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ABSTRACT 

Reliability methods are at the core of ambient Eurocode design. Realising exceptional / complex 

buildings necessitates that an adequate level of safety be demonstrated. Rationally demonstrating 

adequate safety can only be achieved through the application of probabilistic risk assessment 

(PRA). This paper presents a novel application of PRA in a structural fire engineering context. It 

first proposes a generalised limit state for protected steel members undergoing failure modes 

dictated by yielding. Subsequently, fragility curves describing failure likelihood in function of 

protection specification and mean fire load are presented for a 1,000 m2 compartment, subject to 

fully developed fires (parametric and travelling fires). The presented fragility curves have 

subsequently proven to be of value for further life-time-cost-optimisation applications, with the 

intent of arriving at explicit safety targets.  

1 INTRODUCTION 

Realising exceptional buildings necessitates that an adequate level of fire safety be explicitly 

demonstrated. This requires an evaluation of all foreseeable consequences, and the probability of 

their manifestation [1]. Unlike ambient temperature evaluations of structural reliability, further 

sources of uncertainty exist at high temperature that relate to: the characterisation of fires, their 

implications for structural element temperatures, the degradation of material properties, permanent 

and imposed loading at the time of the fire, and further (potential) model uncertainties. Previous 

studies by Hopkin, et. al. [2], have evaluated failure probabilities for protected steel elements with 

different protection specifications (i.e. 30, 60, 90 and 120 minutes) by comparing the probability 

density functions (PDFs) for maximum temperatures attained during fire to a deterministic limiting 

temperature. Uncertainties regarding the structural loading, degradation of material properties at 

elevated temperatures and model uncertainties were, however, not considered. This paper builds 

upon the work by Hopkin, et al. [2] by introducing these additional uncertainties noted above, 

resulting in a more complete estimation of failure probabilities for isolated protected steel elements.  

2 OVERVIEW OF THE PROBABILISTIC STUDY 

2.1 Probabilistic factors leading to a fire induced structural failure 

The events that lead-up to a potential structural failure in case of fire all have a probability of 

occurring. In the first instance a fire must develop, subsequently there must be a compound failure 
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of early intervention by the occupants, active measures and the fire brigade. From this point, the fire 

may become fully developed (or ‘significant’). Allied to this, the structure must be sufficiently 

affected by the fully developed fire such that it undergoes damage and, potentially, fails. Broadly, 

within this series of events, two domains can be identified – (i) the event instigation domain, and 

(ii) the response domain. This differentiation allows benchmarking of performance against two 

safety targets – (a) an overall reliability index β which includes the likelihood of the fire event, and 

(b) a reliability index given a significant fire (βfi). Discussion on the meaning of β in fire can be 

found elsewhere [3]. While β refers to the (annual) probability of fire-induced failure and can be 

compared with failure rates due to other unforeseen events, the conditional reliability index βfi 

relates to the robustness of the structure in the unlikely event of a fully developed fire. 

2.2 The event instigation domain 

The event instigation domain simply describes the ignition likelihood, and consequently the 

occurrence rate of structurally significant fires, i.e. those that have the potential to undermine 

structural integrity. Studies, such as those in the Natural Fire Safety Concept Valorisation Project 

[4], provide means for estimating the structurally significant fire occurrence rate in function of e.g. 

compartment size, occupancy and various system and management based intervention possibilities. 

2.3 The response domain 

The response domain is the principal focus of this paper, and in the specific application of protected 

steel structures. Evaluating the stochastic response of a structural element subject to a significant 

fire occurrence necessitates that: (a) the probabilistic manifestations of potential significant fire 

scenarios be evaluated, and (b) subsequently, subject to a given fire manifestation, an evaluation is 

made of structural response. (a) requires appropriate fire models, with corresponding stochastic 

inputs for relevant parameters describing a fire’s development. (b) needs an evaluation of both the: 

(stochastic) applied action at the time of the fire (cognisant of the variability in the permanent and 

variable components), and the available resistance of the structure or structural component 

(impacted by uncertainty in fundamental material properties, how they degrade with temperature, 

etc.). Common to (a) and (b) are further (potential) model uncertainties. 

3 STOCHASTIC FIRE MANIFESTATION 

The procedure for arriving at probability density functions for the maximum temperature attained 

by a protected steel element subject to a fully developed fire is subject to wider discussion in 

Hopkin, et. al. [2] and is summarised herein. First, there must be an idealisation of the fire’s 

development (i.e. a fire model), and second, the stochastic inputs for that model are assigned 

distributions through a combination of measurements or judgement. Two fire models are adopted, 

in recognition of two likely outcomes should a significant fire occur. The first is the Eurocode 

parametric fire for cases where flashover can reasonably be expected to occur. The second, is a 

travelling fire model proposed by Hopkin [5]. The decision as to whether to adopt a post-flashover 

fire vs. a travelling fire is informed by: (a) spread rates, and (b) the ventilation conditions. That is, 

flashover is only considered viable if: (i) the fire has spread to the far end of the compartment 

before the origin starts to decay; and (ii) the ventilation conditions lead to an opening factor, as 

defined in BS EN 1991-1-2, of between 0.02 and 0.2 m0.5. The above conditions naturally lead to 

more post-flashover fires in smaller, relative to larger compartments. Albeit, conditions to support 

flashover can occur in moderate sized compartments, where the spread rate is rapid. Subject to a 

thus defined fire time-temperature curve and protection specification, the maximum temperature of 

a protected element is simply derived from the bulk-capacitance methodology given in EN 1993-1-

2 [6]. The stochastic variables required to describe fire development are discussed in Section 6.2. 
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4 PROTECTION SPECIFICATIONS FOR PROTECTED ELEMENTS 

For the steel section and insulation properties specified further in Table 4, the insulation thickness 

required based on current deterministic design procedures is given in Fig. 1 (left) in function of the 

fire utilisation ufi, for different ISO 834 standard fire exposures. The fire utilisation ufi is given by 

Eq. (1), where the global resistance factor γR equals unity when γs = 1. ηfi is the reduction factor of 

the design load for the fire situation as specified in the Eurocodes (e.g. EN 1993-1-2 [6]), given by 

Eq. (2) for the EQU limit state in normal design conditions. ψfi is the imposed load combination 

factor for the fire design and χ the load ratio defined by Eq. (3). Fig. 1 (right) visualizes Eq. (2) for 

different ψfi and load ratio χ. 
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Fig. 1. (left) Required insulation thickness in function of utilisation ufi and fire resistance period, (right) Fire design load 

reduction factor in function of the load ratio χ, for different ψfi, considering the EQU limit state in normal design. 

5 A GENERALISED LIMIT STATE FOR STEEL ELEMENTS UNDER YIELDING 

5.1 Basis – a specific limit state for a bending element 

In the case of beams subjected to pure bending, the limit state defining failure is given by Eq. (4), 

with parameters as listed further in Table 1. For elements subjected to pure tension, an equivalent 

limit state can be formulated. The beam is assumed to have a utilization ratio u ≤ 1 in normal design 

conditions, in accordance with the ultimate limit state (ULS) design requirements of EN 1990 [7], 

i.e. Eq. (5), with MEd the design value of the bending moment induced by the load effect and MRd 

the design value of the bending moment capacity. 

 R R E G QZ K M K M M     (4) 

Ed RdM uM   (5) 
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Considering a uniform temperature of the steel beam in case of fire exposure (as obtained through 

the bulk-capacitance model of EN 1993-1-2 [6]), the bending moment capacity MR is given by Eq. 

(6), with kfy the temperature dependent reduction factor for the steel yield strength. Consequently, 

the general limit state of Eq. (4) can be rewritten as Eq. (7), where all temperature-dependent and 

temperature-independent variables have been grouped. 

 

R pl fy yM W k f   (6) 
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      (7) 

As indicated by the right-hand equation in (7), the temperature-independent variables define the 

(minimum) required value for kfy, Eq. (8). This allows the splitting of the reliability analysis in a 

fire-dependent evaluation of kfy and a generally applicable, fire-independent evaluation of kfy,req. 
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   (8) 

5.2 A generalised limit state – required residual yield strength 

Starting from Eq. (8) and analytically combining both lognormal model uncertainties in a single 

total model uncertainty KT, Eq. (8) is rewritten as Eq. (9) by introducing scaled variables X* = X / 

c, with c a constant factor. The scaled variables applied in Eq. (9) are listed in Table 2. 

     * * * *

* *
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     (9) 

Simplifying Eq. (9), kfy,req is found to be independent of the beam properties (Wpl, fyk). The 

formulation can be further generalized by introducing nkfy,req in Eq. (10), allowing a stochastic 

representation of the minimum required strength factor independent of the utilization u and the 

choice of µKT (as this parameter is not clearly defined for fire applications). For a given utilization 

and µKT, nkfy,req can be scaled directly to kfy,req. Monte Carlo results for nkfy,req are visualized in Fig. 

2, indicating that nkfy,req can be approximated by a lognormal distribution. 

 * * *
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Fig. 2. (left) CDF and cCDF for nkfy,req, (right) PDF for nkfy,req. Monte Carlo simulations and lognormal approximation. 
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6 STOCHASTIC PARAMETERS 

6.1 Parameters describing the bending limit state 

The distributions in Table 1 describing the stochastic variables are based on the literature review by 

Holicky and Sykora [8] and the JCSS Probabilistic Model Code [9]. A 5-year reference period is 

considered for the imposed load effect to take into account the imposed load present at the time of 

fire exposure. For normal design conditions, lognormal model uncertainties KR and KE apply. 

Appropriate model uncertainties for the fire condition are currently not clearly defined. In the 

following it is assumed that also in case of fire, the model uncertainties can reasonably be described 

by a lognormal distribution. To account for increased uncertainty and reduced redundancy during 

fire, the parameters for KR have been modified relative to the (bracketed) normal design situation. 

Table 1. Parameters for the bending limit state 

Symbol Name Dimension Distribution Mean (µ) COV (V) 

KR 
Model uncertainty for the resistance 

effect 
- 

Lognormal 

(LN) 
1.10 (1.15) 0.10 (0.05) 

MR Bending moment capacity kNm TBD 

KE Model uncertainty for the load effect - 
Lognormal 

(LN) 
1.00 0.10 

MG 
Bending moment induced by the 

permanent load effect 
kNm Normal (N) MGk 0.10 

MQ  
Bending moment induced by the 

imposed load effect 
kNm Gumbel (G) 

0.2 MQk (5-year 

reference) 

1.1 (5-year 

reference) 

Table 2. Original and scaled variables. Distributions given as distribution type (mean value, coefficient of variation) 

Original variable Original distribution Constant Scaled variable Scaled distribution 

KT LN (µKT; VKT) µKT KT
* LN (1;VKT) 

MG N (MGk; 0.1) MGk G* N (1;0.1) 

MQ 
0.2 ;1.1

1
GkG M
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6.2 Fire development parameters 

Fire development inputs vary according to the fire dynamics model adopted, i.e. post-flashover 

parametric fires or travelling fires. Input distributions are provided for e.g. fire load density, 

percentage glazing failure and combustion efficiency. Table 3 summarizes the input distributions 

for all fire development metrics. These are generally adopted from the research literature, e.g. [4]. 

However, in instances, it has been necessary to apply judgement, and simply present an upper and 

lower bound, assuming a uniform distribution in-between (indicated via a min and max). 

 

6.3 Yield strength retention parameters 

Khorasani [10] proposed probabilistic models for the steel yield stress retention (reduction) factor at 

elevated temperatures. In the following, the ‘no base’ logistic model is applied, as given by Eq. 

(11), with ε a standard normally distributed error term. Note that also at 20°C there is considerable 

variability of kfy in this model. This is because part of the uncertainty regarding fy (Table 2) is also 

considered in the kfy model, thus the reliability at low temperatures will be underestimated. Further 

research is underway to further evaluate its impact. At elevated temperatures this effect disappears. 



 Developing fragility curves & estimating failure probabilities for protected steel elements in fire 
 

 

 
 

 

3 6 2

3 6 2

exp 1.61 1.68 10 3.36 10 0.35
1.2

exp 1.61 1.68 10 3.36 10 0.35 1
fyk

  


  

 

 

    


     
  (11) 

Table 3. Fire development parameters 

Symbol Name Dim Distribution Mean (µ) COV (V) 

qF Fire load density MJ/m2 Gumbel qF,nom 0.3 

tlim Limit time fuel controlled fire 

(EN 1991-1-2) 

min Deterministic 20 - 

HRR_pua Heat release rate per unit area MW/m2 Deterministic 0.25 - 

φw Fraction of glazing failure - Uniform min: 0.1250 max: 0.9999 

φb Beam position relative to 

compartment length 

- Uniform min: 0.6 max: 0.9 

φc Combustion efficiency - Uniform min: 0.75 max: 0.999 

sr Spread rate m/s Uniform min: 0.0035 max: 0.0193 

Tnf Near field fire temperature °C Normal 1050   1.939 0.266 lnTnf Tnf      

7 PILOT STUDY – GENERATATING FRAGILITY CURVES IN FUNCTION OF DP 

7.1 Overview 

Obtaining fragility curves for protected steel elements in function of insulation thickness and fire 

characteristics necessitates three prerequisites: (1) the generation of maximum temperature PDFs, 

i.e. as reported by Hopkin, et. al. [2], (2) the translation of the maximum temperature PDFs into 

corresponding CDFs for achieved yield strength retention (kfy in Eq. (7)), and (3) benchmarking of 

the achieved yield strength retention factors against kfy,req, with failure corresponding with a 

condition whereby the right-hand side of equation (7) is negative. Core deterministic parameters for 

the pilot study are given in Table 4. Probabilistic variables are as discussed previously in Section 6. 

Table 4. Deterministic parameters for pilot study 

Symbol Name Dim Metric  Symbol Name Dim Metric 

w Room width m 22.36  kp Insulation thermal 

conductivity 

W/mK 0.2 

l Room depth m 44.72  cp Insulation specific heat J/kgK 1700 

h Room height m 3.40  ρp Insulation density kg/m3 800 

v_w Total window width m 129.45  Hp Heated perimeter m 2.14 

h_w Window height m 3.06  Ap Cross-section area m2 0.017 

dp Insulation thickness mm dp,nom  Δt Time step temperature 

calculation 

s 15 

 

7.2 Maximum temperature PDF 

Considering the parameters listed in Table 4, the complementary CDF describing the probability of 

the steel section exceeding a specified maximum temperature is given in Fig. 3 (left) for different 

nominal (mean) fire load density qF (insulation thickness dp = 5.7 mm) and in Fig. 3 (right) for 

different nominal insulation thickness dp (qF = 400 MJ/m2). These results were obtained through 

10,000 Latin Hypercube Simulations (LHS). 
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Fig. 3. (left) cCDF of Ts,max for different qF,nom (dp = 5.7mm); and (right) of Ts,max for different dp (qF,nom = 400 MJ/m2) 

7.3 Yield strength retention CDF in function of fire characteristics 

The steel yield strength retention factor (i.e. minimum residual strength) is visualized in Fig. 4 

taking into account the distribution of the maximum steel temperature Ts,max as observed in Fig. 3, 

and the stochastic model for kfy as discussed in Section 6.3.  

 

Fig. 4. (left) CDF of kfy,ach for different qF,nom (dp = 5.7mm), (right) CDF of kfy,ach for different dp (qF,nom = 400 MJ/m2) 

 

Fig. 5. (left) Fragility curve in function of qF,nom, for dp = 16 mm, χ = 0.40, and different ambient utilization u, and 

(right) Fragility curve in function of the insulation thickness dp, for u = 0.9, χ = 0.50, and different qF,nom. 
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7.4 Fragility curves for protected elements 

Resulting fragility curves visualizing the parameter-dependency of the probability of failure are 

given in Fig. 5, with µKT = 0.92 and γR = 1. Fig. 5 (left) visualises the probability of failure in 

function of the nominal fire load qF,nom. Fig. 5 (right) visualises fragilities for given nominal fire 

load density qF, in function of the insulation thickness dp using logarithmic axes. For failure 

probabilities below 0.5, this visualization of the fragility curve is approximately linear. This is of 

particular interest for cost-optimization calculations, as presented in follow up research [11]. 

8 DISCUSSION & CONCLUSIONS 

Currently no simplified reliability-based methods exist for structural fire design, as is the case for 

ambient design following the Eurocodes. In order to demonstrate adequate structural fire safety, 

risk-based methodologies should be applied, requiring an assessment of the reliability of structural 

systems exposed to fire. To this end, a step-wise approach to evaluate the failure probability of 

insulated steel elements has been presented, taking into account uncertainties with respect to both 

the fire exposure, and thermal and mechanical properties, with due consideration of the wide range 

of possible fire behaviours (travelling fires vs. post-flashover fires). The methodology has been 

applied to derive fragility curves for protected steel beams in function of the insulation thickness, 

nominal fire load density and ambient utilisation ratio. The results emphasize the strong effect of 

the nominal fire load density and the insulation thickness on the failure probability, providing input 

for rationally differentiating investments in structural fire protection between buildings. The 

presented results have been applied as a basis for cost-optimization in follow-up research, resulting 

in an assessment of optimum (target) reliability levels for structural fire design of protected steel 

structural elements.  
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