´ xi`1, . . . , 1´ xnq
‰

`
1

2
rHpxq ` p´1qnHp1´ xqs , (3.4)

Then, SCn´1,H satisfies the boundary conditions of an n-copula and has Cn´1 as

its pn´ 1q-dimensional marginal if the following conditions hold:

(i) If x is such that xj “ 0 for some j P t1, 2, ..., nu, then Hpxq “ 0.

(ii) If x is such that xj “ 1 for some j P t1, 2, ..., nu, then Hpxq “ Cn´1pxtjuq.

Proof. First, we prove condition (c1) of an n-copula. Without loss of generality,

suppose that x P r0, 1sn is such that xn “ 0. Note that

n
ÿ

iăj

C2p1´ xi, 1´ xjq “
n´1
ÿ

iăj

C2p1´ xi, 1´ xjq `
n´1
ÿ

i“1

C2p1´ xi, 1´ xnq

“

n´1
ÿ

iăj

C2p1´ xi, 1´ xjq `
n´1
ÿ

i“1

p1´ xiq .

Analogously, we have

n
ÿ

iăjăk

C3p1´ xi, 1´ xj , 1´ xkq “
n´1
ÿ

iăjăk

C3p1´ xi, 1´ xj , 1´ xkq

`

n´1
ÿ

iăj

C3p1´ xi, 1´ xj , 1´ xnq

“

n´1
ÿ

iăjăk

C3p1´ xi, 1´ xj , 1´ xkq

`

n´1
ÿ

iăj

C2p1´ xi, 1´ xjq .

Continuing this procedure, we can write SCn´1,Hpxq as

SCn´1,Hpxq “
1

2

“

n´1
ÿ

i“1

xi ´ n` 1`
n´1
ÿ

i“1

p1´ xiq `
n´1
ÿ

iăj

C2p1´ xi, 1´ xjq

´

n´1
ÿ

iăjăk

C3p1´ xi, 1´ xj , 1´ xkq ´
n´1
ÿ

iăj

C2p1´ xi, 1´ xjq ` . . .

`p´1qn´1
n´1
ÿ

i“1

Cn´2p1´ x1, . . . , 1´ xi´1, 1´ xi`1, . . . , 1´ xn´1q
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`p´1qn´1Cn´1p1´ x1, . . . , 1´ xn´1q
‰

`
1

2
rHpx1, . . . , xn´1, 0q ` p´1qnHp1´ x1, . . . , 1´ xn´1, 1qqs

“ p´1qn´1 1

2
Cn´1p1´ x1, . . . , 1´ xn´1q

`p´1qn
1

2
Cn´1p1´ x1, . . . , 1´ xn´1q

“ 0 ,

where the second equality follows from conditions (i) and (ii).

To prove that the pn´1q-dimensional marginal of SCn´1,H is Cn´1, suppose w.o.l.g.

that x P r0, 1sn is such that xn “ 1. First note that

n
ÿ

iăj

C2p1´ xi, 1´ xjq “
n´1
ÿ

iăj

C2p1´ xi, 1´ xjq .

n
ÿ

iăjăk

C3p1´ xi, 1´ xj , 1´ xkq “
n´1
ÿ

iăjăk

C3p1´ xi, 1´ xj , 1´ xkq .

Continuing this procedure, we can write SCn´1,Hpxq as

SCn´1,Hpxq “
1

2

“

n´1
ÿ

i“1

xi ´ pn´ 2q `
n´1
ÿ

iăj

C2p1´ xi, 1´ xjq

´

n´1
ÿ

iăjăk

C3p1´ xi, 1´ xj , 1´ xkq ` . . .

`p´1qn´1Cn´1p1´ x1, . . . , 1´ xn´1q
‰

`
1

2
rHpx1, . . . , xn´1, 1q ` p´1qnHp1´ x1, . . . , 1´ xn´1, 0qs

“
1

2
Cn´1px1, . . . , xn´1q `

1

2
Cn´1px1, . . . , xn´1q

“ Cn´1px1, . . . , xn´1q ,

where the second equality follows from conditions (i) and (ii) and from the radial

symmetry of Cn´1.

Note that the second condition in Proposition 3.1 is more restrictive than the

boundary condition (c2) of an n-copula. If H is a symmetric n-copula that has

Cn´1 as its pn ´ 1q-dimensional marginal, then this condition is automatically

satisfied.

Next, we identify necessary and sufficient conditions that guarantee that SCn´1,H as

defined in Proposition 3.1 is an n-copula. For this purpose, we need to introduce the

notion of vacuity of a function. While we introduce this notion here for functions
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with the unit hypercube r0, 1sn as domain, it can be easily generalized to functions

with Rn as domain.

Definition 3.1. A function F : r0, 1sn Ñ r0, 1s has the vacuity property if for any

n-box P “
Śn

j“1raj , bjs Ď r0, 1s
n it holds that VF pPq “ 0.

The following characterization of functions that have the vacuity property can be

found in [32, 90].

Lemma 3.1. A function G : r0, 1sn Ñ r0, 1s has the vacuity property if and only

if there exist n functions G1, . . . Gn : r0, 1sn´1 Ñ r0, 1s such that

Gpxq “
n
ÿ

i“1

Gipxtiuq ,

i.e., G can be decomposed as a sum of functions that each depend on all but one

variable.

Remark 3.2. In [90] the term ‘modular’ is used for functions f that have the

property that any n-box has f -volume equal to 0. However, we argue that the term

‘modular’ is not adequate to describe this property. In Chapter 5 we will see that

for n “ 2 the properties of supermodularity and 2-increasingness are equivalent,

and also modularity and the vacuity property are equivalent. However, for n ě 3,

supermodularity and n-increasingness are no longer equivalent, nor modularity and

the vacuity property. Since the concept of modularity is related to the concept

of supermodularity, the term ‘modular’ is not appropriate to describe functions f

that have the property that any n-box has f -volume equal to 0.

With the help of Lemma 3.1, we can provide a characterization of the functions H

such that the function SCn´1,H defined in Eq. (3.4) yields an n-copula.

Proposition 3.2. Let Cn´1 be a symmetric and radially symmetric pn´1q-copula,

H : r0, 1sn Ñ R be a symmetric function and SCn´1,H be defined as in Eq. (3.4).

Suppose that H satisfies conditions (i) and (ii) of Proposition 3.1. Then SCn´1,H

is an n-copula if and only if for any n-box P “
Śn

i“1rai, bis Ď r0, 1s
n it holds that

VHpPq ` VHp1´Pq ě 0.

Proof. Consider the n-box P “
Śn

j“1rai, bis Ď r0, 1s
n. First, we will show that

the SCn´1,H -volume of P only depends on the terms containing the function H,

as all other terms are a function of a proper subset of all n arguments and, as a

consequence, they have the vacuity property. To formally prove the latter statement,

note that for any i P t1, 2, . . . , nu the projection fpxq “ xi has the vacuity property

since it has the representation given by Lemma 3.1, by taking for a fixed i ‰ j,

Gipxq “ xj and Gkpxq “ 0 for k ‰ i. Analogously, for any i, j P t1, 2, . . . , nu with

i ă j the function C2p1´ xi, 1´ xjq has the vacuity property by taking for a fixed

k R ti, ju, Gkpxq “ C2p1 ´ xi, 1 ´ xjq and Glpxq “ 0 for l ‰ k. Continuing this

procedure, it follows that the SCn´1,H -volume of P only depends on H. Hence, from
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the expression of SCn´1,H , the only terms that do not have the vacuity property

are Hpxq and p´1qnHp1´ xq. Note that the H̃-volume of P, with H̃ defined by

H̃pxq “ p´1qnHp1´ xq, is equal to VHp1´Pq since the function xÑ 1´ x maps

the interval ra, bs into the interval r1´b, 1´as, while the term p´1qn is a correction

factor for odd n. As a consequence, the SCn´1,H -volume of P is given by

VSCn´1,H
pPq “

1

2
pVHpPq ` VHp1´Pqq .

From the last equality, it follows that VSCn´1,H
pPq ě 0 if and only if VHpPq `

VHp1´Pq ě 0.

Finally, we will prove that our construction method yields a radially symmetric

n-copula when SCn´1,H is an n-copula.

Proposition 3.3. Let Cn´1 be a symmetric and radially symmetric pn´1q-copula,

H : r0, 1sn Ñ R be a symmetric function that satisfies conditions (i) and (ii) of

Proposition 3.1 and and SCn´1,H be defined as in Eq. (3.4). If SCn´1,H is an

n-copula, then it is radially symmetric.

Proof. In this proof, we will write S̄Cn,H as shorthand for ĞSCn,H . We start by

computing S̄Cn,H :

S̄Cn´1,Hpxq “
n
ÿ

i“1

xi ´ n` 1`
n
ÿ

iăj

SCn´1,Hp1, . . . , 1´ xi, . . . , 1´ xj , . . . , 1q

´

n
ÿ

iăjăk

SCn´1,Hp1, . . . , 1´ xi, . . . , 1´ xj , . . . 1´ xk, . . . , 1q ` . . .

`p´1qnSCn´1,Hp1´ x1, 1´ x2, . . . , 1´ xnq .

Since H satisfies conditions (i) and (ii) of Proposition 3.1, it follows that it is

possible to write all the lower-dimensional marginals of SCn´1,H in terms of the

pn´1q-copula Cn´1. Denote by Ck the k-dimensional marginal of Cn´1. Note that

SCn´1,Hp1, . . . , 1´ xi, . . . , 1´ xj , . . . , 1q “ C2p1´ xi, 1´ xjq ,

SCn´1,Hp1, . . . , 1´ xi, . . . , 1´ xj , . . . , 1´ xk, . . . , 1q “ C3p1´ xi, 1´ xj , 1´ xkq ,

and so on. Hence,

S̄Cn´1,Hpxq “
n
ÿ

i“1

xi ´ n` 1`
n
ÿ

iăj

C2p1´ xi, 1´ xjq

´

n
ÿ

iăjăk

C3p1´ xi, 1´ xj , 1´ xkq ` . . .
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`p´1qnSCn´1,Hp1´ x1, 1´ x2, . . . , 1´ xnq . (3.5)

Now, SCn´1,Hp1´ xq can be written as

SCn´1,Hp1´ xq “
1

2

“

1´
n
ÿ

i“1

xi `
n
ÿ

iăj

C2pxi, xjq ´
n
ÿ

iăjăk

C3pxi, xj , xkq ` . . .

`p´1qn´1
n
ÿ

i“1

Cn´1px1, . . . , xi´1, xi`1, . . . , xnq
‰

`
1

2
rHp1´ xq ` p´1qnHpxqs .

Since C2 is radially symmetric, it holds that

n
ÿ

iăj

C2pxi, xjq “
n
ÿ

iăj

pxi ` xj ´ 1` C2p1´ xi, 1´ xjqq (3.6)

“

ˆ

n´ 1

1

˙ n
ÿ

i“1

xi ´

ˆ

n

2

˙

`

ˆ

n´ 2

0

˙ n
ÿ

iăj

C2p1´ xi, 1´ xjq ,

taking into account that there are
`

n
2

˘

terms in the sum in the right-hand side of

Eq. (3.6) and for a fixed i, the term xi appears in n´ 1 terms of the sum. Next,

n
ÿ

iăjăk

C3pxi, xj , xkq “
n
ÿ

iăjăk

pxi ` xj ` xk ´ 2` C2p1´ xi, 1´ xjq

`C2p1´ xi, 1´ xkq ` C2p1´ xj , 1´ xkq

´C3p1´ xi, 1´ xj , 1´ xkqq (3.7)

“

ˆ

n´ 1

2

˙ n
ÿ

i“1

xi ´ 2

ˆ

n

3

˙

`

ˆ

n´ 2

1

˙ n
ÿ

iăj

C2p1´ xi, 1´ xjq

´

ˆ

n´ 3

0

˙ n
ÿ

iăjăk

C3p1´ xi, 1´ xj , 1´ xkq ,

taking into account that there are
`

n
3

˘

terms in the sum in the right-hand side of

Eq. (3.7) and for a fixed i, the term xi appears in
`

n´1
2

˘

of the terms of the sum

and the term C2p1´ xi, 1´ xjq appears in
`

n´2
1

˘

terms of the sum. In general, the
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sum of all the k-dimensional marginals is equal to

ÿ

AĎt1,...,n´1u
#A“n´k

CkpxAq “

ˆ

n´ 1

k ´ 1

˙ n
ÿ

i“1

xi ´ pk ´ 1q

ˆ

n

k

˙

`

ˆ

n´ 2

k ´ 2

˙ n
ÿ

iăj

C2p1´ xi, 1´ xjq

´

ˆ

n´ 3

k ´ 3

˙ n
ÿ

iăjăk

C3p1´ xi, 1´ xj , 1´ xkq ` . . .

p´1qk
ˆ

n´ k

0

˙

ÿ

AĎt1,...,nu
#A“n´k

Ckp1´ xAq .

Hence, we can rewrite SCn´1,Hp1´ xq as

SCn´1,Hp1´ xq “
1

2

“

1´
n
ÿ

i“1

xi `

ˆ

n´ 1

1

˙ n
ÿ

i“1

xi ´

ˆ

n

2

˙

`

ˆ

n´ 2

0

˙ n
ÿ

iăj

C2p1´ xi, 1´ xjq

´

ˆ

n´ 1

2

˙ n
ÿ

i“1

xi ` 2

ˆ

n

3

˙

´

ˆ

n´ 2

1

˙ n
ÿ

iăj

C2p1´ xi, 1´ xjq

`

ˆ

n´ 3

0

˙ n
ÿ

iăjăk

C3p1´ xi, 1´ xj , 1´ xkq ` . . .
‰

`
1

2
rHp1´ xq ` p´1qnHpxqs . (3.8)

With the help of Lemma 2.1, we note that the coefficient of the sum of the

2-dimensional marginals in Eq. (3.8) is given by

n´3
ÿ

i“0

p´1qi
ˆ

n´ 2

i

˙

“ ´p´1qn´2 “ p´1qn´1 ,

while the coefficient of the sum of the 3-marginals in Eq. (3.8) is given by

n´4
ÿ

i“0

p´1qi
ˆ

n´ 3

i

˙

“ p´1qn´2 .
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In general, for any k P t2, 3, . . . , nu, the coefficient of the sum of the k-dimensional

marginals in Eq. (3.8) is given by

n´k´1
ÿ

i“0

p´1qi
ˆ

n´ k

i

˙

“ p´1qn´k`1 .

Next, the coefficient of
řn
i“1 xi in Eq. (3.8) is given by

´1`
n´2
ÿ

i“1

p´1qi
ˆ

n´ 1

i

˙

“ ´1` p1` p´1qn´1q “ p´1qn´1 .

Finally, the sum of the independent terms is given by

1´
n´1
ÿ

i“2

p´1qipi´ 1q

ˆ

n

i

˙

“ 1`
n´1
ÿ

i“2

p´1qi
ˆ

n

i

˙

´

n´1
ÿ

i“2

p´1qii

ˆ

n

i

˙

“ 1´ p1´ n` p´1qnq

´n
n´1
ÿ

i“2

p´1qi
ˆ

n´ 1

i´ 1

˙

“ 1` n´ 1` p´1qn´1 ` n
n´2
ÿ

i“1

p´1qi
ˆ

n´ 1

i

˙

“ n` p´1qn ´ np1` p´1qnq

“ pn´ 1qp´1qn .

Hence, substituting the last expressions in Eq. (3.8), we get

SCn´1,Hp1´ xq “
1

2

“

pn´ 1qp´1qn ` p´1qn´1
n
ÿ

i“1

xi

`p´1qn
n
ÿ

iăj

C2p1´ xi, 1´ xjq

`p´1qn´2
n
ÿ

iăjăk

C3p1´ xi, 1´ xj , 1´ xkq ` . . .
‰

`
1

2
rHp1´ xq ` p´1qnHpxqs .

Multiplying both sides of the last equality by p´1qn, we obtain

p´1qnSCn´1,Hp1´ xq “
1

2

“

n´ 1´
n
ÿ

i“1

xi
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´

n
ÿ

iăj

C2p1´ xi, 1´ xjq

`

n
ÿ

iăjăk

C3p1´ xi, 1´ xj , 1´ xkq ` . . .
‰

`
1

2
rHpxq ` p´1qnHp1´ xqs . (3.9)

Substituting Eq. (3.9) into Eq. (3.5), we get

S̄Cn´1,Hpxq “
1

2

“

n
ÿ

i“1

xi ´ n` 1`
n
ÿ

iăj

C2p1´ xi, 1´ xjq

´

n
ÿ

iăjăk

C3p1´ xi, 1´ xj , 1´ xkq ` . . .

`p´1qn´1
n
ÿ

j“1

Cn´1p1´ x1, . . . , 1´ xj´1, 1´ xj`1, . . . , 1´ xnq
‰

`
1

2
rHpxq ` p´1qnHp1´ xqs

“ SCn´1,Hpxq .

Combining all the preceding results, we can now prove Theorem 3.2.

Proof of Theorem 3.2. First suppose that Cn is radially symmetric. Let H “ Cn.

Clearly H satisfies conditions (2)–(4), while condition (1) follows by realizing that

SCn´1,H is simply the average of Cn and its survival copula, which is equal to Cn.

Conversely, suppose that there exists a symmetric function H that satisfies condi-

tions (1)–(4). Then, by using Propositions 3.1, 3.2 and 3.3, it follows that Cn is

radially symmetric.

Remark 3.3. We note that if H satisfies conditions (i) and (ii) of Proposition 3.1

and H is n-increasing, i.e., H is an n-copula, then SCn´1,H has the form of radially

symmetric copulas given in Theorem 3.1, since the right-hand side of Eq. (3.4)

represents the average of an n-copula and its survival copula. However, Theorem 3.2

is more general than Theorem 3.1 because H does not necessarily need to be an

n-copula, since for a given n-box P, VSCn´1,H
pPq ě 0 if and only if one of the

following three conditions holds:

(i) VHpPq ě 0 and VHp1´Pq ě 0;

(ii) VHpPq ă 0 and VHp1´Pq ě |VHpPq|;
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(iii) VHp1´Pq ă 0 and VHpPq ě |VHp1´Pq|.

Conditions (ii) and (iii) cannot be fulfilled if H is an n-copula. Further on, we

will give an example of a function H that is not an n-copula, but satisfies the

conditions of Proposition 3.2.

From Theorem 3.2 we have the following corollary, the proof of which is obvi-

ous.

Corollary 3.1. Let Cn be a symmetric and radially symmetric n-copula. If there

exists a symmetric function H : r0, 1sn Ñ R such that Cn can be written in terms

of H as in Eq. (3.3), then for any n-box P it holds that VHpPq ` VHp1´Pq ě 0.

Next, we give an example of the representation of radially symmetric copulas in

terms of a function H as described in Theorem 3.2 and as a byproduct, we show

that the function H is not unique.

Example 3.1. Consider the member of the Dirichlet family of 3-copulas [132, 181]

given by

C3px, y, zq “
xp1qpxp2q ` 1qpxp3q ` 2q

6
,

where xp1q :“ minpx, y, zq, xp2q :“ medpx, y, zq and xp3q :“ maxpx, y, zq. It can be

proven that this copula is radially symmetric [181]. Some elementary computations

show that for any c P R, the symmetric function Hc : r0, 1s3 Ñ R defined by

Hcpx, y, zq “
xp1qxp2qxp3q ` 2xp1qxp2q ` 3xp1q ´ cxp1qp1´ xp3qq

6

satisfies conditions (1), (2) and (3) of Theorem 3.2. Using Corollary 3.1, it follows

that for any 3-box P and c P R it holds that VHcpPq ` VHcp1´Pq ě 0. Some

tedious computations show that Hc is a 3-copula if and only if c P r0, 2s.

Remark 3.4. From Example 3.1, one can see that the function H neither needs to

be increasing nor 1-Lipschitz continuous by taking ´c large enough. Additionally,

if we consider a 3-box P0 “ rx1, x2s
2 ˆ ry1, y2s such that x1 ă x2 ă y1 ă y2, then

for the function Hc of Example 3.1 it holds that

VHcpP0q “
1

6

`

px2 ´ x1q
2py2 ´ y1q ` cpx2 ´ x1qpy2 ´ y1q

˘

.

Clearly, the function g : RÑ R defined by gpcq “ VHcpP0q is neither bounded from

above nor from below.

We now turn Theorem 3.2 into a construction method. Our objective is, given a

symmetric and radially symmetric pn´ 1q-copula Cn´1, to construct a symmetric

and radially symmetric n-copula, such that all of its pn´ 1q-dimensional marginals

coincide with Cn´1. In view of Theorem 3.2, we will give some examples of

functions H that satisfy the conditions of Proposition 3.2, so that the function

SCn´1,H defined in Eq. (3.4)is a symmetric and radially symmetric n-copula.
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3.3. Possible options for the auxiliary function

In this section, we will propose several ways of constructing the auxiliary function

for H. The first one will be based on the nesting of 2-copulas, the second option

will be based on the ‹D product of copulas [58, 175], while the last one will be

based on the product of copulas.

3.3.1. An option based on the nesting of copulas

As mentioned before, requiring associativity (in particular Archimedeanity) and ra-

dial symmetry to construct copulas is too restrictive in higher dimensions. However,

some further generalizations of Archimedean n-copulas have been proposed; for ex-

ample in [138], nested Archimedean n-copulas (also called hierarchical Archimedean

n-copulas) are studied, where several Archimedean 2-copulas are iterated to con-

struct an n-copula. For example, in the trivariate case, D2px,C2py, zqq is an example

of such a construction, where C2 and D2 are Archimedean 2-copulas.

Nested Archimedean copulas suggest a way to build the auxiliary function H in

our construction method, in the sense that we can construct a trivariate function

from two bivariate functions. If C2 is a symmetric and radially symmetric 2-copula,

and D2 is a given symmetric 2-copula, we define HC2,D2 as

HC2,D2
px, y, zq “ D2px,C2py, zqq `D2py, C2px, zqq `D2pz, C2px, yqq

´
2

3
rD2px,D2py, zqq `D2py,D2px, zqq `D2pz,D2px, yqqs .

(3.10)

Since D2px,C2py, zqq may not be symmetric, in order to preserve the symmetry,

we have considered the sum D2px,C2py, zqq ` D2py, C2px, zqq ` D2pz, C2px, yqq,

while the correction term ´ 2
3 rD2px,D2py, zqq `D2py,D2px, zqq `D2pz,D2px, yqqs

guarantees that the function HC2,D2
has C2 as its 2-dimensional marginal and

satisfies the boundary conditions of Proposition 3.1. However, SC2,HC2,D2
may

even not be an increasing function. For example, if C2 “ D2 “ F p´2q, i.e., the

Frank 2-copula with parameter α “ ´2, then

SF p´2q,H
F p´2q,F p´2q

p
1

2
,

1

10
,

1

10
q ă 0 “ SF p´2q,H

F p´2q,F p´2q
p0,

1

10
,

1

10
q .

Note that if C2 “ D2, the expression of HC2,D2 reduces to

HC2,C2
px, y, zq “

1

3
rC2px,C2py, zqq ` C2py, C2px, zqq ` C2pz, C2px, yqqs .

We now provide some examples of copulas C2 and D2 such that the function HC2,D2
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satisfies condition (4) of Theorem 3.2.

Example 3.2. Consider the Frank family of 2-copulas. From [140], we know

that the 3-dimensional associative extension of the Frank 2-copula, given by

F
pαq
3 px, y, zq “ F pαqpx, F pαqpy, zqq, is a 3-copula if and only if α ě ´ lnp2q. With

the help of Mathematica, it can be shown that SF pαq,H
F pαq,F pαq

is also a 3-copula

for α ě ´ lnp3q, showing that H indeed does not need to be a copula in our

construction.

We now simulate some samples of the 3-copula given in Example 3.2, using the

statistical software R, the R package “copula” and the functions rCopula and

frankCopula for positive values of the parameter, since for the latter case we can

simulate the resulting copula as a mixture of a Frank 3-copula and its survival

3-copula. In Figure 3.1 we show samples of size m “ 100 and m “ 500 for different

parameters, with the objective of comparing the copula of Example 3.2 and the

3-dimensional associative extension of the Frank 2-copula.

Frank 3-copula, α “ 1, m “ 100 3-copula of Example 3.2, α “ 1, m “ 100

Frank 3-copula, α “ 1, m “ 500 3-copula of Example 3.2, α “ 1, m “ 500
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Frank 3-copula, α “ 5, m “ 100 3-copula of Example 3.2, α “ 5, m “ 100

Frank 3-copula, α “ 5, m “ 500 3-copula of Example 3.2 α “ 5, m “ 500

Frank 3-copula, α “ 10, m “ 100 3-copula of Example 3.2 α “ 10, m “ 100

Frank 3-copula, α “ 10, m “ 500 3-copula of Example 3.2, α “ 10, m “ 500

Figure 3.1: Simulations of the Frank 3-copula and the 3-copula of Example 3.2

As can be noted, the difference between the copula of Example 3.2 and the

48



§3.3. Possible options for the auxiliary function

3-dimensional associative extension of the Frank 2-copula cannot be easily dis-

tinguished in Figure 3.1. However, with the help of the R function gofCopula,

we can indeed see that the bivariate marginals of the copula of Example 3.2 are

Frank copulas, and while the goodness of fit test may not detect that the copula of

Example 3.2 is statistically different from a Frank 3-copula, the expected number of

rejections confirms that it does not correspond to the expected number of rejections

under a 3-dimensional Frank distribution. Table 3.1 shows the results for 1000

simulations of samples of size m “ 100. It is important to remark that the results

reported for the bivariate marginals contain the information of the three bivariate

marginals of the 3-copula.

Description Bivariate marginals 3-copula

# times P-value ď .1 311 477

# times P-value ď .05 145 315

# times P-value ď .01 30 79

Table 3.1: Results for α “ 5.

Example 3.3. Recall that the FGM family of 2-copulas is given by

F pθqpx, yq “ xy ` θxyp1´ xqp1´ yq , θ P r´1, 1s .

In this case, some tedious computations show that SF pθq,H
F pθq,F pθq

is a 3-copula if

and only if θ P r´1{2p3´
?

5q, 1{2p
?

21´ 3qs.

Example 3.4. In this example, we consider the case D2 “ Π2. For any symmetric

and radially symmetric 2-copula C2, by using the vacuity property of the terms in

SC2,HC2,Π2
as in the proof of Proposition 3.2, some direct computations show that

SC2,HC2,Π2
is a 3-copula if and only if for any x1, x2, y1, y2, z1, z2 P r0, 1s such that

x1 ď x2, y1 ď y2 and z1 ď z2, it holds that

px2 ´ x1qVC2
pry1, y2s ˆ rz1, z2sq ` py2 ´ y1qVC2

prx1, x2s ˆ rz1, z2sq

`pz2 ´ z1qVC2prx1, x2s ˆ ry1, y2sq

ě 2px2 ´ x1qpy2 ´ y1qpz2 ´ z1q .

If C2 is absolutely continuous, then the latter condition is equivalent to:

B2C2

BxBy
px, yq `

B2C2

BxBz
px, zq `

B2C2

ByBz
py, zq ě 2 , (3.11)

at the points px, y, zq where the mixed partial derivative exists. An example

of a family of 2-copulas that satisfy Eq. (3.11) are the FGM copulas F pθq for

θ P r´1{3, 1{3s.
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We note that Example 3.4 can be generalized to higher dimensions. If we define

the n-ary function HCn´1,Π as

HCn´1,Πpxq “
n
ÿ

i“1

xiCn´1pxtjuq

´

n
ÿ

iăj

xixjCn´2pxti,juq

. . .

`p´1qn´1
n
ÿ

iăj

˜

ź

k‰i,j

xk

¸

C2pxi, xjq

`pn´ 1qp´1qnx1x2 . . . xn ,

then the characterization in the absolutely continuous case is also simple. Indeed,

after doing some simple combinatorial analysis and assuming that Cn´1 is absolutely

continuous, it follows that SCn´1,HCn´1,Π
is an n-copula if and only if it holds

that

n
ÿ

i“1

Bn´1Cn´1

Bx1 . . . Bxi´1Bxi`1 . . . Bxn
pxtjuq

´

n
ÿ

iăj

Bn´2Cn´2

Bx1 . . . Bxi´1Bxi`1, . . . , Bxj´1Bxj`1, . . . Bxn
pxti,juq

. . .

`p´1qn´1
n
ÿ

iăj

B2C2

BxiBxj
pxi, xjq ` pn´ 1qp´1qn ě 0 .

for any x P r0, 1sn at which the mixed partial derivatives exist.

3.3.2. An option based on the ‹D-product of copulas

In this subsection, we introduce a way of constructing the auxiliary function H using

the ‹D-product of copulas. First, we recall the ‹D-product of copulas [57].

Theorem 3.3. Let C2,1 and C2,2 be two 2-copulas and D “ pD2,tqtPr0,1s be a

family of 2-copulas. If pD2,tqtPr0,1s is such that for any x, y P r0, 1s the function

Gx,yptq : r0, 1s Ñ r0, 1s given by

Gx,yptq “ D2,t

ˆ

BC2,1

Bt
px, tq,

BC2,2

Bt
pt, yq

˙
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is Lebesgue measurable, then the function C2,1 ˚D C2,2 : r0, 1s3 Ñ r0, 1s given by

pC2,1 ‹D C2,2qpx, y, zq “

ż z

0

D2,t

ˆ

BC2,1

Bt
px, tq,

BC2,2

Bt
pt, yq

˙

dt

is a 3-copula.

Note that pC2,1‹DC2,2q has a nice probabilistic interpretation in terms of conditional

distributions: if the joint distribution function of the random vector pX,Y, Zq is

given by pC2,1 ‹D C2,2q, then the copula of X and Y given Z “ z is D2,z. In

fact, any 3-copula that has C2,1 and C2,2 as two of its bivariate marginals can

be decomposed in the form given by Theorem 3.3 by means of suitable family of

copulas D. Theorem 3.3 also gives a generalization of the well-known ˚-product

of 2-copulas, which is also called the Darsow-Nguyen-Olsen product. We refer

to [27, 28, 98, 147, 148] and the references therein for more details on the ˚-

product.

We now give some examples that can be found in [58].

(i) pC2 ‹D M2qpx, y, zq “ C2px,minpy, zqq;

(ii) pM2 ‹D C2qpx, y, zq “ C2pminpx, zq, yq;

(iii) pC2 ‹D W2qpx, y, zq “ maxpC2px, zq ´ C2px, 1´ yq, 0q;

(iv) pW2 ‹D C2qpx, y, zq “ maxpC2pz, yq ´ C2p1´ x, yq, 0q;

(v) pΠ2 ‹Π2
C2qpx, y, zq “ xC2pz, yq;

(vi) pC2 ‹Π2
Π2qpx, y, zq “ yC2px, zq.

The ‹D operation provides a way of constructing 3-copulas such that the 2-

dimensional marginals are easy to compute and as a consequence provides another

possibility to construct the function H in order to construct radially symmetric

3-copulas. Hence, using a similar explanation as the one given for the development

of the expression in Eq. (3.10), if C2 is a symmetric and radially symmetric 2-copula,

then for a given family of symmetric 2-copulas pD2,tqtPr0,1s, we define HD as

HDpx, y, zq “
1

2

“

pC2 ‹D C2qpx, y, zq ` pC2 ‹D C2qpx, z, yq ` pC2 ‹D C2qpy, x, zq

´ypC2 ‹D C2qpx, 1, zq ´ zpC2 ‹D C2qpx, 1, yq

´xpC2 ‹D C2qpy, 1, zq ` 2xyz
‰

. (3.12)

In the last expression we are assuming that all the integrals are well defined, i.e.,

that the conditions of measurability of Theorem 3.3 are satisfied. We give an

example of this construction method.

Example 3.5. Let C2 be a member of the FGM family of 2-copulas. Suppose
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Chapter 3. A construction method for radially symmetric copulas in higher dimensions

that for any t P r0, 1s, D2,t “ Π2. Some simple computations show that

B2F
pθqpx, tq “ x` θxp1´ xqp1´ 2tq

and

pF pθq ‹D F pθqqpx, y, zq “ xyz ` θxyzp1´ xqp1´ yq ` θxyzp1´ yqp1´ zq

`θ2xyzp1´ xqp1´ zqp1´ 2y `
4

3
y2q .

Note that pF pθq ‹D F pθqqpx, 1, zq is a FGM copula with parameter θ2{3. Then,

substituting pF pθq ‹D F pθqq in Eq. (3.12), it follows that HDpx, y, zq is given by

HDpx, y, zq “ xyz ` θxpy ´ y2qpz ´ z2q ` θypx´ x2qpz ´ z2q

`θzpx´ x2qpy ´ y2q `
θ2

2
px´ x2qpy ´ y2qpz ´ 2z2 `

4

3
z3q

`
θ2

2
px´ x2qpz ´ z2qpy ´ 2y2 `

4

3
y3q

`
θ2

2
py ´ y2qpz ´ z2qpx´ 2x2 `

4

3
x3q ´

θ2

6
xpy ´ y2qpz ´ z2q

´
θ2

6
ypx´ x2qpz ´ z2q ´

θ2

6
zpx´ x2qpy ´ y2q .

Note that the volume condition VHpPq ` VHp1´Pq ě 0 is equivalent to the 3-

increasingness of the function HDpx, y, zq´HDp1´x, 1´y, 1´zq. Since HDpx, y, zq

is absolutely continuous with respect to the Lebesgue measure on r0, 1s3, the latter

holds if and only if the third mixed partial of HDpx, y, zq ´HDp1´ x, 1´ y, 1´ zq,

which is given by

2` p2θ ´
θ2

3
qpp1´ 2xqp1´ 2yq ` p1´ 2xqp1´ 2zq ` p1´ 2yqp1´ 2zqq

`θ2p1´ 2xqp1´ 2yqp1´ 2zqp3´ 2x´ 2y ´ 2zq ,

is positive for any x, y, z P r0, 1s. Some simple computations show that the latter

expression is positive if and only if θ P r3´
?

15, p´3`
?

21q{2s.
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3.3.3. An option based on the product of copulas

Another possible way of constructing the auxiliary function H is a product-type

construction, inspired by the results in [137], in the following way

Hpx, y, zq “

$

&

%

C2px,yqC2px,zqC2py,zq
xyz , if minpx, y, zq ą 0 ,

0 , otherwise .
(3.13)

We note that this choice of H requires some additional conditions, such as the fact

that for any y, z P r0, 1s it must hold that

lim
xÑ0

C2px, yqC2px, zq

x
“ 0 . (3.14)

The latter condition may not hold, for example, if the lower tail dependence

coefficient of C2 does not exist. A family of 2-copulas that satisfy Eq. (3.14) is the

FGM family of 2-copulas.

Example 3.6. Let C2 be a member of the FGM family of copulas, then H as

defined in Eq. (3.13) is given by

Hpx, y, zq “ px` θxp1´ xqp1´ yqq py ` θyp1´ yqp1´ zqq pz ` θzp1´ xqp1´ zqq .

It is easy to see that the function Hpx, y, zq is absolutely continuous with respect

to the Lebesgue measure on r0, 1s3, and as a consequence Hpx, y, zq ´Hp1´ x, 1´

y, 1 ´ zq is 3-increasing if and only if if and only if the third mixed partial of

Hpx, y, zq ´Hp1´ x, 1´ y, 1´ zq, which is given by,

2` 2θpp1´ 2xqp1´ 2yq ` p1´ 2xqp1´ 2zq ` p1´ 2yqp1´ 2zqq

`θ2p1´ 2xqp1´ 2yqp1´ 6z ` 6z2q ` θ2p1´ 2xqp1´ 2zqp1´ 6y ` 6y2q

`θ2p1´ 2yqp1´ 2zqp1´ 6x` 6x2q ´ θ3p2x´ 3x2qp2y ´ 3y2qp2z ´ 3z2q

`θ3p1´ 4x` 3x2qp1´ 4y ` 3y2qp1´ 4z ` 3z2q ,

is positive for any x, y, z P r0, 1s. The last condition is satisfied if and only if

θ P rr,
?

3´ 1{2s, where r is the only real root of the polynomial t3 ` 3t2 ` 6t` 2.

3.3.4. Extensions to higher dimensions

Next, we discuss one of the difficulties that arises when trying to generalize the

above three possible options for H to higher dimensions. The main difficulty is

that there may not be a unique way to choose H. In order to illustrate the latter
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problem in the case n “ 4, define the functions G1, G2, G3 and G4 as

G1px, y, z, wq “ C2px,C3py, z, wqqq ` C2py, C3px, z, wqqq

`C2pz, C3px, y, wqqq ` C2pw,C3px, y, zqqq ,

G2px, y, z, wq “ C3px, y, C2pz, wqq ` C3px, z, C2py, wqq ` C3px,w,C2py, zqq

`C3py, z, C2px,wqq ` C3py, w,C2px, zqq ` C3pz, w,C2px, yqq ,

G3px, y, z, wq “ C2pC2px, yq, C2pz, wqq ` C2pC2px, zq, C2py, wqq

`C2pC2px,wq, C2py, zqq ,

G4px, y, z, wq “ C2px,C2py, C2pz, wqqq ` C2px,C2pz, C2py, wqqq ` C2px,C2pw,C2py, zqqq

`C2py, C2px,C2pz, wqqq ` C2py, C2pz, C2px,wqqq ` C2py, C2pw,C2px, zqqq

`C2pz, C2px,C2py, zqqq ` C2pz, C2py, C2px,wqqq ` C2pz, C2pw,C2px, yqqq

`C2pw,C2px,C2py, zqqq ` C2pw,C2py, C2px, zqqq ` C2pw,C2pz, C2px, yqqq .

Then the functions H1, H2, H3, H4 defined by

H1px, y, z, wq “
1

2
pG2px, y, z, wq ´G1px, y, z, wqq ,

H2px, y, z, wq “
1

3
pG2px, y, z, wq ´G3px, y, z, wqq ,

H3px, y, z, wq “
1

4
p4G1px, y, z, wq ´G4px, y, z, wqq ,

H4px, y, z, wq “
1

12
p4G2px, y, z, wq ´G4px, y, z, wqq

satisfy the conditions of Proposition 3.1. Each of these functions, as well as convex

linear combinations thereof, can be regarded as a 4-dimensional generalization of

Eq. (3.10), in the sense that each of these functions is obtained by nesting the

copula C3 or its 2-dimensional marginals and by subtracting a correction term in

order to guarantee that the 3-dimensional marginal of Hj is C3.

Obviously, as the dimensionality increases, the number of possibilities also increases.

A similar problem occurs with Eq. (3.12), even in the three-dimensional case, as

there are different ways to choose the family of 2-copulas D. In the case of the
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multidimensional generalization of Eq. (3.13), we can define H as

Hpxq “

śn
i“1 Cn´1pxtiuq

śn
iăj Cn´2pxti,juq

. . .

˜

śn
iăj C2pxi, xjq
śn
i“1 xi

¸p´1qn´1

for the points x P r0, 1sn such that
śn
iăj Cn´2pxti,juq ‰ 0, otherwise we define it

as zero.

The latter generalizations satisfy the boundary conditions described in Proposi-

tion 3.1. However, it is not a simple task to show that the latter generalizations

satisfy the volume condition of Proposition 3.2. A first step in this direction

would be to characterize all the n-ary functions that satisfy the volume property

of Proposition 3.2.
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QUASI-COPULAS
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4 A multi-faced view of quasi-copulas

4.1. Introduction

In this chapter we rotate the kaleidoscope in order to study the concept of an

n-quasi-copula, a concept that is closely related to the concept of an n-copula.

The concept of quasi-copula was introduced in 1993 by Alsina et al. [4] in order

to characterize a certain class of operations on univariate distribution functions

that can be derived from corresponding operations on random variables. The

original definition of an n-quasi-copula was given in terms of tracks and n-copulas,

which was too impractical to use. It was in [88] and in [160], for the bivariate and

multivariate case respectively, where an alternative characterization of n-quasi-

copulas in terms of their analytical properties was proven. This characterization

has become the de facto definition of n-quasi-copula.

Since then there has been a growing interest in the concept of an n-quasi-copula,

for example, several other characterizations have been proven in [159, 161, 172], as

well as several interesting properties have been studied [36, 73, 157].

While n-quasi-copulas have been used extensively in the field of n-copulas, mainly to

derive bounds on sets of n-copulas (see, for example, [4, 57, 72, 161, 170, 193]), they

have also become increasingly popular in fuzzy set theory and aggregation theory

due to their 1-Lipschitz continuity property. For example, 2-quasi-copulas were

studied in [99] as a particular case of conjuntors that satisfy the Bell inequalities,

in [56] the residual implicators of several classes of conjunctors, including 2-quasi-

copulas, were studied. Bivariate quasi-copulas have also been used in the framework

of fuzzy preference modelling and to extend a fuzzy measure on N “ t1, 2, . . . nu

to an n-ary aggregation function [124]. For other applications of n-quasi-copulas,

we refer to [31, 39, 40, 43, 44, 45, 78, 94, 122].

The aim of this chapter is to give an overview to the various results that have

been proven in the literature on the topic of n-quasi-copulas: from the different

characterizations, highlighting which ones cannot be extended to higher dimensions

n ě 3, to the different properties that have been studied, such as the lattice

structure of the set of n-quasi-copulas.

First, we recall the concept of an n-quasi-copula as it was originally introduced.

Next, we review several characterizations of n-quasi-copulas, while stressing the

differences that occur between the case n “ 2 and n ě 3. Thereafter, we discuss the

lattice structure of the set of n-quasi-copulas and its relationship to n-copulas, while

once again highlighting the difference between the cases n “ 2 and n ě 3. Finally,
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we recall results in the literature related to the mass distribution of n-quasi-copulas

and stochastic signed measures.

4.2. The concept of a quasi-copula as it was origi-

nally introduced

We start by recalling some definitions that were used to introduce the concept of an

n-quasi-copula. In the following, let D denote the space of univariate distribution

functions.

Definition 4.1. An n-ary operation Φ on D is a function Φ : Dn Ñ D .

We start with a definition of a specific type of n-ary operation on D [160].

Definition 4.2. An n-ary operation Φ on D is said to be derivable from a function

of random variables if there exists a Borel measurable function H : r´8,8sn Ñ

r´8,8s such that for any family of n univariate distribution functions pF1,jq
n
j“1,

there exists a probability space pΩ,F ,Pq and an n-dimensional random vector

pX1, . . . , Xnq such that for any j P t1, . . . , nu the distribution function of Xj is

F1,j and such that the distribution function of the random variable HpX1, . . . , Xnq

is ΦpF1,1, . . . , F1,nq.

A well-known example of an n-ary operation that it is derivable from a function of

random variables is the convolution operation, since for any family of n univariate

distribution functions pF1,jq
n
j“1, we can construct a probability space pΩ,F ,Pq

and random variables X1, . . . , Xn such that for any j P t1, . . . , nu the distribution

function of Xj is F1,j and such that X1, . . . , Xn are independent random variables.

For such a space, the convolution of pF1,jq
n
j“1, i.e., F1,1 ˚ F1,2 ˚ ¨ ¨ ¨ ˚ F1,n, is the

distribution function of the random variable X1 `X2 ` ¨ ¨ ¨ `Xn.

We can give another example of an n-ary operation that it is derivable from a

function of random variables by using Sklar’s theorem, more specifically, any n-

copula Cn is derivable from a function H on random variables defined on a common

probability space. Indeed, clearly Hpxq “ maxpx1, . . . , xnq is a Borel measurable

function, and for any family of univariate distribution functions pF1,jq
n
j“1, by

using Sklar’s theorem, we can construct a probability space pΩ,F ,Pq and random

variables X1, . . . , Xn such that for any j P t1, . . . , nu F1,j is the distribution

function of Xj and the joint distribution function of pX1, . . . , Xnq is given by

CnpF1,1, . . . , F1,nq. Then it follows that

P pmaxpX1, . . . Xnq ď tq “ P pX1 ď t, . . . ,Xn ď tq

“ CnpF1,1ptq, . . . , F1,nptqq

“ CnpF1,1, . . . , F1,nqptq .
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We now give the definition of a second type of n-ary operation on D [160].

Definition 4.3. An n-ary operation Φ on D is said to be induced pointwisely

by an n-dimensional function ζ : r0, 1sn Ñ r0, 1s if for any t P r´8,8s and any

pF1,jq
n
j“1 in D it holds that

ΦpF1,1, . . . , F1,nqptq “ ζpF1,1ptq, . . . , F1,nptqq .

An example of an n-ary operation Φ on D that is induced pointwisely by a function

is the mixture of distributions, since it is clearly induced pointwisely by the function

ζapxq “
řn
j“1 ajxj , where a P r0, 1sn and

řn
j“1 aj “ 1.

The properties of an n-ary operation ‘being derivable from a function of random

variables’ and ‘being induced pointwisely by an n-dimensional function’ are inde-

pendent in the sense that neither of them implies the other one. For example, it

can be easily seen that the convolution of functions is not induced pointwisely by

any function, while the mixture of distributions is not derivable (see [4, 5, 184]).

It was deemed to be of great interest to characterize n-ary operations that are

both derivable and induced pointwisely by a function (see [5, 184, 185] and the

references therein). In order to answer this question, the concept of n-quasi-copula

was introduced.

Another important concept that is required for the original definition of an n-quasi-

copula is that of a track. It was introduced in [4] for the bivariate case and in [160]

for the higher-dimensional case.

Definition 4.4. A subset B of r0, 1sn is called a track on r0, 1sn if it can be written

as

B “ tpF1,1ptq, F1,2ptq, . . . F1,nptqq | t P r0, 1su

where pF1,jq
n
j“1 is a family of univariate distribution functions that satisfy F1,jp0q “

0 and F1,jp1q “ 1 for any j P t1, 2, . . . , nu.

We are now ready to give the original definition of an n-quasi-copula, as it was

introduced in [4, 160].

Definition 4.5. An n-quasi-copula is a function Qn : r0, 1sn Ñ r0, 1s such that for

every track B on r0, 1sn there exists an n-copula Cn,B that coincides with Qn on

B, i.e., for any x P B it holds that Qnpxq “ Cn,Bpxq.

Alsina et al. [4] have proven the following characterization for n “ 2.

Theorem 4.1. Let Φ be a bivariate operation on D that it is induced pointwisely

by a 2-dimensional function ζ : r0, 1s2 Ñ r0, 1s and that is derivable from a function

H on random variables defined on a common probability space. Then precisely one

of the following holds:

(i) Hpx, yq “ maxpx, yq and ζpx, yq “ Q2px, yq for all x, y P r0, 1s, where Q2 is
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a 2-quasi-copula.

(ii) Hpx, yq “ minpx, yq and ζpx, yq “ x` y´Q2px, yq for all x, y P r0, 1s, where

Q2 is a 2-quasi-copula.

(iii) Hpx, yq “ x and ζpx, yq “ x for all x, y P r0, 1s.

(iv) Hpx, yq “ y and ζpx, yq “ y for all x, y P r0, 1s.

For the higher-dimensional case, we refer to [160], since the characterization requires

to introduce more concepts that are out of the scope of this dissertation.

4.3. Some characterizations of quasi-copulas

It is clear that the original definition of an n-quasi-copula is too impractical to

use, making it hard to study properties of n-quasi-copulas or to prove that a given

function is an n-quasi-copula. Fortunately, the concepts of n-quasi-copula and

n-copula have drawn a lot of attention of researchers, and as a consequence, several

characterizations have been provided.

The first characterization and the relationship between quasi-

copulas and copulas

The first characterization of n-quasi-copulas was proven by Genest et al. [88] for

n “ 2, and it has become the most natural way of proving that a given function is

a 2-quasi-copula.

Theorem 4.2. A 2-quasi-copula Q2 is a r0, 1s2 Ñ r0, 1s function that satisfies the

following conditions:

(i) For any x P r0, 1s it holds that Q2px, 0q “ Q2p0, xq “ 0.

(ii) For any x P r0, 1s it holds that Q2px, 1q “ Q2p1, xq “ x.

(iii) Q2 is increasing, i.e., for any px1, y1q, px2, y2q P r0, 1s
2 such that x1 ď x2 and

y1 ď y2 it holds that

Q2px1, y1q ď Q2px2, y2q .

(4) Q2 is 1-Lipschitz continuous with respect to the L1 norm on r0, 1s2, i.e., for

any px1, y1q, px2, y2q P r0, 1s
2 it holds that

|Q2px2, y2q ´Q2px1, y1q| ď |x2 ´ x1| ` |y2 ´ y1| .

At the time of its publication in 1999, a generalization of Theorem 4.2 and The-

orem 4.6, which is formulated later on, for n ě 3 was not evident. As stated by
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Genest et al. [88] “Many of the arguments presented herein extend almost immedi-

ately to the multivariate case; Proposition 1 provides an example. At the time of

publication, however, it was not clear to the authors how the proof given in the

appendix could be generalized to characterize quasi-copulas in higher dimensions.

This will be the object of future research”. It was two years later, in 2001, when a

generalization of Theorem 4.2 to higher dimensions was proven in [26].

Theorem 4.3. An n-quasi-copula Qn is a r0, 1sn Ñ r0, 1s function that satisfies

the following conditions:

(q1) Qnpxq “ 0 if x is such that xj “ 0 for some j P t1, 2, ..., nu.

(q2) Qnpxq “ xj if x is such that xi “ 1 for all i ‰ j and some j P t1, 2, ..., nu.

(q3) Qn is increasing.

(q4) Qn is 1-Lipschitz continuous with respect to the L1 norm on r0, 1sn, i.e., for

any x,y P r0, 1sn it holds that

|Qnpxq ´Qnpyq| ď
n
ÿ

j“1

|xj ´ yj | .

As in the case n “ 2, the characterization given by Theorem 4.3 has become

the usual procedure to prove that a given function is an n-quasi-copula and it

is even sometimes given as the definition of an n-quasi-copula. We can see from

the original definition of an n-quasi-copula that any n-copula is an n-quasi-copula.

However, Theorem 4.3 shows that n-quasi-copulas and n-copulas satisfy ‘similar’

conditions further justifying the word ‘quasi’. Indeed, it can be shown easily that

every n-copula is an n-quasi-copula, since condition (c3) of Definition 1.3 implies

conditions (q3) and (q4) of Theorem 4.3 when supposing the validity of conditions

(q1) and (q2). However, the converse is not true, i.e., there exist n-quasi-copulas

that are not n-copulas; such n-quasi-copulas are called proper n-quasi-copulas. For

example, consider the function Q2,pr : r0, 1s2 Ñ r0, 1s given by

Q2,prpx, yq “

$

&

%

minpx, y, 1
3 , x` y ´

2
3 q , if 2

3 ď x` y ď 4
3 ,

maxpx` y ´ 1, 0q , otherwise .
(4.1)

It can be shown (see [152], Exercise 2.11) that Q2,pr is a 2-quasi-copula, but not a

2-copula, since VQ2,pr
pr1{3, 2{3s2q “ ´1{3. For n ě 3, the function Qn,pr : r0, 1sn Ñ

r0, 1s given by:

Qn,prpx1, x2, . . . , xnq “ Q2,prpx1, x2q

n
ź

k“3

xk (4.2)

is a proper n-quasi-copula.
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Quasi-copulas as aggregation functions

We first give some definitions related to n-ary aggregation function on r0, 1sn that

will also be useful in Chapter 6.

Definition 4.6. A function A : r0, 1sn Ñ r0, 1s is called an n-ary aggregation

function if it satisfies:

(a1) Ap0q “ 0.

(a2) Ap1q “ 1.

(a3) A is increasing in each argument.

Well-known examples of aggregation functions are the arithmetic mean, the mini-

mum and the maximum operations. We refer to [15, 22, 92] for more details on

aggregation functions.

We recall the definition of the dual of an n-ary aggregation function.

Definition 4.7. Let A be an n-ary aggregation function. The dual of A is the

n-ary aggregation function A˚ defined by

A˚pxq “ 1´Ap1´ xq .

Remark 4.1. In the literature on aggregation functions, it is common to denote

the dual of an aggregation funcion A as Ad. However, for the purpose of this paper

we will not use such notation to avoid confusion with the notation of the diagonal

function.

We now recall the concepts of neutral element and absorbing element.

Definition 4.8. An element e P r0, 1s is a neutral element of an n-ary aggregation

function A if Apxq “ xj if x is such that xi “ e for all i ‰ j and some j P t1, 2, ..., nu.

Definition 4.9. An element a P r0, 1s is an absorbing element of an n-ary aggre-

gation function A if Apxq “ a if x is such that xj “ a for some j P t1, 2, ..., nu.

It can be easily shown that if an n-ary aggregation function has a neutral element

(resp. absorbing element), then this element is unique.

It follows from Theorem 4.3 that any n-quasi-copula is an n-ary aggregation

function with 0 as its absorbing element and 1 as its neutral element. We now

present other characterizations that relate both concepts. Alsina has shown the

following characterization of 2-quasi-copulas [3].

Theorem 4.4. A 2-quasi-copula Q2 is a r0, 1s2 Ñ r0, 1s function that satisfies the

following conditions:
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(i) Q2p1, 1q “ 1.

(ii) For any x, y P r0, 1s, it holds that Q2px, yq ď minpx, yq.

(iii) For any x, y1, y2 P r0, 1s, it holds that Q2px, y2q´Q2px, y1q ď maxp0, y2´y1q.

(iv) For any y, x1, x2 P r0, 1s, it holds that Q2px2, yq´Q2px1, yq ď maxp0, x2´x1q.

A generalization of the above theorem was given in [172].

Theorem 4.5. An n-quasi-copula Qn is a r0, 1sn Ñ r0, 1s function that satisfies

the following conditions:

(i) Qnp1, 1, . . . , 1q “ 1.

(ii) For any x1, . . . , xn P r0, 1s, it holds that Qnpx1, x2, . . . , xnq ď minpx1 , x2, . . . , xnq.

(iii) For any x1, . . . , xn, yk P r0, 1s and k P t1, . . . , nu, it holds that Qnpx1, . . . ,

xk, . . . , xnq ´Qnpx1, . . . , yk, . . . , xnq ď maxp0, xk ´ ykq.

Aggregation functions that satisfy condition (ii) of Theorem 4.5 are called conjunc-

tive [15]. Note that 1-Lipschitz continuity and increasingness follow from condition

(iii) of Theorem 4.5. As a consequence, Theorems 4.4 and 4.5 state that the set

of n-ary aggregation functions that are conjunctive and 1-Lipschitz continuous

coincides with the set of n-quasi-copulas. For other studies of quasi-copulas as

1-Lipschitz aggregation functions, see [12, 113, 115, 116, 117, 122, 123].

Characterization using volumes

Even though an n-quasi-copula may not be n-increasing, there exists some specific

type of n-box that always has a positive Qn-volume. The following characterization

of bivariate quasi-copulas states that the definition of a 2-quasi-copula is equivalent

to the positivity of the volume of a certain type of 2-box [88].

Theorem 4.6. A function Q2 : r0, 1s2 Ñ r0, 1s is a 2-quasi-copula if and only if it

satisfies conditions (i) and (ii) of Theorem 4.2 and for any 2-box P “ rx1, x2s ˆ

ry1, y2s Ď r0, 1s
2 such that tx1, x2, y1, y2u X t0, 1u ‰ H it holds that VQ2

pPq ě 0.

For applications of this characterization, we refer to [46, 124]. We note that, unlike

the preceding two characterizations, Theorem 4.6 cannot be extended to higher

dimensions, as we will see in the next chapter.

Even though it is not possible to generalize Theorem 4.6 straightforwardly, it is

possible to relate the concept of an n-quasi-copula to the positivity of the volume

of an even more restrictive type of n-box, as was shown in [172].

Theorem 4.7. A function Qn : r0, 1sn Ñ r0, 1s is an n-quasi-copula if and

only if it satisfies conditions (q1) and (q2) of Theorem 4.3 and for any n-box

P “
Śn

j“1rxj , yjs with the property that there exists k P t1, 2, . . . , nu such that for
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any j ‰ k it holds that xj “ 0, the Qn-volume of P is non-negative and bounded

by yk ´ xk, i.e.,

0 ď VQnpPq ď yk ´ xk .

Characterization using partial derivatives

Since an n-quasi-copula is an increasing and 1-Lipschitz continuous function, its

partial derivatives must be well behaved. This was proven in [159] (see also [169]),

where bivariate copulas are characterized in terms of their partial derivatives.

Theorem 4.8. Let Q2 : r0, 1s2 Ñ r0, 1s be a function satisfying the boundary

conditions (i) and (ii) of Theorem 4.2. Then Q2 is a 2-quasi-copula if and only if

Q is absolutely continuous in each argument and:

(i) For any y P r0, 1s, the partial derivative BQ2

Bx px, yq exists for almost all x, and

for such x and y it holds that 0 ď BQ2

Bx px, yq ď 1.

(ii) For any x P r0, 1s, the partial derivative BQ2

By px, yq exists for almost all y, and

for such x and y it holds that 0 ď BQ2

By px, yq ď 1.

The generalization of Theorem 4.8 to higher dimensions is straightforward and

was proven in [172]. To that end, we need to introduce a more compact notation.

For a given function f : Rn Ñ R, we write Bjfpx1, . . . , xj , . . . , xnq as a short-hand

notation for Bf
Bxj
px1, . . . , xj , . . . , xnq.

Theorem 4.9. Let Qn : r0, 1sn Ñ r0, 1s be a function satisfying the boundary

conditions (q1) and (q2) of Theorem 4.3. Then Qn is an n-quasi-copula if and only

if Qn is absolutely continuous in each argument and for any j P t1, 2, . . . , nu and

px1, . . . , xj´1, xj`1, . . . , xnq P r0, 1s
n´1, the partial derivative

BjQnpx1, . . . , xj , . . . , xnq

exists for almost all xj P r0, 1s and belongs to the interval r0, 1s.

Characterization using non-increasing tracks

Based on the concept of a decreasing set, in [172] the concept of a non-increasing

track was introduced for n “ 2.

Definition 4.10. A subset B of r0, 1s2 is called a non-increasing track on r0, 1s2

if it can be written as

B “ tpF1,1ptq, 1´ F1,2ptqq | t P r0, 1su ,

where F1,1, F1,2 : r0, 1s Ñ r0, 1s are continuous distribution functions that satisfy

F1,jp0q “ 0 and F1,jp1q “ 1. The function G1,jptq “ 1´ F1,jptq is the continuous
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survival function associated with F1,j , and satisfies G1,jp0q “ 1 and G1,jp1q “ 0.

Note that the main difference between this definition and the original definition

of a track is that, for one of the arguments, we are considering the survival

function instead of the distribution function. This definition was inspired by

the fact that if C2 is a 2-(quasi)-copula, then x ´ C2px, 1 ´ yq, y ´ C2p1 ´ x, yq

and x ` y ´ 1 ` C2p1 ´ x, 1 ´ yq are also 2-(quasi)-copulas. The transformation

x`y´1`C2p1´x, 1´yq is called the survival transformation of a 2(-quasi)-copula

and the result of the latter transformation is called the survival 2(-quasi)-copula

associated with C2. Based on the latter idea, in [172] the following characterization

was proved.

Theorem 4.10. A function Q2 : r0, 1s2 Ñ r0, 1s is a 2-quasi-copula if and only if

for every non-increasing track B on r0, 1s2 there exists a copula C2,B such that for

any px, yq P B it holds that Q2px, yq “ C2,Bpx, yq.

Note that it is not clear how to extend Definition 4.10 to higher dimensions, since

the definition of a non-increasing set is not obvious for n ě 3. Additionally, in

higher dimensions, the result of applying the survival transformation to an n-quasi-

copula is not necessarily an n-quasi-copula. As a consequence, it is not trivial to

characterize higher-dimensional quasi-copulas in a way similar to the one given by

Theorem 4.10.

4.4. Quasi-copulas, bounds and lattice theory

In this section we recall some results related to the lattice structure on the sets of

n-copulas and n-quasi-copulas. The properties studied here show the relevance of

n-quasi-copulas in the study of bounds on sets of n-copulas. We start by recalling

some notions from lattice theory that are needed for the rest of the section.

Basic definitions from lattice theory

For a given poset pΩ,ďq and a subset A Ď Ω, we will denote by
Ž

A the supremum

of A (if it exists) and by
Ź

A the infimum of A (if it exists). Sometimes we

will write
Ž

ΩA or
Ź

ΩA to make explicit in which set the computations take

place.

Definition 4.11. (i) A poset pΩ,ďq is called a lattice if for any x, y in Ω it

holds that both x_ y :“
Ž

tx, yu and x^ y :“
Ź

tx, yu exist.

(ii) A poset pΩ,ďq is called a complete lattice if for any A Ď Ω it holds that

both
Ž

A and
Ź

A exist. In particular, it then follows that Ω has a greatest

element and a smallest element.
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Definition 4.12. A subset A of a poset B is said to be join-dense (resp. meet-

dense) in B if for any d in B there exists a set Sd Ď A such that d “
Ž

B Sd (resp.

d “
Ź

B Sdq.

If pP,ďq is a poset and φ : P Ñ Ω is an order-preserving injection, where pΩ,ďq is

a complete lattice, then pΩ,ďq is called a completion of pP,ďq. Furthermore, if φ

maps Ω onto L, then φ is called an order-isomorphism. A well-known procedure

leading to a minimal completion of a poset is due to Dedekind and MacNeille.

Any complete lattice pΩ,ďq in which pP,ďq is both join-dense and meet-dense is

order-isomorphic to the Dedekind-MacNeille completion of pP,ďq. For more details

on lattice theory, we refer to [29].

4.4.1. The lattice structure of the set of quasi-copulas

We now proceed to the study the lattice structure of the set of n-quasi-copulas

equipped with the pointwise order, i.e., for two n-quasi-copulas Qn,1, Qn,2 we say

that Qn,1 ď Qn,2 if for any x P r0, 1sn it holds that Qn,1pxq ď Qn,2pxq. In the

following, Cn denotes the set of all n-copulas, while Qn denotes the set of all n-

quasi-copulas. Obviously, QnzCn denotes the set of proper n-quasi-copulas.

We start by studying the bounds. The following result can be found in [155] for

the bivariate case and in [170] for the higher-dimensional case.

Theorem 4.11. Let Q Ď Qn be a set of n-quasi-copulas. For any x P r0, 1sn, we

define Qn,upxq and Qn,lpxq as

Qn,upxq “ suptQnpxq | Qn P Qu

and

Qn,lpxq “ inftQnpxq | Qn P Qu .

Then Qn,u and Qn,l are n-quasi-copulas.

Theorem 4.12. Qn is a complete lattice. However, neither Cn nor QnzCn is a

complete lattice.

From the above theorem, it follows that both the pointwise supremum and the

pointwiseinfimum of a set of n-quasi-copulas are n-quasi-copulas. However, the

pointwise supremum and pointwise infimum of a set of n-copulas may not be

n-copulas. Similarly, the pointwise supremum and pointwise infimum of a set of

proper n-quasi-copulas may not be proper n-quasi-copulas. As a particular case,

it holds that the pointwise supremum and pointwise infimum of the set of all

n-quasi-copulas are n-quasi-copulas. In fact, it is possible to explicitly compute

this supremum and infimum, resulting in the expressions

Mnpxq “ suptQnpxq | Qn P Qnu “ minpx1, x2, . . . , xnq ,
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Wnpxq “ inftQnpxq | Qn P Qnu “

˜

n
ÿ

j“1

xj ´ pn´ 1q

¸`

,

where u` “ maxpu, 0q. Recall from Chapter 1 that Mn is called the upper Fréchet-

Hoeffding bound and it is always an n-copula. The n-quasi-copula Wn is called

the lower Fréchet-Hoeffding bound, and it is an n-copula only for n “ 2.

Due to Theorem 4.11, n-quasi-copulas naturally appear when studying bounds on

sets of n-copulas. One such example is the study of bounds on sets of n-copulas

with a given set of values. The first result was obtained by Nelsen [152], proving

the existence of a 2-copula with a given value at a single point and deriving

some bounds on the set of 2-copulas with a given value at a single point. This

result was generalized for n-quasi-copulas by Rodŕıguez Lallena and Úbeda Flores

in [170].

Theorem 4.13. Let z P r0, 1sn and a P rWnpzq,Mnpzqs. Then for any n-quasi-

copula Qn such that Qnpzq “ a, it holds that:

Qn,l,z,apxq ď Qnpxq ď Qn,u,z,apxq ,

for any x P r0, 1sn, where

Qn,l,z,apxq “ max

˜

Wnpxq, a´
n
ÿ

j“1

pzj ´ xjq
`

¸

and

Qn,u,z,apxq “ min

˜

Mnpxq, a`
n
ÿ

j“1

pxj ´ zjq
`

¸

.

It is important to remark that Qn,l,z,a and Qn,u,z,a are n-quasi-copulas such that

Qn,u,z,apzq “ Qn,l,z,apzq “ a. If n “ 2, then both Q2,l,z,a and Q2,u,z,a are 2-copulas,

making the bounds the best possible. However, if n ě 3, then Qn,u,z,a and Qn,u,z,a
are proper n-quasi-copulas and it is still an open problem whether they are the

best bounds possible on the set of n-copulas; at present, it is known that they are

the best possible on the region
Śn

j“1r0, ajs
ŤŚn

j“1raj , 1s (see [170]).

The above result was generalized by Mardani-Fard et al. [136] who proved that

there exists a 2-copula with given values of a 2-quasi-copula at two or three

arbitrary points, while showing that this is no longer true for four or more points.

Additionally, they derived bounds similar to those of Theorem 4.13, and these

bounds are 2-quasi-copulas but not necessarily 2-copulas (the same authors further

studied this topic for some specific configurations of points in [177]).

Another generalization of these results was obtained by De Baets et al. [36] who

proved the existence of a 3-copula with given values of a 3-quasi-copula at two

arbitrary points in the unit cube, while showing that this is no longer true for three
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or more points.

The previous results were further generalized by Tankov in [192] for the bivariate

case as expressed in the following theorem.

Theorem 4.14. Let S be a compact subset of r0, 1s2 and let Q˚ be a 2-quasi-copula.

Let the set CQ˚,S be defined as

CQ˚,S “ tC P C2 | Cpx, yq “ Q˚px, yq for any px, yq P Su .

Suppose that CQ˚,S is not empty. Then for any C P CQ˚,S and any px, yq P r0, 1s2,

it holds that:

LQ˚,Spx, yq ď Cpx, yq ď UQ˚,Spx, yq ,

where

LQ˚,Spx, yq “ max

ˆ

0, x` y ´ 1, max
pu,vqPS

pQ˚pu, vq ´ pu´ xq` ´ pv ´ yq`q

˙

and

UQ˚,Spx, yq “ min

ˆ

x, y, min
pu,vqPS

pQ˚pu, vq ` px´ uq` ´ py ´ vq`q

˙

.

Moreover, LQ˚,S and UQ˚,S are 2-quasi-copulas.

It is important to remark that LQ˚,S and UQ˚,S may not be 2-copulas, hence the

bounds may not be the best possible. However, if we consider the set QQ˚,S “

tQ P Q2 | Qpx, yq “ Q˚px, yq for any px, yq P Su, then for any Q P CQ˚,S and any

px, yq P r0, 1s2, it holds that LQ˚,Spx, yq ď Qpx, yq ď UQ˚,Spx, yq, i.e., the same

bounds hold and if we consider the bounds on the set of 2-quasi-copulas, then

the bounds are sharp. In [192], the following conditions were stated in order to

guarantee that LQ˚,S and UQ˚,S are 2-copulas.

Theorem 4.15. Let S,Q˚, CQ˚,S , LQ˚,S , UQ˚,S be defined as in Theorem 4.14.

(i) If the set S is increasing, i.e., for any pu1, v1q, pu2, v2q P S either u1 ď u2

and v1 ď v2 or u1 ě u2 and v1 ě v2 (i.e., the pairs pu1, v1q and pu2, v2q are

comonotone), then LQ˚,S is a 2-copula.

(ii) If the set S is decreasing, i.e., for any pu1, v1q, pu2, v2q P S either u1 ď u2

and v1 ě v2 or u1 ě u2 and v1 ď v2 (i.e., the pairs pu1, v1q and pu2, v2q are

countercomonotone), then UQ˚,S is a 2-copula.

Note that the conditions of Theorem 4.15 are quite restrictive. Bernard et al. [16]

found less restrictive conditions, which we recall below. To that end, given a

compact set S P r0, 1s2, we define the following functions

(i) γ1 : proj1pSq Ñ proj2pSq given by γ1pxq “ minty | px, yq P Su.
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(ii) γ2 : proj1pSq Ñ proj2pSq given by γ2pxq “ maxty | px, yq P Su.

(iii) γ3 : proj2pSq Ñ proj1pSq given by γ3pyq “ mintx | px, yq P Su.

(iv) γ4 : proj2pSq Ñ proj1pSq given by γ4pyq “ maxtx | px, yq P Su.

We recall the following result from [16].

Theorem 4.16. Let S,Q˚, CQ˚,S , LQ˚,S , UQ˚,S be defined as in Theorem 4.14.

Suppose that Q˚ is also a 2-copula and let γ1, γ2, γ3 and γ4 be as defined above.

Then

(i) If γ1 and γ2 are increasing and for any px, y1q, px, y2q P S it holds that px, y1`y2

2 q P

S, then LQ˚,S is a 2-copula.

(ii) If γ3 and γ4 are increasing and for any px1, yq, px2, yq P S it holds that

px1`x2

2 , yq P S, then LQ˚,S is a 2-copula.

(iii) If γ1 and γ2 are decreasing and for any px, y1q, px, y2q P S it holds that

px, y1`y2

2 q P S, then UQ˚,S is a 2-copula.

(iv) If γ3 and γ4 are decreasing and for any px1, yq, px2, yq P S it holds that

px1`x2

2 , yq P S, then UQ˚,S is a 2-copula.

A different condition was given later in [17], which is stated below

Theorem 4.17. Let S,Q˚, CQ˚,S , LQ˚,S , UQ˚,S be defined as in Theorem 4.14.

Suppose that for any px1, y1q, px2, y2q P S it holds that px1, y2q, px2, y1q P S and Q˚

is such that for any x1, x2, y1, y2 P S with x1 ď x2 and y1 ď y2 it holds that

Q˚px2, y2q ´Q
˚px2, y1q ´Q

˚px1, y2q `Q
˚px1, y1q ě 0 ,

then LQ˚,S and UQ˚,S are 2-copulas.

The following generalization of Theorem 4.14 to the higher-dimensional case can

be found in [130] (see also [135, 167]).

Theorem 4.18. Let S be a compact subset of r0, 1sn and let Q˚ be an n-quasi-

copula. Let the set QQ˚,S be defined as

QQ˚,S “ tQ P Qn | Qpxq “ Q˚pxq for any x P Su .

Then for any Q P QQ˚,S and any x P r0, 1sn it holds that:

LQ˚,Spxq ď Qpxq ď UQ˚,Spxq ,

where

LQ˚,Spxq “ max

˜

Wnpxq,max
uPS

pQ˚puq ´
n
ÿ

i“1

pui ´ xiq
`q

¸
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and

UQ˚,Spxq “ min

˜

Mnpxq,min
uPS

pQ˚puq `
n
ÿ

i“1

pxi ´ uiq
`q

¸

.

Moreover, LQ˚,S and UQ˚,S are n-quasi-copulas.

However, unlike in the bivariate case, LQ˚,S and UQ˚,S are proper n-quasi-copulas

except for trivial cases, as shown in Theorem 4.2 of [130].

Theorems 4.14 and 4.18 have been used in order the compute the bounds of

functionals ρ : Qn Ñ R that are increasing w.r.t. the pointwise order of n-quasi-

copulas, i.e., if Q1 ď Q2, then ρpQ1q ď ρpQ2q. The latter result is useful to

compute bounds on the set of n-copulas with a specified value of Spearman’s rho

or Kendall’s tau [130, 192]. To see how these bounds have been used in financial

applications, we refer to [16, 17, 130, 131, 167, 192].

There are several other applications in which n-quasi-copulas have been useful

to study bounds on a set of n-copulas. For example, in the bivariate case there

are studies of 2-quasi-copulas with a given opposite diagonal section [37], a given

subdiagonal section [168] and a given affine section [117]. Additionally, 2-quasi-

copulas were used in the context of imprecise probabilities, where one specifies

a (coherent) probability interval (i.e., bounds) instead of a single value. In the

multivariate case, the study of bounds on sets of n-copulas with a given set of

marginals was studied in [130].

4.4.2. A lattice-theorical characterization of quasi-copulas

As mentioned before, n-quasi-copulas are well behaved when considering the

pointwise supremum or the pointwise infimum of a given set of n(-quasi)-copulas,

since such supremum and infimum are n-quasi-copulas. It is not a surprise that

another characterization of bivariate quasi-copulas can be given in terms of the

lattice structure of the set of 2-copulas. To be more precise, we recall that any

2-quasi-copula can be regarded as the pointwise supremum (or pointwise infimum)

of a set of 2-copulas.

We start with the following results, which are the main contribution of [161].

Theorem 4.19. Q2 is order-isomorphic to the Dedekind-MacNeille completion

of C2.

This theorem has the following corollary, which in turn yields another characteriza-

tion of bivariate quasi-copulas.

Corollary 4.1. A function Q2 : r0, 1s2 Ñ r0, 1s is a 2-quasi-copula if and only if

there exist AQ2
, BQ2

Ď C2 such that Q2 “
Ž

Q2
AQ2

and Q2 “
Ź

Q2
BQ2

.

Unfortunately, the latter results do not hold for n ě 3, as was shown in [72].
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Theorem 4.20. For n ě 3, Qn is not order-isomorphic to the Dedekind-MacNeille

completion of Cn.

Corollary 4.2. For n ě 3, there exist an n-quasi-copula Qn,L such that for any

A Ď Cn it holds that Qn,L ‰
Ž

Qn A and an n-quasi-copula Qn,U such that for any

A Ď Cn it holds that Qn,U ‰
Ź

Qn A.

While it is obvious that for any A Ď Cn, it holds that Wn ‰
Ž

Qn A, the construction

of an n-quasi-copula Qn,L such that for any A Ď Cn, it holds that Qn,L ‰
Ž

Qn A

is not trivial. We shall only provide a sketch of how such an n-quasi-copula can be

constructed (for further details, we refer to [23, 72]).

For n “ 3, let C3,1 be the 3-copula whose mass is distributed uniformly along the

main diagonals of the 3-boxes r0, 1{4s3, r1{4, 1{2sˆr1{2, 3{4s2, r1{2, 3{4sˆr1{4, 1{2s2

and r3{4, 1s3; and let C3,2 be the 3-copula whose mass is distributed uniformly

along the main diagonals of the 3-boxes r0, 1{4s3, r1{4, 1{2s ˆ r1{2, 3{4s ˆ r1{4, 1{2s,

r1{2, 3{4s ˆ r1{4, 1{2s ˆ r1{4, 1{2s and r3{4, 1s3. Define Q3,L as Q3,L “ C3,1 _ C3,2.

Then Q3,L is a proper 3-quasi-copula such that for any A Ď C3 it holds that

Q3,L ‰
Ž

Q3
A. For n ě 4, the proper n-quasi-copula Qn,L given by

Qn,Lpx1, x2, . . . , xnq “ Q3,Lpx1, x2, x3q

n
ź

k“4

xk

is such that for any A Ď Cn it holds that Qn,L ‰
Ž

Qn A.

4.5. Quasi-copulas and measures

4.5.1. Measure theory

In this subsection, we recall several measure-theoretical notions that are used

to investigate whether n-quasi-copulas induce signed measures. Recall that a

measurable space consists of a non-empty set Ω and a sigma-algebra F of subsets

of Ω.

Definition 4.13. [174] Let pΩ,F q be a measurable space. A signed measure is a

function ν : F Ñ r´8,8s that satisfies the following conditions

(i) ν takes at most one of the values ´8,8.

(ii) νpHq “ 0.

(iii) ν is σ-additive, i.e., for any family pAjq
8
j“1 in F that satisfies the condition

Ai XAj “ H for any i ‰ j, it holds that ν
´

Ť8

j“1Aj

¯

“
ř8

j“1 νpAjq.

When the co-domain of ν is r0,8s, ν is called a measure instead of signed measure.
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A signed measure is sometimes called a charge [13]. Two measures µ1 and µ2

defined on the same measurable space pΩ,F q are called singular if there exists a set

A P F such that, for any set D P F , it holds that µ1pDXAq “ µ2pDXpΩzAqq “ 0

and in such case we write µ1 K µ2. The following theorem, which is known as

the Jordan decomposition, states that any signed measure is the difference of two

measures [174].

Theorem 4.21. Let ν be a signed measure on a measurable space pΩ,F q. Then

there exist two measures ν` and ν´ such that the following conditions hold:

(i) ν` K ν´.

(ii) For any A P F , it holds that νpAq “ ν`pAq ´ ν´pAq.

(iii) At least one of the conditions ν`pΩq ă 8 or ν´pΩq ă 8 holds.

For more details on these concepts, we refer to [13, 174].

4.5.2. Quasi-copulas and signed measures

n this subsection, we recall that not every n-quasi-copula Qn induces a signed

measure on B pr0, 1snq, the set of Borel sets of r0, 1sn, i.e., for a given n-quasi-

copula Qn, there may not exist a signed measure on (r0, 1sn,B pr0, 1snq) such

that for any x P r0, 1sn it holds that νpr0,xsq “ Qnpxq. A signed measure ν

defined on the measurable space (r0, 1sn,B pr0, 1snq) is called stochastic if for any

k P t0, 1, . . . , n´ 1u and any A P B pr0, 1sq it holds that

ν
`

r0, 1sk ˆAˆ r0, 1sn´k´1
˘

“ λ1pAq ,

where λ1 denotes the Lebesgue measure on R.

It is well known that any n-copula induces a stochastic measure on B pr0, 1snq that

can be extended to Rn. A natural question is whether a similar result holds for n-

quasi-copulas, i.e., whether any n-quasi-copula induces a signed stochastic measure

on B pr0, 1snq. The answer is negative and it was proven in [73] for the bivariate

case and in [157] for n ě 3 (another proof was presented in [75]). Interestingly,

this result was first proven in the n-dimensional case (n ě 3), and only later in the

bivariate case.

Proposition 4.1. There exists a proper n-quasi-copula Qn that does not induce a

stochastic signed measure on pr0, 1sn,B pr0, 1snqq.
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4.5.3. Baire category results

Although the n-quasi-copulas that induce a stochastic measure on B pr0, 1snq have

not been characterized yet, it was shown in [53] that they are ‘small’ from the

Baire category point of view. Baire categories were first used in the framework of

n-copulas and n-quasi-copulas in [52], in order to characterize how ‘large’ the set

of exchangable copulas is. First, we need to recall some notions.

Definition 4.14. Let pΩ, dq be a metric space.

(i) A subset B of pΩ, dq is called nowhere dense if it is not dense in any non-

degenerate open ball Bpx, rq of radius r ą 0.

(ii) A subset B is called of first category in pΩ, dq (also called meager) if there

exists a countable family pUiq
8
i“1 of nowhere dense sets such that B Ď

Ť8

i“1 Ui.

(iii) A set is called of second category in pΩ, dq if it is not of first category.

(iv) A set B is called a residual set (or co-meager) if Bc is of first category.

Informally speaking, given a complete metric space, the sets of first category are the

‘small ones’, sometimes called ‘atypical’ from a topological point of view. We recall

the main results in [53], which were only proven in the 2-dimensional case, but they

can be extended easily to higher dimensions. The first result shows that the set of

n-copulas is ‘small’ with respect to the set of n-quasi-copulas when considering the

supremum distance d8 [53].

Theorem 4.22. The set of n-copulas Cn is nowhere dense in pQn, d8q.

In the following, Qn,M denotes the set of n-quasi-copulas that induce a signed

measure on B pr0, 1snq. The following result shows that an n-quasi-copula that

induces a signed measure on B pr0, 1snq is atypical from a topological point of

view [53].

Theorem 4.23. The set Qn,M is of first category in pQn, d8q.

Even though the set Qn,M is ‘small’ in the set of n-quasi-copulas, it is dense as

the following proposition shows [53].

Proposition 4.2. The set Qn,M is dense in pQn, d8q.

The following definition was also introduced in [53].

Definition 4.15. An n-quasi-copula Q is called locally extendable if there exist

x P r0, 1sn and a positive constant r ą 0 such that the volume induced by Q can

be extended to a signed measure on B pr0, 1snq XBpx, rq.

In the following Qn,Loc denotes the class of all locally extendable n-quasi-copulas.

We have the following negative result [53].

Theorem 4.24. The set Qn,Loc is of first category in pQn, d8q.
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4.5.4. The mass distribution associated with an n-quasi-copula

Even though an n-quasi-copula may not induce a stochastic signed measure, a

natural question is: ‘how negative can the Qn-volume of an n-box be?’. This

question has been studied in the bivariate and trivariate case. We start by recalling

the main results in the bivariate case, which can be found in [159].

Proposition 4.3. For any bivariate quasi-copula Q2 and any 2-box P “ rx1, x2sˆ

ry1, y2s, it holds that

´1{3 ď VQ2pPq ď 1 .

Moreover, if VQ2pPq “ ´1{3, then P “ r1{3, 2{3s2, Q2p1{3, 1{3q “ 0 and Q2p1{3, 2{3q “

Q2p2{3, 1{3q “ Q2p2{3, 2{3q “ 1{3 and if VQ2pPq “ 1, then P “ r0, 1s2.

It is easily verified that the bivariate quasi-copula Q2,pr defined in Eq. (4.1) attains

the minimal volume at the 2-box r1{3, 2{3s2. The generalization for n “ 3 was

studied in [36], where De Baets et al. proved the following result.

Proposition 4.4. For any 3-quasi-copula Q3 and any 3-box P “ rx1, x2sˆry1, y2sˆ

rz1, z2s, it holds that

´4{5 ď VQ3pPq ď 1

Moreover, if VQ3
pPq “ ´4{5, then P “ r2{5, 4{5s3 and if VQ3

pPq “ 1, then there

exists a P r0, 1{2s such that P “ ra, 1s3.

De Baets et al. [36] gave the following example of a proper 3-quasi-copula such that

the minimal volume ´4{5 is attained: distribute uniformly a positive mass of 2{5

on each of the 3-boxes r2{5, 4{5s2 ˆ r0, 2{5s, r0, 2{5s ˆ r2{5, 4{5s2 and r2{5, 4{5s ˆ

r0, 2{5s ˆ r2{5, 4{5s; distribute uniformly a positive mass of 1{5 on each of the

3-boxes r2{5, 4{5sˆr4{5, 1sˆr2{5, 4{5s,r4{5, 1sˆr2{5, 4{5s2 and r2{5, 4{5s2ˆr4{5, 1s;

distribute uniformly a negative mass of 4{5 on the 3-box r2{5, 4{5s3; and 0 mass

on the remaining 3-boxes.

Note that unlike in the bivariate case, in the trivariate case there exists a 3-quasi-

copula Q3 such that there exists a 3-box P ‰ r0, 1s3 VQ3
pPq “ 1. One example

of such a 3-quasi-copula where the maximal mass is attained is the following [36]:

distribute uniformly a positive mass of 1 on the 3-box r1{2, 1s3; distribute uniformly

a positive mass of 1{2 on each of the 3-boxes r0, 1{2s2 ˆ r1{2, 1s,r0, 1{2s ˆ r1{2, 1s ˆ

r0, 1{2s and r1{2, 1s ˆ r0, 1{2s2; 0 on the 3-box r0, 1{2s3; and a negative mass of 1{2

on each of the remaining 3-boxes. Clearly, for the this example the value of a from

Proposition 4.4 equals 1{2.

At the time when the negative mass distribution of n-quasi-copulas was studied, it

was not known that n-quasi-copulas do not induce signed measures in general. While

further studies for higher dimensions still need to be done, such as the computation

of the value of the minimum mass for any dimension, as well as the form of the

n-boxes where the maximum and the minimum mass are attained, we believe that
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the solution of these problems is now rather a non-trivial mathematical exercise

and would not bring new insight into the properties of n-quasi-copulas.
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5 Intermediate classes between

quasi-copulas and copulas

5.1. Introduction

In this chapter, we continue to observe n-quasi-copulas through the kaleidoscope.

More specifically, we study supermodular n-quasi-copulas and we propose a general-

ization of supermodularity for quasi-copulas in higher dimensions. As a byproduct,

we also solve an open problem posed in [143], which asks for a characterization

of the subclass of n-quasi-copulas for which particular n-boxes have a positive

volume. These n-quasi-copulas are crucial in a generalization of the Lovász exten-

sion [128] and of the Owen extension [164] of monotone games (see [124] for more

details on these generalizations). Most of the results of this chapter can be found

in [11].

It is important to remark that this is not the first time that supermodular functions

appear in the framework of dependence modelling. There have been several studies

devoted to the study of the supermodular order of random vectors (see [151] and

the references therein). We recall that a random vector X is smaller than or equal

to a random vector Y in the supermodular order if EpfpXqq ď EpfpYqq holds

for any supermodular function f such that the expectations exist. Rather than

focusing on expectations of random vectors, in this chapter we focus our attention

on the properties of supermodular n-quasi-copulas. We show that some properties

of 2-copulas that cannot be generalized to higher-dimensional copulas, hold true

for supermodular n-quasi-copulas.

5.2. Supermodular quasi-copulas

We start by recalling the definitions of supermodular, submodular and modular

functions.

Definition 5.1. (i) A function f : r0, 1sn Ñ r0, 1s is called supermodular if for

any x,y P r0, 1sn it holds that

fpx_ yq ` fpx^ yq ě fpxq ` fpyq .

(ii) A function f : r0, 1sn Ñ r0, 1s is called submodular if for any x,y P r0, 1sn it

holds that

fpx_ yq ` fpx^ yq ď fpxq ` fpyq .
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(iii) A function f : r0, 1sn Ñ r0, 1s is called modular if for any x,y P r0, 1sn it

holds that

fpx_ yq ` fpx^ yq “ fpxq ` fpyq .

As stated in [11], 2-increasingness is equivalent to supermodularity for bivariate

functions that satisfy (q1) and (q2). However, this is no longer true for n ě 3.

We now recall a characterization of supermodular n-ary functions that will be often

used to prove the results further on this dissertation. The proof of the following

characterization can be consulted in [18, 114]. Obviously, a similar characterization

can be given for submodular functions.

Proposition 5.1. A function f : r0, 1sn Ñ r0, 1s is supermodular if and only if all

of its two-dimensional sections are supermodular.

We now proceed to study the properties of supermodular n-quasi-copulas. We

will first show that, as in the case of 2-copulas, supermodularity together with

the boundary conditions of an n-copula implies increasingness and 1-Lipschitz

continuity.

Proposition 5.2. Let Q : r0, 1sn Ñ r0, 1s be a supermodular function satisfying

conditions (c1) and (c2) of an n-copula. Then Q is an n-quasi-copula.

Proof. We start by proving that Q is increasing in each argument. Without loss of

generality, we will show that Q is increasing in the first argument. Let x,y P r0, 1sn

such that x “ px1, z2, . . . , znq and y “ py1, z2, . . . , znq with x1 ď y1. Define

a P r0, 1sn as a “ py1, 0, . . . 0q. Then, due to the supermodularity of Q, it holds

that

Qpx_ aq `Qpx^ aq ě Qpxq `Qpaq .

Note that Qpaq “ 0 and Qpx^aq “ 0. Since x_a “ y it follows that Qpxq ď Qpyq.

Next, we will prove that Q is 1-Lipschitz continuous with respect to the L1-

norm on r0, 1sn. It suffices to prove that Q is 1-Lipschitz in each argument.

Without loss of generality, let x,y P r0, 1sn such that x “ px1, z2, . . . , znq and

y “ py1, z2, . . . , znq with x1 ď y1. Define a P r0, 1sn as a “ px1, 1, . . . 1q. Then, due

to the supermodularity of Q, it holds that

Qpy _ aq `Qpy ^ aq ě Qpyq `Qpaq .

Note that Qpy _ aq “ y1 and Qpaq “ x1. Since y ^ a “ x, it follows that

Qpyq ´Qpxq ď y1 ´ x1.

First, we turn our attention to the class of Archimedean n-quasi-copulas, and prove

that they are also supermodular. Just as in the case of Archiemedean n-copulas, if

Cn,ϕ given in Lemma (1.1) is an n-quasi-copula, we say that Cn,ϕ is an Archimedean
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n-quasi-copula, and in such case, we also say that ϕ is a generator of the quasi-

copula Cn,ϕ. Similarly as in the case of Archimedean n-copulas, the generator

is unique up to a strictly positive multiplicative constant and all Archimedean

n-quasi-copulas are symmetric and associative.

The generators of Archimedean n-quasi-copulas were characterized in [156].

Theorem 5.1. Let ϕ,ϕr´1s be defined as in Definition 1.7. Then Qn,ϕ is an

n-quasi-copula if and only if ϕr´1s is convex.

Note that all Archimedean 2-quasi-copulas are 2-copulas, i.e., they are supermodular.

We now show that this is also true in higher dimensions.

Theorem 5.2. Let Qn,ϕ be an Archimedean n-quasi-copula. Then Qn,ϕ is a

supermodular function.

Proof. We will restrict our attention to the case n ě 3, since the result for n “ 2

is given by Theorem 5.1. Due to Proposition 5.1, we only need to prove that the

two-dimensional sections are supermodular. Because of the symmetry property of

Qn,ϕ, it suffices, without loss of generality, to prove that for any z P r0, 1sn the

function Qn,ϕ,z : r0, 1s2 Ñ r0, 1s given by

Qn,ϕ,z,t1,2upx, yq “ Qn,ϕpx, y, z3, z4, . . . , znq

is 2-increasing. Let x1, x2, y1, y2 P r0, 1s such that x1 ď x2, y1 ď y2. Note that

Qn,ϕ,zt1,2up0, y2q “ 0 ď Qn,ϕ,z,t1,2up1, y1q ď Qn,ϕ,z,t1,2up1, y2q, since Qn,ϕ is an

n-quasi-copula. Hence, since for any y P r0, 1s the function fpxq “ Qn,ϕ,z,t1,2upx, yq

is a continuous function, there exists t P r0, 1s such that

Qn,ϕ,z,t1,2upt, y2q “ Qn,ϕ,z,t1,2up1, y1q ,

which in turn is equivalent to

ϕr´1spϕptq ` ϕpy2q ` ϕpqzqq “ ϕr´1spϕpy1q ` ϕpqzqq , (5.1)

where qz is a shorthand notation for Qn,ϕp1, 1, z3, z4, . . . , znq. Note that the associa-

tivity of Archimedean n-quasi-copulas is used in Eq. (5.1). From the properties of

ϕr´1s, the inequality ϕptq`ϕpy2q`ϕpqzq ě ϕp0q holds if and only if ϕpy1q`ϕpqzq ě 0

holds. We need to distinguish two cases now.

Case 1 : If ϕpy1q ` ϕpqzq ă ϕp0q, then by applying ϕ to both sides of Eq. (5.1), we

deduce that the equality ϕptq ` ϕpy2q “ ϕpy1q holds. Hence,

Qn,ϕ,z,t1,2upx2, y1q ´Qn,ϕ,z,t1,2upx1, y1q

“ ϕr´1spϕpx2q ` ϕpy1q ` ϕpqzqq ´ ϕ
r´1spϕpx1q ` ϕpy1q ` ϕpqzqq

“ ϕr´1spϕpx2q ` ϕpy2q ` ϕpqzq ` ϕptqq ´ ϕ
r´1spϕpx1q ` ϕpy2q ` ϕpqzq ` ϕptqq
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“ Q2,ϕpQn,ϕ,z,t1,2upx2, y2q, tq ´Q2,ϕpQn,ϕ,z,t1,2upx1, y2q, tq

ď Qn,ϕ,z,t1,2upx2, y2q ´Qn,ϕ,z,t1,2upx1, y2q .

The last equality follows from the associativity of Archimedean n-quasi-copulas,

while the last inequality holds due to the 1-Lipschitz continuity of quasi-copulas.

Case 2 : If ϕpy1q ` ϕpqzq ě ϕp0q, then clearly the inequalities ϕpx2q ` ϕpy1q `

ϕpqzq ě ϕp0q and ϕpx1q ` ϕpy1q ` ϕpqzq ě ϕp0q hold, from which it follows that

Qn,ϕ,z,t1,2upx2, y1q “ Qn,ϕ,z,t1,2upx1, y1q “ 0. Hence,

Qn,ϕ,z,t1,2upx2, y1q ´Qn,ϕ,z,t1,2upx1, y1q “ 0

ď Qn,ϕ,z,t1,2upx2, y2q ´Qn,ϕ,z,t1,2upx1, y2q ,

since Qn,ϕ,z,t1,2u is increasing.

As mentioned before, the lower Fréchet-Hoeffding lower bound Wn is not an n-

copula for n ě 3, but it turns out to be a supermodular n-quasi-copula as the

following corollary shows.

Corollary 5.1. For any n ě 2, the lower Fréchet-Hoeffding lower bound Wn is

supermodular.

Proof. It suffices to realize that Wn is an Archimedean n-quasi-copula by consider-

ing the generator ϕ given by ϕpxq “ 1´ x.

In the following proposition we show that there exist supermodular n-quasi-copulas

that are not n-copulas, and that there exist n-quasi-copulas that are not super-

modular. In the following, SQn denotes the set of all supermodular n-quasi-

copulas.

Proposition 5.3. If n ě 3, then Cn Ă SQn.

Proof. From Proposition 5.1 and Remark 1.1 it follows that all the bivariate sections

of an n-copula are supermodular. Hence, Cn Ď SQn. Wn is not an 3-copula for

n ě 3 but by Corollary 5.1 it is a supermodular n-quasi-copula. Hence, the set

inclusion is strict.

The fact that the set inclusion is strict for n ě 3 follows from Lemma 5.1, since

Wn is not an n-copula for n ě 3.
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5.3. A problem on the characterization of a certain

class of quasi-copulas revisited

Recall from Chapter 4 that the characterization of 2-quasi-copulas in terms of the

positivity of the volume of a certain type of 2-box given in Theorem 4.6 cannot

be extended to higher dimensions. For example, consider n “ 3 and suppose

that Q3 is a function that satisfies conditions (c1) and (c2) of an n-copula and

such that Eq. (1.1) holds for any x1 ď x2, y1 ď y2, z1 ď z2 such that tx1, x2, y1,

y2, z1, z2u X t0, 1u ‰ H. We now prove that Q3 is a 3-quasi-copula.

To see that Q3 is increasing it suffices to prove that Q3 is increasing in each

argument. Without loss of generality, we will prove that Q3 is increasing in the first

argument. Consider the 3-box given by rx1, x2sˆ r0, ysˆ r0, zs with x1 ď x2. Using

Eq. (1.1) and condition (c1), it follows that Q3px2, y, zq ´Q3px1, y, zq ě 0.

To prove that Q3 is 1-Lipschitz continuous with respect to the L1-norm on r0, 1s3, it

suffices to prove that Q3 is 1-Lipschitz in each argument. Without loss of generality,

we will show that Q3 is 1-Lipschitz continuous in the first argument. Consider

x1, x2, y, z P r0, 1s with x1 ď x2. Note that if Eq. (1.1) holds, then the 3-boxes

rx1, x2s ˆ ry, 1s ˆ rz, 1s, rx1, x2s ˆ ry, 1s ˆ r0, zs and rx1, x2s ˆ r0, ys ˆ rz, 1s have a

positive volume. Hence, the following inequalities hold:

x2 ´ x1 ´Q3px2, y, 1q ´Q3px2, 1, zq `Q3px1, y, 1q `Q3px1, 1, zq ě

Q3px1, y, zq ´Q3px2, y, zq ,

Q3px2, y, 1q ´Q3px1, y, 1q ě Q3px2, y, zq ´Q3px1, y, zq ,

Q3px2, 1, zq ´Q3px1, 1, zq ě Q3px2, y, zq ´Q3px1, y, zq .

Adding up all the above inequalities side by side, we obtain

x2 ´ x1 ě Q3px2, y, zq ´Q3px1, y, zq .

Hence, Q3 is 1-Lipschitz continuous with respect to the L1-norm on r0, 1s3.

However, note that if x1 “ 0, then it holds that

Q3px2, y2, z2q ´Q3px2, y1, z2q ´Q3px2, y2, z1q `Q3px2, y1, z1q ě 0 . (5.2)

This last condition is not satisfied by all 3-quasi-copulas. For example, for the

proper 3-quasi-copula Q3,pr given in Eq. (4.1), it is clear that Eq. (5.2) does not hold,

and, as a consequence, it does not satisfy Eq. (1.1). While the previous analysis

was done for n “ 3, the results can be easily extended to higher dimensions.

As mentioned in [143], the following constraint on n-quasi-copulas plays an impor-

tant role in the extension of a fuzzy measure to an aggregation function [124]: the
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n-quasi-copula Q has to satisfy VQpPq ě 0 for any n-box P such that at least one of

its vertices is contained in the boundary r0, 1snz s0, 1rn of the unit hypercube r0, 1sn.

Clearly, the characterization of those n-quasi-copulas is related to the problem that

Theorem 4.6 cannot be directly generalized to higher dimensions.

As a first observation in order to find a solution to the previous problem, we

note that the left-hand side of Eq. (5.2) represents the Q3,a,A-volume of the 2-box

ry1, y2s ˆ rz1, z2s with a “ px2, 1, 1q and A “ t2, 3u. This suggests that a 3-quasi-

copula that satisfies Eq. (5.2) has to be supermodular. As we will show in the

next section, for n “ 3, supermodularity will indeed be a necessary condition for

a trivariate quasi-copula to satisfy the technical conditions needed in [124], but

it will not be a sufficient condition, since, for example, W3 is supermodular and

VW3
pr1{2, 1s3q “ ´1{2.

5.4. Other classes that lie in between copulas and

quasi-copulas

Inspired by the characterization of supermodularity given in Proposition 5.1, we

propose the following definition that it is motivated by the characterization of

supermodular functions in higher dimensions.

Definition 5.2. A function F : r0, 1sn Ñ r0, 1s is called k-dimensionally-increasing

(k-dim-increasing, for short), with k P t1, . . . , nu, if any of its k-dimensional sections

is k-increasing.

In the framework of dependence modelling, k-dim-increasing functions have been

previously studied in [176], where they were called 4-antitonic functions. In

particular, Rüschendorf found bounds for EpfpXqqq where X is a random vector

and f a k-dim-increasing function.

Remark 5.1. For any n-quasi-copula Qn that is 1-dim-increasing, Qn is simply

an n-quasi-copula. Any n-quasi-copula that is 2-dim-increasing is a supermodular

n-quasi-copula, and obviously any n-dimensionally n-increasing n-quasi-copula is

an n-copula. Additionally, we note that if an n-quasi-copula is k-dim-increasing,

then all of its k-dimensional marginals are k-copulas.

We will now show that k-dim-increasing n-quasi-copulas have interesting proper-

ties.

Lemma 5.1. Let Qn be a k-dim-increasing n-quasi-copula with k P t2, . . . , nu.

Then Qn is r-dim-increasing for r P t1, . . . k ´ 1u.

Proof. The proof is immediate by realizing that for any k P t2, . . . , nu and r P

t1, . . . k´1u, any r-box can be also regarded as a k-box, as explained in Remark 1.1.
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As a consequence of Lemma 5.1, any k-dim-increasing n-quasi-copula with k ě 2

is also a supermodular n-quasi-copula. Hence, using Proposition 5.2 we get the

following result.

Corollary 5.2. Let Qn : r0, 1sn Ñ r0, 1s be a function that satisfies conditions

(c1) and (c2). If Qn is k-dim-increasing with k P t2, . . . , nu, then Qn is an

n-quasi-copula.

We now develop results similar to those given in Proposition 5.3 and Theorem 5.2.

To do this we need the following proposition, which can be found in [140] as

Proposition 2.2.

Proposition 5.4. Let g be a real function on r0,8r and p P r0, 1s. Define Ḡ :

Rn Ñ R as

Ḡpxq “ gp}x_ 0}1q ` p1´ pq1tx ă 0u .

Then Ḡ is an n-dimensional survival function on Rn if and only if g is n-monotone

on r0,8r and satisfies gp0q “ p and lim
xÑ8

gpxq “ 0.

With this proposition, we can obtain a generalization of Theorem 5.2 for k-

dimensional k-increasing n-quasi-copulas. The proof of the following result is

heavily inspired on the proof of the main result in [140].

Theorem 5.3. Let Qn,ϕ be an Archimedean n-quasi-copula and k P t2, . . . , n´ 1u.

Then Qn,ϕ is a k-dim-increasing n-quasi-copula if and only if ϕr´1s is a k-monotone

function.

Proof. First suppose that ϕr´1s is a k-monotone function. Due to the symmetry

of Qn,ϕ, it suffices, without loss of generality, to prove that for any z P r0, 1sn the

function Qn,ϕ,z : r0, 1sk Ñ r0, 1s given by

Qn,ϕ,z,Apxq “ Qn,ϕpx1, x2, . . . , xk, zn´k`1, zn´k`2, . . . , znq

is k-increasing, where A “ t1, . . . , ku. In the following, we will use qz as a shorthand

notation for Qn,ϕp1, 1, . . . , 1, zn´k`1, zn´k`2, . . . , znq.

It is clear that Qn,ϕ,z,Ap1q “ qz P r0, 1s. Also note that

lim
xÑ8

ϕr´1spx` qzq “ 0 ,

due to the definition of ϕr´1s. Define Ḡ : r0,8r k Ñ r0, 1s as

Ḡpxq “ ϕr´1sp}x_ 0}1 ` qzq ` p1´ qzq1tx ă 0u .

Then, using Proposition 5.4, we deduce that Ḡ is a k-dimensional survival function.

Using the classical arguments of probability theory, we can construct a probability

space pΩ,F ,Pq and k random variables X1, X2, . . . , Xk defined on this space such

that their joint survival function is given by Ḡ. Note that for any x P r0, 1sk the
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equality

ϕr´1s

˜

k
ÿ

j“1

ϕpxjq ` qz

¸

“ P

˜

k
č

j“1

tXj ą ϕpxjqu

¸

holds. Then, for any k-box P “
Śk

j“1rxj , yjs Ď r0, 1sk, it holds that ϕpxjq ě

ϕpyjq ě 0, and thus

VQn,ϕ,zpPq “ VḠ

˜

k
ą

j“1

rϕpyjq, ϕpxjqs

¸

“ P

˜

k
č

j“1

tϕpyjq ă Xj ď ϕpxjqu

¸

ě 0 .

Hence, Qn,ϕ is k-dim-increasing.

Now suppose that Qn,ϕ is k-dim-increasing. Then its k-variate marginals are

Archimedean k-copulas generated by ϕ and from Theorem 5.1 it follows that ϕr´1s

is k-monotone.

The following result, which is a generalization of Proposition 5.3, is now immedi-

ate.

Corollary 5.3. Let DQn,k denote the class of all k-dim-increasing n-quasi-copulas.

Then it holds that

Cn Ă DQn,n´1 Ă DQn,n´2 Ă ¨ ¨ ¨ Ă DQn,3 Ă SQn Ă Qn .

Proof. It follows immediatly from the fact that there exist generators that are

k-monotone, but not pk ` 1q-monotone, as shown in [140].

We now proceed to develop the main result of this section. To that end, we

need to recall some results regarding certain transformations of n-quasi-copulas.

The following definition, theorem and lemma can be deduced from Definition 3.1,

Theorem 3.1, Lemma 3.1 and Theorem 3.2 in [49] (see also [32, 35] for the case

n “ 2).

Definition 5.3. Let Qn be an n-quasi-copula and i P t1, . . . , nu. The function

Qin : r0, 1sn Ñ r0, 1s given by

Qinpxq “ Qnpx1, . . . , xi´1, 1, xi`1, . . . , xnq ´Qnpx1, . . . , xi´1, 1´ xi, xi`1, . . . , xnq

is called the flipping of Qn in the i-th argument.

Remark 5.2. It is important to note that Qin may not be increasing. However, if

Qin is an increasing function, then Qin is an n-quasi-copula, as stated in Theorem 3.2
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in [49]. In such case, it also holds that pQinq
i “ Qn.

The following theorem gives sufficient and necessary conditions for Qi to be an

n-quasi-copula.

Theorem 5.4. Let Qn be an n-quasi-copula and i P t1, . . . , nu. Define a P r0, 1sn

as the point such that ai “ 1 and aj “ 0 for any j ‰ i. Then Qin is an n-

quasi-copula if and only if for any n-box P “
Śn

j“1rxj , yjs with the property that

#tj P t1, . . . , nu | xj ‰ aj and yj ‰ aju ď 1 it holds that VQnpP q ě 0.

We obtain the following corollary from Theorem 5.4.

Corollary 5.4. If Qn is a supermodular n-quasi-copula, then for any i P t1, . . . , nu

Qin is an n-quasi-copula.

Proof. For any i P t1, . . . , nu, let P “
Śn

j“1rxj , yjs be an n-box such that #tj P

t1, . . . , nu | xj ‰ aj and yj ‰ aju ď 1, where a P r0, 1sn is the point such that

ai “ 1 and aj “ 0 for any j ‰ i. Note that the last condition implies that

#tj P t1, . . . , nu | xj ‰ 0 u ď 2, i.e., at least n ´ 2 of the values x1, . . . , xn must

be zero. Hence, using a similar argument as in the proof of Lemma 5.1, any

supermodular n-quasi-copula Qn satisfies the condition required in Theorem 5.4,

from which the result follows.

The following lemma [49] will be useful for the main result of this section.

Lemma 5.2. For any i P t1, . . . , nu define fi : r0, 1sn Ñ r0, 1sn as

fipxq “ px1, . . . , xi´1, 1´ xi, xi`1, . . . , xnq .

Then for any n-quasi-copula Qn and n-box P “
Śn

j“1rxj , yjs Ď r0, 1s
n it holds that

VQinpPq “ VQnpfipPqq ,

where fipPq is the n-box that is obtained by applying the function fi to each of

the vertices of P, i.e., fipPq “
Śn

j“1rx
1
j , y

1
js where rx1i, y

1
is “ r1 ´ yi, 1 ´ xis and

rx1j , y
1
js “ rxj , yjs for any j ‰ i.

We now have all the tools that are necessary to solve Problem 2.8 in [143].

Theorem 5.5. Let Qn be a r0, 1sn Ñ r0, 1s function that satisfies conditions (c1)

and (c2) of an n-copula. Then the following statements are equivalent:

(i) Qn is an pn´ 1q-dim-increasing n-quasi-copula such that Qin is pn´ 1q-dim-

increasing n-quasi-copula for any i P t1, . . . nu.

(ii) For any n-box P such that at least one of its vertices is contained in the

boundary r0, 1snz s0, 1rn of the unit hypercube r0, 1sn it holds that VQnpPq ě 0.
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Proof. First suppose that Qn is an pn ´ 1q-dim-increasing n-quasi-copula such

that Qin is an pn ´ 1q-dim-increasing n-quasi-copula for any i P t1, . . . u. Let

P “
Śn

j“1rxj , yjs Ď r0, 1s
n be an n-box such that at least one of its vertices is

contained in the boundary r0, 1snz s0, 1rn of the unit hypercube r0, 1sn. Without

loss of generality, we will suppose that tx1, y1uXt0, 1u ‰ H. We have to distinguish

two cases.

Case 1 : If x1 “ 0, then using the pn´ 1q-dim-increasingness of Qn it follows that

VQnpPq “ VQa,t1u
pP1q ě 0 ,

where P1 “
Śn

j“2rxj , yjs and a “ py1, 1, . . . , 1q.

Case 2 : If y1 “ 1, then note that if P1 “ r0, 1´ y1s
Śn

j“2rxj , yjs, then f1pP
1q “ P

where f1 is given as in Lemma 5.2. Then, using Lemma 5.2, it follows that

VQnpPq “ VQ1
n
pf1pP

1qq ě 0 .

The last inequality holds due to the pn ´ 1q-dim-increasingness of Q1
n, using a

similar argument as the one in the first case.

Now suppose that Qn is such that for any n-box P with the property that if at least

one of its vertices is contained in the boundary r0, 1snz s0, 1rn of the unit hypercube

r0, 1sn it holds that VQnpPq ě 0. Then, for any y1 P r0, 1s
n and pn ´ 1q-box

P1 “
Śn

j“2rxj , yjs, it holds that

VQa,t1u
pP1q “ VQnpPq ě 0 ,

where a “ py1, 1, . . . , 1q and P “ r0, y1s
Śn

j“2rxj , yjs. In a similar manner, we can

prove that all the other pn´1q-sections are pn´1q-increasing, and by Corollary 5.2,

Qn is an pn´ 1q-dim-increasing n-quasi-copula.

Now, note that for any i P t1, . . . , nu, Qin is an n-quasi-copula as proven in

Corollary 5.4. Without loss of generality, we will show that Q1
n is pn ´ 1q-dim-

increasing. We have to distinguish two cases.

Case 1 : We will prove that the pn´ 1q-dimensional sections of Q1
n, where the first

coordinate is fixed, are pn´1q-increasing. For this, consider P “ r0, ys
Śn

j“2rxj , yjs,

then f1pPq “ ry1, 1s
Śn

j“2rxj , yjs, where f1 is given as in Lemma 5.2. Let P1 “
Śn

j“2rxj , yjs, then

VQ1
a,t1u

pP1q “ VQ1
n
pPq “ VQnpfipPqq ě 0 ,

where a “ py1, 1, . . . , 1q. Hence, Q1
a,t1u is pn´ 1q-increasing.

Case 2 : Now we will show that pn´ 1q-dimensional sections of Q1
n, where another

argument different from the first argument is fixed, are pn´ 1q-increasing. Without
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loss of generality we will fix the second argument. Consider P “ rx1, y1s ˆ

r0, y2s
Śn

j“3rxj , yjs, then f1pPq “ r1´ y1, 1´ x1s ˆ r0, y2s
Śn

j“3rxj , yjs. Let P1 “

r1´ y1, 1´ x1s
Śn

j“2rxj , yjs, then

VQ1
a,t2u

pP1q “ VQ1
n
pPq “ VQnpfipPqq ě 0 ,

where a “ p1, y2, 1, . . . , 1q. Hence, Q1
a,t2u is pn ´ 1q-increasing, concluding the

proof.

Recall that the trivariate quasi-copula W3 is supermodular, and as a consequence

of Corollary 5.4, it holds that W 1
3 is a 3-quasi-copula. Since W3 does not satisfy

condition (ii) of Theorem 5.5, it follows that W 1
3 cannot be supermodular.

Indeed, consider x “ p0, 2, 0.7, 0.5q and y “ p0.2, 0.5, 0.7q. Then x _ y “

p0.2, 0.7, 0.7q and x^y “ p0.2, 0.5, 0.5q. So W 1
3 px_yq`W 1

3 px^yq “ 0.2`0 “ 0.2,

while W 1
3 pxq `W 1

3 pyq “ 0.2 ` 0.2 “ 0.4, from which it follows that W 1
3 is not

supermodular.
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6 The multivariate Bertino quasi-copula

6.1. Introduction

In this chapter, we study for a given Lipschitz-continuous diagonal function d, the

pointwise infimum of all n-copulas having d as diagonal section. To this end, we

first work in the framework of aggregation functions. Just as in the case of n-

quasi-copulas and n-copulas, the diagonal section of an n-ary aggregation function

A is the increasing function d : r0, 1s Ñ r0, 1s defined by dpxq “ Apx, x, . . . , xq

and satisfies the boundary conditions dp0q “ 0 and dp1q “ 1. Conversely, for any

increasing function d : r0, 1s Ñ r0, 1s with dp0q “ 0 and dp1q “ 1, there exists at

least one n-ary aggregation function that has d as diagonal section.

As previously mentioned, in the bivariate case, the pointwise infimum of all 2-

copulas having d as diagonal section is a 2-copula, called the Bertino 2-copula and

denoted by Bd,2; it also has d as diagonal section. For the pointwise supremum,

the situation is more complicated, since it is always a 2-quasi-copula, yet only

a 2-copula under very restrictive conditions [74, 157, 193]. In the more general

n-ary case, there are only a few studies focusing on the diagonal section of n-

copulas [8, 9, 21, 100]. However, there has recently been a growing interest to

see whether the above-mentioned construction methods that were developed for

the bivariate case can be generalized to the n-dimensional case. For instance, the

concept of diagonal copula in n dimensions has been studied in [100], whereas we

have investigated the generalization of upper semilinear copulas in Chapter 2.

We first study for a given Lipschitz-continuous diagonal function d, the smallest and

greatest n-ary Lipschitz-continuous aggregation functions that have d as diagonal

section. We show that some results extend naturally from the two-dimensional

case to the n-dimensional case. As a byproduct, we show that the Bertino n-quasi-

copula is a supermodular function, further strengthening the results obtained in

Chapter 5.

In the second part, we partially solve the open problem recently posed by R. Mesiar

and J. Kalická in [141], which can be rephrased as follows: find a characterization of

the set of increasing n-Lipschitz-continuous functions d for which a Bertino n-copula

with diagonal section d exists, i.e., for which the associated Bertino n-quasi-copula

is an n-copula. The main result is that this characterization can be obtained by

imposing a single condition on the Lipschitz constant of the n-diagonal functions d,

along with some regularity conditions. The result that we obtain is very restrictive,

in the sense that as the dimension increases, the set of n-diagonal functions for

which there exists an n-dimensional Bertino copula, gets smaller.
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The results of this chapter can also be found in [8, 12].

6.2. Computation of the extremal aggregation func-

tions

We start by studying how to compute the smallest and the greatest M -Lipschitz

n-ary aggregation function with a given diagonal section. In the following, we

will denote by T the triplet pn,M, dq, where n is the dimension, M a constant

greater than or equal to 1{n and d a diagonal function that is nM -Lipschitz

continuous.

In [15] it is stated that for M ě 1{n, the greatest M -Lipschitz n-ary aggregation

function with given diagonal section d can be computed as

UTpxq “ inftdptq `M
n
ÿ

i“1

pxi ´ tq
` | t P r0, 1su , (6.1)

while the smallest M -Lipschitz n-ary aggregation function with given diagonal

section d can be computed as

LTpxq “ suptdptq ´M
n
ÿ

i“1

pt´ xiq
` | t P r0, 1su . (6.2)

We have the following proposition the proof of which is obvious.

Proposition 6.1. For any T “ pn,M, dq, it holds that

UT “ pLSq
˚

and

LT “ pUSq
˚,

where S “ pn,M, d˚q.

In [116] it was shown that for n “ 2 and M “ 1, it suffices to consider t belonging

to the interval rxp1q, xpnqs in Eqs. (6.1) and (6.2), where xpjq is the j-th ordered

component of x. We now show that this also holds true for any n ě 2 and M ě 1{n.

The proof follows the same lines as the proof of Theorem 3.1 in [116], but we

present it here for sake of completeness.

Theorem 6.1. For any T “ pn,M, dq, UT can be computed as

UTpxq “ inftdptq `M
n
ÿ

i“1

pxi ´ tq
` | t P rxp1q, xpnqsu , (6.3)
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and LT can be computed as

LTpxq “ suptdptq ´M
n
ÿ

i“1

pt´ xiq
` | t P rxp1q, xpnqsu . (6.4)

Proof. We will prove the expression for LT, since the proof for UT follows from

Proposition 6.1. We first show that the right-hand side of Eq. (6.4), i.e.,

STpxq “ suptdptq ´M
n
ÿ

i“1

pt´ xiq
` | t P rxp1q, xpnqsu .

is an M -Lipschitz aggregation function with diagonal section d. Clearly, for any

x P r0, 1s it holds that STpx, x, . . . , xq “ dpxq and as a byproduct, ST satisfies

conditions (a1) and (a2). We now show that ST is increasing in each argument.

Without loss of generality, we will prove that ST is increasing in the first argument.

Consider the vectors x “ px, z2, z3, . . . , znq, y “ py, z2, z3, . . . , znq P r0, 1s
n with

x ď y. Denote by a “ minpz2, . . . , znq and by b “ maxpz2, . . . , znq. We have to

consider several cases.

Case 1 : Suppose that x ď y ď a ď b. Using the continuity of d, we have

STpxq “ suptdptq ´Mpt´ xq ´M
n
ÿ

i“2

pt´ ziq
` | t P rx, bsu

“ suptdptq ´Mpt´ xq ´M
n
ÿ

i“2

pt´ ziq
` | t P ry, bsu

_ suptdptq ´Mpt´ xq ´M
n
ÿ

i“2

pt´ ziq
` | t P rx, ysu .

Using elementary properties of the supremum, we obtain

suptdptq ´Mpt´ xq ´M
n
ÿ

i“2

pt´ ziq
` | t P ry, bsu

“ Mpx´ yq ` suptdptq ´Mpt´ yq ´M
n
ÿ

i“2

pt´ ziq
` | t P ry, bsu

“ Mpx´ yq ` STpyq

and

suptdptq´Mpt´xq´M
n
ÿ

i“2

pt´ziq
` | t P rx, ysu “ suptdptq´Mpt´xq | t P rx, ysu ,
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since y ă a “ minpz2, . . . znq. Hence,

STpxq “ suptdptq ´Mpt´ xq ´M
n
ÿ

i“2

pt´ ziq
` | t P ry, bsu

_ suptdptq ´Mpt´ xq ´M
n
ÿ

i“2

pt´ ziq
` | t P rx, ysu

“ pMpx´ yq ` STpyqq _ suptdptq ´Mpt´ xq | t P rx, ysu

ď STpyq _ suptdptq | t P rx, ysu

“ STpyq _ dpyq

“ STpyq .

Case 2 : Suppose that a ď x ď y ď b. Since x ď y, it holds that pt´xq` ě pt´yq`.

Hence,

STpxq “ suptdptq ´Mpt´ xq` ´M
n
ÿ

i“2

pt´ ziq
` | t P ra, bsu

ď suptdptq ´Mpt´ yq` ´M
n
ÿ

i“2

pt´ ziq
` | t P ra, bsu

“ STpyq .

Case 3 : Suppose that a ď b ď x ď y. Clearly, ra, xs Ď ra, ys and it follows that

STpxq “ suptdptq ´M
n
ÿ

i“2

pt´ ziq
` | t P ra, xsu

ď suptdptq ´M
n
ÿ

i“2

pt´ ziq
` | t P ra, ysu

“ STpyq .

Case 4 : If x ă a ď y ď b, the result follows from cases 1 and 2.

Case 5 : If x ă a ď b ă y, the result follows from cases 1, 2 and 3.

Case 6 : If a ă x ă b ă y, the result follows from cases 2 and 3.

Now we show that ST is M -Lipschitz continuous. Again, without loss of generality,

we will prove that ST is M -Lipschitz continuous in the first argument. Consider

again the vectors x “ px, z2, z3, . . . , znq, y “ py, z2, z3, . . . , znq P r0, 1s
n with x ď y.

Denote by a “ minpz2, . . . , znq and by b “ maxpz2, . . . , znq. Once again, we have
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to consider several cases.

Case 1 : Suppose that x ď y ă a ď b. Using the same arguments as in Case 1 of

the proof of the increasingness of ST, we have

STpxq “ pMpx´ yq ` STpyqq _ suptdptq ´Mpt´ xq | t P rx, ysu

ě Mpx´ yq ` STpyq .

Hence STpyq ´ STpxq ďMpy ´ xq.

Case 2 : Suppose that a ă x ď y ď b. For any t P ra, bs, it holds that

dptq´Mpt´yq`´M
n
ÿ

i“2

pt´ziq
` “ dptq´Mpt´xq`´M

n
ÿ

i“2

pt´ziq
``Mpt´xq`´Mpt´yq` .

Note that Mpt´ xq` ´Mpt´ yq` ďMpy ´ xq for any t since

pt´ xq` ´ pt´ yq` “

$

’

’

’

’

&

’

’

’

’

%

0 , if t ă x,

t´ x , if x ď t ă y,

y ´ x , if t ě y.

Hence

dptq ´Mpt´ yq` ´M
n
ÿ

i“2

pt´ ziq
`

“ dptq ´Mpt´ xq` ´M
n
ÿ

i“2

pt´ ziq
` `Mpt´ xq` ´Mpt´ yq`

ď dptq ´Mpt´ xq` ´M
n
ÿ

i“2

pt´ ziq
` `Mpy ´ xq

ď suptdptq ´Mpt´ xq` ´M
n
ÿ

i“2

pt´ ziq
` | t P ra, bsu `Mpy ´ xq

ď STpxq `Mpy ´ xq ,

from which it follows that STpyq ď STpxq `Mpy ´ xq.

Case 3 : Suppose that a ď b ď x ď y. Note that

STpyq “ suptdptq ´M
n
ÿ

i“2

pt´ ziq
` | t P ra, ysu
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“ suptdptq ´M
n
ÿ

i“2

pt´ ziq
` | t P ra, xsu

_ suptdptq ´M
n
ÿ

i“2

pt´ ziq
` | t P rx, ysu

“ STpxq _ suptdptq ´M
n
ÿ

i“2

pt´ ziq
` | t P rx, ysu .

Now, observe that

suptdptq ´M
n
ÿ

i“2

pt´ ziq
` | t P rx, ysu “ suptdptq ´M

n
ÿ

i“2

pt´ ziq | t P rx, ysu

Hence, for any t P rx, ys, it holds that

dptq ´M
n
ÿ

i“2

pt´ ziq ď dpxq ´M
n
ÿ

i“2

px´ ziq `Mpy ´ xq , (6.5)

since the latter inequality is equivalent to

dptq ´ dpxq ď pn´ 1qMpt´ xq ` py ´ xq ,

which always holds true due to the nM -Lipschitz-continuity property of d. Since

Eq. (6.5) holds true for any t P rx, ys, it follows that

suptdptq ´M
n
ÿ

i“2

pt´ ziq | t P rx, ysu ď dpxq ´M
n
ÿ

i“2

px´ ziq `Mpy ´ xq

ď STpyq `Mpy ´ xq .

Hence,

STpyq “ STpxq _ suptdptq ´M
n
ÿ

i“2

pt´ ziq
` | t P rx, ysu

ď STpxq _ pSTpxq `Mpy ´ xqq

“ STpxq `Mpy ´ xq ,

which concludes this case.

Case 4 : If x ă a ď y ď b, the result follows from cases 1 and 2.

Case 5 : If x ă a ď b ă y, the result follows from cases 1, 2 and 3.
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Case 6 : If a ă x ă b ă y, the result follows from cases 2 and 3.

Finally, we prove that for any M -Lipschitz n-ary aggregation A with diagonal

section d, it holds that A ě ST. Let x P r0, 1sn and without loss of generality,

suppose that x1 ď x2 ď x3 ď ¨ ¨ ¨ ď xn. For any t P rx1, x2s, using the fact that A

is increasing and M -Lipschitz continuous, it holds that

Apxq ´ dptq ě Apx1, t, t, . . . , tq ´ dptq

ě Mpx1 ´ tq

“ ´Mpt´ x1q
`

“ ´

n
ÿ

i“1

Mpt´ xiq
` .

For any t P sx2, x3s, it holds that

Apxq ´ dptq ě Apx1, x2, t, . . . , tq ´ dptq

ě Mpx1 ´ tq `Mpx2 ´ tq

“ ´Mpt´ x1q
` ´Mpt´ x2q

`

“ ´

n
ÿ

i“1

Mpt´ xiq
` .

By repeating this procedure, we have that for any t P rx1, xns, it holds that

Apxq ´ dptq ě ´M
n
ÿ

i“1

pt´ xiq
` ,

which implies Apxq ě STpxq. Hence, ST “ LT.

Example 6.1. In this example, we use Theorem 6.1 to compute the extremal

M -Lipschitz n-ary aggregation functions when considering the identity function as

diagonal section. Let T “ pn,M, dq where dpxq “ x and M ă 1. Let k P t2, ..., nu

be the integer such that pk ´ 1qM ă 1 and kM ě 1. After some elementary

computations, it can be shown that

LTpxq “ xpkqp1´ pk ´ 1qMq `M
k´1
ÿ

i“1

xpiq

and

UTpxq “ xpn´k`1qp1´ pk ´ 1qMq `M
k
ÿ

i“2

xpn´k`iq .

Example 6.2. In this example, we show how to use Theorem 6.1 in order to
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compute the extremal M -Lipschitz n-ary aggregation functions for an ordinal sum,

when the number of intervals is finite. Let d be an n-Lipschitz continuous diagonal

function such that there exists t0 P s0, 1r such that dpt0q “ t0 and dptq ď t for

any t P r0, 1s. Denote by A the restriction of LT to r0, t0r
n, and denote by B the

restriction of LT to rt0, 1s
n. Then

LTpxq “

$

&

%

Bpxq , if minpx1, x2, . . . , xnq ě t0 ,

Apx^ pt0, t0, . . . , t0qq , otherwise .

Note that the equality is obvious if x P r0, t0s
n or x P rt0, 1s

n. For the other

cases, note that if x P r0, 1sn is such that there exists k P t1, 2, . . . , n´ 1u with the

property that xpkq ă t0 but xpk`1q ě t0, then for any t P rt0, xpnqs the following

double inequality holds

dptq ď t ď t0 ` kpt´ t0q `
n
ÿ

i“k`1

pt´ xiq
` .

The latter inequality implies

dptq ´
n
ÿ

i“1

pt´ xiq
` ď dpt0q ´

n
ÿ

i“1

pt´ xiq
` ď LTpxp1q, xp2q, . . . , xpkq, t0, t0, . . . , t0q .

Hence,

suptdptq ´
n
ÿ

i“1

pt´ xiq
` | t P rt0, xpnqsu ď LTpxp1q, xp2q, . . . , xpkq, t0, t0, . . . , t0q .

Since we can compute LTpxq as

LTpxq “ suptdptq´
n
ÿ

i“1

pt´xiq
` | t P rxp1q, t0su_suptdptq´

n
ÿ

i“1

pt´xiq
` | t P rt0, xpnqsu

and

suptdptq ´
n
ÿ

i“1

pt´ xiq
` | t P rxp1q, t0s “ suptdptq ´

k
ÿ

i“1

pt´ xiq
` | t P rxp1q, t0s

“ LTpxp1q, xp2q, . . . , xpkq, t0, t0, . . . , t0q ,

the result follows from the symmetry of LT. Obviously this result can be generalized

to the case where there exists a finite number of points t0, t1, . . . , tm such that

dptiq “ ti for any i P t0, 1, 2, . . . ,mu.

Example 6.3. In this example, we use Theorem 6.1 to compute the extremal M -

Lipschitz n-ary aggregation, when considering their diagonal section as a specific
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power of the identity. Let T “ pn,M, dq where dpxq “ xα with α ď M . Let

x P r0, 1sn and note that for any j P t1, 2, . . . , n ´ 1u any t P rxpjq, xpj`1qs, it

holds that the function dptq ´M
řn
i“1pt´ xiq

` is decreasing since its derivative

on the interval sxpjq, xpj`1qr is equal to αtα´1 ´ jM , which is negative. Hence, the

minimum of the function dptq ´M
řn
i“1pt´ xiq

` on the interval t P rxp1q, xpnqs is

attained at t “ xp1q. From the latter it follows that LTpxq “ xα
p1q and by doing a

similar analysis, it can be shown that UTpxq “ xα
pnq. As a particular case, note that

if dpxq “ x, then for any M ě 1 it holds that LTpxq “ xp1q “ minpx1, . . . , xnq.

The previous example can be further generalized as the following proposition

shows.

Proposition 6.2. Let T “ pn,M, dq where d is a K-Lipschitz continuous diagonal

function and K is such that K ď jM with j P t1, 2, . . . , n´ 1u. Let S1 “ pj,M, dq

and S2 “ pn´ j,M, dq. Then for any x, it holds that

LTpxq “ LS1
pxp1q, . . . , xpjqq

and

UTpxq “ US2
pxpn´j`1q, . . . , xpnqq

Proof. We will give the proof for LT. The result for UT then follows from Propo-

sition 6.1. Note that for any x P r0, 1sn the function q : rxp1q, xpnqs Ñ R given

by

qptq “ dptq ´M
n
ÿ

j“1

pt´ xjq
`

is absolutely continuous and has a derivative of the form d1ptq ´ Mr almost

everywhere, with r a positive integer depending on the value of t. Since d is a

K-Lipschitz continuous diagonal section with K ď jM for some j P t1, 2, . . . , n´1u,

it follows that for almost every t P sxj , xpnqr the derivative is negative almost surely.

Hence the maximum must be attained in the interval t P rx1, xpjqs, from which the

result follows.

Example 6.4. We give an easy example of how Proposition 6.2 simplifies the

computations when the value of M is sufficiently large. Consider TM “ p2,M, dq

where dpxq “ x2. Then, if M P r1, 2r, it holds that

LTpx, yq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x2 , if x ď y and x` y ăM ,

y2 , if x ą y and x` y ăM ,

y2 ´Mpy ´ xq , if x ď y and x` y ěM ,

x2 ´Mpx´ yq , if x ą y and x` y ěM ,
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whereas if M ě 2, then

LTpx, yq “ pminpx, yqq2 .

6.3. Absorbing and neutral elements of the extremal

functions

We now proceed to investigate whether the smallest Lipschitz-continuous aggrega-

tion function with a given diagonal section d has similar properties as the ones of

quasi-copulas, more specifically, the existence of a neutral element and an absorbing

element.

We start by studying the existence of an absorbing element.

Proposition 6.3. Let T “ pn,M, dq. Then LT has 0 as an absorbing element if

and only if the following conditions hold

(1) M ě 1,

(2) for any t P r0, 1s it holds that dptq ďMt.

Proof. First, suppose that LT has 0 as an absorbing element. Since L is M -Lipschitz

continuous, it holds that

1´ 0 “ LTp1q ´ LTp0, 1, 1, . . . , 1q ďMp1´ 0q “M .

Hence, M ě 1. Now consider the point p0, 1, 1, . . . 1q, then

0 “ LTp0, 1, 1, . . . , 1q

“ suptdptq ´M
n
ÿ

i“1

pt´ xiq
` | t P r0, 1su

“ suptdptq ´Mt | t P r0, 1su .

Consequently, for any t P r0, 1s, it holds that dptq ´ Mt ď 0, i.e., dptq ď Mt.

Conversely, suppose that M ě 1 and for any t P r0, 1s it holds that dptq ďMt. Let

x P r0, 1sn be such that xp1q “ 0. Then, for any t P r0, xp2qs, it holds that

dptq ´M
n
ÿ

i“1

pt´ xiq
` “ dptq ´Mpt´ 0q “ dptq ´Mt ď 0 .

Now, for any t P rxp2q, xp3qs, it holds that

dptq ´M
n
ÿ

i“1

pt´ xiq
` “ dptq ´Mpt´ 0q ´Mpt´ xp2qq ď 0 .
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By repeating this procedure, we easily deduce that for any t P rxp1q, xpnqs, it holds

that

dptq ´
n
ÿ

i“2

Mpt´ xiq
` ď 0 ,

Since dp0q ´
řn
i“2Mp0´ xiq

` “ 0, we conclude that LTpxq “ 0.

Example 6.5. In this example we show that the condition dptq ďMt cannot be

weakened. Let T “ p2, 2, dq, where dptq “ minp4t, 1q. Then, for any y P r0, 1s a

simple computation shows that LTp0, yq “ minp2y, 1q. Hence, 0 is not an absorbing

element of LT.

Now, we turn our attention to the existence of a neutral element.

Proposition 6.4. Let T “ pn,M, dq. Then LT has 1 as a neutral element if and

only if one of the two following conditions holds:

(1) M “ 1 and dptq ď t for any t P r0, 1s;

(2) M ą 1 and dptq “ t for any t P r0, 1s.

Proof. Using the same argument as in the case of Proposition 6.3, we can show

that if M ă 1, then 1 cannot be a neutral element of LT. First suppose that M “ 1

and 1 is a neutral element of LT. Let x be such that x1 “ 0 and xi “ 1 for all

i ‰ 1, then

0 “ suptdptq ´
n
ÿ

i“1

pt´ xiq
` | t P r0, 1su “ suptdptq ´ t | t P r0, 1su .

Hence, dptq ď t. For the converse, suppose that dptq ď t for any t P r0, 1s and

without loss of generality, consider the point x “ px, 1, 1, . . . , 1q, then

LTpxq “ suptdptq ´
n
ÿ

i“1

pt´ xiq
` | t P rx, 1su “ suptdptq ´ t` x | t P rx, 1su “ x ,

since dptq ´ t ď 0 and dp1q ´ 1 “ 0.

Now, we study the case M ą 1. First suppose that 1 is a neutral element of LT.

Then for any x P r0, 1s, it holds that

x “ LTpx, 1, 1, . . . , 1q “ suptdptq ´Mpt´ xq | t P rx, 1su ě dpxq .

Hence, dpxq ď x. Now, for a fixed x, the function dptq ´Mpt´ xq is continuous on

the interval rx, 1s. Since this interval is compact, there exists rx P rx, 1s such that

dprxq ´Mprx ´ xq “ suptdptq ´Mpt´ xq | t P rx, 1su .
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Therefore,

x “ LTpx, 1, 1, . . . , 1q

“ suptdptq ´Mpt´ xq | t P rx, 1su

“ dprxq ´Mprx ´ xq

ď rx ´Mprx ´ xq .

Hence, x ď rx ´Mprx ´ xq, which is equivalent to pM ´ 1qx ě pM ´ 1qrx, i.e.,

x ě rx. This implies that rx “ x and

x “ LTpx, 1, 1, . . . , 1q

“ dprxq ´Mprx ´ xq

“ dpxq .

Consequently, dpxq “ x for any x P r0, 1s.

For the converse, suppose that M ą 1 and dpxq “ x. Without loss of generality,

consider the point x “ px, 1, 1, . . . , 1q, then

LTpx, 1, 1, . . . , 1q “ suptt´Mpt´ xq | t P rx, 1su

“ suptp1´Mqt`Mx | t P rx, 1su

“ x ,

since p1´Mqt`Mx is a decreasing function of t and as consequence the minimum

is reached at t “ x. Hence, 1 is a neutral element of LT.

Remark 6.1. As a consequence of Example 6.3, the only setting where it is

possible to have 1 as a neutral element of LT is when working with Lipschitz

constant M “ 1 and with diagonal sections of quasi-copulas, as condition (2) of

Proposition 6.4 reduces to the minimum operator independently of the choice of M .

Example 6.6. In this example we show that the condition dptq ď t cannot be

weakened in the case M “ 1. Let T “ pn, 1, dq, where dptq “ minp2t, 1q. Then, for

any x P r0, 1s, a simple computation shows that LTpx, 1, 1, . . . , 1q “ minpx` 1
2 , 1q.

Hence, 1 is not a neutral element of LT.

The following corollary follows immediately from Propositions 6.3 and 6.4, and

Remark 6.1.

Corollary 6.1. The function LT has 0 as an absorbing element and 1 as a neutral

element if and only if it is a quasi-copula.
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6.4. Supermodularity and submodularity of the

extremal functions

It is well known that for a diagonal function d satisfying dptq ď t, the smallest

1-Lipschitz continuous aggregation function with given diagonal section d is the

Bertino n-quasi-copula Bd,n. In the bivariate case, the Bertino 2-quasi-copula is

always a 2-copula. However, this result is not universal, in the sense that for n ě 3,

the Bertino n-quasi-copula Bd,n is not always an n-copula.

We now show that that the smallest (resp. greatest) M -Lipschitz continuous

n-ary aggregation function with a given diagonal section is supermodular (resp.

submodular). As a consequence, we will show that the Bertino n-quasi-copula is

supermodular for any n ě 2, giving another example of a property of 2-copulas that

cannot be generalized to higher-dimensional copulas, holds true for supermodular

n-quasi-copulas.

Theorem 6.2. For any T “ pn,M, dq, the function UT is submodular and the

function LT is supermodular.

Proof. Due to Proposition 6.1, it suffices to show that LT is supermodular. In

view of Proposition 5.1 it suffices to show that the two-dimensional sections are

supermodular. Without loss of generality, we only need to prove that for any

z P r0, 1sn, the function H : r0, 1s2 Ñ r0, 1s defined by

Hpx, yq “ LTpx, y, z3, z4, . . . , znq

is 2-increasing. Note that any 2-box contained in r0, 1s2 can be decomposed in boxes

centred around the main diagonal (i.e., of the type rx, ys2 with x ď y), boxes above

the main diagonal (i.e., of the type rx1, x2s ˆ ry1, y2s with x1 ď x2 ď y1 ď y2) or

below the main diagonal (i.e., of the type rx1, x2sˆry1, y2s with y1 ď y2 ď x1 ď x2).

Let a “ minpz3, . . . , znq and b “ maxpz3, . . . , znq. Due to the symmetry of LT, we

can suppose, without loss of generality, that a “ z3 and b “ z4.

We start by considering a box of the type rx1, x2s ˆ ry1, y2s with x1 ď x2 ď y1 ď

y2. There are 15 subcases to consider, but most of them can be regarded as a

consequence of the six main cases by using the additivity of the volume, as shown

in Figure 6.1 (1)–(15).
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Case 1 : Suppose that a ď b ď x1. Since the functions

dptq ´Mpt´ aq ´Mpt´ bq` ´Mpt´ x2q
` ´M

n
ÿ

i“5

pt´ zjq
`

and

dptq ´Mpt´ aq ´Mpt´ bq` ´Mpt´ x1q
` ´M

n
ÿ

i“5

pt´ zjq
`

are continuous on the intervals ra, y1s and ra, y2s, respectively, there exist two

points r P ra, y1s and s P ra, y2s such that

Hpx2, y1q “ suptdptq ´Mpt´ aq ´Mpt´ bq` ´Mpt´ x2q
`

´M
n
ÿ

i“5

pt´ zjq
` | t P ra, y1su

“ dprq ´Mpr ´ aq ´Mpr ´ bq` ´Mpr ´ x2q
` ´M

n
ÿ

i“5

pr ´ zjq
` ,

and

Hpx1, y2q “ suptdptq ´Mpt´ aq ´Mpt´ bq` ´Mpt´ x1q
`

´M
n
ÿ

i“5

pt´ zjq
` | t P ra, y2su

“ dpsq ´Mps´ aq ´Mps´ bq` ´Mps´ x1q
` ´M

n
ÿ

i“5

ps´ zjq
` .

Define the auxiliary function Fr,s : ra, y1s ˆ ra, y2s Ñ R as

Fr,spt1, t2q “ dpt2q ´Mpt2 ´ aq
` ´Mpt2 ´ bq

` ´Mpt2 ´ x2q
` ´Mpt2 ´ y2q

`

´M
n
ÿ

i“5

pt2 ´ zjq
` ´Hpx2, y1q ´Hpx1, y2q ` dpt1q ´Mpt1 ´ aq

´Mpt1 ´ bq
` ´Mpt1 ´ x1q

` ´Mpt1 ´ y1q
`

´M
n
ÿ

i“5

pt1 ´ zjq
` . (6.6)

Note that for any pt1, t2q P ra, y1s ˆ ra, y2s, it holds that

Fr,spt1, t2q ď Hpx2, y2q ´Hpx2, y1q ´Hpx1, y2q `Hpx1, y1q . (6.7)

The previous inequality is justified by taking the supremum over all possible
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values of t1 and t2. Hence, it suffices to show that there exist t1, t2 such that

Fr,spt1, t2q ě 0. Since a ď b ď x1, Fr,spt1, t2q can be rewritten as

Fr,spt1, t2q “ dpt2q ´Mt2 ` dpt1q ´Mt1 ´Mpt2 ´ bq
` ´Mpt2 ´ x2q

`

´M
n
ÿ

i“5

pt2 ´ zjq
` ´Mpt1 ´ bq

` ´Mpt1 ´ x1q
` ´M

n
ÿ

i“5

pt1 ´ zjq
`

`Mr ´ dprq `Ms´ dpsq `Mpr ´ bq` `Mpr ´ x2q
` `M

n
ÿ

i“5

pr ´ zjq
`

`Mps´ bq` `Mps´ x1q
` `M

n
ÿ

i“5

ps´ zjq
` .

We now analyse two possible subcases. First, if s P ra, y1s, then ps, rq P ra, y1s ˆ

ra, y2s. Hence, Fr,sps, rq is well defined and after a simple computation, we get

Fr,spr, sq “ 0 and from Eq. (6.7), it follows that

Hpx2, y2q ´Hpx2, y1q ´Hpx1, y2q `Hpx1, y1q ě 0 .

On the other hand, if s P sy1, y2s, then pr, sq P ra, y1s ˆ ra, y2s and after a simple

computation, we get

Fr,spr, sq “Mx2´Mx1`Mpr´x2q
`´Mpr´x1q

` “

$

’

’

’

’

&

’

’

’

’

%

Mpx2 ´ x1q , if r ă x1,

Mpr ´ x1q , if x1 ď r ă x2,

0 , if r ě x2.

Hence, Fr,spr, sq ě 0 and from Eq. (6.7), we obtain

Hpx2, y2q ´Hpx2, y1q ´Hpx1, y2q `Hpx1, y1q ě 0 .

Case 2 : The case a ď x1 ď x2 ď b ď y1 can be proven using similar arguments as

the ones given in Case 1.

Case 3 : Suppose that a ď x1 and y2 ď b. Similarly as in Case 1, define the points

r, s P ra, bs as the points such that the following equalities hold

Hpx2, y1q “ dprq ´Mpr ´ aq ´Mpr ´ x2q
` ´Mpr ´ y1q

` ´M
n
ÿ

i“5

pr ´ zjq
` ,

Hpx1, y2q “ dpsq ´Mps´ aq ´Mps´ x1q
` ´Mps´ y2q

` ´M
n
ÿ

i“5

ps´ zjq
` .

Define the function Fr,s as in Eq. (6.6), but now by considering the 2-box ra, bs2 as
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its domain. Then

Fr,spt1, t2q “ dpt2q ´Mt2 ` dpt1q ´Mt1 ´Mpt2 ´ x2q
` ´Mpt2 ´ y2q

`

´M
n
ÿ

i“5

pt2 ´ zjq
` ´Mpt1 ´ x1q

` ´Mpt1 ´ y1q
` ´M

n
ÿ

i“5

pt1 ´ zjq
`

`Mr ´ dprq `Ms´ dpsq `Mpr ´ x2q
` `Mpr ´ y1q

` `M
n
ÿ

i“5

pr ´ zjq
`

`Mps´ x1q
` `Mps´ y2q

` `M
n
ÿ

i“5

ps´ zjq
` .

We have to consider two subcases. First, if r ě s, then consider the point

ps, rq P ra, bs2. After a simple computation, we obtain the following simplified

expression for Fr,spr, sq

Fr,spr, sq “Mpr ´ y1q
` ´Mpr ´ y2q

` `Mps´ y2q
` ´Mps´ y1q

` .

The latter expression can be rewritten as

Fr,spr, sq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

0 , if r ă y1,

Mpr ´ y1q , if s ă y1 ď r ă y2,

Mpr ´ sq , if y1 ď s ď r ă y2 ă x2,

Mpy2 ´ y1q , if s ă y1 ď y2,ď r

Mpy2 ´ sq , if y1 ď s ă y2 ă r,

0 , if y2 ď s ď r.

Hence, Hpx2, y2q´Hpx2, y1q´Hpx1, y2q`Hpx1, y1q ě Fr,spr, sq ě 0. The subcase

when s ě r can be analogously proven by considering the point pr, sq.

Case 4 : Suppose that x2 ď a and b ď y1. Similarly as in the previous cases, define

the points r P rx2, y1s and s P rx1, y2s such that the following equalities hold

Hpx2, y1q “ dprq ´Mpr ´ x2q ´Mpr ´ aq
` ´Mpr ´ bq` ´M

n
ÿ

i“5

pr ´ zjq
` ,

Hpx1, y2q “ dpsq ´Mps´ x1q ´Mps´ aq
` ´Mps´ bq` ´M

n
ÿ

i“5

ps´ zjq
` .

Define the function Fr,s as in Eq. (6.6), but now with the 2-box rx1, y1s ˆ rx2, y2s
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as its domain. Then

Fr,spt1, t2q “ dpt2q ´Mt2 ` dpt1q ´Mt1 ´Mpt2 ´ aq
` ´Mpt2 ´ bq

`

´M
n
ÿ

i“5

pt2 ´ zjq
` ´Mpt1 ´ aq

` ´Mpt1 ´ bq
` ´M

n
ÿ

i“5

pt1 ´ zjq
`

`Mr ´ dprq `Ms´ dpsq `Mpr ´ aq` `Mpr ´ bq` `M
n
ÿ

i“5

pr ´ zjq
`

`Mps´ aq` `Mps´ bq` `M
n
ÿ

i“5

ps´ zjq
` .

We now analyse two possible subcases. First, if s P sy1, y2s, then pr, sq P rx1, y1s ˆ

rx2, y2s and Fr,spr, sq “ 0. Hence, Hpx2, y2q´Hpx2, y1q´Hpx1, y2q`Hpx1, y1q ě 0.

Second if s P rx1, y1s, then ps, rq P rx1, y1s ˆ rx2, y2s and Fr,spr, sq “ 0. Hence,

Hpx2, y2q ´Hpx2, y1q ´Hpx1, y2q `Hpx1, y1q ě 0.

Case 5 : Suppose that x2 ď a and y2 ď b. Similarly as in the previous cases, define

the points r P rx2, bs and s P rx1, bs as the points such that the following equalities

hold

Hpx2, y1q “ dprq ´Mpr ´ x2q ´Mpr ´ aq
` ´Mpr ´ y1q

` ´M
n
ÿ

i“5

pr ´ zjq
` ,

Hpx1, y2q “ dpsq ´Mps´ x1q ´Mps´ aq
` ´Mps´ y2q

` ´M
n
ÿ

i“5

ps´ zjq
` .

Define the function Fr,s as in Eq. (6.6), but now with the 2-box rx1, bs ˆ rx2, bs as

its domain. Then

Fr,spt1, t2q “ dpt2q ´Mt2 ` dpt1q ´Mt1 ´Mpt2 ´Bq
` ´Mpt2 ´ y2q

`

´M
n
ÿ

i“5

pt2 ´ zjq
` ´Mpt1 ´ bq

` ´Mpt1 ´ y1q
` ´M

n
ÿ

i“5

pt1 ´ zjq
`

`Mr ´ dprq `Ms´ dpsq `Mpr ´ bq` `Mpr ´ y1q
` `M

n
ÿ

i“5

pr ´ zjq
`

`Mps´ bq` `Mps´ y1q
` `M

n
ÿ

i“5

ps´ zjq
` .

Once again, we have to analyse two subcases. First, if s P rx2, bs, then pr, sq P

rx1, bs ˆ rx2, bs and Fr,spr, sq “ 0. Hence, Hpx2, y2q ´ Hpx2, y1q ´ Hpx1, y2q `

Hpx1, y1q ě 0.
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Second, if s P rx1, x2r, then ps, rq P rx1, bs ˆ rx2, bs, and

Fr,sps, rq “Mpr ´ y1q
` ´Mpr ´ y2q

` “

$

’

’

’

’

&

’

’

’

’

%

0 , if r ă y1,

Mpr ´ y1q , if y1 ď r ă y2,

Mpy2 ´ y1q , if r ě y2.

Hence, Hpx2, y2q ´Hpx2, y1q ´Hpx1, y2q `Hpx1, y1q ě 0.

Case 6 : The case y2 ď a can be proven using similar arguments as the ones given

in Case 5.

We now prove that a box of the type rx, ys2 with x ď y has a positive H-volume.

There are 9 further subcases to consider, however, as in the case of asymmetric

boxes, most of them can be regarded as a consequence of the three main cases, as

shown in Figure 6.2 (16)–(21).

x

x

y

y

a

a

b

b

Case 16

(16) x ď y ď a.

a

a

x

x

y

y

b

b

Case 17

(17) a ď x ď y ď b.

a

a

b

b

x

x

y

y

Case 18

(18) b ď x.

x

x

a

a

y

y

b

b

Case 16

Case 5

Case 5

Case 17

(19) x ď a ď y ď b.
x

x

a

a

b

b

y

y

Case 16

Case 5

Case 4

Case 5

Case 17

Case 2

Case 4

Case 2

Case 18

(20) x ď a ď b ď y.

a

a

x

x

b

b

y

y

Case 17

Case 2

Case 2

Case 18

(21) a ď x ď b ď y.

Figure 6.2: 2-boxes centred around the main diagonal

Case 16 : Suppose that x ď y ď a. Let r P rx, bs be the point such that the

following equality holds

Hpx, yq “ Hpy, xq “ dprq´Mpr´xq´Mpr´ aq`´Mpr´ yq`´M
n
ÿ

i“5

pr´ zjq
` .
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Define the function Fr : rx, bs ˆ ry, bs Ñ R as

Frpt1, t2q “ dpt2q ´ 2Mpt2 ´ aq
` ´ 2Mpt2 ´ bq

` ´ 2Mpt2 ´ yq
`

´2M
n
ÿ

i“5

pt2 ´ zjq
` ´ 2Hpx, yq ` dpt1q ´ 2Mpt1 ´ aq

`

´2Mpt1 ´ bq
` ´ 2Mpt1 ´ xq

` ´ 2M
n
ÿ

i“5

pt1 ´ zjq
` .

Clearly, for any pt1, t2q P rx, bsˆry, bs, it holds that Frpt1, t2q ď Hpy, yq´Hpx, yq´

Hpy, xq `Hpx, xq. Since x ď y ď a, Frpt1, t2q can be rewritten as

Frpt1, t2q “ 2My ` dpt2q ´ 2Mt2 ` dpt1q ´ 2Mt1 ´Mpt2 ´ aq
`

´M
n
ÿ

i“5

pt2 ´ zjq
` ´Mpt1 ´ aq

` ´M
n
ÿ

i“5

pt1 ´ zjq
`

`2Mr ´ 2dprq ` 2Mpr ´ yq` ` 2Mpr ´ aq` ` 2M
n
ÿ

i“5

pr ´ zjq
` .

Once again, we have to analyse two subcases. First, if r P ry, bs, then pr, rq P rx, bsˆ

ry, bs and Frpr, rq “ 0. Hence, Hpx2, y2q ´Hpx2, y1q ´Hpx1, y2q `Hpx1, y1q ě 0.

Second, if r P rx, yr, then pr, yq P rx, bsˆ ry, bs and Frpr, yq “ dpyq´ dprq ě 0, since

d is increasing. Hence, Hpx2, y2q ´Hpx2, y1q ´Hpx1, y2q `Hpx1, y1q ě 0.

Case 17 : Suppose that a ď x ď y ď b. Let r P ra, bs be the point such that the

following equality holds

Hpx, yq “ Hpy, xq “ dprq´Mpr´ aq´Mpr´xq`´Mpr´ yq`´M
n
ÿ

i“5

pr´ zjq
` .

Define the function Fr,s as in Eq. (6.8), but now considering the 2-box ra, bs2 as its

domain. Then

Frpt1, t2q “ dpt2q ´Mt2 ` dpt1q ´Mt1 ´ 2Mpt2 ´ yq
`

´M
n
ÿ

i“5

pt2 ´ zjq
` ´ 2Mpt1 ´ xq

` ´M
n
ÿ

i“5

pt1 ´ zjq
`

`2Mr ´ 2dprq ` 2Mpr ´ xq` ` 2Mpr ´ yq` ` 2M
n
ÿ

i“5

pr ´ zjq
` .

Note that pr, rq P ra, bs2 and that Frpr, rq “ 0. Hence, Hpx2, y2q ´ Hpx2, y1q ´

Hpx1, y2q `Hpx1, y1q ě 0.
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Case 18 : Suppose that b ď x. Let r P ra, ys be the point such that the following

equality holds

Hpx, yq “ Hpy, xq “ dprq´Mpr´ aq´Mpr´xq`´Mpr´ yq`´M
n
ÿ

i“5

pr´ zjq
` .

Define the function Fr,s as in Eq. (6.8), but now considering the 2-box ra, bs2 as its

domain. Then

Frpt1, t2q “ dpt2q ´Mt2 ` dpt1q ´Mt1 ´Mpt2 ´ bq
`

´M
n
ÿ

i“5

pt2 ´ zjq
` ´Mpt1 ´ bq

` ´M
n
ÿ

i“5

pt1 ´ zjq
`

`2Mr ´ 2dprq ` 2Mpr ´ bq` ` 2Mpr ´ xq` ` 2M
n
ÿ

i“5

pr ´ zjq
` .

Once again, we have to analyse two subcases. First, if r P ra, xr, then pr, rq P ra, xsˆ

ra, ys and Frpr, rq “ 0. Hence, Hpx2, y2q ´Hpx2, y1q ´Hpx1, y2q `Hpx1, y1q ě 0.

Second, if r P rx, ys, then px, rq P ra, xs ˆ ra, ys and

Frpx, rq “ dpxq ´ dprq ` 4Mpr ´ xq `M
n
ÿ

i“5

pr ´ zjq
` ´M

n
ÿ

i“5

px´ zjq
`

“ dpxq ´ dprq ` 4Mpr ´ xq `M
n
ÿ

i“5

pr ´ zjq ´M
n
ÿ

i“5

px´ zjq

“ dpxq ´ dprq ` 4Mpr ´ xq `M
n
ÿ

i“5

pr ´ zjq ´M
n
ÿ

i“5

pr ´ xq

“ dpxq ´ dprq ` nMpr ´ xq `M
n
ÿ

i“5

pr ´ zjq

ě 0 ,

where the first inequality follows from the inequalities r ě x ě b ě zj and the last

inequality is justified by the nM -Lipschitz continuity of d.

Corollary 6.2. For any n ě 2, the Bertino n-quasi-copula with diagonal section

d, given by

Bd,npxq “ suptdptq ´
n
ÿ

i“1

pt´ xiq
` | t P r0, 1su ,

is supermodular.

Remark 6.2. In this remark we show that the “natural” n-dimensional extension
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of the diagonal copula [154] given by

Dnpxq “ min

˜

Mnpxq,
1

n

n
ÿ

i“1

dpxiq

¸

is not supermodular, in general. To see this, consider the case n “ 3 and dptq “ t3.

Clearly, dptq is the diagonal section of a 3-copula. Consider the points x “
`

p 5
8 q

1{3, p 3
4 q

1{3, 1
24

˘

and y “
`

p 3
4 q

1{3, p 5
8 q

1{3, 1
24

˘

, then

Dnpx_ yq ´Dnpxq ´Dnpyq `Dnpx^ yq “
1

2
´

1

2
´

1

2
`

11

24
“ ´

1

24
ă 0 .

Note also that as a consequence, one of the results of [32], in which it is shown

that a 2-copula can be constructed by truncating an appropriate modular function

on the unit square with the upper Fréchet-Hoeffding bound, does not extend to

higher dimensions, since the function 1
n

řn
i“1 dpxiq is modular, but by truncating

it from above with the upper Fréchet-Hoeffding bound, the result is Dn, which

is not a supermodular function. In Chapter 7 we will show that the other result

of [32], in which it is shown that a 2-copula can be constructed by truncating an

appropriate modular function on the unit square with the lower Fréchet-Hoeffding

bound, extends to higher dimensions for supermodular functions.

6.5. Some analytical properties of the multivariate

Bertino quasi-copula

We now change our attention to the Bertino n-quasi-copula. First, we present some

properties of the Bertino n-quasi-copula, with special emphasis on the behaviour

of its k-marginals, and on its diagonal section.

First, since the Bertino n-quasi-copula is symmetric, it follows that its k-marginals

Hk : r0, 1sk Ñ r0, 1s, k P t2, 3, ..., n´ 1u, coincide and are given by

Hkpx1, x2, ..., xkq “ sup

#

dptq ´
k
ÿ

j“1

pt´ xjq
` | t P

“

xp1q, 1
‰

+

.

The diagonal section hk of the k-marginal Hk of Bd,n is given by

hkpxq “ sup tdptq ´ kpt´ xq | t P rx, 1su .

We now analyse the behaviour of hk when d is k-Lipschitz continuous.

Proposition 6.5. If d is k-Lipschitz continuous, then hk “ d.

Proof. For any t P rx, 1s, it holds that dptq´ kpt´xq ď dpxq due to the k-Lipschitz
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continuity. Evaluating dptq ´ kpt´ xq at t “ x, we get dpxq. From this, it follows

that suptdptq ´ kpt´ xq | t P rx, 1su “ dpxq.

Example 6.7. Consider the n-diagonal function dpxq “ x2, then the associated

Bertino n-quasi-copula is for any n ě 2 given by

Bd,npxq “ maxpx2
p1q, x

2
p2q ´ xp2q ` xp1qq .

By setting x “ xp1q “ xp2q and xpjq “ 1 for j ě 3, it is clear that h2pxq “ x2.

Proposition 6.6. If the diagonal section d of a Bertino n-quasi-copula Bd,n is

such that dpxq ď pkx´ pk ´ 1qq`, then the diagonal section hk of its k-marginals

is given by hkpxq “ pkx´ pk ´ 1qq`.

Proof. Let t P rx, 1s. If t ď pk ´ 1q{k, then

dptq ´ kpt´ xq “ ´kpt´ xq ď 0 .

If t is such that t ą pk ´ 1q{k, then

dptq ´ kpt´ xq ď kt´ pk ´ 1q ´ kpt´ xq “ kx´ pk ´ 1q .

Hence, for all t P rx, 1s, it holds that dptq ´ kpt´ xq ď pkx´ pk ´ 1qq`. From this

and property (d2), it follows that hkpxq “ pkx´ pk ´ 1qq`.

Example 6.8. Consider the n-diagonal function dpxq “ pαx´ α` 1q
`

, with

α P sn´ 1, ns. Clearly, dpxq ď pkx´ pk ´ 1qq` for any integer k ă n. After some

simple computations, we obtain the following expression for the associated Bertino

n-quasi-copula

Bd,npxq “

˜

pα´ n` 1qxpnq `

˜

n´1
ÿ

j“1

xpjq

¸

´ α` 1

¸`

.

Setting n´ k arguments equal to 1, it follows that

Hkpxq “

˜

k
ÿ

j“1

xpjq ´ k ` 1

¸`

,

with diagonal section hkpxq “ pkx´ pk ´ 1qq`.

Examples 6.7 and 6.8 suggest that the k-marginal of a Bertino n-quasi-copula

might be the Bertino k-quasi-copula associated with the k-diagonal function hk.

This is indeed true, as the following theorem shows.

Theorem 6.3. The k-marginal of a Bertino n-quasi-copula Bd,n is the Bertino

k-quasi-copula Bhk,k, with hk the diagonal section of the k-marginal Hk of Bd,n.
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Proof. We need to show that for any x P r0, 1sk it holds that Bhk,kpxq “ Hkpxq,

i.e.,

supthkptq´
k
ÿ

j“1

pt´xpjqq
` | t P rxp1q, xpkqsu “ suptdpsq´

k
ÿ

j“1

ps´xpjqq
` | s P rxp1q, 1su .

First, we prove that Bhk,kpxq ď Hkpxq. Let t P rxp1q, xpkqs and let m0 “ mintm P

t1, 2..., ku | xpmq ě tu, then

hkptq ´
k
ÿ

j“1

pt´ xpjqq
` “ suptdprq ´ kpr ´ tq | r P rt, 1su ´

m0´1
ÿ

j“1

pt´ xpjqq

“ suptdprq ´ kr | r P rt, 1su ` pk ´m0 ` 1qt`
m0´1
ÿ

j“1

xpjq .

Since rt, 1s is compact, the continuous function dprq ´ kr attains a maximum in

rt, 1s. Assume that this maximum is attained at r˚, then we have

dpr˚q ´ kr˚ ` pk´m0 ` 1qt`
m0´1
ÿ

j“1

xpjq “ dpr˚q ´
k
ÿ

j“m0

pr˚ ´ tq ´
m0´1
ÿ

j“1

pr˚ ´ xpjqq .

Now observe that for any m P tm0 ` 1,m0 ` 2, ..., ku, if r˚ ď xpmq, then ´pr˚ ´

tq ď 0 “ ´pr˚ ´ xpmqq
`, and, if r˚ ą xpmq, then ´pr˚ ´ tq ď ´pr˚ ´ xpmqq “

´pr˚ ´ xpmqq
`. Hence,

dpr˚q ´
k
ÿ

j“m0

pr˚ ´ tq ´
m0´1
ÿ

j“1

pr˚ ´ xpjqq ď dpr˚q ´
k
ÿ

j“1

pr˚ ´ xpjqq
` ,

from which it follows that

hkptq ´
k
ÿ

j“1

pt´ xpjqq
` ď dpr˚q ´

k
ÿ

j“1

pr˚ ´ xpjqq
`

ď suptdpsq ´
k
ÿ

j“1

ps´ xpjqq
` | s P rt, 1su

ď suptdpsq ´
k
ÿ

j“1

ps´ xpjqq
` | s P rxp1q, 1su .
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Hence,

supthkptq´
k
ÿ

j“1

pt´xpjqq
` | t P rxp1q, xpkqsu ď suptdpsq´

k
ÿ

j“1

ps´xpjqq
` | s P rx, 1su .

Second, we prove that Bhk,kpxq ě Hkpxq. Let s P rxp1q, 1s. We have to analyze

two cases. If s P rxp1q, xpkqq, then

dpsq ´
k
ÿ

j“1

ps´ xpjqq
` “ dpsq ´ kps´ sq ´

k
ÿ

j“1

ps´ xpjqq
`

ď suptdprq ´ kpr ´ sq | r P rs, 1su ´
k
ÿ

j“1

ps´ xpjqq
`

ď hkpsq ´
k
ÿ

j“1

ps´ xpjqq
`

ď supthkptq ´
k
ÿ

j“1

pt´ xpjqq
` | t P rxp1q, xpnqsu .

Next, if s P rxpkq, 1s, then

dpsq ´
k
ÿ

j“1

ps´ xpjqq
` “ dpsq ´ kps´ xpkqq ´

k
ÿ

j“1

pxpkq ´ xpjqq
`

ď hkpxpkqq ´
k
ÿ

j“1

pxpkq ´ xpjqq
`

ď supthkptq ´
k
ÿ

j“1

pt´ xpjqq
` | t P rxp1q, xpnqsu .

Hence, for any s ě xp1q, it holds that

dpsq ´
k
ÿ

j“1

ps´ xpjqq
` ď supthkptq ´

k
ÿ

j“1

pt´ xpjqq
` | t P rxp1q, xpnqsu ,

from which it follows that

suptdpsq´
k
ÿ

j“1

ps´xpjqq
` | s P rxp1q, 1su ď supthkptq´

k
ÿ

j“1

pt´xpjqq
` | t P rxp1q, xpnqsu .
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Example 6.9. Consider the n-diagonal function of Example 6.8. Clearly, the

k-marginals Hk coincide with the lower Fréchet bound Wk.

Example 6.10. Consider the 2-diagonal function given by h2pxq “ maxpx3, 2x´1q.

The associated Bertino 2-copula is given by

Bh2,2px1, x2q “ maxpx3
p1q, x

3
p2q ´ xp2q ` xp1q, xp1q ` xp2q ´ 1q .

Now consider the 3-diagonal function dpxq “ x3, whose associated Bertino 3-quasi-

copula is given by

Bd,3px1, x2, x3q “ maxpx3
p1q, x

3
p2q ´ xp2q ` xp1q, x

3
p3q ´ 2xp3q ` xp2q ` xp1qq .

One can easily verify that its bivariate marginal is the Bertino 2-copula associated

with h2.

For the next results, we need to recall the concept and some properties of Dini

derivatives (for other properties of Dini derivatives, the reader is referred to [89]).

For any real-valued function defined on an open interval sx, yr, the upper right and

lower right Dini derivatives at t P sx, yr are defined as

D`fptq “ lim sup
hÑ0`

fpt` hq ´ fptq

h
D`fptq “ lim inf

hÑ0`

fpt` hq ´ fptq

h
,

while the upper left and lower left Dini derivatives are defined as

D´fptq “ lim sup
hÑ0`

fptq ´ fpt´ hq

h
D´fptq “ lim inf

hÑ0`

fptq ´ fpt´ hq

h
.

Clearly D`fptq ď D`fptq and D´fptq ď D´fptq. A function is differentiable at t

if and only if the four Dini derivatives are finite and equal, with common value the

’classical’ derivative.

If a function is Lipschitz continuous with Lipschitz constant M , then the four Dini

derivatives are finite and bounded by M . Conversely, if one of the Dini derivatives

of a continuous function is bounded in an open interval sa, br, then the function is

Lipschitz continuous on sa, br.

There also exist some results that characterize the monotonicity of a function in

terms of its Dini derivatives. Indeed, if a function is continuous on an open interval

sa, br, then if for all t P sa, br at least one D`fptq, D`fptq, D
´fptq or D´fptq is

(strictly) positive, then the function is (strictly) increasing on sa, br.

Remark 6.3. Theorem 6.3 states that if the diagonal section d of a Bertino n-quasi-

copula is 2-Lipschitz continuous, then all the k-marginals, with k P t2, 3, ..., n´ 1u,

have the same diagonal section d. In that case it is relatively simple to compute

the Bertino n-quasi-copula by using Proposition 6.2. However, we now obtain the
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same result by using Dini derivatives. Note that the function

qptq “ dptq ´
n
ÿ

j“1

pt´ xjq
`

is continuous and has upper right Dini derivative of the form D`dptq ´m, with

m a positive integer depending on the position of t. From this, it follows that

qptq is strictly decreasing on rxp3q, xpnqs, since for those values of t we have m ě 3,

while for t P sxp2q, xp3qs, we have m “ 2 and the function is either decreasing or

constant there. Hence the maximum of qptq is attained in rxp1q, xp2qs. This proves

that Bd,npxq coincides with the value of the 2-dimensional Bertino copula (with

diagonal section d) in the point pxp1q, xp2qq, i.e., if d is 2-Lipschitz continuous, then

Bd,npxq “ Bd,2pxp1q, xp2qq.

We conclude this section with a nice property expressing the stability of the Bertino

n-quasi-copulas when considering limits of diagonal sections. This property will be

useful further on when we will approximate an n-diagonal function by a piecewise

linear function.

Proposition 6.7. Consider a sequence pdmq
8

m“1 of n-diagonal functions converging

pointwisely to a function d. Then d is an n-diagonal function and the sequence

pBdm,nq
8

m“1 converges pointwisely to Bd,n.

Proof. Since the n-diagonal functions dm, m “ 1, 2, ..., are all n-Lipschitz con-

tinuous, pdmq
8

m“1 is a family of equicontinuous functions. Hence, due to the

Arzela-Ascoli theorem (see [174]), the convergence must be uniform. Therefore, the

limit function d is n-Lipschitz continuous and therefore also an n-diagonal function.

Consider x P r0, 1sn and t P rxp1q, xpnqs. By definition, it holds that

dmptq ´
n
ÿ

j“1

pt´ xjq
` ď Bdm,npxq .

Hence,

dptq ´
n
ÿ

j“1

pt´ xjq
` ď lim inf

mÑ8
Bdm,npxq .

Since this inequality holds for all t P rxp1q, xpnqs, we have

Bd,npxq ď lim inf
mÑ8

Bdm,npxq .

Now, for any ε ą 0, we know that there exists an integer N such that dmptq ă dptq`ε

for all m ą N and all t P r0, 1s. Thus for any t P rxp1q, xpnqs, the following double
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inequality holds

dmptq ´
n
ÿ

j“1

pt´ xjq
` ă dptq ´

n
ÿ

j“1

pt´ xjq
` ` ε ď Bd,npxq ` ε .

Hence,

Bdm,npxq ď Bd,npxq ` ε .

This last inequality implies that

lim sup
mÑ8

Bdm,npxq ď Bd,npxq ` ε ,

for any ε ą 0. Hence, by taking the limit εÑ 0 we obtain the desired result

lim sup
mÑ8

Bdm,npxq ď Bd,npxq .

6.6. When the Bertino quasi-copula is a copula

Finally, we identify conditions that guarantee that the Bertino n-quasi-copula is an

n-copula. To this end, we recall a result that can be found in [166]. Here, Preiss et

al. constructed a particular Lipschitz-continuous function that serves to illustrate

the concept of Clarke derivative of a function. As a by-product of their analysis,

they have shown that for any Lipschitz-continuous function f , both differences

D`fptq ´D`fptq and D´fptq ´D´fptq are bounded by

1

2

`

suptD`fptq | t P Ru ´ inftD`fptq | t P Ru
˘

.

As a consequence of this bound, we have the following result.

Lemma 6.1. Let f : R Ñ R be a strictly increasing M-Lipschitz continuous

function. Then for all t P R it holds that

D`fptq ´D`fptq ďM{2 and D´fptq ´D´fptq ďM{2 .

This result can easily be adapted for functions f defined on a subdomain of the

real line.

To identify conditions that guarantee that the Bertino n-quasi-copula is an n-copula,

we first analyse the case when the n-diagonal function is piecewise linear.

Theorem 6.4. Let d be a piecewise linear n-diagonal function. Then the Bertino
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n-quasi-copula Bd,n associated with d is an n-copula if and only if d is n{pn´ 1q-

Lipschitz continuous.

We will split the proof of this theorem in two parts.

Proposition 6.8. Let Bd,n be a Bertino n-quasi-copula with piecewise linear

diagonal section d and such that there exists an interval on which the slope of d is

strictly greater than n{pn´ 1q. Then Bd,n is a proper n-quasi-copula.

Proof. We start by considering an interval ra, cs Ď r0, 1s on which the diagonal

section takes the form:

dptq “ b` αpt´ aq ,

with 0 ď α ď n. Let k denote the floor of α, i.e., k “ tαu. Note that k “ n only

when α “ n. It is easy to see that for x P ra, csn, it holds that

Bd,npxq “

$

’

’

’

&

’

’

’

%

b` αpxpk`1q ´ aq ´ kxpk`1q `

k
ÿ

j“1

xpjq , if 0 ď k ď n´ 1 ,

b´ na`
n
ř

j“1

xpjq , if k “ n .

Consider an n-box of the form P “ ra, a` εsn, with ε ă c´ a. We observe that if

a vertex x of P is such that xpk`1q “ a, then Bd,npxq “ b, whereas if the vertex

x is such that xpk`1q “ a ` ε, then Bd,npxq “ b ` αε ´mε, where m counts the

number of coordinates of x that are equal to a. It follows that the Bd,n-volume of

the given n-box is

VBd,npPq “
k
ÿ

j“0

p´1qj
ˆ

n

j

˙

pb` αε´ jεq `
n
ÿ

j“k`1

p´1qj
ˆ

n

j

˙

b

“

n
ÿ

j“0

p´1qj
ˆ

n

j

˙

b`
k
ÿ

j“0

p´1qj
ˆ

n

j

˙

pαε´ jεq . (6.8)

Using Lemma 2.1, it follows that

VBd,npPq “
k
ÿ

j“0

„

p´1qj
ˆ

n

j

˙

pαε´ jεq



“ p´1qk
ˆ

n´ 1

k

˙

αε´ p´1qk
ˆ

n´ 2

k ´ 1

˙

nε ,

whence

VBd,npPq “

˜

p´1qk

k!
rαpn´ 1q ´ nks

k
ź

j“2

pn´ jq

¸

ε .

This volume is positive if p´1qkpαpn´ 1q ´ nkq ě 0, implying that the value of the
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slope α must be restricted to the following union of intervals

α P

ˆ„

0,
n

n´ 1



Y

„

2n

n´ 1
,

3n

n´ 1



Y ¨ ¨ ¨

˙

X r0, ns .

Next, we assume that on some interval rc, es the n-diagonal function d takes the

following form:

dptq “

$

&

%

b` αpt´ aq , if t P rc, as ,

b` βpt´ aq , if t P ra, es.

We will show that if the slope α P r0, n{pn´ 1qs on rc, as and the slope β on ra, ds

is such that β ě 2, there exists an n-box with negative volume. Let us denote

k “ tβu. Consider an n-box of the form P “ ra´ ε, a` δsn with p2´αqε “ pβ´2qδ

and such that ra´ ε, a` δs Ă rc, es.

Similarly as in the first case, it can be shown that if a vertex x of P is such

that Spxq “ 1 (just one coordinate is of the type a ´ ε), the maximum value of

dptq ´ pt ´ a ` εq on ra ´ ε, as is b ´ αε if α ă 1, or b ´ ε if α ě 1; while the

maximum of dptq ´ pt ´ a ` εq on ra, a ` δs is b ` βδ ´ δ ´ ε. From this and

the equality βδ ` αε “ 2pδ ` εq, it follows that for such vertex, it holds that

Bd,npxq “ b` βδ ´ δ ´ ε. For the vertices x of P such that Spxq “ 2 (exactly two

coordinates are of the type a), the maximum value of dptq´ pt´ a` εq on ra´ ε, as

is b´αε; whereas on the interval ra, a` δs, the maximum value is b` βδ´ 2pδ` εq.

For a vertex x of this type, it then holds that Bd,npxq “ b´αε “ b` βδ´ 2pδ` εq.

By continuing with this procedure, we obtain that for a vertex x such that Spxq “ s

with s ě 3, it holds that Bd,npxq “ b´ αε. Hence, the Bd,n-volume of this n-box

is given by

VBd,npPq “ βδ ´ npβδ ´ δ ´ εq ´ α´ ε
n
ÿ

j“2

p´1qj
ˆ

n

j

˙

“ p1´ nqpβδ ` αεq ` npδ ` εq

“ p1´ nqp2δ ` 2εq ` npδ ` εq

“ p2´ nqpδ ` εq .

Note that the last expression is strictly negative for n ě 3.

To conclude, first we have shown that a slope smaller than or equal to 2 must be

necessarily situated in the interval r0, n{pn´ 1qs, since otherwise there exists an

n-box with negative volume. Next, we have shown that is not possible to change

slope from a value in r0, n{pn´ 1qs to a value greater than two. Since a piecewise

linear n-diagonal function always starts off with a slope less than or equal to 1, it

follows that if α takes values out of the interval r0, n{pn´ 1qs, i.e., there exists an
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interval on which the slope of d is greater than npn´ 1q, then there exist an n-box

with a negative Bd,n-volume, so that Bd,n is a proper quasi-copula.

Proposition 6.9. If d is a piecewise linear n-diagonal function that is n{pn´ 1q-

Lipschitz continuous, then the Bertino n-quasi-copula Bd,n is an n-copula.

Proof. Since the slope of d is always in r0, n{pn´ 1qs, it follows from Remark 6.3

that the value of the Bertino n-quasi-copula only depends on xp1q and xp2q, i.e.,

Bd,npxq “ suptdptq ´ t` xp1q | t P rxp1q, xp2qsu “ Bd,2pxp1q, xp2qq .

We now proceed to compute the volume of an n-box P of the type given in Eq. (2.3).

We have to distinguish four cases.

Case 1: If 1 ă m1 ă n, then clearly for any vertex x of the n-the box P, it

holds that the smallest and the second smallest ordered values can only be a1 or

b1. Hence, for any vertex x the value Bd,npxq is one of the three possible values

Bd,2pb1, b1q, Bd,2pa1, b1q or Bd,2pa1, a1q. Note that for the vertices x such that

Spxq “ 0 (all the coordinates are of the type bj) the value is Bd,2pb1, b1q. When

the vertices are such that Spxq “ 1 (just one coordinate is of the type aj) then

m1

`

n´m1

0

˘

vertices have one coordinate equal to a1 and
`

n´m1

1

˘

have one coordinate

equal to some aj with j ‰ 1. Hence, for m1 such vertices the value is Bd,2pa1, b1q,

whereas for the remaining ones the value is Bd,2pb1, b1q. For the vertices such that

Spxq “ 2 (exactly two coordinates are of the type aj), the value Bd,2pb1, b1q is

assigned to
`

n´m1

2

˘

vertices, the value Bd,2pa1, b1q to m1

`

n´m1

1

˘

vertices, whereas in

the remaining
`

m1

2

˘`

n´m1

0

˘

vertices the value is Bd,2pa1, a1q. When the vertices are

such that Spxq “ 3 the value Bd,2pb1, b1q is assigned to
`

n´m1

3

˘

vertices, the value

Bd,2pa1, b1q to m1

`

n´m1

2

˘

vertices, whereas the value Bd,2pa1, a1q is assigned to the

remaining
`

m1

3

˘`

n´m1

0

˘

`
`

m1

2

˘`

n´m1

1

˘

vertices. Continuing this procedure, we obtain

that for vertices x such that Spxq “ s for any s P t0, 1, ..., nu, the value Bd,2pb1, b1q

is assigned to
`

n´m1

s

˘

vertices, the value Bd,2pa1, b1q to m1

`

n´m1

s´1

˘

vertices, whereas

the value Bd,2pa1, a1q is assigned to the remaining
s
ř

j“2

`

m1

j

˘`

n´m1

s´j

˘

vertices. Hence,

the Bd,n-volume of the given n-box P is given by

VBd,npPq “
n
ÿ

s“0

p´1qs
ˆ

n´m1

s

˙

Bd,2pb1, b1q

`m1

n
ÿ

s“1

p´1qs
ˆ

n´m1

s´ 1

˙

Bd,2pa1, b1q

`

n
ÿ

s“2

p´1qs
s
ÿ

j“2

ˆ

m1

j

˙ˆ

n´m1

s´ j

˙

Bd,2pa1, a1q .

From Lemma 2.1, we immediately see that the first two sums add to zero. Changing
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the order of summation in the double sum leads to

VBd,npPq “
n
ÿ

S“2

p´1qS
S
ÿ

j“2

ˆ

m1

j

˙ˆ

n´m1

S ´ j

˙

Bd,2pa1, a1q

“

m1
ÿ

j“2

ˆ

m1

j

˙ n´m1`j
ÿ

S“j

p´1qS
ˆ

n´m1

S ´ j

˙

Bd,2pa1, a1q

“ 0 ,

where in the last step we once again invoked Lemma 2.1.

Case 2: If m1 “ 1, but m2 ă n´ 1, then for any vertex x of the n-box P it holds

that the smallest ordered value is either a1 or b1 and the second smallest ordered

value is either a2 or b2. Hence, there are exactly four values that the Bertino

n-quasi-copula can take at the vertices of this n-box: Bd,2pb1, b2q, Bd,2pb1, a2q,

Bd,2pa1, b2q or Bd,2pa1, a2q. By doing a combinatorial analysis analogous to the

previous case, we can compute the Bd,n-volume of the given n-box P as

VBd,npPq “
n´m2´1
ÿ

S“0

p´1qS
ˆ

n´m2 ´ 1

S

˙

Bd,2pb1, b2q

`

n´m2
ÿ

S“1

p´1qS
ˆ

n´m2 ´ 1

S ´ 1

˙

Bd,2pa1, b2q

`

n
ÿ

S“1

p´1qS
S
ÿ

j“1

ˆ

m2

j

˙ˆ

n´m2 ´ 1

S ´ j

˙

Bd,2pb1, a2q

`

n
ÿ

S“2

p´1qS
S´1
ÿ

j“1

ˆ

m2

j

˙ˆ

n´m2 ´ 1

S ´ j

˙

Bd,2pa1, a2q

“

m2
ÿ

j“1

ˆ

m2

j

˙ n´m2´1`j
ÿ

S“j

p´1qS
ˆ

n´m2 ´ 1

S ´ j

˙

Bd,2pb1, a2q

`

m2
ÿ

j“1

ˆ

m2

j

˙ n´m2`j
ÿ

S“j`1

p´1qS
ˆ

n´m2 ´ 1

S ´ j ´ 1

˙

Bd,2pa1, a2q

“ 0 .

Again, the Bd,n-volume of this n-box is zero.

Case 3: The case when m1 “ 1 and m2 “ n´ 1 bears some similarities with the

previous cases, the main difference being that the values Bd,2pb1, b2q and Bd,2pa1, b2q
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appear only once when evaluating the Bd,n-volume, while the coefficients of the

terms in Bd,2pb1, a2q and Bd,2pa1, a2q sum up to ´1 and 1 respectively. Hence

the Bd,n-volume is Bd,2pb1, b2q ´Bd,2pb1, a2q ´Bd,2pa1, b2q `Bd,2pa1, a2q which is

positive, since this is the Bd,2-volume of the box ra1, b1s ˆ ra2, b2s and Bd,2 is a

2-copula.

Case 4: The last case remaining is when m1 “ n. This is the case of an n-

dimensional hypercube ra1, b1s
n centered around the main diagonal of the unit

hypercube r0, 1sn. First, we assume that the slope α of d is constant on ra1, b1s,

i.e.,

dptq “ b` αpt´ aq .

In this case, there are only three values the Bertino n-quasi-copula Bd,n can take

at the vertices x of the n-box P, namely Bd,2pb1, b1q, Bd,2pa1, b1q or Bd,2pa1, a1q.

It turns out of that the Bd,n-volume of the n-box P is given by

VBd,npPq “ Bd,2pb1, b1q ´ nBd,2pa1, b1q ` pn´ 1qBd,2pa1, a1q .

Clearly

Bd,npa1, a1q “ dpa1q , Bd,2pb1, b1q “ dpb1q ,

whereas

Bd,npa1, b1q “

$

&

%

b` αpa1 ´ aq , if 0 ď α ă 1 ,

b` αpb1 ´ aq ´ b1 ` a1 , if 1 ď α ď n{pn´ 1q .

Hence, the Bd,n-volume of the n-box is

VBd,npPq “

$

&

%

αpb1 ´ a1q , if 0 ď α ă 1 ,

pn´ pn´ 1qαqpb1 ´ a1q , if 1 ď α ď n{pn´ 1q .

Now, in case the slope of d is not constant on ra1, b1s, thanks to the piecewise

linearity, we can decompose the hypercube ra1, b1s
n as the union of n-boxes that

are either centered on a part of the diagonal with constant slope or are not centered

around the diagonal. The n-boxes of the first type are covered above while the

n-boxes of the other types are covered by cases 1, 2 and 3, respectively. In all cases,

the Bd,n-volume is positive.

The next proposition is an immediate consequence of Proposition 6.7 and Theo-

rem 6.4.

Proposition 6.10. If an n-diagonal function d is n{pn´ 1q-Lipschitz continuous,

then the Bertino n-quasi-copula Bd,n is an n-copula.

Example 6.11. Consider the n-diagonal function d given by dpxq “ λx{r1´ p1´

λqxs with λ P r1{n, 1s. Simple computations show that this function is n{pn´ 1q-
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Lipschitz continuous if and only if λ P rpn´ 1q{n, 1s. In that case, it is easy to see

that Bd,n takes the following form

Bd,npxq “

$

&

%

dpxp1qq , if
´

1´xp2q
xp2q

¯´

1´xp1q
xp1q

¯

ą λ ,

dpxp2qq ´ xp2q ` xp1q , if
´

1´xp2q
xp2q

¯´

1´xp1q
xp1q

¯

ď λ .

We will show next that the Lipschitz condition in Proposition 6.10 becomes also

a necessary condition when restricting to a broad class of n-diagonal functions,

called regular n-diagonal functions in this work.

Definition 6.1. An n-diagonal function d is called regular if

(i) the derivative of d is continuous except at countably many points;

(ii) the derivative of d exists on some interval r0, cs, with c ą 0.

Note that an n-diagonal function is not necessarily regular, although the conditions

imposed may seem rather weak. For example, in [74] Fernández-Sánchez et al.

construct an n-diagonal function d0 such that for any open interval sa, br, the sets

tx P sa, br| d10pxq “ 0u and tx P sa, br| d10pxq “ 2u are not empty.

Since the value of the Bertino n-quasi-copula at a given point is the result of

a maximization procedure, it comes in handy to impose the above regularity

conditions in order to avoid undesirable situations, such as encountering an n-

diagonal function such as d0, which would require to compute the maximum of

a nowhere monotone function (for more details on nowhere monotone functions,

see [20]).

Proposition 6.11. If the Bertino n-quasi-copula Bd,n with diagonal section d is

an n-copula and d is regular, then d is n{pn´ 1q-Lipschitz continuous.

Proof. As in the case of a piecewise linear diagonal section, we will prove this

theorem by contradiction. Suppose that the diagonal section of the Bertino n-copula

Bd,n is Lipschitz continuous with Lipschitz constant greater than n{pn´ 1q. Then,

due to the regularity conditions, there exists a point a such that d1paq ą n{pn´ 1q

and a positive constant η such that for all x P sa, a`ηr , d1pxq exists and td1pxqu “ k.

Clearly, d1pxq´ k ě 0 and d1pxq´ pk` 1q ă 0 for all x P sa, a` ηr . Hence, if k ă n,

then for any x P sa, a` ηrn , it holds that

Bd,npxq “ dpxpk`1qq ´ kxpk`1q `

k
ÿ

j“1

xpjq .

In case k “ n, d is a linear function on sa, a` ηr , and hence, the proof is analogous

to the piecewisely linear case. For any closed interval rb, b ` εs Ă sa, a ` ηr , the

124



§6.6. When the Bertino quasi-copula is a copula

Bd,n-volume of the n-box P “ rb, b` εsn is

VBd,npPq “
k
ÿ

j“0

„

p´1qj
ˆ

n

j

˙

pdpb` εq ´ jεq



`

n
ÿ

j“k`1

„

p´1qj
ˆ

n

j

˙

dpbq



“
p´1qk

k!
rpn´ 1qpdpb` εq ´ dpbqq ´ nkεs

k
ź

j“1

pn´ jq

“
p´1qk

k!
rpn´ 1qd1pbqε´ nkε` ϑpεqs

k
ź

j“1

pn´ jq , (6.9)

where ϑpεq is a function that satisfies limεÑ0` ϑpεq{ε “ 0. Hence, by making

ε small enough, the sign of the latter expression only depends on the sign of

p´1qkrpn´ 1qd1pbq ´ nks. Note the resemblance between Eq. (6.8) and Eq. (6.9).

Therefore, applying the same reasoning as in the proof of Proposition 6.8, we can

conclude that d1pbq belongs to the following union of intervals

d1pbq P

ˆ„

0,
n

n´ 1



Y

„

2n

n´ 1
,

3n

n´ 1



Y ¨ ¨ ¨

˙

X r0, ns ,

since otherwise the considered volume VBd,npPq is strictly negative. Since for a

regular n-diagonal function d there exists a constant 0 ă c ď 1 such that d1ptq ď 1

for any t P s0, cr, where the derivative exists, it holds that the constant a defined as

a “ inftt P r0, 1s | D´dptq ď n{pn´ 1q , D`dpaq ě 2n{pn´ 1qu ,

is strictly positive. This constant a is well defined from the assumption we

have made regarding the values the Lipschitz constant can take. Also, a ă 1 by

assumption,since otherwise d would be n{pn´1q-Lipschitz continuous, contradicting

our hypothesis.

First suppose that D´dpaq “ D´dpaq. We know that there exists a sequence of

positive numbers pδmq
8

m“1 that is strictly decreasing and converges to zero, such

that
dpa` δmq ´ dpaq

δm
ÝÑ D`dpaq .

For such sequence, define pω´D´dpaqqεm “ pD
`dpaq´ωqδm with ω a constant in

sn{pn´ 1q, 2r, which implies that the coefficients of εm and δm are strictly positive.

Hence the sequence pεmq
8

m“1 is positive and converges to zero, while the sequence

prdpaq ´ dpa´ εmqs{εmq
8

m“1 converges to D´dpaq “ D´dpaq.

We now prove that there exists M1 ă 8 such that for all m ą M1, it holds that
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dpa` δmq ´ rδm ` εms ě dpa´ εmq. Indeed, if no such M1 would exist, then

1 ą
δm

δm ` εm

dpa` δmq ´ dpaq

δm
`

εm
δm ` εm

dpaq ´ dpa´ εmq

εm
,

for all positive integers m. By taking limits, it follows that

1 ě
D`dpaqrω ´D´dpaqs

D`dpaq ´D´dpaq
`
D´dpaqrD

`dpaq ´ ωs

D`dpaq ´D´dpaq
“ ω ,

which is a contradiction since ω ą 1. Now, we prove in a similar manner that there

exists M2 ă 8 such that for all m ąM2, it holds that dpa` δmq ´ 2rδm ` εms ď

dpa´ εmq. Indeed, if no such M2 would exist, then

2 ă
δm

δm ` εm

dpa` δmq ´ dpaq

δm
`

εm
δm ` εm

dpaq ´ dpa´ εmq

εm
,

for all positive integers m. By taking limits, it follows that

2 ď
D`dpaqrω ´D´dpaqs

D`dpaq ´D´dpaq
`
D´dpaqrD

`dpaq ´ ωs

D`dpaq ´D´dpaq
“ ω ,

which is a contradiction since ω ă 2. Now, consider an n-box of the form P “

ra´ εm, a` δms
n. For m ą maxtM1,M2u, the Bd,n-volume of P is given by

VBd,npPq “ dpa` δmq ´ npdpa` δmq ´ rδm ` εmsq ` pn´ 1qdpa´ εmq

“ npδm ` εmq ´ pn´ 1qrdpa` δmq ´ dpa´ εmqs

“ npδm ` εmq ´ pn´ 1qrδmD
`dpaq ` εmD´dpaq ` ϑpδmqs

“ npδm ` εmq ´ pn´ 1qrωδm ` ωεm ` ϑpδmqs

“ pδm ` εmqrn´ pn´ 1qωs ´ pn´ 1qϑpδmq

ă 0 ,

where the last inequality holds for all m ą M with M some finite constant

ě maxpM1,M2q. Hence, for the present case we have obtained the desired contra-

diction. The case when D`dpaq “ D`dpaq can be treated in a similar way.

Therefore, the only case remaining is when the four Dini derivatives are different,

which is only possible when n ě 4. We define pδmq
8

m“1 and pεmq
8

m“1 just like

before, but with the constant ω such that ω P sn{pn´ 1q, 3{2r.

While now we cannot guarantee the convergence of the sequence prdpaq ´ dpa ´

εmqs{εmq
8
m“1, we nonetheless know that there exists a subsequence

`

εmq
˘8

q“1
such
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that

lim
qÑ8

dpaq ´ dpa´ εmq q

εmq
“ lim inf

mÑ8

dpaq ´ dpa´ εmq

εm
“ D˚ .

Clearly, D´dpaq ď D˚ ď D´dpaq. Once again, we will prove that there exists

Q1 ă 8 such that for q ą Q1, it holds that dpa` δmq q ´ rδmq ` εmq s ě dpa´ εmq q.

Indeed, if no such Q1 would exist, then for all q it would hold that

1 ą
δmq

δmq ` εmq

dpa` δmq q ´ dpaq

δmq
`

εmq
δmq ` εmq

dpaq ´ dpa´ εmq q

εmq
.

By taking limits, it follows that

1 ě
D`dpaqrω ´D´dpaqs

D`dpaq ´D´dpaq
`

D˚rD`dpaq ´ ωs

D`dpaq ´D´dpaq

ě
D`dpaqrω ´D´dpaqs

D`dpaq ´D´dpaq
`
D´dpaqrD

`dpaq ´ ωs

D`dpaq ´D´dpaq

“ ω ,

which is a contradiction since ω ą 1. Similarly, there exists Q2 ă 8 such that for

all q ą Q2, it holds that dpa` δmq q ´ 2rδmq ` εmq s ď dpa´ εmq q. Otherwise, for

all integers q it would hold that

δmq
δmq ` εmq

dpa` δmq q ´ dpaq

δmq
`

εmq
δmq ` εmq

dpaq ´ dpa´ εmq q

εmq
ą 2 ,

which by taking limits leads to

2 ď
D`dpaqrω ´D´dpaqs

D`dpaq ´D´dpaq
`

D˚rD`dpaq ´ ωs

D`dpaq ´D´dpaq

“
D`dpaqrω ´D´dpaqs

D`dpaq ´D´dpaq
`
rD´dpaq `D

˚ ´D´dpaqsrD
`dpaq ´ ωs

D`dpaq ´D´dpaq

ď ω `
rD´dpaq ´D´dpaqsrD

`dpaq ´ ωs

D`dpaq ´D´dpaq
.

Now using the fact that the rational function gpxq “ px´ eq{px´ cq with c ă e is

increasing on re,8r, we obtain the following bound

ω`
rD´dpaq ´D´dpaqsrD

`dpaq ´ ωs

D`dpaq ´D´dpaq
ď ω`

rD´dpaq ´D´dpaqspn´ ωq

n´D´dpaq
. (6.10)

Here, we need to consider 2 cases. First, if D´dpaq ď n{p2n ´ 2q, then due to

Lemma 6.1 we have that D´dpaq ´D´dpaq ď n{p2n´ 2q. From this, we get the
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following bound for the right-hand side of Eq. (6.10)

ω `
rD´dpaq ´D´dpaqspn´ ωq

n´D´dpaq
ď ω `

npn´ ωq

rn´D´dpaqsp2n´ 2q

ď ω `
npn´ ωqp2n´ 2q

p2n´ 2qp2n2 ´ 3nq

“ ω `
n´ ω

2n´ 3
,

hence,

2 ď ω `
n´ ω

2n´ 3
,

which implies ω ě 3{2, again a contradiction. Second, if n{p2n´ 2q ă D´dpaq ă

n{pn´ 1q, then 0 ď D´dpaq ´D´dpaq ď n{pn´ 1q ´D´dpaq, and the right-hand

side of Eq. (6.10) is bounded by

ω `
rD´dpaq ´D´dpaqspn´ ωq

n´D´dpaq
ď ω `

pn´ ωqrn´ pn´ 1qD´dpaqs

rn´D´dpaqspn´ 1q

“
ωpn2 ´ nq ` rn2 ´ n2D´dpaq ` nD´dpaqs

pn´ 1qrn´D´dpaqs
.

From this inequality, we deduce that

2´
rn2 ´ n2D´dpaq ` nD´dpaqs

pn´ 1qrn´D´dpaqs
ď ω

n

rn´D´dpaqs
,

which after some computations leads to

ω ě 1`
pn´ 1qD´dpaq

n
ą

3

2
,

which yields again a contradiction.

Finally, we consider an n-box of the form P “ ra ´ εmq , a ` δmq s
n. For q ą

maxpQ1, Q2q, the Bd,n-volume of P is given by

VBd,npPq “ dpa` δmq q ´ npdpa` δmq q ´ rδmq ` εmq sq ` pn´ 1qdpa´ εmq q

“ npδmq ` εmq q ´ pn´ 1qrdpa` δmq q ´ dpa´ εmq qs

“ npδmq ` εmq q ´ pn´ 1qrδmqD
`dpaq ` εmqD

˚ ` ϑpδmq qs

ď npδmq ` εmq q ´ pn´ 1qrδmqD
`dpaq ` εmqD´dpaq ` ϑpδmq qs

“ npδmq ` εmq q ´ pn´ 1qrωδmq ` ωεmq ` ϑpδmq qs
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“ pδmq ` εmq qrn´ pn´ 1qωs ´ pn´ 1qϑpδmq q

ă 0 .

Hence, we can conclude that if Bd,n is an n-copula, then d must be n{pn ´ 1q-

Lipschitz continuous.

Example 6.12. Let dpxq “ x3{2. This function is an n-diagonal function for

any positive integer n. The corresponding Bertino 3-quasi-copula is a 3-copula,

while the corresponding Bertino 4-quasi-copula is a proper quasi-copula. Indeed,

computing the volume of the box r4{5, 9{10s4, we get a volume smaller than ´.0145.

More generally, consider an integer n ě 2, and consider the n-diagonal function

dpxq “ xn{pn´1q, then Bd,n is an n-copula. However, for m ą n, Bd,m is a

proper m-quasi-copula. Indeed, the Bd,m-volume of the m-box r n´1

b

mn´n
mn´m , 1s

m is

negative.

Example 6.13. Let dpxq “ pnx´1q`{pn´1q. Clearly, d is the smallest n-diagonal

function that is n{pn´1q-Lipschitz continuous. The corresponding Bertino n-copula

is given by

Bd,npxq “

ˆ

xp1q `
xp2q ´ n` 1

n´ 1

˙`

,

which is in turn, the smallest Bertino n-copula.

As a final note, it can be proven that the greatest n-quasi-copula that has d as

diagonal section is given by

An,dpxq “ min

˜

Mnpxq, inftdptq `
n
ÿ

j“1

pxj ´ tq
` | t P

“

xp1q, xpnq
‰

u

¸

.

An,d is not always an n-copula, not even in the bivariate case. The submodularity

of the greatest function UT ‘justifies’ why the greatest 2-quasi-copula with a given

diagonal section, given by minpx, y, UTpx, yqq, is a 2-copula only for very restrictive

diagonal sections (see [74, 158, 193]), since it is a submodular function truncated

from above by the minimum operator. We expect even more restrictive conditions

when trying to generalize this result to higher dimensions.
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7 On the structure of the set of

supermodular quasi-copulas

7.1. Introduction

This chapter consists of two separate parts. First, we see that the set of supermod-

ular n-quasi-copulas when endowed with the uniform metric has similar properties

as the set of n-copulas endowed with the uniform metric. For example, the set of

supermodular n-copulas is a compact subset of the set of all continuous real-valued

functions that have the n-box r0, 1sn as its domain, and endowed with the uniform

metric.

Next, we study the set of supermodular n-quasi-copulas equipped with the pointwise

ordering of functions and show that the poset of n-quasi-copulas is more closely

related to the poset of supermodular n-quasi-copulas than to the poset of n-copulas.

More specifically, we show that the set of supermodular n-quasi-copulas is join-

dense in the set of n-quasi-copulas, although it fails to be meet-dense. The results

of the second part of this chapter can also be found in [7].

7.2. The metric space of supermodular quasi-copulas

In this section we will show that the set of supermodular n-quasi-copulas endowed

with the metric induced by the L8 norm has interesting properties.

We will denote by pΞpr0, 1snq, d8q the set of all continuous real-valued functions

whose domain is r0, 1sn, endowed with the metric induced by the L8 norm. Note

that any converging sequence of functions in pΞpr0, 1snq, d8q converges uniformly.

It is well known that pΞpr0, 1sn, d8q is a complete metric space.

We now show that, just as the metric spaces pCn, d8q and pQn, d8q, several proper-

ties of the metric space pΞpr0, 1snq, d8q are inherited by the metric space pSQn, d8q.

The proof of the following theorem follow the same lines as the one for n-copulas

and n-quasi-copulas (see for example, Section 1.7.2 in [69]).

Theorem 7.1. Let pQn,iq
8
i“1 be a sequence of supermodular n-quasi-copulas that

converges pointwisely to a function Sn. Then Sn P SQn and the sequence pQn,iq
8
i“1

converges to Sn in pSQn, d8q.

Proof. First, we will see that Sn P SQn. Let x P r0, 1sn be such that xi “ 0 for
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some i P t1, 2, ..., nu, then Qn,ipxq “ 0 for any i. Hence,

lim
iÑ8

Qn,ipxq “ 0 “ Snpxq .

Therefore, Sn satisfies (q1). Analogously, one can prove that Sn satisfies (q2). Now,

we show that Sn is an increasing function. Let x,y P r0, 1sn be such that x ď y.

Then it holds that Qn,ipxq ď Qn,ipyq for any i. Hence,

Snpxq “ lim
iÑ8

Qn,ipxq ď lim
iÑ8

Qn,ipyq “ Snpyq .

Therefore, Sn is an increasing function. To prove that Sn is 1-Lipschitz continuous,

note that for any x,y P r0, 1sn and any i it holds that

|Qn,ipyq ´Qn,ipxq| ď
n
ÿ

j“1

|yj ´ xj | .

Hence,

|Snpyq ´ Snpxq| “ lim
iÑ8

|Qn,ipyq ´Qn,ipxq| ď
n
ÿ

j“1

|yj ´ xj | .

Consequently, Sn is 1-Lipschitz continuous and therefore an n-quasi-copula. Now

we show that Sn is a supermodular function. Let x,y P r0, 1sn, then for any i it

holds that

Qn,ipy _ xq `Qn,ipy ^ xq ě Qn,ipyq `Qn,ipxq .

Hence,

Snpy _ xq ` Snpy ^ xq “ lim
iÑ8

Qn,ipy _ xq ` lim
iÑ8

Qn,ipy ^ xq

ě lim
iÑ8

Qn,ipyq ` lim
iÑ8

Qn,ipxq

“ Snpyq ` Snpxq .

Therefore, Sn is a supermodular n-quasi-copula. Finally, we prove that the conver-

gence is uniform. Let ε ą 0. First, note that Sn is uniformly continuous on r0, 1sn

since Sn is continuous and r0, 1sn is a compact set. Hence, for any x P r0, 1sn there

exists an open ball centred around x, say sax,bxr , such that for any y Psax,bxr

we have

|Snpxq _ Snpyq| ă
ε

2
. (7.1)

Clearly, it holds that
ď

xPr0,1sn

sax,bxr“ r0, 1s
n .

Since r0, 1sn is compact, there exists a finite collection of points x1, . . . ,xm such
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that
m
ď

j“1

saxj ,bxj r“ r0, 1s
n .

Since pQn,iq
8
i“1 converges to Sn pointwisely, there exists kpεq such that for any

i ě kpεq and j P t1, . . . ,mu, it holds that

max
`

|Snpaxj0
q ´Qn,ipaxj0

q|, |Snpbxj0
q ´Qn,ipbxj0

q|
˘

ă
ε

2
. (7.2)

Now, for any x P r0, 1sn let xj0 be any point such that xj0 Psaxj0
,bxj0r. For any

i ě kpεq we have the following inequalities

Qn,ipxq ´ Snpxq “ Qn,ipxq ´ Snpbxj0
q ` Snpbxj0

q ´ Snpxq

ď Qn,ipbxj0
q ´ Snpbxj0

q ` Snpbxj0
q ´ Snpxq

ă
ε

2
`
ε

2
,

where the first inequality follows from the increasingness of Qn,i and the last

inequality follows from Eqs. (7.1) and (7.2). Analogously,

Qn,ipxq ´ Snpxq “ Qn,ipxq ´ Snpaxj0
q ` Snpaxj0

q ´ Snpxq

ě Qn,ipaxj0
q ´ Snpaxj0

q ` Snpaxj0
q ´ Snpxq

ą ´
ε

2
´
ε

2
.

Hence, for any x and i ą kpεq it holds that

|Qn,ipxq ´ Snpxq| ă ε ,

thus the convergence is uniform.

With the preceding theorem, we can prove the following result the proof of which

also follows the same lines as the one for n-copulas and n-quasi-copulas.

Theorem 7.2. The set SQn is a compact subset of pΞpr0, 1snq, d8q.

Proof. First, recall that pΞpr0, 1snq, d8q is a complete metric space. From Theo-

rem 7.1 it follows that SQn is a complete metric space. Hence, from Proposition 2.4.1

in [48] it follows that (SQn, d8q is also a complete metric space.

Since suptSnpxq | x P r0, 1s
n , Sn P SQnu ď 1 we conclude that SQn is uniformly

bounded. Even more, it is equi-continuous since any supermodular n-quasi-copula

is 1-Lipschitz continuous. From the Ascoli–Arzelà Theorem [48], it follows that

SQn is totally bounded with respect to the metric induced by the L8 norm.
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Since any complete and totally bounded metric space is compact [48], it follows

that SQn is compact.

7.3. The lattice structure of the set of supermod-

ular quasi-copulas

In this section, we show that from a lattice-theoretical point of view, n-quasi-copulas

are closer to supermodular n-quasi-copulas than to n-copulas. From Theorem 4.20

we know that Qn is not order-isomorphic to the Dedekind-MacNeille completion

of Cn, i.e., not every n-quasi-copula can be written as the supremum (resp. infimum)

of a set of n-copulas. A natural question is to ask whether this result is also true if

we replace Cn by SCn in the previous statement. In order to answer this question,

we need some additional results.

First, we study a generalization to higher dimensions of one of the main results

proven in [33]: for a given modular function G : r0, 1sn Ñ r0, 1s, we will find

conditions guaranteeing that the function HG : r0, 1sn Ñ r0, 1s given by HGpxq “

maxpWnpxq, Gpxqq is a supermodular n-quasi-copula.

Proposition 7.1. Let G : r0, 1sn Ñ R be an increasing 1-Lipschitz continuous

function. Then HG “ maxpWn, Gq is an n-quasi-copula if and only if Gpxq ď 0 for

any x P r0, 1sn such that there exists i P t1, 2, . . . , nu with the property that xi “ 0

and xj “ 1 for all i ‰ j.

Proof. First suppose that HG is an n-quasi-copula. Let x P r0, 1sn be such that

there exists i P t1, 2, . . . , nu with the property that xi “ 0 and xj “ 1 for all i ‰ j.

Since HG satisfies (q1) and (q2), we have

0 “ HGpxq “ maxpWnpxq, Gpxqq ě Gpxq .

Hence, Gpxq ď 0.

Now suppose that G has the property that Gpxq ď 0 for any x P r0, 1sn such that

there exists i P t1, 2, . . . , nu with the property that xi “ 0 and xj “ 1 for all i ‰ j.

Clearly, HG is increasing and 1-Lipschitz continuous since both Wn and G are.

We now prove that HG satisfies (q1). Consider a point x P r0, 1sn such that xi “ 0

for some i P t1, 2, ..., nu. Then,

Gpxq ď 0 “Wnpxq ,

since Wn is an n-quasi-copula and G an increasing function. Hence, HGpxq “

maxpWnpxq, Gpxqq “Wnpxq “ 0.
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To prove that HG satisfies (q2) we consider, without loss of generality, the point

x “ px, 1, 1, . . . , 1q. We now show that Gpxq ď x. Suppose the contrary, i.e., that

Gpxq ą x. Then

Gpxq “ Gpx, 1, 1, . . . , 1q ě Gpx, 1, 1, . . . , 1q ´Gp0, 1, . . . , 1q ą x´ 0 ,

which contradicts the 1-Lipschitz continuity of G. Hence Gpxq ď x “Wnpxq, and,

as a consequence, HGpxq “ maxpWnpxq, Gpxqq “ Wnpxq “ x. Hence, HG is an

n-quasi-copula.

We now show that if G is a modular function and satisfies the conditions of

Proposition 7.1, then HG is a supermodular n-quasi-copula.

Proposition 7.2. Let G : r0, 1sn Ñ R be an increasing and modular 1-Lipschitz

continuous function such that Gpxq ď 0 for any x P r0, 1sn such that there exists

i P t1, 2, . . . , nu with the property that xi “ 0 and xj “ 1 for all i ‰ j. Then

HG “ maxpWn, Gq is a supermodular n-quasi-copula.

Proof. From Proposition 7.1 it follows that HG is an n-quasi-copula. Now we

prove that it is also a supermodular function. Using the characterization given

by Proposition 5.1, it suffices to prove that the 2-dimensional sections of HG are

supermodular. Without loss of generality, we only need to prove that for any

z P r0, 1sn, the function H˚ : r0, 1s2 Ñ r0, 1s defined by

H˚px, yq “ maxpW˚px, yq, G˚px, yqq

is 2-increasing, where

W˚px, yq “Wnpx, y, z3, . . . , znq

and

G˚px, yq “ Gpx, y, z3, . . . , znq .

From Corollary 5.1 and Proposition 5.1, we know that W˚ is a supermodular

function. Also note that G˚ has the form described in Lemma 3.1. Hence, G˚

is a modular function. Since for bivariate functions, supermodularity and 2-

increasingness are equivalent, we will prove that H˚ is a 2-increasing function.

Let P “ rx1, x2s ˆ ry1, y2s. To prove that VH˚pPq “ H˚px2, y2q ´ H˚px2, y1q ´

H˚px1, y2q `H
˚px1, y1q ě 0, we have to analyse 16 different cases.

Case 1: W˚px2, y2q ě G˚px2, y2q, W
˚px2, y1q ě G˚px2, y1q, W

˚px1, y2q ě G˚px1, y2q

and W˚px1, y1q ě G˚px1, y1q. The proof of this case is immediate from the super-

modularity of W˚.

Case 2: W˚px2, y2q ě G˚px2, y2q, W
˚px2, y1q ě G˚px2, y1q, W

˚px1, y2q ě G˚px1, y2q
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and W˚px1, y1q ă G˚px1, y1q. We have the following trivial inequalities

VH˚pPq ąW˚px2, y2q ´W
˚px2, y1q ´W

˚px1, y2q `W
˚px1, y1q ě 0 .

Case 3: W˚px2, y2q ě G˚px2, y2q, W
˚px2, y1q ě G˚px2, y1q, W

˚px1, y2q ă G˚px1, y2q

and W˚px1, y1q ě G˚px1, y1q. First note that W˚px1, y1q “ 0, since otherwise

y2 ´ y1 “W˚px1, y2q ´W
˚px1, y1q ă G˚px1, y2q ´G

˚px1, y1q ď y2 ´ y1 ,

a contradiction to the 1-Lipschitz continuity of G˚. Hence, W˚px1, y1q “ 0. Now

we analyse two subcases. First, if W˚px2, y1q “ 0, then

VH˚pPq “W˚px2, y2q ´G
˚px1, y2q ě 0 ,

since G˚px1, y2q ď G˚px2, y2q ďW˚px2, y2q. Second, if W˚px2, y1q ą 0, then

VH˚pPq “ y2 ´ y1 ´G
˚px1, y2q ` 0 ě y2 ´ y1 ´G

˚px1, y2q `G
˚px1, y1q ě 0 ,

where the last inequality is justified by the 1-Lipschitz continuity of G˚.

Case 4: W˚px2, y2q ě G˚px2, y2q, W
˚px2, y1q ě G˚px2, y1q, W

˚px1, y2q ă G˚px1, y2q

and W˚px1, y1q ă G˚px1, y1q. Note that W˚px2, y2q ą 0 and W˚px2, y1q ą 0, since

W˚px1, y1q ă G˚px1, y1q ď G˚px2, y1q ďW˚px2, y1q

and

W˚px1, y2q ă G˚px1, y2q ď G˚px2, y2q ďW˚px2, y2q .

Hence,

VH˚pPq “ y2 ´ y1 ´G
˚px1, y2q `G

˚px1, y1q ě 0 .

Case 5: W˚px2, y2q ě G˚px2, y2q, W
˚px2, y1q ă G˚px2, y1q, W

˚px1, y2q ě G˚px1, y2q

and W˚px1, y1q ě G˚px1, y1q. This case is similar to case 3.

Case 6: W˚px2, y2q ě G˚px2, y2q, W
˚px2, y1q ă G˚px2, y1q, W

˚px1, y2q ě G˚px1, y2q

and W˚px1, y1q ă G˚px1, y1q. This case is similar to case 4.

Case 7: W˚px2, y2q ě G˚px2, y2q, W
˚px2, y1q ă G˚px2, y1q, W

˚px1, y2q ă G˚px1, y2q

and W˚px1, y1q ě G˚px1, y1q. We have

VH˚pPq ě G˚px2, y2q ´G
˚px2, y1q ´G

˚px1, y2q `G
˚px1, y1q “ 0 ,

where the last equality holds due to the modularity of G˚.

Case 8: W˚px2, y2q ě G˚px2, y2q, W
˚px2, y1q ă G˚px2, y1q, W

˚px1, y2q ă G˚px1, y2q

136



§7.3. The lattice structure of the set of supermodular quasi-copulas

and W˚px1, y1q ă G˚px1, y1q. We have

VH˚pPq ě G˚px2, y2q ´G
˚px2, y1q ´G

˚px1, y2q `G
˚px1, y1q “ 0 .

Case 9: W˚px2, y2q ă G˚px2, y2q, W
˚px2, y1q ě G˚px2, y1q, W

˚px1, y2q ě G˚px1, y2q

and W˚px1, y1q ě G˚px1, y1q. We have

VH˚pPq ąW˚px2, y2q ´W
˚px2, y1q ´W

˚px1, y2q `W
˚px1, y1q ě 0 .

Case 10: W˚px2, y2q ă G˚px2, y2q, W
˚px2, y1q ě G˚px2, y1q, W

˚px1, y2q ě G˚px1, y2q

and W˚px1, y1q ă G˚px1, y1q. We have

VH˚pPq ąW˚px2, y2q ´W
˚px2, y1q ´W

˚px1, y2q `W
˚px1, y1q ě 0 .

Case 11: W˚px2, y2q ă G˚px2, y2q, W
˚px2, y1q ě G˚px2, y1q, W

˚px1, y2q ă G˚px1, y2q

and W˚px1, y1q ě G˚px1, y1q. First, note that W˚px2, y1q “ 0, since otherwise,

y2 ´ y1 “W˚px2, y2q ´W
˚px2, y1q ă G˚px2, y2q ´G

˚px2, y1q ď y2 ´ y1 ,

a contradiction. Hence, W˚px2, y1q “ 0 and thus also W˚px1, y1q “ 0. Now,

VH˚pPq “ G˚px2, y2q ´G
˚px1, y2q ě 0 ,

since G˚ is an increasing function.

Case 12: W˚px2, y2q ă G˚px2, y2q, W
˚px2, y1q ě G˚px2, y1q, W

˚px1, y2q ă G˚px1, y2q

and W˚px1, y1q ă G˚px1, y1q. We show that this case cannot occur. Indeed, if

the previous inequalities were true, then, as in case 11, it holds that W˚px2, y1q “

W˚px1, y1q “ 0. Then,

0 “W˚px1, y1q ă G˚px1, y1q ď G˚px2, y1q ďW˚px2, y1q “ 0 ,

a contradiction.

Case 13: W˚px2, y2q ă G˚px2, y2q, W
˚px2, y1q ă G˚px2, y1q, W

˚px1, y2q ě G˚px1, y2q

and W˚px1, y1q ě G˚px1, y1q. This case is similar to case 11.

Case 14: W˚px2, y2q ă G˚px2, y2q, W
˚px2, y1q ă G˚px2, y1q, W

˚px1, y2q ě G˚px1, y2q

and W˚px1, y1q ă G˚px1, y1q. This case cannot occur and the proof is analogous

to the proof of case 12.

Case 15: W˚px2, y2q ă G˚px2, y2q, W
˚px2, y1q ă G˚px2, y1q, W

˚px1, y2q ă G˚px1, y2q

and W˚px1, y1q ě G˚px1, y1q. We have

VH˚pPq ě G˚px2, y2q ´G
˚px2, y1q ´G

˚px1, y2q `G
˚px1, y1q “ 0 .
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Case 16: W˚px2, y2q ă G˚px2, y2q, W
˚px2, y1q ă G˚px2, y1q, W

˚px1, y2q ă G˚px1, y2q

and W˚px1, y1q ă G˚px1, y1q. The proof of this case is immediate from the modu-

larity of G˚.

Hence, H˚ is a supermodular function and therefore HG “ maxpWn, Gq is a

supermodular n-quasi-copula.

With the previous proposition, we can easily prove the following result.

Proposition 7.3. The n-quasi-copula Qn,l,z,a defined in Theorem 4.13 is a super-

modular function.

Proof. Let z P r0, 1sn and a P rWnpzq,Mnpzqs. Define the function G : r0, 1sn Ñ R
as Gpxq “ a ´

řn
j“1pzj ´ xjq

`. We will show that G satisfies the conditions of

Proposition 7.2. Clearly, G is an increasing 1-Lipschitz continuous function.

We will now see that G satisfies that Gpxq ď 0 for any x P r0, 1sn such that there

exists i P t1, 2, . . . , nu with the property that xi “ 0 and xj “ 1 for all i ‰ j. To

prove the latter, consider, without loss of generality, the point x “ p0, 1, 1, . . . , 1q.

Then

Gpxq “ a´
n
ÿ

j“1

pzj ´ xjq
` “ a´ pz1 ´ 0q ´

n
ÿ

j“2

pzj ´ 1q` “ a´ z1 ď 0 ,

where the last inequality follows from the condition a ď Mnpzq. Finally, from

Lemma 3.1 we can conclude that G is a modular function.

Hence, G satisfies all the conditions of Proposition 7.2 and therefore we conclude

that Qn,l,z,a “ maxpWn, Gq is a supermodular n-quasi-copula.

Now, we focus our attention to the lattice structure of the set of supermodular

n-quasi-copulas. We start by a simple generalization of Theorem 4.12.

Proposition 7.4. The poset of supermodular n-quasi-copulas SQn is not a com-

plete lattice.

Proof. We follow the same steps as the proof of Theorem 4.12 in [72, 161]. Consider

the 2-copulas C2,1px1, x2q “ minpx1, x2,maxp0, x1 ´
2
3 , x2 ´

1
3 , x1 ` x2 ´ 1qq and

C2,2px1, x2q “ C2,1px2, x1q. It holds that Q2,L “ C2,1 _ C2,2 is a proper 2-quasi-

copula, i.e., a 2-quasi-copula that is not supermodular. Now, consider the n-copulas

Cn,1 and Cn,2 given by

Cn,1pxq “ C2,1px1, x2q

n
ź

i“3

xi

138



§7.3. The lattice structure of the set of supermodular quasi-copulas

and

Cn,2pxq “ C2,2px1, x2q

n
ź

i“3

xi .

Since Cn,1 and Cn,2 are n-copulas, they are also supermodular functions [11]. But

Qn,L “ Cn,1 _ Cn,2 is a proper n-quasi-copula that is not supermodular, since

the section Qn,L,b,Bpxq “ Q2,Lpx1, x2q is not a supermodular function, where

b “ p1, 1, . . . , 1q and B “ t1, 2u. Hence, SQn is not a complete lattice.

We now show that Qn is not meet-dense in SQn.

Proposition 7.5. For n ě 3, there exists an n-quasi-copula Qn,L such that for

any A Ď SQn it holds that Qn,L ‰
Ź

Qn A.

Proof. We will first analyse the case n “ 3. We will consider the proper 3-

quasi-copula used in [72] and in Corollary 4.2. Let C3,1 be the 3-copula whose

mass is distributed uniformly along the main diagonals of the 3-boxes r0, 1{4s3,

r1{4, 1{2s ˆ r1{2, 3{4s2, r1{2, 3{4s ˆ r1{4, 1{2s2 and r3{4, 1s3; and let C3,2 be the

3-copula whose mass is distributed uniformly along the main diagonals of the 3-

boxes r0, 1{4s3, r1{4, 1{2s ˆ r1{2, 3{4s ˆ r1{4, 1{2s, r1{2, 3{4s ˆ r1{4, 1{2s ˆ r1{4, 1{2s

and r3{4, 1s3. Define Q3,L as Q3,L “ C3,1 _ C3,2. Note that Q3,Lp
1
2 ,

1
2 ,

1
2 q “

1
4 and

Q3,Lp1,
1
2 ,

1
2 q “

1
2 “ Q3,Lp

1
2 , 1,

1
2 q.

In [72] it was proven that Q3,L is a proper 3-quasi-copula such that for any A Ď C3

it holds that Q3,L ‰
Ź

Q3
A. Using similar arguments, we now show that the same

holds true when we consider the set of supermodular n-quasi-copulas instead of

the set of n-copulas.

Suppose that the latter is not true, i.e., that there exists A Ď SQ3 such that

Q3,L “
Ź

Q3
A. Then, for any ε ą 0, there exists a sequence of supermodular

3-quasi-copulas pS3,iq
8
i“1 such that for any i it holds that

1

4
“ Q3,L

ˆ

1

2
,

1

2
,

1

2

˙

ď S3,i

ˆ

1

2
,

1

2
,

1

2

˙

ă Q3,L

ˆ

1

2
,

1

2
,

1

2

˙

` ε “
1

4
` ε .

Also note that for any i it holds that S3,ip1,
1
2 ,

1
2 q “

1
2 “ S3,ip

1
2 , 1,

1
2 q, due to

properties (q2) and (q3) of n-quasi-copulas and the inequalities Q3,Lp1,
1
2 ,

1
2 q ď

S3,ip1,
1
2 ,

1
2 q, Q3,Lp

1
2 , 1,

1
2 q ď S3,ip

1
2 , 1,

1
2 q. Hence, we have the following inequalities

S3,i

ˆ

1

2
,

1

2
,

1

2

˙

ě
1

4
,

S3,i

ˆ

1,
1

2
,

1

2

˙

´ S3,i

ˆ

1

2
,

1

2
,

1

2

˙

ą
1

4
´ ε ,

S3,i

ˆ

1

2
, 1,

1

2

˙

´ S3,i

ˆ

1

2
,

1

2
,

1

2

˙

ą
1

4
´ ε ,
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S3,i

ˆ

1, 1,
1

2

˙

´ S3,i

ˆ

1,
1

2
,

1

2

˙

´ S3,i

ˆ

1

2
, 1,

1

2

˙

` S3,i

ˆ

1

2
,

1

2
,

1

2

˙

ě 0 .

Then, by adding each side of the previous four inequalities, we obtain

S3,i

ˆ

1, 1,
1

2

˙

ą
3

4
´ 2ε ,

which contradicts property (q2) of n-quasi-copulas if one takes ε ă 1
8 . Hence, such

set A Ď SQ3 does not exist.

For n ě 4, consider the n-quasi-copula given by

Qn,Lpx1, x2, . . . , xnq “ Q3,Lpx1, x2, x3q

n
ź

k“4

xk .

Then, using the same arguments as those given for the case n “ 3, we can conclude

that for any A Ď SQn it holds that Qn,L ‰
Ź

Qn A.

Remark 7.1. The copulas C3,1 and C3,2 first appeared in [23], to show that there

does not necessarily exist a greatest extension of a finite n-subcopula to an n-copula

for n ě 3.

The following corollary is an immediate consequence of the previous proposi-

tion.

Corollary 7.1. For n ě 3, Qn is not order-isomorphic to the Dedekind-MacNeille

completion of SQn.

Even though Qn is not order-isomorphic to the Dedekind-MacNeille completion

of SQn, it holds true that SQn is join-dense in Qn, as the following theorem

shows.

Theorem 7.3. A function Qn : r0, 1sn Ñ r0, 1s is an n-quasi-copula if and only if

there exists AQn Ď SQn such that Qn “
Ž

Qn AQn .

Proof. Suppose that Qn is an n-quasi-copula. For any z P r0, 1sn define az,Qn as

az,Qn “ Qnpzq. Define the set A as

A “ tQn,l,z,az,Qn | z P r0, 1s
nu .

Note that due Theorem 4.13 it holds for any x,y P r0, 1sn that

Qn,l,y,ax,Qn pxq ď Qnpxq “ ax,Qn “ Qn,l,x,ax,Qn pxq .

By taking the supremum over all possible values of y, it follows that

suptQn,l,y,ax,Qn pxq | y P r0, 1s
nu ď Qnpxq “ ax,Qn “ Qn,l,x,ax,Qn pxq .
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Hence, it holds that Qn “
Ž

Qn A. Additionally, from Proposition 7.3 it follows

that A Ď SQn, proving the desired result.

The converse trivially follows from Theorem 4.12.
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8 General conclusions

In this chapter, we summarize the main conclusions that can be drawn from each

of the chapters of this dissertation.

First, in Chapter 1 we recalled several concepts that were useful for the development

of this dissertation: the concept of an n-copula and several of its properties, the

well-known Sklar theorem, some families of n-copulas, and some examples of

measures of dependence.

In Chapter 2, we proposed a generalization of bivariate semilinear copulas in higher

dimensions and constructed a class of symmetric n-copulas by linearly interpolating

on segments connecting the main diagonal of the unit hypercube r0, 1sn to one of

its upper faces. For given diagonal functions d2, d3, ..., dn, we found conditions that

guarantee the existence of a semilinear n-copula UDn such that dn is the diagonal

section of UDn , dn´1 is the diagonal section of the pn´ 1q-dimensional marginals of

UDn´1
, etc. We note that the conditions become really restrictive as the dimension

increases. However, up to the our knowledge, this is one of the first attempts to

build a copula given both the diagonal section of the copula and the diagonal

sections of all of its marginals, another one being the work of Mai et al. [133]. A

couple of questions arise from the results obtained in Chapter 2.

For the first question, first note that while we were deriving Eq. (2.2), we used

the fact that the pn´ 1q-dimensional marginal also belongs to the class of upper

semilinear copulas. Hence, the question is: is it possible to obtain conditions for an

arbitrary pn´1q-dimensional marginal, i.e., to characterize the n-diagonal functions

and pn´ 1q-copulas such that it is possible to construct a semilinear n-copula from

them?

The second question is related to the compatibility problem: given a set of diagonal

functions d2, ..., dn, what are the necessary and sufficient conditions that guarantee

the existence of a symmetric n-copula, such that the diagonal section of the n-copula

is dn, dn´1 is the diagonal section of the pn´ 1q-dimensional marginals of the n-

copula, etc. This problem can be thought of as a ‘symmetric diagonal compatibility

problem’, which is obviously a particular case of the ‘copula compatibility problem’.

Obviously, the conditions of Theorem 2.1 are sufficient to guarantee that the

diagonal functions are compatible, but not necessary. This can be easily seen

by considering the diagonal functions d2 “ x2 , . . . , dn “ xn, as they do not

satisfy condition (i) of Theorem 2.1, but they are compatible as dn is the diagonal

section of the product copula, while the others are the diagonal sections of its

marginals.

Next, in Chapter 3 we looked at radially symmetric copulas and proved a representa-
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tion theorem for symmetric and radially symmetric copulas in terms of an auxiliary

function H that does not necessarily need to be an n-copula; H has to satisfy

the weaker condition that for any n-box P it holds that VHpPq ` VHp1´Pq ě 0.

Additionally, we have used this representation in order to propose a method to

construct radially symmetry copulas in higher dimensions. However, in general,

it is difficult to verify whether the volume condition on H that guarantees that

SCn´1,H is an n-copula is satisfied. Moreover, it could happen that there does not

exist an n-copula such that all of its pn´ 1q-dimensional marginals are equal to

Cn´1, i.e., they are not compatible.

In the case when it is possible to construct a symmetric n-copula such that its pn´1q-

dimensional marginal is Cn´1, there are several ways to construct the function

H. We have presented three possible options for H in the three-dimensional case:

one inspired by the nesting of 2-copulas, another inspired by the ‹D product of

copulas and the third one based on the product of copulas. While the results in

Section 3.2 hold for any dimension n, the examples that we present are not easily

generalized to higher dimensions, as there may not be a unique way to choose H,

as highlighted in the discussion at the end of Section 3.3.

In Chapter 4, we recalled the definition of a quasi-copula as it was originally

introduced. We also analysed numerous characterizations of quasi-copulas, while

highlighting the differences between the bivariate case and the n-dimensional

case.

Additionally, we have studied how quasi-copulas have been used in the literature

to develop bounds on sets of copulas, while emphasizing again the differences

between the bivariate case and the n-dimensional case. We also recalled some

results concerning the mass distribution induced by quasi-copulas, starting by

recalling that there are quasi-copulas that do not induce signed measures, and how

the quasi-copulas that induce signed measures are ‘small’ from a Baire category

point of view.

Finally, we recalled several applications of quasi-copulas in other fields different

from statistics, for example, how quasi-copulas have been used as conjunctors in

fuzzy probability calculus, their importance in fuzzy preference modelling and their

applications as aggregation functions, including how they are used to extend fuzzy

measures on specific subsets of the natural numbers.

Next, in Chapter 5 we studied the class of supermodular n-quasi-copulas for n ě 3.

The main result of this chapter is that some properties of 2-copulas that do not

extend to higher dimensions, hold true for supermodular n-quasi-copulas. Examples

of such properties are the supermodularity of the lower Fréchet-Hoeffding bound, as

well as the characterization of supermodular Archimedean n-quasi-copulas in terms

of a convex generator. It is worth to remark that most of the proofs presented

in this chapter regarding supermodular n-quasi-copulas are similar to the proofs

of the corresponding results in the framework of bivariate copulas. This suggests
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that regular n-quasi-copulas are closer to supermodular n-quasi-copulas than to

n-copulas.

Additionally, we have noted that there are more classes of n-quasi-copulas in

between n-quasi-copulas and n-copulas. With these new classes, we were able to

characterize a certain class of n-quasi-copulas that are used in a generalization of

the Lovász extension and the Owen extension of monotone games. We note that

one of the classes, namely pn´ 1q-dim-increasing n-quasi-copulas, could be more

useful to study n-copulas than regular n-quasi-copulas. However, the construction

of pn ´ 1q-dim-increasing n-quasi-copulas is not easy, since all of their pn ´ 1q-

marginals are pn´ 1q-copulas, and as a consequence, the construction of such class

of n-quasi-copulas is closely related to the compatibility problem mentioned in

Chapter 1.

In Chapter 6 we studied the smallest and the greatest Lipschitz continuous n-ary

aggregation functions with a given diagonal section and we showed that several

results from the bivariate case extend naturally to the multivariate case, such as

the way these functions can be computed.

Additionally, we proved that the smallest Lipschitz continuous n-ary aggregation

function with a given diagonal section is supermodular and the greatest Lipschitz

continuous n-ary aggregation function with a given diagonal section is submodular.

As a by-product we showed that this is another result of bivariate copulas that

extends to the class of supermodular quasi-copulas in higher dimensions.

Finally, we showed that the Bertino n-quasi-copula is an n-copula if the diagonal

section d is n{pn ´ 1q-Lipschitz continuous. This condition is also necessary in

the case of regular n-diagonal functions. It is still an open research topic to

analyse whether or not the regularity condition can be weakened. Anyhow, the

result is very restrictive, in the sense that as the dimension increases, the set of

n-diagonal functions for which there exists an n-dimensional Bertino copula, gets

smaller.

Thereafter, in Chapter 7 we showed that both the metric structure and the lattice

structure of the set of supermodular n-quasi-copulas has similar properties as the

lattice structure of the set of n-copulas. The proofs of several of the results for

supermodular n-quasi-copulas follow the same lines as their n-copula counterparts.

However, there is one big difference in the case of the lattice structure of the set of

supermodular n-quasicopulas. This set is join-dense in the set of n-quasi-copulas,

even though the set of n-quasi-copulas is not isomorphic to the Dedekind-MacNeille

completion of SQn. The latter result shows that n-quasi-copulas are more closely

related to supermodular functions than to n-copulas.

As a general conclusion from this dissertation, we can see that both n-copulas

and n-quasi-copulas can be studied from different point of views. In the case of

n-copulas we studied two construction methods based on the diagonal section, and
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a construction method based on radial symmetry. In the case of n-quasi-copulas we

studied the class of supermodular n-quasi-copulas, the smallest n-quasi-copula with

a given diagonal section and the metric structure and the lattice structure of the set

of supermodular n-quasi-copulas. These are just a few results that can be obtained

when one looks through the kaleidoscope of n-copulas and n-quasi-copulas.
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Summary

Copulas have become a valuable tool in multivariate statistics. Due to Sklar’s

theorem, it is possible to express a continuous multivariate distribution function in

terms of its n univariate marginals by means of a unique n-copula. Consequently, n-

copulas have become one of the most important tools for the study of certain types of

non-parametric properties of random vectors, such as stochastic dependence.

The theory of copulas has been growing in the last years. Nowadays, there are

many results on copulas that have been developed from different points of view. In

this dissertation we also study n-copulas while looking at them from several points

of view, hence the word ‘kaleidoscopic’ in the title. In the first three chapters of

this dissertation, we summarize several results about n-copulas, and then propose

two construction methods for n-copulas: one based on the diagonal section of an

n-copula, and the other based on the property of radial symmetry.

In Chapter 1, we first recall the concept of an n-copula. We also review sev-

eral important properties and results about n-copulas that are relevant for the

development of this dissertation.

In Chapter 2, we generalize the well-known class of bivariate upper semilinear

copulas to higher dimensions. These new upper semilinear n-copulas are constructed

by linear interpolation on segments connecting the main diagonal of the unit

hypercube r0, 1sn to one of its upper faces. Later, we focus on the particular

case where all the lower dimensional marginals are also upper semilinear copulas

themselves, in which case the n-copula is actually constructed given its diagonal

section and the diagonal sections of its lower dimensional marginals. For this

construction method, we study which necessary and sufficient conditions on these

diagonal sections guarantee that the upper semilinear construction method yields

an n-copula.

In Chapter 3, we propose a construction method for n-copulas that are simultane-

ously symmetric and radially symmetric. To this end, we first prove a representation

theorem for n-copulas that are simultaneously symmetric and radially symmetric.

With the help of this representation theorem we propose a method to construct

an n-ary symmetric function that is radially symmetric, starting from an pn´ 1q-

copula and an n-ary auxiliary function. Next, we find the necessary and sufficient

conditions on this auxiliary function that guarantee our construction method to

result in a symmetric and radially symmetric n-dimensional copula. Finally, we

restrict mainly to the trivariate case to examine several options for defining the

auxiliary function.

Next, we turn our attention to the concept of an n-quasi-copula, a concept that

149



Summary

is closely connected to that of an n-copula. n-quasi-copulas have been mainly

used to find best-possible bounds on arbitrary sets of n-copulas, remarkably in

the bivariate case. In the following chapters of this dissertation we review several

results about n-quasi-copulas; then we introduce two new classes of n-quasi-copulas

to show that n-quasi-copulas are more closely related to supermodular functions

than to n-copulas.

In Chapter 4, we discuss the role played by n-quasi-copulas in the study of n-copulas.

We recall the concept of an n-quasi-copula, starting from the characterization of

functions that can be derived from operations on random variables. Then, we review

the several characterizations and properties that have been proven in the literature.

We also highlight the applications of n-quasi-copulas in the study of n-copulas,

such as their role in the study of bounds on sets of n-copulas. Special emphasis is

placed on the differences between the bivariate case and the higher-dimensional

setting (n ě 3).

In Chapter 5, we introduce the classes of supermodular n-quasi-copulas and k-

dimensionally-increasing n-quasi-copulas. We observe that some properties of

2-copulas that cannot be generalized to higher-dimensional copulas, hold true for su-

permodular n-quasi-copulas. Additionally, we show that k-dimensionally-increasing

n-quasi-copulas play a role in a generalization of a volume-based characterization

of bivariate copulas to higher dimensions.

Chapter 6 consists of two important parts. In the first part we work in the more

general framework of n-ary aggregation functions. In particular, we study the

smallest and the greatest M -Lipschitz continuous n-ary aggregation functions with

a given diagonal section and generalize several results from the bivariate case to

the higher-dimensional case while considering different Lipschitz constants. Then,

we used the results obtained in the framework of n-ary aggregation functions to

prove that the smallest n-quasi-copula with a given diagonal section, called the

Bertino n-quasi-copula, is supermodular for any n ě 2.

Subsequently, in the second part of Chapter 6, we study the Bertino n-quasi-copula

in depth. We start by studying the marginal copulas of an n-dimensional Bertino

n-quasi-copula and we show that all marginal n-quasi-copulas of an n-dimensional

Bertino n-quasi-copula are Bertino n-quasi-copulas themselves. Later, we introduce

the notion of a regular n-diagonal function and we characterise the sets of regular

n-diagonal functions for which there exists an n-dimensional Bertino copula whose

diagonal section coincides with the given n-diagonal function.

Chapter 7 also consists of two parts. First, we study the set of n-quasi-copulas from

a metric-space point of view. We see that the set of supermodular n-quasi-copulas

when endowed with the uniform metric has similar properties as the metric space

of n-copulas endowed with the uniform metric. Second, we study the relationship

between the poset of supermodular n-quasi-copulas and the posets of n-quasi-

copulas and n-copulas. We show that the poset of supermodular n-quasi-copulas
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is not order-isomorphic to the Dedekind-MacNeille completion of the poset of

n-copulas, although the structure of the poset of n-quasi-copulas is more closely

related to that of the poset of supermodular n-quasi-copulas than that of the poset

of n-copulas.

Finally, in Chapter 8 we summarize the results that we obtained in this thesis. We

also discuss some interesting questions that arise from the research done during

the development of this dissertation.
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Copula's zijn een nuttig instrument geworden voor de multivariate statistiek.

Vanwege het theorema van Sklar, is het mogelijk om een continue multivariate verde-

lingsfunctie uit te drukken in functie van zijn univariate marginalen aan de hand van

een unieke n-copula. Bijgevolg zijn n-copula's één van de belangrijkste instrumenten

geworden voor het bestuderen van enkele niet-parametrische eigenschappen van

stochastische variabelen, zoals stochastische afhankelijkheid.

De theorie van copula's is in de laaste jaren blijven groeien. Tegenwoordig zijn er

veel resulaten over copula's die vanuit verschillende gezichtspunten zijn ontwikkeld.

In deze dissertatie bestuderen wij ook n-copula's terwijl we ze bekijken vanuit

verschillende gezichtspunten, vandaar het woord ‘kaleidoscopic’ in de titel. In de

eerste drie hoofdstukken van deze dissertatie vatten we verschillende resultaten over

n-copula's samen, en daarna stellen we twee constructiemethoden voor n-copula's
voor: één is gebaseerd op de diagonale sectie van een n-copula, en de andere is

gebaseerd op de eigenschap van radiale symmetrie.

In Hoofdstuk 1 herhalen we het concept van een n-copula. We geven ook een

overzicht van verschillende belangrijke eigenschappen en resultaten over n-copula's
die relevant zijn voor de verdere uitwerking van deze dissertatie.

In Hoofdstuk 2 veralgemenen we de bekende klasse van bivariate bovensemilin-

eaire copula's naar hogere dimensies. Deze bovensemilineaire n-copula's worden

geconstrueerd door lineaire interpolatie op segmenten die de hoofddiagonaal van

de n-dimensionale kubus r0, 1sn verbinden met één van de bovenvlakken van deze

kubus. Daarna concentreren we ons op het bijzondere geval wanneer alle lagerdi-

mensionale marginalen ook behoren tot de klasse van bovensemilineaire copula's.
In dit geval wordt de n-copula eigenlijk geconstrueerd met een gegeven diagonale

sectie en de diagonale secties van al zijn lagerdimensionale marginalen. Voor deze

constructiemethode bestuderen we de nodige en voldoende voorwaarden waaraan

de diagonale secties moeten voldoen zodat de bovensemilineaire constructiemethode

in een n-copula resulteert.

In Hoofdstuk 3 introduceren we een constructiemethode voor n-copula's die si-

multaan symmetrisch en radiaalsymmetrisch zijn. Hiertoe bewijzen we ten eerste

een representatiestelling voor n-copula's die simultaan symmetrisch en radiaal-

symmetrisch zijn. Met behulp van die representatiestelling introduceren we een

constructiemethode voor een n-dimensionale symmetrische functie die radiaal-

symmetrisch is, uitgaande van een radiaalsymmetrische pn ´ 1q-copula en een

n-dimensionale hulpfunctie. Daarna identificieren we in de nodige en voldoende

voorwaarden waaraan de n-dimensionale hulpfunctie moet voldoen zodat onze con-
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structiemethode een symmetrische en radiaalsymmetrische n-copula voortbrengt.

Uiteindelijk beperken we ons tot het trivariate geval en onderzoeken we verschillende

keuzes voor de definitie van de hulpfunctie.

Vervolgens richten we onze aandacht op het concept van een n-quasi-copula, een

concept dat sterk verwant is met het concept van een n-copula. n-quasi-copula's
worden meestal gebruikt om de bovengrenzen en ondergrenzen van willekeurige

verzamelingen van n-copula's te bestuderen, in het bijzonder in het bivariate

geval. In de volgende hoofdstukken van deze dissertatie geven we een overzicht van

verschillende resultaten over n-quasi-copula's, daarna introduceren we twee nieuwe

klassen van n-quasi-copula's om aan te tonen dat n-quasi-copula's sterker verwant

zijn met supermodulaire functies dan met n-copula's.

In Hoofdstuk 4 bespreken wij de rol die wordt gespeeld door n-quasi-copula's in het

bestuderen van n-copula's. Wij herhalen het concept van een n-quasi-copula, begin-

nend vanaf de representatie van functies die kunnen worden afgeleid van operaties

die op stochastische variabelen worden toegepast. Daarna geven we een overzicht

van de verschillende representaties en eigenschappen van n-quasi-copula's die in de

literatuur zijn bewezen. We benadrukken ook de toepassingen van n-quasi-copula's
in het bestuderen van n-copula's, zoals hun rol in het bestuderen van bovengrenzen

en ondergrenzen van verzamelingen van n-copula's. Bijzondere aandacht wordt

besteed aan de verschillen tussen het bivariate geval en het hoogdimensionale geval

(n ě 3).

In Hoofdstuk 5 introduceren we de klassen van supermodulaire n-quasi-copula's
en k-dimensionaal stijgende n-quasi-copula's. We merken op dat enkele eigen-

schappen van 2-copula's die niet naar hoogdimensionale copula's kunnen worden

veralgemeend, kunnen worden veralgemeend voor supermodulaire n-quasi-copula's.
Bovendien tonen wij aan dat k-dimensionaal stijgende n-quasi-copula's een rol

spelen in een veralgemening van een volume-gebaseerde representatie van bivariate

copula's naar hogere dimensies.

Hoofdstuk 6 bestaat uit twee delen. In het eerste deel werken we in het algemenere

kader van n-dimensionale aggregatiefuncties. In het bijzonder bestuderen we de

kleinste en de grootste M -Lipschitz-continue n-dimensionale aggregatiefuncties met

een gegeven diagonale sectie, en nadien veralgemenen we verschillende resultaten

van het bivariate geval naar het hoogdimensionale geval waarbij we verschillende

Lipschitz-constanten beschouwen. Daarna gebruiken we de resultaten die we in

het kader van n-dimensionale aggregatiefuncties hebben verkregen om te bewijzen

dat de kleinste n-quasi-copula met een gegeven diagonale sectie, die de Bertino n-

quasi-copula genoemd wordt, een supermodulaire functie is voor elke n ě 2.

In het tweede deel van Hoofdstuk 6 diepen we de Bertino n-quasi-copula uit. We

beginnen met het bestuderen van de marginalen van een Bertino n-quasi-copula

en dan tonen we aan dat alle marginalen van een Bertino n-quasi-copula ook

behoren tot de klasse van Bertino quasi-copula's. Daarna introduceren we het

154



Nederlandstalige samenvatting

concept van een reguliere n-dimensionale diagonale functie en karakteriseren we de

reguliere n-dimensionale diagonale functies waarvoor er een n-dimensionale Bertino

copula bestaat waarvan de diagonale sectie samenvalt met de gegeven n-diagonale

functie.

Hoofdstuk 7 bestaat ook uit twee delen. Ten eerste bestuderen we de verzameling

van n-quasi-copula's vanuit het gezichtspunt van metrische ruimtes. We tonen

aan dat de verzameling van supermodulaire n-quasi-copula's met de uniforme

metriek gelijkaardige eigenschappen heeft als de verzameling van n-copula's met

de uniforme metriek. Ten tweede bestuderen we het verband tussen de partieel

geordende verzameling van supermodulaire n-quasi-copula's en de partieel geor-

dende verzamelingen van n-quasi-copula's en n-copula's. We tonen aan dat hoewel

de partieel geordende verzameling van supermodulaire n-quasi-copula's niet orde-

isomorf is met de Dedekind-MacNeille vervollediging van de partieel geordende

verzameling van n-copula's, de structuur van de partieel geordende verzameling

van n-quasi-copula's sterker verwant is met de partieel geordende verzameling van

supermodulaire n-quasi-copula's dan met de partieel geordende verzameling van

n-copula's.

Finaal vatten we in Hoofdstuk 8 de resultaten samen die we in deze dissertatie

hebben bekomen. We bespreken ook interessante vragen die voortkomen uit het

gevoerde onderzoek tijdens de uitwerking van deze dissertatie.
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[59] F. Durante, A. Kolesárová, R. Mesiar and C. Sempi, Copulas with given

diagonal sections, novel constructions and applications, International Journal

of Uncertainty, Fuzziness and Knowledge-Based Systems 15 (2007), 397–410.

[60] F. Durante, A. Kolesárová, R. Mesiar and C. Sempi, Semilinear copulas, Fuzzy

Sets and Systems 159, (2008), 63–76.

[61] F. Durante, R. Mesiar and C. Sempi, On a family of copulas constructed from

the diagonal section, Soft Computing 10 (2006), 490–494.

[62] F. Durante, G. Puccetti, M. Scherer and S. Vanduffel, My introduction to

copulas, Dependence Modeling 5 (2017), 88–98.

[63] F. Durante, J.J. Quesada-Molina and M. Úbeda-Flores, On a family of mul-
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[115] E.P. Klement and A. Kolesárová, 1-Lipschitz aggregation operators, quasi-

copulas and copulas with given diagonals. In: Soft methodology and random
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[117] E.P. Klement and A. Kolesárová, Intervals of 1-Lipschitz aggregation op-

erators, quasi-copulas, and copulas with given affine section, Monatshefte für

Mathematik 152 (2007), 151–167.

164



Bibliography

[118] E.P. Klement, M. Manzi and R. Mesiar, Ultramodular aggregation functions,

Information Sciences 181 (2011), 4101–4111.

[119] E.P. Klement, M. Manzi and R. Mesiar, Ultramodularity and copulas, Rocky

Mountain Journal of Mathematics 44 (2014), 189–202.

[120] E.P. Klement, R. Mesiar and E. Pap, Invariant copulas, Kybernetika 38

(2002), 275–286.

[121] E.P. Klement, R. Mesiar and E. Pap, Triangular norms, Springer Science &

Business Media, 2013.
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[140] A.J. McNeil and J. Nešlehová, Multivariate Archimedean copulas, d-monotone

functions and l1-norm symmetric distributions, The Annals of Statistics 37

(2009), 3059–3097.
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[171] J.A. Rodŕıguez-Lallena and M. Úbeda-Flores, Compatibility of three bivari-

ate quasi-copulas: applications to copulas In: Soft methodology and random

information systems, Advances in soft computing (M. López-Dı́az, M.A Gil,
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• J.J. Arias-Garćıa and B. De Baets, On the lattice structure of the set of

supermodular quasi-copulas, Fuzzy Sets and Systems, accepted March 2018,

172



https://doi.org/10.1016/j.fss.2018.03.013.
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• J.J. Arias-Garćıa, H. De Meyer and B. De Baets, On the construction of

radially symmetric trivariate copulas, In: Soft Methods for Data Science
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