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Abstract

This paper presents the first shared task on
irony detection: given a tweet, automatic nat-
ural language processing systems should de-
termine whether the tweet is ironic (Task A)
and which type of irony (if any) is expressed
(Task B). The ironic tweets were collected us-
ing irony-related hashtags (i.e. #irony, #sar-
casm, #not) and were subsequently manually
annotated to minimise the amount of noise in
the corpus. Prior to distributing the data, hash-
tags that were used to collect the tweets were
removed from the corpus. For both tasks, a
training corpus of 3,834 tweets was provided,
as well as a test set containing 784 tweets.
Our shared tasks received submissions from
43 teams for the binary classification Task A
and from 31 teams for the multiclass Task B.
The highest classification scores obtained for
both subtasks are respectively F1= 0.71 and
F1= 0.51 and demonstrate that fine-grained
irony classification is much more challenging
than binary irony detection.

1 Introduction

The development of the social web has stimulated
the use of figurative and creative language, includ-
ing irony, in public (Ghosh et al., 2015). From a
philosophical/psychological perspective, discern-
ing the mechanisms that underlie ironic speech im-
proves our understanding of human reasoning and
communication, and more and more, this interest
in understanding irony also emerges in the ma-
chine learning community (Wallace, 2015). Al-
though an unanimous definition of irony is still
lacking in the literature, it is often identified as a
trope whose actual meaning differs from what is
literally enunciated. Due to its nature, irony has
important implications for natural language pro-
cessing (NLP) tasks, which aim to understand and
produce human language. In fact, automatic irony

detection has a large potential for various appli-
cations in the domain of text mining, especially
those that require semantic analysis, such as au-
thor profiling, detecting online harassment, and,
maybe the most well-known example, sentiment
analysis.

Due to its importance in industry, sentiment
analysis research is abundant and significant
progress has been made in the field (e.g. in the con-
text of SemEval (Rosenthal et al., 2017)). How-
ever, the SemEval-2014 shared task Sentiment
Analysis in Twitter (Rosenthal et al., 2014) demon-
strated the impact of irony on automatic senti-
ment classification by including a test set of ironic
tweets. The results revealed that, while senti-
ment classification performance on regular tweets
reached up to F1= 0.71, scores on the ironic
tweets varied between F1= 0.29 and F1= 0.57. In
fact, it has been demonstrated that several applica-
tions struggle to maintain high performance when
applied to ironic text (e.g. Liu, 2012; Maynard
and Greenwood, 2014; Ghosh and Veale, 2016).
Like other types of figurative language, ironic text
should not be interpreted in its literal sense; it re-
quires a more complex understanding based on as-
sociations with the context or world knowledge.
Examples 1 and 2 are sentences that regular senti-
ment analysis systems would probably classify as
positive, whereas the intended sentiment is unde-
niably negative.

(1) I feel so blessed to get ocular migraines.

(2) Go ahead drop me hate, I’m looking for-
ward to it.

For human readers, it is clear that the author of
example 1 does not feel blessed at all, which can
be inferred from the contrast between the positive
sentiment expression “I feel so blessed”, and the
negative connotation associated with getting ocu-
lar migraines. Although such connotative infor-
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mation is easily understood by most people, it is
difficult to access by machines. Example 2 illus-
trates implicit cyberbullying; instances that typi-
cally lack explicit profane words and where the
offense is often made through irony. Similarly to
example 1, a contrast can be perceived between a
positive statement (“I’m looking forward to”) and
a negative situation (i.e. experiencing hate). To be
able to interpret the above examples correctly, ma-
chines need, similarly to humans, to be aware that
irony is used, and that the intended sentiment is
opposite to what is literally enunciated.

The irony detection task1 we propose is formu-
lated as follows: given a single post (i.e. a tweet),
participants are challenged to automatically de-
termine whether irony is used and which type of
irony is expressed. We thus defined two subtasks:

• Task A describes a binary irony classifica-
tion task to define, for a given tweet, whether
irony is expressed.

• Task B describes a multiclass irony classi-
fication task to define whether it contains a
specific type of irony (verbal irony by means
of a polarity clash, situational irony, or an-
other type of verbal irony, see further) or is
not ironic. Concretely, participants should
define which one out of four categories a
tweet contains: ironic by clash, situational
irony, other verbal irony or not ironic.

It is important to note that by a tweet, we under-
stand the actual text it contains, without metadata
(e.g. user id, time stamp, location). Although such
metadata could help to recognise irony, the objec-
tive of this task is to learn, at message level, how
irony is linguistically realised.

2 Automatic Irony Detection

As described by Joshi et al. (2017), recent ap-
proaches to irony can roughly be classified as ei-
ther rule-based or (supervised and unsupervised)
machine learning-based. While rule-based ap-
proaches mostly rely upon lexical information and
require no training, machine learning invariably
makes use of training data and exploits different
types of information sources (or features), such as
bags of words, syntactic patterns, sentiment infor-
mation or semantic relatedness.

1All practical information, data download links and the
final results can be consulted via the CodaLab website of our
task: https://competitions.codalab.org/competitions/17468.

Previous work on irony detection mostly ap-
plied supervised machine learning mainly exploit-
ing lexical features. Other features often include
punctuation mark/interjection counts (e.g Davi-
dov et al., 2010), sentiment lexicon scores (e.g.
Bouazizi and Ohtsuki, 2016; Farı́as et al., 2016),
emoji (e.g. González-Ibáñez et al., 2011), writ-
ing style, emotional scenarios, part of speech-
patterns (e.g. Reyes et al., 2013), and so on. Also
beneficial for this task are combinations of differ-
ent feature types (e.g. Van Hee et al., 2016b), au-
thor information (e.g. Bamman and Smith, 2015),
features based on (semantic or factual) opposi-
tions (e.g Karoui et al., 2015; Gupta and Yang,
2017; Van Hee, 2017) and even eye-movement
patterns of human readers (Mishra et al., 2016).
While a wide range of features are and have been
used extensively over the past years, deep learning
techniques have recently gained increasing popu-
larity for this task. Such systems often rely on se-
mantic relatedness (i.e. through word and charac-
ter embeddings (e.g. Amir et al., 2016; Ghosh and
Veale, 2016)) deduced by the network and reduce
feature engineering efforts.

Regardless of the methodology and algorithm
used, irony detection often involves binary clas-
sification where irony is defined as instances that
express the opposite of what is meant (e.g. Riloff
et al., 2013; Joshi et al., 2017). Twitter has been
a popular data genre for this task, as it is eas-
ily accessible and provides a rapid and convenient
method to find (potentially) ironic messages by
looking for hashtags like #irony, #not and #sar-
casm. As a consequence, irony detection research
often relies on automatically annotated (i.e. based
on irony-related hashtags) corpora, which contain
noise (Kunneman et al., 2015; Van Hee, 2017).

3 Task Description

We propose two subtasks A and B for the auto-
matic detection of irony on Twitter, for which we
provide more details below.

3.1 Task A: Binary Irony Classification
The first subtask is a two-class (or binary) classi-
fication task where submitted systems have to pre-
dict whether a tweet is ironic or not. The following
examples respectively present an ironic and non-
ironic tweet.

(3) I just love when you test my patience!!
#not.
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(4) Had no sleep and have got school now
#not happy

Note that the examples contain irony-related
hashtags (e.g. #irony) that were removed from the
corpus prior to distributing the data for the task.

3.2 Task B: Multiclass Irony Classification
The second subtask is a multiclass classification
task where submitted systems have to predict one
out of four labels describing i) verbal irony re-
alised through a polarity contrast, ii) verbal irony
without such a polarity contrast (i.e. other verbal
irony), iii) descriptions of situational irony, and iv)
non-irony. The following paragraphs present a de-
scription and a number of examples for each label.

Verbal irony by means of a polarity contrast
This category applies to instances containing an
evaluative expression whose polarity (positive,
negative) is inverted between the literal and the in-
tended evaluation, as shown in examples 5 and 6:

(5) I love waking up with migraines #not

(6) I really love this year’s summer; weeks
and weeks of awful weather

In the above examples, the irony results from a
polarity inversion between two evaluations. For
instance, in example 6, the literal evaluation (“I
really love this year’s summer”) is positive, while
the intended one, which is implied by the context
(“weeks and weeks of awful weather”), is nega-
tive.

Other verbal irony This category contains in-
stances that show no polarity contrast between the
literal and the intended evaluation, but are never-
theless ironic.

(7) @someuser Yeah keeping cricket clean,
that’s what he wants #Sarcasm

(8) Human brains disappear every day. Some
of them have never even appeared.
http://t.co/Fb0Aq5Frqs #brain #human-
brain #Sarcasm

Situational irony This class label is reserved for
instances describing situational irony, or situations
that fail to meet some expectations. As explained
by Shelley (2001), firefighters who have a fire in
their kitchen while they are out to answer a fire
alarm would be a typically ironic situation. Some
other examples of situational irony are the follow-
ing:

(9) Most of us didn’t focus in the #ADHD lec-
ture. #irony

(10) Event technology session is having Inter-
net problems. #irony #HSC2024

Non-ironic This class contains instances that are
clearly not ironic, or which lack context to be sure
that they are ironic, as shown in the following ex-
amples:

(11) And then my sister should be home from
college by time I get home from babysit-
ting. And it’s payday. THIS IS A GOOD
FRIDAY

(12) Is Obamacare Slowing Health Care
Spending? #NOT

4 Corpus Construction and Annotation

A data set of 3,000 English tweets was constructed
by searching Twitter for the hashtags #irony, #sar-
casm and #not (hereafter referred to as the ‘hash-
tag corpus’), which could occur anywhere in the
tweet that was finally included in the corpus.
All tweets were collected between 01/12/2014
and 04/01/2015 and represent 2,676 unique users.
To minimise the noise introduced by ground-
less irony hashtags, all tweets were manually la-
belled using a fine-grained annotation scheme for
irony (Van Hee et al., 2016a). Prior to data anno-
tation, the entire corpus was cleaned by removing
retweets, duplicates and non-English tweets and
replacing XML-escaped characters (e.g. &amp;).

The corpus was entirely annotated by three stu-
dents in linguistics and second-language speak-
ers of English, with each student annotating one
third of the whole corpus. All annotations were
done using the brat rapid annotation tool (Stene-
torp et al., 2012). To assess the reliability of
the annotations, and whether the guidelines al-
lowed to carry out the task consistently, an inter-
annotator agreement study was set up in two
rounds. Firstly, inter-rater agreement was calcu-
lated between the authors of the guidelines to test
the guidelines for usability and to assess whether
changes or additional clarifications were recom-
mended prior annotating the entire corpus. For
this purpose, a subset of 100 instances from the
SemEval-2015 Task Sentiment Analysis of Figu-
rative Language in Twitter (Ghosh et al., 2015)
dataset were annotated. Based on the results,
some clarifications and refinements were added to
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the annotation scheme, which are thoroughly de-
scribed in Van Hee (2017). Next, a second agree-
ment study was carried out on a subset (i.e. 100
randomly chosen instances) of the corpus. As
metric, we used Fleiss’ Kappa (Fleiss, 1971),
a widespread statistical measure in the field of
computational linguistics for assessing annotator
agreement on categorical ratings (Carletta, 1996).
The measure calculates the degree of agreement
in classification over the agreement which would
be expected by chance, i.e. when annotators would
randomly assign class labels.

annotation Kappa κ Kappa κ
round 1 round 2

ironic / not ironic 0.65 0.72
ironic by clash / other / not ironic 0.55 0.72

Table 1: Inter-annotator agreement scores (Kappa) in
two annotation rounds.

Table 1 presents the inter-rater scores for the bi-
nary irony distinction and for three-way irony clas-
sification (‘other’ includes both situational irony
and other forms of verbal irony). We see that better
inter-annotator agreement is obtained after the re-
finement of the annotation scheme, especially for
the binary irony distinction. Given the difficulty
of the task, a Kappa score of 0.72 for recognising
irony can be interpreted as good reliability2.

The distribution if the different irony types in
the experimental corpus are presented in Table 2.

class label # instances
Verbal irony by means of a polarity contrast 1,728
Other types of verbal irony 267
Situational irony 401
Non-ironic 604

Table 2: Distribution of the different irony categories
in the corpus

Based on the annotations, 2,396 instances out of
the 3,000 are ironic, while 604 are not. To balance
the class distribution in our experimental corpus,
1,792 non-ironic tweets were added from a back-
ground corpus. The tweets in this corpus were
collected from the same set of Twitter users as
in the hashtag corpus, and within the same time
span. It is important to note that these tweets do
not contain irony-related hashtags (as opposed to
the non-ironic tweets in the hashtag corpus), and
were manually filtered from ironic tweets. Adding

2According to magnitude guidelines by Landis and Koch
(1977).

these non-ironic tweets to the experimental cor-
pus brought the total amount of data to 4,792
tweets (2,396 ironic + 2,396 non-ironic). For
this shared task, the corpus was randomly split
into a class-balanced training (80% or 3,833 in-
stances) and test (20%, or 958 instances) set. In
an additional cleaning step, we removed ambigu-
ous tweets (i.e. where additional context was re-
quired to understand their ironic nature), from the
test corpus, resulting in a test set containing 784
tweets (consisting of 40% ironic and 60% non-
ironic tweets).

To train their systems, participants were not re-
stricted to the provided training corpus. They were
allowed to use additional training data that was
collected and annotated at their own initiative. In
the latter case, the submitted system was consid-
ered unconstrained, as opposed to constrained if
only the distributed training data were used for
training.

It is important to note that participating teams
were allowed ten submissions at CodaLab, and
that they could submit a constrained and uncon-
strained system for each subtask. However, only
their last submission was considered for the offi-
cial ranking (see Table 3).

5 Evaluation

For both subtasks, participating systems were
evaluated using standard evaluation metrics, in-
cluding accuracy, precision, recall and F1 score,
calculated as follows:

accuracy =
true positives + true negatives

total number of instances
(1)

precision =
true positives

true positives + false positives
(2)

recall =
true positives

true positives + false negatives
(3)

F1 = 2 · precision · recall
precision + recall

(4)

While accuracy provides insights into the sys-
tem performance for all classes, the latter three
measures were calculated for the positive class
only (Task A) or were macro-averaged over four
class labels (Task B). Macro-averaging of the
F1 score implies that all class labels have equal
weight in the final score.
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For both subtasks, two baselines were provided
against which to compare the systems’ perfor-
mance. The first baseline randomly assigns irony
labels and the second one is a linear SVM classi-
fier with standard hyperparameter settings exploit-
ing tf-idf word unigram features (implemented
with scikit-learn (Pedregosa et al., 2011)). The
second baseline system is made available to the
task participants via GitHub3.

6 Systems and results for Task A

In total, 43 teams competed in Task A on binary
irony classification. Table 3 presents each team’s
performance in terms of accuracy, precision, re-
call and F1 score. In all tables, the systems are
ranked by the official F1 score (shown in the fifth
column). Scores from teams that are marked with
an asterisk should be interpreted carefully, as the
number of predictions they submitted does not
correspond to the number of test instances.

As can be observed from the table, the SVM
unigram baseline clearly outperforms the random
class baseline and generally performs well for
the task. Below we discuss the top five best-
performing teams for Task A, which all built a
constrained (i.e. only the provided training data
were used) system. The best system yielded
an F1 score of 0.705 and was developed by
THU NGN (Wu et al., 2018). Their architec-
ture consists of densely connected LSTMs based
on (pre-trained) word embeddings, sentiment fea-
tures using the AffectiveTweet package (Moham-
mad and Bravo-Marquez, 2017) and syntactic fea-
tures (e.g. PoS-tag features + sentence embedding
features). Hypothesising that the presence of a cer-
tain irony hashtag correlates with the type of irony
that is used, they constructed a multi-task model
able to predict simultaneously 1) the missing irony
hashtag, 2) whether a tweet is ironic or not and 3)
which fine-grained type of irony is used in a tweet.

Also in the top five are the teams NTUA-
SLP (F1= 0.672), WLV (F1= 0.650), NLPRL-
IITBHU (F1= 0.648) and NIHRIO (F1= 0.648).
NTUA-SLP (Baziotis et al., 2018) built an en-
semble classifier of two deep learning models: a
word- and character-based (bi-directional) LSTM
to capture semantic and syntactic information in
tweets, respectively. As features, the team used
pre-trained character and word embeddings on
a corpus of 550 million tweets. Their ensem-

3https://github.com/Cyvhee/SemEval2018-Task3/

ble classifier applied majority voting to combine
the outcomes of the two models. WLV (Roha-
nian et al., 2018) developed an ensemble vot-
ing classifier with logistic regression (LR) and
a support vector machine (SVM) as component
models. They combined (through averaging) pre-
trained word and emoji embeddings with hand-
crafted features, including sentiment contrasts be-
tween elements in a tweet (i.e. left vs. right sec-
tions, hashtags vs. text, emoji vs. text), senti-
ment intensity and word-based features like flood-
ing and capitalisation). For Task B, they used
a slightly altered (i.e. ensemble LR models and
concatenated word embeddings instead of aver-
aged) model. NLPRL-IITBHU (Rangwani et al.,
2018) ranked fourth and used an XGBoost Classi-
fier to tackle Task A. They combined pre-trained
CNN activations using DeepMoji (Felbo et al.,
2017) with ten types of handcrafted features.
These were based on polarity contrast information,
readability metrics, context incongruity, charac-
ter flooding, punctuation counts, discourse mark-
ers/intensifiers/interjections/swear words counts,
general token counts, WordNet similarity, polarity
scores and URL counts. The fifth best system for
Task A was built by NIHRIO (Vu et al., 2018) and
consists of a neural-networks-based architecture
(i.e. Multilayer Perceptron). The system exploited
lexical (word- and character-level unigrams, bi-
grams and trigrams), syntactic (PoS-tags with tf-
idf values), semantic features (word embeddings
using GloVe (Pennington et al., 2014), LSI fea-
tures and Brown cluster features (Brown et al.,
1992)) and polarity features derived from the Hu
and Liu Opinion Lexicon (Hu and Liu, 2004).

As such, all teams in the top five approached the
task differently, by exploiting various algorithms
and features, but all of them clearly outperformed
the baselines. Like most other teams, they also
showed a better performance in terms of recall
compared to precision.

Table 3 displays the results of each team’s of-
ficial submission for Task A, i.e. no distinction is
made between constrained and unconstrained sys-
tems. By contrast, Tables 4 and 5 present the rank-
ings of the best (i.e. not necessarily the last, and
hence official submission) constrained and uncon-
strained submissions for Task A.

As can be deduced from Table 4, when consid-
ering all constrained submissions from each team
and ranking them based on performance, we see
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team acc precision recall F1

THU NGN 0.735 0.630 0.801 0.705
NTUA-SLP 0.732 0.654 0.691 0.672
WLV 0.643 0.532 0.836 0.650
NLPRL-
IITBHU

0.661 0.551 0.788 0.648

NIHRIO 0.702 0.609 0.691 0.648
DLUTNLP-1 0.628 0.520 0.797 0.629
ELiRF-UPV 0.611 0.506 0.833 0.629
liangxh16 0.659 0.555 0.714 0.625
CJ 0.667 0.565 0.695 0.623
#NonDicevo-
SulSerio

0.679 0.583 0.666 0.622

UWB 0.688 0.599 0.643 0.620
INAOE-UPV 0.651 0.546 0.714 0.618
RM@IT 0.649 0.544 0.714 0.618
DUTQS 0.601 0.498 0.794 0.612
ISP RAS 0.565 0.473 0.849 0.608
ValenTO 0.598 0.496 0.781 0.607
4binarizer 0.666 0.553 0.647 0.596
SIRIUS LC 0.684 0.604 0.588 0.596
warnikchow 0.644 0.543 0.656 0.594
ECNU 0.596 0.494 0.743 0.593
Parallel
Computing-
Network Re-
search Group

0.617 0.513 0.701 0.592

Lancaster 0.635 0.532 0.666 0.591
Unigram SVM
BL

0.635 0.532 0.659 0.589

IITBHU-NLP 0.566 0.472 0.778 0.587
s1998 0.629 0.526 0.653 0.583
Random Deci-
sion -
Syntax Trees 0.617 0.514 0.672 0.582
textbflyreact 0.628 0.525 0.640 0.577
UTH-SU 0.639 0.540 0.605 0.571
KLUEnicorn 0.594 0.491 0.643 0.557
ai-ku 0.643 0.555 0.502 0.527
UTMN 0.603 0.500 0.556 0.527
UCDCC 0.682 0.645 0.444 0.526
IITG 0.556 0.450 0.540 0.491
MI&T–LAB 0.614 0.514 0.463 0.487
*NEUROSENT-
PDI

0.504 0.409 0.560 0.472

Lovelace 0.512 0.412 0.543 0.469
codersTeam 0.509 0.410 0.543 0.468
WHLL 0.580 0.469 0.437 0.453
DKE UM 0.561 0.447 0.450 0.449
LDR 0.564 0.446 0.415 0.430
*YNU-HPCC 0.509 0.391 0.428 0.408
Random BL 0.503 0.373 0.373 0.373
ACMK-
POZNAN

0.620 0.550 0.232 0.326

iiidyt 0.352 0.257 0.334 0.291
milkstout 0.584 0.427 0.142 0.213
INGEOTEC-
IIMAS

0.628 0.880 0.071 0.131

Table 3: Official (CodaLab) results for Task A, ranked
by F1 score. The highest scores in each column are
shown in bold and the baselines are indicated in purple.

that the UCDCC team ranks first (F1= 0.724),
followed by THU NGN, NTUA-SLP, WLV and
NLPRL-IITBHU, whose approach was discussed
earlier in this paper. The UCDCC-system is an
LSTM model exploiting Glove word embedding
features.

team acc precision recall F1

UCDCC 0.797 0.788 0.669 0.724
THU NGN 0.735 0.630 0.801 0.705
NTUA-SLP 0.732 0.654 0.691 0.672
WLV 0.643 0.532 0.836 0.650
NLPRL-
IITBHU

0.661 0.551 0.788 0.648

NCL 0.702 0.609 0.691 0.648
RM@IT 0.691 0.598 0.679 0.636
#NonDicevo-
SulSerio

0.666 0.562 0.717 0.630

DLUTNLP-1 0.628 0.520 0.797 0.629
ELiRF-UPV 0.611 0.506 0.833 0.629

Table 4: Best constrained systems for Task A.

team acc precision recall F1

#NonDicevo-
SulSerio

0.679 0.583 0.666 0.622

INAOE-UPV 0.651 0.546 0.714 0.618
RM@IT 0.649 0.544 0.714 0.618
ValenTO 0.598 0.496 0.781 0.607
UTMN 0.603 0.500 0.556 0.527
IITG 0.556 0.450 0.540 0.491
LDR 0.571 0.455 0.408 0.431
milkstouts 0.584 0.427 0.142 0.213
INGEOTEC-
IIMAS

0.643 0.897 0.113 0.200

Table 5: Best unconstrained systems for Task A.

In the top five unconstrained (i.e. using ad-
ditional training data) systems for Task A are
#NonDicevoSulSerio, INAOE-UPV, RM@IT, Va-
lenTO and UTMN, with F1 scores ranging be-
tween 0.622 and 0.527. #NonDicevoSulserio ex-
tended the training corpus with 3,500 tweets from
existing irony corpora (e.g. Riloff et al. (2013);
Barbieri and Saggion (2014); Ptáček et al. (2014)
and built an SVM classifier exploiting struc-
tural features (e.g. hashtag count, text length),
sentiment- (e.g. contrast between text and emoji
sentiment), and emotion-based (i.e. emotion lexi-
con scores) features. INAOE-UPV combined pre-
trained word embeddings from the Google News
corpus with word-based features (e.g. n-grams).
They also extended the official training data with
benchmark corpora previously used in irony re-
search and trained their system with a total of
165,000 instances. RM@IT approached the task
using an ensemble classifier based on attention-
based recurrent neural networks and the Fast-
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Text (Joulin et al., 2017) library for learning word
representations. They enriched the provided train-
ing corpus with, on the one hand, the data sets
provided for SemEval-2015 Task 11 (Ghosh et al.,
2015) and, on the other hand, the sarcasm cor-
pus composed by Ptáček et al. (2014). Alto-
gether, this generated a training corpus of approx-
imately 110,000 tweets. ValenTO took advantage
of irony corpora previously used in irony detection
that were manually annotated or through crowd-
sourcing (e.g. Riloff et al., 2013; Ptáček et al.,
2014). In addition, they extended their corpus
with an unspecified number of self-collected irony
tweets using the hashtags #irony and #sarcasm.
Finally, UTMN developed an SVM classifier ex-
ploiting binary bag-of-words features. They en-
riched the training set with 1,000 humorous tweets
from SemEval-2017 Task 6 (Potash et al., 2017)
and another 1,000 tweets with positive polarity
from SemEval-2016 Task 4 (Nakov et al., 2016),
resulting in a training corpus of 5,834 tweets.

Interestingly, when comparing the best con-
strained with the best unconstrained system for
Task A, we see a difference of 10 points in favour
of the constrained system, which indicates that
adding more training data does not necessarily im-
prove the classification performance.

7 Systems and Results for Task B

While 43 teams competed in Task A, 31 teams
submitted a system for Task B on multiclass irony
classification. Table 6 presents the official rank-
ing with each team’s performance in terms of ac-
curacy, precision, recall and F1 score. Similar to
Task A, we discuss the top five systems in the
overall ranking (Table 6) and then zoom in on
the best performing constrained and unconstrained
systems (Tables 7 and 8).

For Task B, the top five is nearly similar to
the top five for Task A and includes the fol-
lowing teams: UCDCC (Ghosh, 2018), NTUA-
SLP (Baziotis et al., 2018), THU NGN (Wu et al.,
2018), NLPRL-IITBHU (Rangwani et al., 2018)
and NIHRIO (Vu et al., 2018). All of the teams
tackled multiclass irony classification by applying
(mostly) the same architecture as for Task A (see
earlier). Inspired by siamese networks (Brom-
ley et al., 1993) used in image classification, the
UCDCC team developed a siamese architecture
for irony detection in both subtasks. The neu-
ral network architecture makes use of Glove word

embeddings as features and creates two identical
subnetworks that are each fed with different parts
of a tweet. Under the premise that ironic state-
ments are often characterised by a form of oppo-
sition or contrast, the architecture captures this in-
congruity between two parts in an ironic tweet.

team acc precision recall F1

UCDCC 0.732 0.577 0.504 0.507
NTUA-SLP 0.652 0.496 0.512 0.496
THU NGN 0.605 0.486 0.541 0.495
NLPRL-
IITBHU

0.603 0.466 0.506 0.474

NIHRIO 0.659 0.545 0.448 0.444
Random De-
cision Syntax
Trees

0.633 0.487 0.439 0.435

ELiRF-UPV 0.633 0.412 0.440 0.421
WLV 0.671 0.431 0.415 0.415
#NonDicevo-
SulSerio

0.545 0.409 0.441 0.413

INGEOTEC-
IIMAS

0.644 0.502 0.385 0.406

ai-ku 0.584 0.422 0.402 0.393
warnikchow 0.598 0.412 0.410 0.393
UWB 0.626 0.440 0.406 0.390
CJ 0.603 0.412 0.409 0.384
UTH-SU 0.551 0.383 0.399 0.376
s1998 0.568 0.338 0.374 0.352
ValenTO 0.560 0.353 0.352 0.352
RM@IT 0.542 0.377 0.371 0.350
Unigram SVM
BL

0.569 0.416 0.364 0.341

SSN MLRG1 0.573 0.348 0.361 0.334
Lancaster 0.606 0.280 0.359 0.313
Parallel Com-
puting Network
Research
Group

0.416 0.406 0.353 0.310

codersTeam 0.492 0.300 0.311 0.301
KLUEnicorn 0.347 0.321 0.353 0.298
DKE UM 0.432 0.318 0.305 0.298
IITG 0.486 0.336 0.291 0.278
Lovelace 0.434 0.294 0.282 0.276
*YNU-HPCC 0.533 0.438 0.267 0.261
Random BL 0.416 0.241 0.241 0.241
LDR 0.461 0.230 0.250 0.234
ECNU 0.304 0.255 0.249 0.233
NEUROSENT-
PDI

0.441 0.213 0.231 0.219

INAOE-UPV 0.594 0.217 0.261 0.215

Table 6: Official (CodaLab) results for Task B, ranked
by F1 score. The highest scores in each column are
shown in bold and the baselines are indicated in purple.

NTUA-SLP, THU NGN and NIHRIO used the
same system for both subtasks. NLPRL-IITBHU
also used the same architecture, but given the data
skew for Task B, they used SMOTE (Chawla et al.,
2002) as an oversampling technique to make sure
each irony class was equally represented in the
training corpus, which lead to an F1 score increase
of 5 points.
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NLPRL-IITBHU built a Random Forest classi-
fier making use of pre-trained DeepMoji embed-
dings, character embeddings (using Tweet2Vec)
and sentiment lexicon features.

team acc precision recall F1

UCDCC 0.732 0.577 0.504 0.507
NTUA-SLP 0.652 0.496 0.512 0.496
THU NGN 0.605 0.486 0.541 0.495
NLPRL-
IITBHU

0.603 0.466 0.506 0.474

NCL 0.659 0.545 0.448 0.444
Random
Decision-
Syntax Trees 0.633 0.487 0.439 0.435
ELiRF-UPV 0.633 0.412 0.440 0.421
WLV 0.671 0.431 0.415 0.415
AI-KU 0.584 0.422 0.402 0.393

Table 7: Best constrained systems for Task B. The
highest scores in each column are shown in bold.

team acc precision recall F1

#NonDicevo
SulSerio

0.545 0.409 0.441 0.413

INGEOTEC-
IIMAS

0.647 0.508 0.386 0.407

INAOE-UPV 0.495 0.347 0.379 0.350
IITG 0.486 0.336 0.291 0.278

Table 8: Unconstrained systems for Task B. The high-
est scores in each column are shown in bold.

As can be deduced from Table 7, the top five
constrained systems correspond to the five best-
performing systems overall (Table 6). Only four
unconstrained systems were submitted for Task
B. Differently from their Task A submission,
#NonDicevoSulSerio applied a cascaded approach
for this task, i.e. the first algorithm served an
ironic/non-ironic classification, followed by a sys-
tem distinguishing between ironic by clash and
other forms of irony. Lastly, a third classifier
distinguished between situational and other ver-
bal irony. To account for class imbalance in step
two, the team added 869 tweets of the situational
and other verbal irony categories. INAOE-UPV,
INGEOTEC-IIMAS and IITG also added tweets
to the original training corpus, but it is not entirely
clear how many were added and how these extra
tweets were annotated.

Similar to Task A, the unconstrained systems do
not seem to benefit from additional data, as they
do not outperform the constrained submissions for
the task.

team not ironic situat. other
ironic by clash irony irony

UCDCC 0.843 0.697 0.376 0.114
NTUA-SLP 0.742 0.648 0.460 0.133
THU NGN 0.704 0.608 0.433 0.233
NLPRL-
IITBHU

0.689 0.636 0.387 0.185

NIHRIO 0.763 0.607 0.317 0.087
Random
Decision-
Syntax Trees 0.742 0.569 0.346 0.085
ELiRF-UPV 0.740 0.298 0.347 0.000
WLV 0.789 0.578 0.294 0.000
#NonDicevo
SulSerio

0.683 0.533 0.315 0.121

INGEOTEC-
IIMAS

0.764 0.494 0.211 0.152

ai-ku 0.699 0.529 0.258 0.087
warnikchow 0.717 0.524 0.300 0.028
UWB 0.744 0.557 0.232 0.027
CJ 0.724 0.559 0.202 0.050
*UTH-SU 0.671 0.513 0.254 0.065
s1998 0.711 0.446 0.253 0.000
emotIDM 0.713 0.456 0.165 0.074
RM@IT 0.671 0.481 0.148 0.100
SSN MLRG1 0.704 0.499 0.105 0.027
Lancaster 0.729 0.523 0.000 0.000
Parallel Com-
puting Network
Res. Group

0.547 0.472 0.084 0.137

codersTeam 0.646 0.387 0.134 0.039
KLUEnicorn 0.423 0.384 0.200 0.186
DKE UM 0.582 0.299 0.143 0.168
IITG 0.641 0.319 0.095 0.056
Lovelace 0.577 0.306 0.159 0.060
*YNU-HPCC 0.700 0.176 0.075 0.091
LDR 0.632 0.255 0.051 0.000
ECNU 0.444 0.259 0.118 0.110
*NEUROSENT-
PDI

0.612 0.201 0.062 0.000

INAOE-UPV 0.748 0.000 0.111 0.000

Table 9: Results for Task B, reporting the F1 score for
the class labels. The highest scores in each column are
shown in bold.

A closer look at the best and worst-performing
systems for each subtask reveals that Task A
benefits from systems that exploit a variety of
handcrafted features, especially sentiment-based
(e.g. sentiment lexicon values, polarity contrast),
but also bags of words, semantic cluster features
and PoS-based features. Other promising fea-
tures for the task are word embeddings trained
on large Twitter corpora (e.g. 5M tweets). The
classifiers and algorithms used are (bidirectional)
LSTMs, Random Forest, Multilayer Perceptron,
and an optimised (i.e. using feature selection)
voting classifier combining Support Vector Ma-
chines with Logistic Regression. Neural network-
based systems exploiting word embeddings de-
rived from the training dataset or generated from
Wikipedia corpora perform less well for the task.
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Similarly, Task B seems to benefit from (ensem-
ble) neural-network architectures exploiting large
corpus-based word embeddings and sentiment fea-
tures. Oversampling and adjusting class weights
are used to overcome the class imbalance of labels
2 and 3 versus 1 and 0 and tend to improve the
classification performance. Ensemble classifiers
outperform multi-step approaches and combined
binary classifiers for this task.

Task B challenged the participants to distin-
guish between different types of irony. The class
distributions in the training and test corpus are nat-
ural (i.e. no additional data were added after the
annotation process) and imbalanced. For the eval-
uation of the task, F1 scores were macro-averaged;
on the one hand, this gives each label equal weight
in the evaluation, but on the other hand, it does not
show each class contribution to the average score.
Table 9 therefore presents the participating teams’
performance on each of the subtypes of irony in
Task B. As can be deduced from Table 9, all teams
performed best on the non ironic and ironic by
clash classes, while identifying situational irony
and other irony seems to be much more challeng-
ing. Although the scores for these two classes are
the lowest, we observe an important difference be-
tween situational and other verbal irony. This can
probably be explained by the heterogeneous na-
ture of the other category, which collects diverse
realisations of verbal irony. A careful and manual
annotation of this class, which is currently being
conducted, should provide more detailed insights
into this category of ironic tweets.

8 Conclusions

The systems that were submitted for both subtasks
represent a variety of neural-network-based ap-
proaches (i.e. CNNs, RNNs and (bi-)LSTMs) ex-
ploiting word- and character embeddings as well
as handcrafted features. Other popular classi-
fication algorithms include Support Vector Ma-
chines, Maximum Entropy, Random Forest, and
Naı̈ve Bayes. While most approaches were based
on one algorithm, some participants experimented
with ensemble learners (e.g. SVM + LR, CNN +
bi-LSTM, stacked LSTMs), implemented a vot-
ing system or built a cascaded architecture (for
Task B) that first distinguished ironic from non-
ironic tweets and subsequently differentiated be-
tween the fine-grained irony categories.

Among the most frequently used features are

lexical features (e.g. n-grams, punctuation and
hashtag counts, emoji presence) and sentiment-
or emotion- lexicon features (e.g. based on Sen-
ticNet (Cambria et al., 2016), VADER (Hutto
and Gilbert, 2014), aFinn (Nielsen, 2011)). Also
important but to a lesser extent were syntactic
(e.g. PoS-patterns) and semantic features, based
on word, character and emoji embeddings or se-
mantic clusters.

The best systems for Task A and Task B ob-
tained an F1 score of respectively 0.705 and 0.507
and clearly outperformed the baselines provided
for this task. When looking at the scores per class
label in Task B, we observe that high scores were
obtained for the non-ironic and ironic by clash
classes, and that other irony appears to be the most
challenging irony type. Among all submissions,
a wide variety of preprocessing tools, machine
learning libraries and lexicons were explored.

As the provided datasets were relatively small,
participants were allowed to include additional
training data for both subtasks. Nevertheless, most
submissions were constrained (i.e. only the pro-
vided training data were used): only nine uncon-
strained submissions were made for Task A, and
four for Task B. When comparing constrained to
unconstrained systems, it can be observed that
adding more training data does not necessarily
benefit the classification results. A possible ex-
planation for this is that most unconstrained sys-
tems added training data from related irony re-
search that were annotated differently (e.g. auto-
matically) than the distributed corpus, which pre-
sumably limited the beneficial effect of increasing
the training corpus size.

This paper provides some general insights into
the main methodologies and bottlenecks for binary
and multiclass irony classification. We observed
that, overall, systems performed much better on
Task A than Task B and the classification results
for the subtypes of irony indicate that ironic by
clash is most easily recognised (top F1= 0.697),
while other types of verbal irony and situational
irony are much harder (top F1 scores are 0.114 and
0.376, respectively).
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Tomáš Ptáček, Ivan Habernal, and Jun Hong. 2014.
Sarcasm detection on czech and english twitter.
In Proceedings of COLING 2014, the 25th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 213–223, Dublin, Ireland.
Dublin City University and ACL.

Harsh Rangwani, Devang Kulshreshtha, and Anil Ku-
mar Sing. 2018. NLPRL-IITBHU at SemEval-2018
Task 3: Combining Linguistic Features and Emoji
pre-trained CNN for Irony Detection in Tweets. In
Proceedings of the 12th International Workshop on
Semantic Evaluation, SemEval-2018, New Orleans,
LA, USA. ACL.

Antonio Reyes, Paolo Rosso, and Tony Veale. 2013.
A Multidimensional Approach for Detecting Irony
in Twitter. Language Resources and Evaluation,
47(1):239–268.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra De Silva, Nathan Gilbert, and Ruihong Huang.
2013. Sarcasm as Contrast between a Positive Sen-
timent and Negative Situation. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing (EMNLP’13), pages 704–714,
Seattle, Washington, USA. ACL.

Omid Rohanian, Shiva Taslimipoor, Richard Evans,
and Ruslan Mitkov. 2018. WLV at SemEval-2018
Task 3: Dissecting Tweets in Search of Irony. In
Proceedings of the 12th International Workshop on
Semantic Evaluation, SemEval-2018, New Orleans,
LA, USA. ACL.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. SemEval-2017 Task 4: Sentiment Analysis
in Twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518, Vancouver, Canada. ACL.

Sara Rosenthal, Alan Ritter, Preslav Nakov, and
Veselin Stoyanov. 2014. SemEval-2014 Task 9:
Sentiment Analysis in Twitter. In Proceedings of the

49



8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 73–80, Dublin, Ireland. ACL
and Dublin City University.

Cameron Shelley. 2001. The bicoherence theory of sit-
uational irony. Cognitive Science, 25(5):775–818.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
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