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1. Disease triangle 
The disease triangle consists of three major factors that are linked to disease dynamics: the 

host, the pathogen, and the environment. These three factors are connected to each other and 

their interactions determine the disease outcome (Wobeser, 2006b). The disease triangle model 

is commonly used to explain how variation in environmental factors, host susceptibility, and 

pathogen virulence lead to varying disease outcomes.  

Understanding the disease triangle, the complex interplay between host-pathogen-

environment is crucial for wildlife disease management and species conservation. For example, 

understanding how landscape changes can act as a selective pressure on host-pathogen 

dynamics; or how pathogens can induce adaptation in life-history traits, behaviour, resistance 

or tolerance and their consequent implications for host population dynamics. 

This thesis aims to study how environmental changes i.e. habitat fragmentation effects the 

microbial pressure on eggs and juveniles of blue and great tits and the impacts of pathogens on 

their reproductive performances and how they cope with egg microbial pressure (Fig 1). 

 
Figure 1: Representation of the disease triangle in this thesis. Host: great and blue tits; Pathogen: Salmonella 

and eggshell bacterial load and composition; Environment: Habitat fragmentation (fragment area). 
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2. Habitat fragmentation 

As a result of the increasing human population which consists of 7.4 billion world citizens, 

and is growing by 1.18% (or 83 million people) annually (United Nations, 2015), landscape 

modifications (urbanization, agricultural land-use) with the resulting habitat destruction and 

fragmentation are a major concern (Fischer and Lindenmayer, 2007). When focusing on forest-

ecosystems, a recent worldwide analysis revealed that 70% of forests are within one km of a 

forest edge (Haddad et al., 2015), which can have serious repercussions on the forest 

ecosystems (see below).  

Flanders for example, with a population density of 475 inhabitants/km² (ENRD, 2015), is 

highly fragmented due to the extensive urban sprawl which started by the end of the 19th 

century (Tempels et al., 2012). Between 1775 and 2000, 9.7-12.2% of the total area in Flanders 

was occupied by forests. Only 16% of the forests that already existed in 1775 were still present 

in 2000 (the “ancient” forests). Furthermore, only 14% of the “recent” forests 

(planted/originated after 1775) were in physical contact with the ancient forests (De 

Keersmaeker et al., 2015). Although this contact facilitated the colonization of ancient forest 

specialist into new forests, even after a century, qualitative differences between the ancient and 

adjacent recent forests could be observed (Bossuyt et al., 1999). All these factors have 

contributed to increased ‘forest fragmentation’, with an increased number of forest fragments 

as a result (De Keersmaeker et al., 2015).  

Wilcove et al. (1986) defines habitat fragmentation as “a process during which a large 

expanse of habitat is transformed into a number of smaller patches of smaller total area, isolated 

from each other by a matrix of habitats unlike the original”. This definition pinpoints four 

aspects of landscape alteration: 1) the increasing number of habitat remnants, 2) the increased 

isolation of these remnants, 3) the reduction of the patch size, 4) the reduction in the total 

amount of habitat (Rolstad, 1991; Fahrig, 2003). The primary impact of fragmentation should 

be through the loss of continuity, not habitat loss per se. However, these concepts are closely 

connected, habitat loss is an important consequence of habitat fragmentation (Fig 2) (Rolstad, 

1991; Andrén, 1997; Fahrig, 2017). Therefore, it is hard to separate the effects of habitat 

fragmentation from the effects of habitat loss. Eventhough, the impacts of hatbitat loss have 

been purposed to outweigh the impacts of habitat fragmentation per se, as such, care must be 

taken not to confound the consequences of either of these landscape modifications or their 
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combination (Haddad et al., 2015; Fahrig, 2017) which can have landscape management 

implications (Wilcox and Murphy, 1985; Saunders et al., 1991; TjØrve, 2010; Fahrig, 2017). 

 

 

  

 

 

 

 

 

 

 

 

Habitat fragmentation has become an important topic in conservation biology, but how this 

landscape alteration affects population dynamics and biodiversity is still under debate. In order 

to better understand the drivers changing the native fauna and flora, following characteristics 

should be considered: 1) the alterations in the microclimate and 2) isolation-status of the 

fragment, more specifically the time since isolation, the distance from other fragments and the 

connectivity between these fragments, 3) the fragment size and shape 4) and the surrounding 

landscape features (Saunders et al., 1991; Honnay et al., 1999; Tabarelli and Gascon, 2005; 

Haddad et al., 2015).  

Forests, or other areas comprising of dense vegetation, act as a buffer to various climatic 

conditions outside these areas (Chen et al., 1993; Ewers and Banks-Leite, 2013). Clearing and 

fragmenting these forests will affect the microclimate in several ways which will be most 

prominent at the borders of the fragments, the ‘edge-effects’ (Saunders et al., 1991; Ewers and 

Banks-Leite, 2013; Haddad et al., 2015). The changes in microclimate are characterized by 

following variables: 

Sunlight exposure, soil and air temperature: Due to an increased amount of solar radiation 

that is able to reach the ground surface in fragmented areas, the daytime temperature will be 

higher and the overnight temperature-loss will be faster and greater, resulting in a wider overall 

temperature-range in more fragmented areas (Chen et al., 1993; Davies-Colley et al., 2000; 

Figure 2: Habitat fragmentation versus habitat loss:  

a. habitat loss;  
b. habitat fragmentation (only possible if new forest would be planted);  
c. habitat loss and fragmentation 
 

a b 

c 



Introduction 
 

 

14 
 

Ewers and Banks-Leite, 2013). In the temperate zone, this effect is strongest at South-West 

facing forest-edges (Honnay et al., 2002).   

Wind-velocity and direction: The overall exposure to wind increases with perimeter-to-area 

ratio and can have direct and indirect effects on the forest fragments. Direct damage consists 

of wind pruning and wind throwing of trees, which is especially important when the forest has 

recently been fragmented due to increased wind-forces on inadequately adapted trees (Saunders 

et al., 1991). Indirect effects comprise the enhanced desiccation of forest-edges (Davies-Colley 

et al., 2000) and increased dispersal of plant-seeds, (agricultural) pollutant throughfall into the 

forest fragment edges (Saunders et al., 1991; Honnay et al., 2002; Wuyts et al., 2008). 

Precipitation and humidity: Due to altered evapotranspiration and precipitation, the 

humidity measured at the edge of fragments will be lower compared to measurements within 

the forests, with increased susceptibility to desiccation (Saunders et al., 1991; Chen et al., 

1993), making the fragments more prone to wild-fires (Cochrane and Laurance, 2002).To what 

distance these edge-effects can be measured within the forest fragments depend on different 

factors, such as the perimeter to area-ratio, the edge shape and orientation, the season, forest-

type and composition of the native vegetation and the maturity of the edge, whether or not the 

edge has been able to form a buffer against the surrounding environment (Laurance and 

Yensen, 1991; Chen et al., 1993; Young and Michell, 1994; Davies-Colley et al., 2000; Honnay 

et al. 2002; Wuyts et al., 2008; Ewers and Banks-Leite, 2013; Haddad et al., 2015). These edge 

effects can extent from a few meters up to a few hundred meters into the forest (Chen et al., 

1993; Young and Michell, 1994; Davies-Colley et al., 2000; Honnay et al., 2002; Ewers and 

Banks-Leite, 2013; Haddad et al., 2015).  

With respect to the effect of the type of forest, Wuyts et al. (2008) showed that compared to 

deciduous forests (oak (Quercus spp.), birch (Betula spp.), and their mixture), the throughfall 

of eutrophying and acidifying ions (NO3- and SO4²-) in coniferous forests (Pinus spp.) was 

larger for both the edge as for the interior of the forest, leading to increased soil acidification, 

eutrophication, nitrogen saturation, which can be related to lower biodiversity in coniferous 

forests (Gärtner and Reif, 2004).  

To account for these edge-effects, Laurance and Yensen (1991) proposed a ‘Core-Area 

model’, later re-examined by Didham and Ewers (2012). The model extracts the core-area from 

the total area in a forest, based on the calculation by the fragment shape index (SI) and the 

depth of edge influence (DEI). Thus, the Core-Area model enables accurately assessing the 



Introduction 
 

 

15 
 

impacts of edge effects e.g. when assessing the effect of forest fragmentation on species 

biodiversity. 

2.1 The effect of habitat fragmentation on bird populations and their 

health status 

Fragmentation can have immediate and long term effects on populations, which could lead 

to population declines and eventually extinctions (Wilcox and Murphy, 1985; Rolstad, 1991; 

Saunders et al., 1991; Fischer and Lindenmayer, 2007). The factors contributing to these 

declines can to a greater or lesser extent be correlated to the climatic and habitat 

alterations/disturbance outlined above and will more specifically be related to the following 

points:  

1) Changes in nest predation: Some studies describe a higher risk of nest predation (Nour et 

al., 1993; Hinsley et al., 1995a; Huhta et al., 2004; Borges and Marini, 2010) and brood 

parasitism (Borges and Marini, 2010) in fragmented areas. Nevertheless, this predation risk 

depends on the local predator community and the ones present in the surrounding landscape, 

and can be attributed to different predator species (Nour et al., 1993; Hinsley et al., 1995a; 

Huhta et al., 2004). However, some studies indicate the opposite, stating that nest predation 

decreases in fragmented areas. For example, a study in the United States showed higher nest 

predation in continuous forests compared to fragmented forests, since predator density in 

undisturbed forests was shown to be higher (Tewksbury et al., 1998).  

2) Changes in climatic conditions such as increased turbulence in edge-fragments can lead 

to breeding failure through wind throwing of nestlings and increasing the difficulty of landing 

on the nests by fledglings (Reville et al., 1990; Saunders et al., 1991).  

3) Reduced daily (between habitat-movements), or seasonal dispersal opportunities 

(Saunders et al., 1991; Fischer and Lindenmayer, 2007) and higher local recruitment in more 

isolated patches (Matthysen et al., 1995; Matthysen et al., 2001), which could lead to reduced 

pair success (Cooper and Walter, 2002) and loss of genetic diversity and eventually (although 

sometimes only seasonal (Van de Casteele et al., 2002)) inbreeding depression (Kempenaers 

et al., 1996; Dudash and Fenster, 2000; Gibbs et al., 2001).  

4) Lower abundance (Zanette et al., 2000) and genetic diversity (Van Dongen et al., 1998) 

of the arthropod prey items for insectivorous bird species. Van Dongen et al. (1998) 

demonstrated a lower genetic diversity in winter moths (Operophtera brumata), likely resulting 
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in a lower adult weight in more isolated fragments, compared to those inhabiting continuous 

forests. This lower genetic diversity could lower the fitness of the population potentially 

interfering with their ability to synchronize the larval hatching with the bursting of oak 

(Quercus robur) buds (Van Dongen et al., 1994; Matthysen et al., 1995; Van Dongen et al., 

1998). This mismatch could lower the abundance of arthropods which subsequently lowers the 

foraging efficiency of the insectivorous predator species, with a higher number of bird nests 

being abandoned due to scarce food availability (Matthysen et al., 1995; Zanette et al., 2000). 

5) The increased prevalence of pollutants and decreased availability of important micro-

elements could be related to fragmentation and/or forest type (Rolstad, 1991; Saunders et al., 

1991; Goosem, 2007; Wuyts et al., 2008). Depending on the surrounding environment, 

animals/plants living in fragments have been found to be exposed to higher levels and a higher 

variety of pollutants (e.g. heavy metals, pesticides used in agriculture) (Goosem, 2007), which 

have been demonstrated to be concentrated in the forest-edges (Weathers et al., 2001). Besides 

the pollutants, deficiencies in micro-elements have been observed. Deficiencies in Calcium 

(Ca²+) in areas with acidic soils, such as pine forests, or acidified areas due to acid rain (Wuyts 

et al., 2008) or due to the lower availability of snail shells (Graveland, 1996; Mänd et al., 2000a 

and b), can have major consequences on nestling and fledgling development and calcium 

deposition in the egg yolk and shell, with reduced chick growth and overall breeding success 

in tits (Graveland, 1996; Mänd et al., 2000a and b; Tilgar et al., 2005). 

6) Stochastic events can have huge impacts on small populations in fragmented areas, 

potentially accelerating the extinction events (Hinsley et al., 1995b; Van Dongen et al., 1998). 

7) Changes in infection pressure: Some studies describe an increasing risk of microbial 

infections by influencing species movement, dispersal, and resource availability in degrading 

habitats. Consequently, the stress levels of the animals increased and immunological functions 

starts to weaken, hence increasing the chances to get infected, resulting in advances for the 

disease and symbiont transmission (e.g. Eley et al., 1989; Ashford, 1996). A risk of infection 

can also be modified by changes in population densities and species richness, which are 

affected by habitat fragmentation. For example, a study in the Atlantic forest of Brazil revealed 

that bird diversity and richness was associated with larger forest fragments, and tick prevalence 

on birds was inversely correlated with bird diversity and richness. However, tick infections 

were not statistically different between forest patch sizes suggesting easier transmission of 

parasites occurring in small forest patches (Ogrzewalska et al., 2011). The other way around, 
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some studies indicate a higher disease prevalence in larger habitats. A study on rain forest birds 

in Australia describes a higher prevalence of haemosporidian infections in continuous forests 

compared to fragmented forests. Ecological traits including diet, foraging height, habitat 

specialization and distribution ranges were suggested to be associated with infections, which 

is in accordance with a study in Cameroon (Chasar et al., 2009; Laurance et al., 2013).  

It thus has been shown that habitat degradation can lead to changes in infection dynamics 

(host-pathogen interactions), both in a positive and negative way. However, this aspect is still 

underexplored and contradictory. Nevertheless, the understanding of these host-pathogen 

interactions along a fragmentation gradient, with an increased access to anthropogenic 

resources in more fragmented areas, is of great importance to unravel the population dynamics 

in changing environments (Daszak et al., 2000; McCallum and Dobson, 2002; Keesing et al., 

2006; Becker et al., 2015).  

 

3. Egg and Offspring-infection 

Microbial infection is considered to be one of the most important life threatening risks from 

fertilization until death. In oviparous animals, non-motile eggs are encounter with predation 

and parasites (Clutton-Brock, 1991), including microbes, with bacteria  being the most diverse 

group (Mlot, 2004). The egg-content and offspring can become infected through different 

ways:  

1) From parents: 

1a) True vertical transmission occurs when the bacteria can infect the reproductive tract of 

the birds and subsequently the eggs during egg-formation (Keller et al., 1995; Wigley et al., 

2005; Wobeser, 2006c; Hafez, 2013). 

1b) Pseudo-vertical transmission can be categorized as a horizontal infection, although since 

the infection occurs within a short time-frame after oviposition (e.g. trans-shell infection) 

(Messens et al., 2005; Wobeser, 2006c; Hafez, 2013), the transmission can be mistakenly 

classified as a vertical transmission. 
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2) From environment or other animals: 

Horizontal transmission also occurs after oviposition or hatching through contamination of 

the eggs or offspring from other animals (e.g. parents, nest visitors) or from the (nest) 

environment (Messens et al., 2005; Wobeser, 2006c; Hafez, 2013).  

As such, both the reproductive tract (Keller et al., 1995; Wigley et al., 2005; Gantois et al., 

2009), nest environment (e.g. nest lining material, faeces, feathers, skin, nest visitors, airborne-

bacteria) which can be influenced by life-history traits and habitat (e.g. Cook et al., 2003 and 

2005a; Mennerat et al., 2009a and 2009b; Goodenough and Stallwood, 2010; Martínez-García 

et al., 2016), and climatic conditions (e.g. Berrang et al., 1999; Cook et al., 2003; Beissinger et 

al., 2005; Wang et al., 2011; Walls et al., 2012) pose a risk of egg and nestling 

contamination/infection.  

Shortly after laying, the eggshell is highly susceptible to pathogen penetration (Miyamoto 

et al., 1998; Gantois et al., 2009; Cox et al., 2012). The temperature difference between the egg 

and the environment induces a contraction of the egg-content (due to cooling), which creates a 

vacuum and negative pressure within the egg and enhances the entry of bacteria present upon 

the shell into the eggshell and membranes (Miyamoto et al., 1998; Berrang et al., 1999; Cook 

et al., 2003; Beissinger et al., 2005; Messens et al., 2005). Moist environments increase the 

potential of bacteria to enter the egg through the provision of a watery transport vehicle for the 

bacteria (Berrang et al., 1999; Cook et al., 2003; Beissinger et al., 2005; Messens et al., 2005; 

Cox et al., 2012). In this perspective, the eggshell bacterial load as well as the bacterial 

composition have been positively correlated with trans-shell infections and decreased hatching 

success (Berrang et al., 1999; Cook et al., 2003 and 2005a; Shawkey et al., 2009). Although 

not all studies have found a correlation between the bacterial load and the hatching success 

(e.g. Peralta-Sanchez et al., 2010; Ruiz-de-Castañeda et al., 2011). 

Egg infection by opportunistic or pathogenic bacteria can greatly reduce the reproductive 

success of birds through e.g. embryonic death resulting in hatching failure (Pinowski et al., 

1994; Stewart and Rambo, 2000; Cook et al., 2003 and 2005a and 2005b; Peralta-Sánchez et 

al., 2012 and 2014; d’Alba et al., 2016), or affecting the condition or morphology of the young 

(Mennerat et al., 2009a and 2009b; González-Braojos et al., 2012; Møller et al., 2013; Jacob et 

al., 2015). In order to increase the reproductive success, birds use different methods to decrease 

the bacterial load on the eggshells and increase the antibacterial capacity of the eggs to protect 

their offspring, which will be discussed below. 
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3.1. Resisting the egg and offspring infection: egg-related factors  

To minimize embryonic contamination, the composition of the egg (eggshell and 

membranes, albumen and egg yolk) creates a natural physical and chemical barrier against 

bacterial infection (Sparks, 1994; Berrang et al., 1999; D’Alba and Shawkey, 2015; D’Alba et 

al., 2014, 2016 and 2017).  

3.1.1. Eggshell and shell membranes  

 The eggshell and shell membranes consist of different layers (Fig 3) (from inner to 

outermost): Shell membranes (inner and outer shell membrane), the true egg shell (mammillary 

cones, palisade zone, vertical crystal layer) and the cuticle layer which spans and covers the 

eggshell pores (Hincke et al., 2012; D’Alba et al., 2014 and 2017). Besides the physical barrier 

against microbial invasion, some layers additionally have chemical or structural antimicrobial 

effects (Board and Fuller, 1974; Wellman-Labadie et al., 2008; D’Alba and Shawkey, 2015; 

D’Alba et al., 2014 and 2017). 

 
Figure 3: Egg compositions with immunological antibacterial properties indicated for the 

albumen and egg yolk (Adapted from Hinkce et al., 2012)  

 

Many proteins have been identified in the eggshell and membranes, some of which are 

eggshell/membrane specific (e.g. ovocalyxins and ovocleidins (Mann et al., 2006; Gautron et 

al., 2007; Mann and Mann, 2011)), others are abundant in other parts of the egg as well, such 
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as the egg albumen (e.g. lysosyme, ovotransferrin) (Valenti et al., 1982; Hincke et al., 2000; 

Gautron et al., 2001; Ahlborn et al., 2006; Ahlborn and Sheldon, 2006; Mann, 2007; Wellman-

Labadie et al., 2008; D’Alba and Shawkey, 2015). Although the function of most proteins is 

still unknown, some of these proteins have an antibacterial function, e.g. lysozyme, 

ovotransferrin, ovocalyxin (Gautron et al., 2007; Wellman-Labadie et al., 2008; D’Alba et al., 

2016). Besides the presence of antibacterial-proteins in the cuticle and the physical closure of 

the egg-pores, some additional properties can be attributed to the egg cuticle. Depending on 

the nest-ecology of the bird species, nanospheres, present in the cuticle of some bird species, 

prevent the attachment of bacteria on the eggshell surface (D’Alba et al., 2014, 2016 and 2017; 

D’Alba and Shawkey, 2015). Some cuticles are hydrophobic and prevent flooding of the egg 

and/or protect the eggs against solar radiation (D’Alba et al., 2014, 2016 and 2017; D’Alba and 

Shawkey, 2015). Additionally, in some bird species such as great and blue tits, eggshell cuticle 

contains pigments (proto-porphyrin and/or biliverdin) (Higham and Gosler, 2006; Martínez-de 

la Puenta et al., 2007) which have been associated with reduced water loss and increased 

eggshell thickness (Higham and Gosler, 2006). 

 

3.1.2. Albumen and egg yolk 
The pH of the albumen plays an important role in the protection of the embryo. After 

oviposition, the albumen pH changes in a couple of days from pH 7.6 to pH 9, creating an 

alkaline environment which is not well supported by many bacteria (Board and Fuller, 1974; 

Reijrink et al., 2008). Furthermore, the female birds can allocate antibacterial proteins and 

immune factors, such as immunoglobulins (Ig) to the egg albumen and egg yolk in order to 

protect her offspring (D’Alba et al., 2010a).  

3.1.2.1 Antimicrobial proteins 

Antimicrobial proteins are present in the albumen and can be classified in the ones: 

1) chelating vitamins or minerals, making these substances unavailable for microbial 

growth:  

- the glycoprotein ‘avidin’ binds to biotin, an essential growth factor (vitamin-B) for 

many bacteria, making it unavailable for these bacteria (Board and Fuller, 1974; Nau et 

al., 2007; D’Alba and Shawkey, 2015). 

- ‘Ovotransferrin’, produced in the oviduct, acts as a chelator of ferric ions, making these 

ions unavailable for bacterial growth. Furthermore, it can act as a bactericidal protein 
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through the direct binding to and damaging of bacterial membranes of gram-negative 

and gram-positive bacteria (Board and Fuller, 1974; Ibrahim et al., 1998 and 2000; 

Superti et al., 2007; D’Alba and Shawkey, 2015). 

2) degrading microbial components: 

- ovotransferrin (see above). 

- Lysozyme (muramidase) is a hydrolase which has bactericidal capacities by 

hydrolyzing the linkage between N-acetylmuramic acid and N-acetylglucosamine, 

present in the peptidoglycan cell wall of, mostly gram-positive, bacteria (Board and 

Fuller, 1974; Lesnierowski and Kijowski, 2007; D’Alba and Shawkey, 2015; 

Javůrková et al., 2015). 

3) inhibiting bacterial proteases, e.g. ovostatin, ovomucoid (D’Alba and Shawkey, 2015)  

Depending on different factors (e.g. laying order, timing in the season, sex of the offspring), 

the bird species, and potentially the infection status of the female bird (although in wild living 

birds more research is needed), female birds can change the allocation of antimicrobial proteins 

to the eggs (Saino et al., 2002; Shawkey et al., 2008; D’Alba et al., 2010a; Bonisoli-Alquati et 

al., 2010; Bedrani et al., 2013; Horrocks et al., 2014).  

3.1.2.1. Immunogolobulins 

Besides the allocation of antimicrobial proteins, immunoglobulins (Ig) are transferred from 

the mother to the egg and offspring (Hamal et al., 2006; King et al., 2010). Females can transfer 

the IgY antibodies to the egg yolk, and IgM and IgA to the egg albumen, although the latter 

two can also be found in lower quantities in the egg yolk (Hamal et al., 2006; Staszewski et al., 

2007; King et al., 2010). The detectability and half-life of immunoglobulins and the production 

of endogenous antibodies by the offspring varies between species (King et al., 2010). King et 

al. (2010) observed a clear difference between precocial chickens and altricial house sparrow 

(Passer domesticus) nestlings, with altricial youngs achieving immunological independence 

earlier than precocial offspring.  

As was observed for the antimicrobial proteins, the investment of the mother bird to transfer 

immunoglobulins to the offspring depends on different factors. A positive correlation has been 

found between the environmental infection pressure of a specific pathogen and the Ig-titre in 

the plasma of the female bird (Gasparini et al., 2001 and 2002; Lindström et al., 2004). These 

birds subsequently confer the passive immunity and protection to their eggs and offspring, who 

can benefit from this passive maternal immunity when encountering the same infectious agent 
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as their mother (Buechler et al., 2002; Gasparini et al., 2001 and 2002; Grindstaff, 2008). 

Besides the pathogen pressure, also the perceived predation risk has been demonstrated to alter 

the transfer of immunoglobulins to the eggs, with more Ig’s being allocated to the eggs when 

nesting in habitats with continuous predation pressure (Morosinotto et al., 2013). However, 

Hargitai et al. (2006) found a negative correlation between stress and immunoglobulin-transfer 

to the eggs. Furthermore, not all the eggs receive the same amount of immunoglobulins. The 

females body condition plays a role in the transfer of immunoglobulins to the eggs and 

offspring with more Ig’s being transferred when the mother bird had a better body condition 

(Hargitai et al., 2006). Additionally, the laying order can also affect the Ig concentration in the 

egg, although contrasting results are available. Higher Ig concentrations have been observed 

when the egg was laid later in the clutch (Hargitai et al., 2006), but also when the egg was laid 

earlier in the clutch (Blount et al., 2002). 

 

3.2. Resisting the egg and offspring infection: parental-related factors 

3.2.1. Incubation 

Incubation of the eggs has been shown to affect the bacterial community and abundance on 

avian eggshells, which can subsequently limit the possibility of trans-shell infections (Cook et 

al., 2003, 2005a and 2005b; Shawkey et al., 2009; D’Alba et al., 2010b; Peralta-Sánchez et al., 

2012; Brandl et al., 2014; Giraudeau et al., 2014; Grizard et al., 2014; Lee et al., 2014). In this 

perspective, early incubation has been suggested as a mechanism of the parental birds to 

increase the egg-viability of the early laid eggs, despite the increased possibility of hatching 

asynchrony (Cook et al., 2003, 2005a and 2005b). Although contradictive reports have been 

published regarding the bacterial load on eggshells (‘lower loads on incubated eggs’: Cook et 

al. (2005a), Shawkey et al. (2009), D’Alba et al., 2010b; ‘no significant difference in bacterial 

load’: Wang et al. (2011), Brandl et al. (2014); ‘higher bacterial loads’: Peralta-Sánchez et al. 

(2012), Giraudeau et al. (2014), Grizard et al. (2014), Lee et al. (2014)), most studies that have 

looked into the bacterial assemblage did find a reduction of pathogenic bacteria (harmful gram-

negative and/or hemolytic bacteria) compared to the commensal, non-harmful bacteria on 

incubated eggs (Cook et al., 2005a; Shawkey et al., 2009; Brandl et al., 2014; Grizard et al., 

2014; Lee et al., 2014). How incubation alters the microbial load and diversity is still a matter 
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of debate, although the reduction of humidity on incubated eggs has been proposed to limit 

bacterial growth (D’Alba et al., 2010b).  

 

3.2.2. Uropygial gland secretion 

 The uropygial gland secretion has been shown to harbor antimicrobial properties (Soler et 

al., 2008, 2012 and 2014; Ruiz-Rodríguez et al., 2012 and 2013; Møller et al., 2010). Especially 

during the breeding season the characteristics of this secretion has been shown to change in 

hoopoes (Upupa epops) (Soler et al., 2008). Enterococcus spp., E. faecalis in particular, are 

symbiotic bacteria within the uropygial gland, especially during the breeding season, producing 

antimicrobial substances such as bacteriocins, competitively excluding a broad spectrum of 

pathogenic bacteria (Soler et al., 2008; Ruiz-Rodríguez et al., 2012 and 2013). Through the 

combinatory effect of the increase in abundance and diversity of feather mites and chewing 

lice (Møller et al., 2010; Soler et al., 2012) and the production of antimicrobial substances, the 

uropygial gland secretion has: 

- been associated with a growth inhibition of feather degrading bacteria, e.g. Bacillus 

licheniformes (Shawkey et al., 2003; Reneerkens et al., 2008; Soler et al., 2008; Ruiz-

Rodríguez et al., 2009), 

- been shown to lower the egg-infection and increase the hatching success when 

smeared onto the eggs through preening (Soler et al., 2008, 2012 and 2014; Møller et 

al., 2010).  

 

3.2.3. Nest building behavior 

 Differences in nest building behaviour in avian species have been suggested to protect the 

eggs and offspring against pathogens such as: 

- nest selection site: hatching success has been shown to differ between open versus cavity 

nests, with lower hatchability in open nests (Godard et al., 2007) and depends on the 

position of the nests within the environment (e.g. presence of plants with antibacterial 

properties) (Møller et al., 2013). 
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- nest sanitation (Singleton and Harper, 1998). 

- selection of nesting materials (Clark and Mason, 1985 and 1988; Gwinner and Berner, 

2005; Mennerat et al., 2009a and 2009b; Peralta-Sánchez et al., 2010, 2011, 2012 and 

2014; Ruiz-Castellano et al., 2016).  

Nevertheless, most research in this area has been performed on nest lining materials in 

different bird species. Some avian species which often reuse nests (such as cavity nesting birds) 

are potentially more exposed to bacteria and ectoparasites (Godard et al., 2007). These birds 

have learned to use environmental aromatic plants with volatile antimicrobial compounds (e.g. 

Achillea millefolia, Mentha suaveolens, Heracleum sphondylium, Salix alba, Lavandula 

stoechas, and Helichrysum italicum) to reduce the bacterial load on the eggs (Ruiz-Castellano 

et al., 2016) and nestlings, with a positive effect on the nestling growth and condition (Clark 

and Mason, 1988; Gwinner and Berger, 2005; Mennerat et al., 2009a and 2009b). Also feathers 

have, besides the thermoregulatory function, antimicrobial properties, reducing the bacterial 

load and affecting the bacterial composition in the nests and on the eggshells (Peralta-Sánchez 

et al., 2010, 2011, 2012, 2014; Ruiz-Castellano et al., 2016). Besides the number of feathers, 

also the colour of the feather seems to play a role in the bacterial composition and load on the 

eggs (Peralta-Sánchez et al., 2010 and 2014), with white feathers having a higher antimicrobial 

activity (Peralta-Sánchez et al., 2014) and nests lined with white feathers having a higher 

hatching success (Peralta-Sánchez et al., 2011).  

In the following parts, I will focus on how opportunistic and avian pathogenic bacteria (e.g. 

Salmonella enterica subspecies enterica serotype Typhimurium) can infect the avian host and 

what defense mechanisms birds are using in the battle agains bacterial infections. Depending 

on host characteristics, the virulence of the bacterium and environmental factors (Wobeser, 

2006b; Vander Wal et al., 2014), pathogen infection can be the cause of clinical or subclinical 

disease in the host. Far too often only obvious clinical disease is reported, although subclinical 

disease could decrease avian fitness and/or affect the reproductive success (e.g. through 

infection of the reproductive organs, increased hatching failure, retarded nestling and fledgling 

growth, reduced offspring survival) (Faddoul and Fellows, 1965; Cook et al., 2005a; Wobeser, 

2006a; Peralta-Sánchez et al., 2012) and can play an important role in population dynamics 

(Wobeser, 2006b). 
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3.3. Pathogen: Salmonella Typhimurium in passerines 
Salmonella is a genus of rod-shaped gram-negative bacteria, which belongs to the family of 

the Enterobacteriaceae. The genus Salmonella comprises three species, Salmonella bongori, 

Salmonella subterranea and Salmonella enterica.  The latter can be subdivided into six 

subspecies: namely, Salmonella enterica subspecies enterica (I), subspecies salamae (II), 

subspecies arizonae (IIIa), subspecies diarizonae (IIIb), subspecies houtenae (IV), subspecies 

indica (VI) (Heyndrickx et al., 2005; Evangelopoulou et al., 2013). The genus Salmonella can 

be further classified into serotypes, according to flagella (H), somatic (O) and capsular (Vi) 

antigens, and phage types, according to their susceptibility to specific phages (Heyndrickx et 

al., 2005; Baggesen et al., 2010).  

Salmonella enterica subspecies enterica serotype Typhimurium (Salmonella Typhimurium) 

has the potential to cause disease outbreaks in endothermic animals, e.g. wild living passerines 

and humans (Alley et al., 2002; Refsum et al., 2002; Hughes et al., 2008; Pennycott et al., 2010; 

Lawson et al., 2014). The transmission mainly occurs through the faecal-oral route and can 

easily be spread through pathogen-accumulation on bird feeders (Brittingham and Temple, 

1988; Refsum et al., 2003; Krawiec et al., 2015). This accumulation is possible thanks to the 

well-developed survival and adaptation strategies of the bacterium (Spector and Kenyon, 

2012), which can survive in the environment (e.g. in soil and faeces) outside the host for months 

(Davies and Breslin, 2003). Nevertheless, vertical transmission of Salmonella enterica to the 

eggs and offspring has been observed in chickens (Keller et al., 1995; Wigley et al., 2005).  

Depending on the host-adaptivity and infection dose of Salmonella, on the characteristics of 

the host species and on environmental conditions, the pathogenesis and outcome of a 

Salmonella infection will be different. After oral ingestion, Salmonella Typhimurium can 

colonize the intestinal tract and penetrate into the cytoplasm of epithelial cells lining the 

intestinal tract. Since Salmonella Typhimurium is a facultative intracellular bacterium, it has 

the ability to survive within the host cells, even within macrophages for the more host-adapted 

strains (Pasmans et al., 2003; Eng et al., 2015). These host adapted strains are characterized by 

their ability to cause systemic infections through the systemic spread within macrophages and 

can as such reach various internal organs (Rabsch et al., 2002; Pasmans et al., 2003).  

Infections with Salmonella Typhimurium in birds can have different outcomes going from 

an asymptomatic intestinal carrier stage over a chronic localized infection (with persistence of 

Salmonella in the granulomatous lesions within the different organs) that may or may not be 

clinically apparent to an acute fatal septicemia with or without enteritis (Alley et al., 2002; 
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Pennycott et al., 2002; Connolly et al., 2006; Hughes et al., 2008; Verbrugghe et al., 2012 and 

2016). In Passeriformes, acute death is the most observed scenario and is associated with 

following pathological lesions: hepatosplenomegaly, presence of necrotic lesions in the 

oesophagus and/or crop, liver, spleen and brain (Alley et al., 2002; Refsum et al., 2003; 

Giovannini et al., 2013). Almost all Salmonella outbreaks in wild birds occur during stress 

periods (Alley et al., 2002; Refsum et al., 2002; Pennycott et al., 2006; Lawson et al., 2010) 

with some phage types (DT)40, DT56(v) and DT160 accounting for most of the outbreaks in 

passerines in Britain (Pennycott et al., 2006; Lawson et al., 2010 and 2014). Most studies on 

Salmonella Typhimurium in wild birds have focused on the outbreak scenarios (e.g. Alley et 

al., 2002; Refsum et al., 2003; Giovannini et al., 2013; Lawson et al., 2010), and only few on 

the prevalence of Salmonella in wild living birds (Pasmans et al., 2004; Hamer et al., 2012; 

Haesendonck et al., 2016; Rouffaer et al., 2016).  

 

4. Study system 
In this thesis, I investigated the relationship between habitat fragmentation, microbial 

pressure (total eggshell bacterial load and Salmonella presence) on the eggs, and the health and 

reproductive parameters of great and blue tits. In the following parts, I will focus on the host 

species (great and blue tits), the influence of fragmentation on microbial pressure and health 

parameters in these animals, and the study site that I used to investigate these parameters.  

4.1. Host species: Great and blue tits 

Great (Parus major) and blue tits (Cyanistes caeruleus) belong to the order of the 

Passeriformes, family Paridae (IUCN, 2016 and 2017). Together with other passerines (e.g. 

blackbirds (Turdus merula), robins (Erithacus rubecula)), birds of the order Accipitriformes 

(e.g. sparrowhawks (Accipiter nisus)), Columbiformes (e.g. wood pigeons (Columba 

palumbus), Cuculiformes (e.g. common cuckoo (Cuculus canorus)), Strigiformes (e.g. tawny 

owl (Strix aluco), they inhabit (mixed) deciduous forests, forest edges and can (occasionally 

for the blue tit) be found in coniferous forests throughout Europe (Fig. 4) (Cramp et al., 1993; 

IUCN, 2016 and 2017). Furthermore, they can be found in parks and gardens of (sub)urban 

areas, if sufficient breeding places are available. They are hole-breeders and usually nest in 

tree-cavities (Cramp et al., 1993; Newton, 1994; IUCN, 2016 and 2017). The female tit will 

build the nest with (plant) material found in the environment (e.g. moss, grasses, bark strips), 
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animal hair and feathers (IUCN, 2016 and 2017). They are mainly insectivorous, but also feed 

on spiders, seeds and fruit (Torok, 1985; IUCN, 2016 and 2017).  

The clutch size of blue and great tit in Europe ranges from 7-13 and 6-11, respectively 

(Gosler et al. 2013). Their dispersal ranges from 0.66 to 4.4 km. Youngs that fledged early in 

the breeding season are more likely to recruit into the breeding population than young that 

fledged late (Verboven and Visser, 1998). Local recruitment is higher among male than female 

birds, and the difference is more pronounced in blue tits. In addition, local recruitment is higher 

in larger plots and in plots with a higher population density (Matthysen et al., 2001). 

Great and blue tits are resident birds that can reach high densities (several pairs per hectare) 

in forest fragments and readily breed into nest boxes. As such, they are easy to follow-up and 

they constitute a good model for investigating the reproductive success and health status of 

forest birds along different forest fragments. 

 

 

 

4.2. The effect of habitat fragmentation on Great and blue tits 

In general, studies focusing on the effects of habitat fragmentation on tit populations (health 

status, reproductive parameters, host-pathogen interactions) are very limited, highlighting the 

need for thorough research about this topic. I here describe the few studies concerning these 

themes. 
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4.2.1. Effect of habitat fragmentation on health and reproductive 

paramaters of great and blue tits 

Habitat fragmentation has been linked to differences in breeding onset of great and blue tits 

(Matthysen et al., 1995; Hinsley et al., 1999). These differences could depend on the fragment 

size, or on the isolation status of the fragment and have been shown to advance (Matthysen et 

al., 1995), or delay (Hinsley et al., 1999) the breeding onset, compared to tits breeding in 

continuous forests. This difference in timing can be related to their attempt to synchronize their 

breeding with the caterpillar availability (Lambrechts et al., 1997). If mismatch does occur, 

nestlings can be affected, resulting in decreased nestling body mass and condition and 

eventually decreased breeding success (Lambrechts et al., 1997; Hinsley et al., 1999). In 

addition, tits that have fledged later in the season will potentially be exposed to higher 

competition with tits that have fledged earlier, decreasing their survival chances and eventually 

their chance of successful breeding (Verhulst et al., 1995; Hinsley et al., 1999).  

 

4.2.2. Effect of habitat fragmentation on bacterial pressure of great and 

blue tits 

Several studies have surveyed the prevalence of bacterial infections in great and blue tits, 

including Salmonella spp. (e.g. Vikøren et al., 2010; Beckman et al., 2014; Krawick et al., 

2015). However, most of these studies focused on death birds or apparently healthy adult birds, 

but not the egg or juvenile infection pressure. A study on microbiota of great and blue tit nests 

revealed that Staphylococcus hyicus and Enterobacter cloacae are the most abuntdant 

pathogenic bacteria in great and blue tit nests (Goodenough and Stalwood, 2010). These 

bacteria have been associated with infections in poultry and black-bellied whistling ducks 

(Dendrocygna autumnalis) (Aguirre et al., 1992; Silvanose et al., 2001). 

Although literature in great and blue tits is limited, there are some indications that habitat 

fragmentation can have an influence on the bacterial pressure of great and blue tits.  

- Brood parasitism: It has been shown that there is a higher risk of nest predation (Nour et al., 

1993; Hinsley et al., 1995a; Huhta et al., 2004; Borges and Marini, 2010) and brood parasitism 

(Borges and Marini, 2010) in fragmented areas. Besides, brood parasitism has been associated 

with increased bacterial contamination of host eggs (Soler et al., 2011). Furthermore, 

Barrientos et al. (2015) studied the occurrence of facultative interspecific brood parasitism in 
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great and blue tit by monitoring 38 forest plots over 3 years. They found a prevalence of 3.0%, 

which reached a prevalence of 7.2% in small woodlands. As such, fragmentation and changes 

in brood parasitism can lead to altered host-pathogen interactions in great and blue tits. 

-Feeder visiting: In a recent paper, it has been shown that the north American great tit (Black-

capped Chickadees) in highly fragmented forests visits feeders more often (Latimer et al., 

2018). Besides, it is already documented that pathogen acquisition and transmission are 

associated with feeder visiting (Adelman et al. 2015). As such, fragmentation and changes in 

feeder visiting, can lead to altered host-pathogen interactions in great and blue tits.  

 

4.3. Study Site  

Studies of blue and great tits were performed in 53 study plots of the TREEWEB research 

platform (Fig 5; Table 1). All study plots (30 x 30 m) were established in 2014 to study effects 

of forest fragmentation and tree species diversity on food web dynamics (De Groote et al., 

2017). The study plots have a similar land-use history (continuously forested since at least 

1850) and developmental stage (mature stands; >60 years). All plots are located on a similar 

relatively dry, sandy loam soil located outside river valleys with the soil parent material varying 

from light sandloam to sandloam in the south of Ghent (coordinates: 50°57'19"N, 3°43'31"E), 

northern Belgium. The 15 km × 30 km study window has a total forest cover of c. 3000 ha 

(forest index 6.8 %), covering both larger forest patches as well as small forest patches. Forest 

fragments varied in size (range: 1.3 to 90.4 ha) and tree layer (3 focal species; Pedunculate oak 

(Quercus robur), Red oak (Q. rubra) and Beech (Fagus sylvatica) in monocultures, 2 species 

mixtures or 3 species mixtures). To avoid edge effects of adjacent, different stands, we aimed 

for a buffer zone of minimum 10 m wide around the plots. 

In my studies, I focused on the effect of fragment area as a marker for fragmentation, but 

not on habitat quality effects via tree composition, plant diversity or insect abundance.  
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Figure 5: Map showing the location of all the study plots. The study of great and blue tit nests was performed 

in 53 study plots, established in 19 forest fragments. Different colours and shapes represent different tree species 

composition. 

 
Table 1: Summary of sampled great (PM) and blue (PC) tit eggs in the different study plots 
 

Forest  Plot Latitude Longitude Surface area (ha) tree diversity (spp.) Nestbox spp. 
Lemberge 1 50.990342 3.7732 16.68 2 1.2 PM 

      1.3 PC 

      1.4 PM 
Nerenbos 
(Merelbeke) 2 50.961391 3.73474 41.74 2 2.1 PC 

      2.2 PC 

      2.3 PM 

      2.4 PM 

 3 50.960503 3.73237 41.74 2 3.2 PM 

      3.4 PC 
Heilig 
Geestgoed 
(Merelbeke) 4 50.948551 3.728218 27.49 2 4.1 PM 

      4.3 PM 

 5 50.948747 3.728979 27.49 2 5.1 PM 

      5.2 PM 
Makegembos 
(Merelbeke) 7 50.951324 3.715364 83.77 2 7.1 PM 
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Forest  Plot Latitude Longitude Surface area (ha) tree diversity (spp.) Nestbox spp. 

      7.2 PC 

      7.3 PM 

 8 50.950905 3.716254 83.77 1 8.2 PC 

 9 50.949559 3.716739 83.77 1 9.1 PC 

      9.3 PM 

      9.4 PM 

 10 50.94883 3.718443 83.77 1 10.3 PM 
Harentbeekbos 
(Merelbeke) 12 50.9464 3.717465 83.77 1 12.1 PC 

      12.3 PM 

      12.4 PM 

 13 50.946545 3.715697 83.77 1 13.2 PC 

      13.3 PC* 

 16 50.947438 3.714835 83.77 1 16.1 PM 

      16.2 PC 

      16.4 PM 

 17 50.944474 3.718904 83.77 2 17.1 PC 

      17.2 PM 

      17.3 PC 

 18 50.943761 3.712352 83.77 1 18.1 PM 

      18.2 PM 

      18.3 PM 

      18.4 PM 

 19 50.9449 3.713682 83.77 1 19.3 PM 

      19.4 PC 
Wannegatstraat 
(Gavere) 20 50.937592 3.707042 3.03 1 20.1 PM 

      20.2 PC 

      20.3 PC 
Bueren (Melle) 21 50.9886 3.82614 6.19 2 21.1 PC 

      21.2 PM 
Aalmoezenijbos 
(Oosterzele) 22 50.976081 3.798739 23.57 2 22.1 PM 

      22.2 PM 

      22.4 PC 

 23 50.974748 3.797965 23.57 2 23.1 PM 

      23.3 PM 

 24 50.973663 3.802786 23.57 1 24.1 PM 

      24.2 PM 

      24.4 PM 
Spiegeldries 
bos 
(Oosterzele) 25 50.916874 3.760309 11.37 2 25.1 PM 

      25.2 PM 

      25.3 PM 
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Forest  Plot Latitude Longitude Surface area (ha) tree diversity (spp.) Nestbox spp. 
Zottegem 26 50.901508 3.819877 3.53 3 26.2 PM 

      26.3 PM 

      26.4 PM 
St-Lievens-
Houtem 27 50.908521 3.865333 1.31 2 27.4 PM 

 28 50.911148 3.871161 1.59 2 28.2 PC 

      28.3 PC 

      28.4 PM 

 29 50.913516 3.872813 5.63 1 29.2 PC 

      29.4 PM 

 30 50.91155 3.901021 12.04 1 30.1 PC 

      30.3 PM 

      30.4 PC 

 31 50.973112 3.946005 9.21 1 31.3 PM 
Nonnenbos 
(Serskamp) 32 50.985475 3.949129 32.69 2 32.2 PM 
Serskamp 36 50.976824 3.926348 58.9 2 36.2 PC 

      36.3 PM 

      36.4 PC 

 37 50.976977 3.9288 58.9 2 37.3 PM 

      37.4 PM 
Oud smetlede 38 50.978195 3.906263 47.77 1 38.1 PM 

      38.3 PM 

      38.4 PM 

 39 50.976306 3.907334 47.77 1 39.4 PM 

 40 50.975601 3.906863 47.77 2 40.1 PM 

 41 50.976082 3.908319 47.77 3 41.3 PM 

 43 50.970567 3.907196 47.77 1 43.1 PC 

      43.2 PM 

      43.3 PM 

 44 50.971339 3.907868 47.77 1 44.1 PM 

      44.3 PM 

 45 50.982 3.914797 58.9 2 45.2 PM* 
Hospicebossen 
(Nazareth) 46 50.99087 3.894436 18.73 1 46.3 PC 
  47 50.98917 3.897568 18.73 2 47.1 PM 

      47.2 PM 

 48 50.988468 3.89644 18.73 1 48.1 PC 

      48.2 PM 

      48.4 PM 
Oosterzele 49 50.962551 3.838403 30.65 1 49.1 PM 

      49.3 PM 

      49.4 PC 

 50 50.96349 3.842156 30.65 3 50.1 PC 
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Forest  Plot Latitude Longitude Surface area (ha) tree diversity (spp.) Nestbox spp. 

      50.2 PM 

      50.3 PC 

      50.4 PM 

 51 50.964019 3.840559 30.65 1 51.1 PM 

      51.2 PC 

      51.4 PC 
Ooidonk 
(Deinze) 52 50.996011 3.588524 46.16 1 52.2 PM 

 53 50.997431 3.585583 46.16 3 53.1 PC 

      53.4 PM 
An asterisk (*) indicates a nest where brood parasitism was observed.  

 

4.4 Sample collection 
During autumn 2014, 212 standard nest boxes for blue and great tits (dimensions 23 x 9 x 

12 cm, entrance 32 mm) were installed at a height of 1.5 m, at each corner of a plot, of which 

3 broke during the experiment. During the breeding season of 2015 (April-June 2015), all nest 

boxes were checked at least twice a week to determine the total number of eggs produced 

(clutch size) and the total number of nestlings and fledglings. 

To avoid intra-clutch variation, the fifth egg per clutch of great and blue tits was collected 

using sterile gloves, stored in a sterile bottle and transported to the laboratory where the eggs 

were cracked under a laminar flow cabinet. The egg yolk and egg white were collected. The 

inside of the eggshells was washed with sterile phosphate buffered saline (PBS) to remove the 

adhering egg albumen in order to avoid antimicrobial activity of the albumen.  

At 14-15 days of age, all fledglings were ringed and measured (tarsus (in mm) and weight 

(in g)). Body condition of juveniles was calculated using the scaled-mass index (SMI). 

Additionally, 20 µl of blood was collected from the basilic vein of 4 fledglings per nest. As 

blue tits are smaller than great tits, only great tit fledlging blood samples were collected. All 

samples were kept in Eppendorf tubes at -20 °C until analysis. 
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The environment, host and pathogen are linked to each other by the so called disease 

triangle. Changes in one of these factors can alter all the interactions of the disease triangle. 

Environmental changes such as habitat fragmentation can have profound effects on host-

pathogen interactions (e.g. changes in pathogen encounter rate and egg contamination, leading 

to changes in breeding performances and health status of the birds). Although the effects are 

not as obvious as the immediate effects on populations, the overall outcome can be disastrous 

for populations. Despite of the potential link, there is a lack of studies investigating the role of 

forest fragmentation on microbial pressure and reproductive success. 	

The overall aim of this thesis was to investigate the microbial infection pressure and 

reproductive success in blue (Cyanistes caeruleus) and great (Parus major) tits in 19 mature 

(> 60 years) deciduous forest fragments of Flanders (Belgium) and to what extent they are 

influenced by habitat fragmentation. 

 

The specific aims of the different chapters are defined as follows: 

CHAPTER I: Salmonella enterica subspecies enterica serovar Typhimurium is the most 

common cause of salmonellosis in passerines. Birds can get infected through vertical and 

horizontal transmission which can result in different disease outcomes.  

In this chapter, I investigated the potential of endemic Salmonella infections to reduce 

the reproductive success of great and blue tits in the different forest fragments and 

determined:  

1) the prevalence of Salmonella Typhimurium on eggshells, in the albumen and the egg 

yolk, and checked whether the strains could be passerine-adapted 

2) the presence of anti-Salmonella antibodies in the fledglings 

3) and whether the presence of Salmonella Typhimurium on the birds’ eggs affect the 

reproductive parameters and the body condition of the fledglings. 

CHAPTER II: During the pre-and post-hatching stages, microbial infections can lead to 

hatching failure and death in birds. Females however can influence the phenotype and 

fitness of their offspring through the transfer of immunoglobulins and antibacterial proteins 

to their eggs in order to protect the offspring against infections. Females have been 

suggested to be able to modify the levels of egg immune factors according to the infection 

risk.  
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In this chapter, I have determined the impact of microbial pressure on great (Parus 

major) and blue (Cyanistes caeruleus) tit hatching success.  

First, I determined and compared (between free-ranging great and blue tits): 

1) the bacterial infection pressure (load and microbiota diversity) on eggs,  

2) the immune investment into the eggs (IgY, avidin, lysozyme and ovotransferrin), 

3) the effect of this infection pressure and immune investment on the hatching success of 

either species. 

Furthermore, I investigated whether the environmental factor “surface area of the forest 

fragments” is correlated to eggshell microbial pressure.



Chapter I 
 

53 
 

	
	
	
	
	
 

CHAPTER	I	



 

54 
 



Chapter I 
 

55 
 

Salmonella Typhimurium DT193 and DT99 are present in Great 

and Blue Tits in Flanders, Belgium 

R. Boonyarittichaikij1,2, E. Verbrugghe1, D. Dekeukeleire3, R. De Beelde3,6, L.O. Rouffaer1, 

R. Haesendonck1, D. Strubbe3,4 , W. Mattheus5, S. Bertrand5, F. Pasmans1, D. Bonte3, K. 

Verheyen6, L. Lens3 and A. Martel1 

 
1 Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary 

Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium 
2 Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol 

University, Phuttamonthon, Nakhon Pathom, 73170, Thailand 
3 Terrestrial Ecology Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 

35, 9000 Ghent, Belgium 
4 Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, 

University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark  
5 NRC Salmonella and Shigella Bacterial Diseases Division, Scientific Institute of Public 

Health, Juliette Wytsmanstraat 14, Brussels, Belgium 
6 Forest & Nature Laboratory, Department Forest and Water Management, Ghent University, 

Gontrode, Belgium 

 

 

 

 

 

 

 

 

 

 

 
Boonyarittichaikij R, Verbrugghe E, Dekeukeleire D, De Beelde R, Rouffaer LO, Haesendonck R, Strubbe 

D, Mattheus W, Bertrand S, Pasmans F, Bonte D, Verheyen K, Lens L and Martel A (2017)  

Salmonella Typhimurium DT193 and DT99 are present in great and blue tits in Flanders, Belgium.  

PLoS ONE. 12(11): e0187640 



Chapter I 
 

56 
 

Abstract 

Endemic infections with the common avian pathogen Salmonella enterica subspecies 

enterica serovar Typhimurium (Salmonella Typhimurium) may incur a significant cost on the 

host population. In this study, we determined the potential of endemic Salmonella infections to 

reduce the reproductive success of blue (Cyanistes caeruleus) and great (Parus major) tits by 

correlating eggshell infection with reproductive parameters. The fifth egg of each clutch was 

collected from nest boxes in 19 deciduous forest fragments. Out of the 101 sampled eggs, 7 

Salmonella Typhimurium isolates were recovered. The low bacterial prevalence was reflected 

by a similarly low serological prevalence in the fledglings. In this study with a relatively small 

sample size, presence of Salmonella did not affect reproductive parameters (egg volume, clutch 

size, number of nestlings and number of fledglings), nor the health status of the fledglings. 

However, in order to clarify the impact on health and reproduction a larger number of samples 

have to be analyzed. Phage typing showed that the isolates belonged to the definitive phage 

types (DT) 193 and 99, and multi-locus variable number tandem repeat analysis (MLVA) 

demonstrated a high similarity among the tit isolates, but distinction to human isolates. These 

findings suggest the presence of passerine-adapted Salmonella strains in free-ranging tit 

populations with host pathogen co-existence. 

 

Keywords: Salmonella Typhimurium, egg, passerine, reproductive success 
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Introduction 

Infectious diseases pose an increasing threat to wildlife. Worldwide, Salmonella is one of 

the most important bacterial pathogens [1], affecting reptiles, birds and mammals [2-9]. 

Salmonella enterica subspecies enterica serovar Typhimurium (Salmonella Typhimurium) has 

a wide host range including humans, livestock, waterfowl, rodents and birds such as passerines 

[10-15].  

In passerine birds, Salmonella Typhimurium is the most common cause of salmonellosis [3, 

15, 16]. Birds can be infected through direct or indirect contact with other birds or animals, or 

through contact with contaminated environments [11, 15, 17-19]. Once birds are infected with 

this bacterium, it can be passed to their eggs during egg formation (vertical transmission) or 

during and after oviposition through eggshell contamination from the colonized gut or 

contaminated faeces (horizontal transmission) [20].  

Within this serovar, the phage types DT40, DT41, DT56, and DT160 are potentially adapted 

to passerines and can result in endemic or context-driven epizootic infections [3, 16]. Until 

recently, the majority of research focused on clinical outbreaks of Salmonella in passerines, 

with clinical signs ranging from brief episodes of severe disease to acute death [11, 15, 19]. 

However, the poorly known and less obvious infections with host adapted strains have been 

suggested to have a profound impact on the birds’ reproductive success [18, 21-26]. The latter 

effect on host health is counterintuitive since maintenance of host-adapted pathogens in the 

host population would benefit from having only a minimal cost on the infected host [27, 28].  

In our study, we first determined whether passerine-adapted Salmonella strains circulate in 

populations of blue tits (Cyanistes caeruleus) and great tits (Parus major), two closely related 

territorial hole-nesting passerines that are widely distributed throughout Europe, using 

molecular typing of bird-derived Salmonella isolates. We then correlated Salmonella presence 

on the birds’ eggs and Salmonella seroprevalence in fledglings with health and reproduction 

parameters.  

Materials and methods 

Monitoring of nest boxes of blue and great tits 

In the present study, 101 eggs were sampled in 53 (30 x 30 m) study plots located in 19 

mature (> 60 years) deciduous forest fragments in the south of Ghent (co: 50°57'19"N, 

3°43'31"E), northern Belgium (Fig 1). These study plots (30 x 30 m) have been established to 
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study the effects of tree species diversity and forest fragmentation on food web dynamics [29].  

In the autumn of 2014, standard nest boxes for blue and great tits (dimensions 23 x 9 x 12 cm, 

entrance 32 mm) were installed at a height of 1.5 m, at each corner of a plot. In total, we 

installed 212 nest boxes of which 3 broke during the experiment. During the breeding season 

(April–June 2015), all nest boxes were checked twice a week to determine first-egg laying 

dates, then every other day to determine the laying order, the total number of eggs produced 

(clutch size) and the total number of nestlings and fledglings. To avoid intra-clutch variation, 

the fifth egg per clutch of great and blue tits was collected using sterile gloves, stored in a 

sterile bottle and transported to the laboratory where the eggs were cracked under a laminar 

flow cabinet. The egg yolk and egg white were collected. The inside of the eggshells was 

washed with sterile phosphate buffered saline (PBS) to remove the adhering egg albumen in 

order to avoid antimicrobial activity of the albumen. Bacteriological analysis of the eggshell, 

egg yolk and egg white was conducted as described below. 

At 14-15 days of age, all fledglings were ringed and measured (tarsus (in mm) and weight 

(in g)). Body condition of juveniles was calculated using the scaled-mass index (SMI) [30]. 

Additionally, 20 µl of blood was collected from the basilic vein of 4 fledglings per nest for 

Salmonella antibody titre analysis. As blue tits are smaller than great tits, we only collected 

blood from great tits. All samples were kept in Eppendorf tubes at -20 °C until analysis. 

Bacteriological analysis 

Eggshells, including shell membranes, were transferred to an Eppendorf tube and crushed 

gently. Eggshell, egg yolk, and egg white samples were processed according to the ISO 6579-

1:2017 method for the isolation of different Salmonella serovars, including Salmonella 

Typhimurium. Briefly, the samples were pre-enriched overnight in buffered peptone water at 

37 ± 1°C, then enriched overnight in tetrathionate brilliant green broth (Merck, Belgium) and 

Rappaport Vassiliadis medium supplemented with soya (RVS) (Oxoid, UK) at 37 ± 1°C and 

41.5 ± 1°C, respectively. Subsequently, the samples were plated on Brilliant Green Agar 

(BGA) (Oxoid, UK) and Xylose Lysine Deoxycholate (XLD) (Oxoid, UK) plates. Pink 

colonies on BGA or light transparent reddish with black center colonies on XLD were 

confirmed to be Salmonella based on their biochemical characteristics (glucose fermentation, 

H2S production, lysine decarboxylation positive and urea negative) [31]. All the isolates were 

serotyped as Salmonella Typhimurium using slide agglutination, targeting the antigens O4, O5 

and O12. Phage typing was performed at the Salmonella and Escherichia coli reference lab of 
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the Animal & Plant Health Agency (APHA), Weybridge, England. Multi-locus variable 

number tandem repeat analysis (MLVA) using the European 5-loci scheme [32] as further 

performed at the Scientific Institute of Public Health, Belgium [33]. 

Salmonella antibody titre analysis 

To measure IgY-anti-Salmonella antibodies, we applied an indirect enzyme-linked 

immunosorbent assay (ELISA) [26]. In summary, ELISA plates (F96 maxisorp Nunc-immuno 

plates, Nunc, Denmark) were coated overnight at 4°C with 140 µL of a suspension containing 

formalin-inactivated Salmonella Typhimurium DAB69 (pigeon strain) bacteria diluted in 

coating buffer to an optical density (OD) of 660 nm, measured with a spectrophotometer 

(Ultraspec III®). Each whole blood sample was thoroughly centrifuged and then diluted 1/1000 

in Sample Diluent Buffer (0.6 g NaH2PO4·2H2O, 5.6 g NaH2PO4. 12H2O, 0.5 ml Tween 20 

(Merck, Germany) 12.5 g NaCl, 22g skim milk powder, 1000ml distilled water) and added to 

the wells (100 µL) for 1 hour at 37°C. The plates were then washed three times using washing 

buffer (0.6 g NaH2PO4·2H2O, 5.6 g NaH2PO4. 12H2O, 0.5 ml Tween 20, 12.5 g NaCl, 

1000ml distilled water). Conjugate consisting of a 1/1000 dilution of Polyclonal Goat Anti-

Bird IgG (H+L)-horseradish peroxidase (HRP) conjugate (Cat-number: 90520, Alpha 

Diagnostics Intl. Inc., San Antonio, Texas, USA) was added and incubated at 37 °C for 1 h. 

The plate was developed using 100 µl of 3,3′,5,5′-Tetramethylbenzidine (TMB) Liquid 

Substrate System for ELISA (Sigma Aldrich Chemie Gmbh, Steinheim Germany) for 15 min 

and stopped by the addition of 100 µl stop solution (Sigma Aldrich Chemie Gmbh, Steinheim 

Germany). The optical density was measured using a Multiskan MS Reader (Labsystems Oy, 

Helsinki, Finland) with the Ascent Software, version 2.6. All measurements were performed 

in duplicate. 

Statistical analysis 

All statistical tests were performed with R statistical environment [34]. First, differences in 

Salmonella Typhimurium prevalence between great and blue tits were tested using a 

generalized linear mixed model (GLMM), R library lme4, [35]. Forest fragment identity was 

modeled as a random effect, species (i.e. blue versus great tit), forest fragment area size (ha), 

and first-egg laying date of each clutch (Julian day) were included as fixed-effect covariates 

while specifying a binomial error distribution. Second, to test whether Salmonella 

Typhimurium impacts upon reproductive parameters (egg volume, clutch size, the number of 

nestlings, the number of fledglings and SMI of fledged young), these parameters were specified 
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as dependent variables in linear mixed model (LMM) with as fixed effects presence or absence 

of Salmonella Typhimurium, fragment area, laying date. Forest fragment was again modelled 

as a random effect. When testing for impacts upon the number of nestlings and fledglings, 

clutch size was included as an additional covariate. When assessing impacts on individual 

fledgling SMI, we included the number of fledglings as a covariate and accounted for the non-

independence of nestlings by including a nested random effect (nest box nested with forest 

fragment). Separate models were run for great and blue tits, and model residuals were normally 

distributed for all analyses (all Shapiro-Wilk W > 0.91).  All continuous variables were 

standardized before analysis. Variable selection followed a frequentist approach whereby full 

models (i.e., models containing all explanatory variables considered) were reduced in a 

stepwise manner, by excluding the variable with the highest P-value until only P < 0.05 

predictors remained. Reported statistics are derived from a minimal model (i.e. model with 

only the significant terms included, if any) where Salmonella Typhimurium presence or 

absence was fitted into.  

Ethical considerations 

All trapping and sampling protocols were approved by the Ethical Committee VIB Ghent 

site (EC2015-023).  

Results 

Low Salmonella Typhimurium prevalence in the nests of blue and great tits 

Blue and great tits only occupied nest boxes in 51 out of the 53 study plots. Great tits 

occupied 112 (53.59%) nest boxes and laid eggs in 66 nest boxes (31.58%). Blue tits occupied 

45 nest boxes (21.53%) and eggs were found in 37 nest boxes (17.70%). The other 52 nest 

boxes (24.88%) remained unoccupied.  In total, 65 and 36 eggs of great and blue tits, 

respectively, were screened for the presence of Salmonella. Egg contents of the screened eggs 

were negative for Salmonella. The eggshell of seven eggs (6.93% with 0-11.9 95%CI), of 

which four originated from blue tits, and three from great tits, were positive for Salmonella 

Typhimurium. Although relative Salmonella prevalence was about 2.4 times higher for blue 

(11.11%) compared to great tits (4.62%), these differences failed to achieve statistical 

significance (z-value = -0.44, P = 0.66) (Table 1 and S1 Table). The Salmonella Typhimurium 

prevalence generally is low for both tit species, however the bacterium exhibits a wide 

distribution between the different forests and plots (Fig 1). Six of the seven positive eggshells 
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were found in different forests and they were all found in a different plot. Furthermore, anti-

Salmonella antibodies were detected in four fledglings in four additional nests, in three 

different forest fragments and all in different plots, also suggesting a low prevalence with a 

wide distribution (Fig 1, Table 2, S2 Table). 

 

 

Fig 1: Map of the study plots showing the distribution of Salmonella Typhimurium. 

Shown are the study plots used to investigate Salmonella Typhimurium presence in blue and 

great tit nest boxes. Negative plots are indicated by grey dots, plots where Salmonella was 

found on the eggshell are represented by yellow dots and plots with nestlings carrying 

Salmonella IgY antibodies are depicted by blue dots. 

 

Table 1: Reproductive parameters and SMI of blue and great tits originating from a nest 

containing a Salmonella positive eggshell. Shown is the egg volume of the Salmonella 

positive eggs of blue (PC) and great (PM) tits, found in 53 analyzed plots. Per positive nest 

box, the clutch size, number of nestlings, number of fledglings are given, as well as the mean 

scaled-mass index (SMI) ± stdev of the nestlings. Due to practical issues, some samples were 
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not collected (NC). If the number of fledglings was equal to 0, brood reduction and SMI could 

not be calculated (not applicable or NA).  

 

Forest fragment Plot 

Nest 
Box 

number 
Bird 

species 
Egg volume 

(mm3) 
Clutch 

size 
n° 

nestlings 
n° 

fledglings 
Mean SMI ± 

stdev 
Aelmoeseneiebos 
(Melle) 22 22.3 PC 7602.914 11 9 8 NC 
Borsbeke 
(Herzele) 30 30.2 PC 5445.613 12 10 7 10.43 ± 0.66 
Serskamp 36 36.2 PC 6283.4 9 8 6 11.05 ± 0.97 
Oud smetlede 40 40.1 PM 10254.51 8 0 0 NA 
Moortelbos 
(Oosterzele) 50 50.1 PC NC 7 6 0 NA 
Ooidonk (Deinze) 52 52.2 PM 10254.51 10 8 NC NC 
Ooidonk (Deinze) 53 53.4 PM 12742.74 7 NC 4 16.84 ± 0.88 

 

Table 2: IgY antibody assessment in blood of great tits. Indicated are fledglings having anti-

Salmonella antibodies (IgY) in their blood at day 14-15.  

 

Forest fragment Plot 
Nest box 
number 

Bird 
species Salmonella ELISA 

Heilig Geestgoed (Merelbeke) 5 5.1 PM positive 
Serskamp 37 37.2 PM Positive 
Oud smetlede 44 44.1 PM positive 
Oud smetlede 45 45.2 PM positive 

 

Salmonella Typhimurium has no effect on the reproductive fitness and SMI 

of blue and great tits  

We first analyzed whether Salmonella Typhimurium affects the reproductive parameters 

(egg volume, clutch size, number of nestlings and fledglings) of blue and great tits. The results 

are summarized in Table 3, and no significant association between the presence of Salmonella 

Typhimurium on the eggshell and any reproductive parameter could be detected (Table 4). 

Secondly, we analyzed whether the presence of Salmonella Typhimurium has a negative 

impact on the SMI of blue and great tits. The SMI of 113 blue tit fledglings, of which eight 

fledglings hatched in a nest containing an egg with a Salmonella-positive eggshell, was 

calculated. In total, 186 great tit fledglings were analyzed of which four were found in a nest 

where we detected Salmonella on the eggshell. The mean SMI of blue and great tits, hatched 

in nest boxes where no positive eggs were found, was 11.04 ± 1.09 and 17.51 ± 1.93, 
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respectively. The SMI in the nests containing an egg with a Salmonella positive eggshell, was 

reduced to 10.74 ± 0.84 and 16.84 ± 0.88, respectively (Table 3). However, statistical analysis 

showed no significant association between the presence of Salmonella Typhimurium on the 

eggshell and the SMI (Table 4).   

 

Table 3: Health and reproductive parameters of blue and great tits. Shown are the mean 

health and reproductive parameters ± stdev, including SMI, egg volume, clutch size, number 

of nestlings and number of fledglings, of blue and great tits in nests containing an egg with a 

Salmonella negative or positive eggshell.  

 

  

Nests with a Salmonella negative 
eggshell 

Nests with a Salmonella positive 
eggshell 

Blue tits (n=32) Great tits (n=62) Blue tits (n=4) Great tits (n=3) 
SMI ± stdev 11.04 ± 1.09 17.51 ± 1.93 10.74 ± 0.84 16.84 ± 0.88 
Egg volume (mm3)  ± 
stdev 

8226.29 ±  
2223.56 

10993.25 ± 
2314.26   

6443.98 ± 
1087.58  

11083.92 ±  
1436.58 

Clutch size ± stdev 11.03 ± 1.69  8.55 ± 1.85  9.75 ± 2.22  8.33 ± 1.53 
Number of nestlings ± 
stdev  8.87 ± 2.31 6.42 ± 2.31 8.25 ± 1.71  4.00 ± 5.66 
Number of fledglings ± 
stdev 7.58 ± 3.09 5.13 ± 2.77 5.25 ± 3.59  2.00 ± 2.83 

 

Table 4: Statistical analysis. We investigated the association between the presence of 

Salmonella Typhimurium on the eggshell of blue and great tits and the egg volume, clutch size, 

number of nestlings, number of fledglings and SMI. The results are represented as the estimate 

± standard deviation (stdev), degrees of freedom (d.f.), t-value and P-value.   

 
Bird 
species Association Estimate ±  stdev d.f.  t-value  P-value 

Great tits  

Salmonella Typhimurium ~ egg volume 0.0019 ± 0.61 63 0.003 0.99 
Salmonella Typhimurium ~ clutch size 0.13 ± 0.58 65 -0.23 0.82 
Salmonella Typhimurium ~ number of nestlings  -0.97 ± 0.70 66 -1.40 0.170 
Salmonella Typhimurium ~ number of fledglings  -0.51 ± 0.64 63 -0.80 0.42 
Salmonella Typhimurium ~ SMI  0.28 ± 1.02 42 0.28 0.78 

Blue tits 

Salmonella Typhimurium ~ egg volume -1.17 ± 1.03 22 -1.13 0.27 
Salmonella Typhimurium ~ clutch size -1.35 ± 0.70 26.8 -1.93 0.064 
Salmonella Typhimurium ~ number of nestlings  -0.03 ± 0.49 16.5 -0.061 0.95 
Salmonella Typhimurium ~ number of fledglings  -0.51 ± 0.78 18.0 -0.66 0.52 
Salmonella Typhimurium ~ SMI  -0.85 ± 0.98 21 -0.87 0.40 
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Salmonella Typhimurium isolates belong to bird adapted phage types DT99 

and DT193  

Phage typing of the seven Salmonella Typhimurium strains, isolated from positive eggshells 

(Fig 1), showed that three of them belonged to phage type DT99, whereas four belonged to 

phage type DT193. These isolates where further typed with MLVA, targeting five loci. 

Regardless of phage type, five isolates (30.2, 36.2, 50.1, 52.2, 53.4) showed identical MLVA 

profiles (2-16-5-13-112). For strains 22.3 and 40.1, an extra repeat was found for loci STTR5, 

indicating that these isolates are closely related to the other strains (Table 5). Comparing their 

patterns to 3239 human Salmonella Typhimurium isolates from 2010-2016 (database of the 

WIV), regardless of phage type, revealed a large distinction between the tit and human isolates 

(Fig 2).   

 



Chapter I 
 

65 
 

.  

Fig 2: Minimum spanning tree based on MLVA data. Shown is a minimum spanning 

tree calculated for the MLVA profiles of the seven Salmonella Typhimurium isolates of blue 

and great tits, compared with 3239 Salmonella Typhimurium human isolates, regardless of 

phage type, in Belgium over the period of 2010-2016 
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Table 5: Phage and MLVA typing of Salmonella Typhimurium. Shown are the phage types 

and MLVA profiles of the seven Salmonella Typhimurium isolates targeting 5 loci.  

 

Forest Plot 
Nest box  
number 

bird 
species 

Phage 
type STTR9 STTR5 STTR6 STTR10 STTR3 

Aelmoeseneiebos 
(Melle) 22 22.3 PC DT99 2 17 5 13 0112 
St-Lievens-Houtem 30 30.2 PC DT99 2 16 5 13 0112 
Serskamp 36 36.2 PC DT99 2 16 5 13 0112 

Oud smetlede 40 40.1 PM DT19
3 2 17 5 13 0112 

Moortelbos 
(Oosterzele) 50 50.1 PC DT19

3 2 16 5 13 0112 

Ooidonk (Deinze) 52 52.2 PM DT19
3 2 16 5 13 0112 

Ooidonk (Deinze) 53 53.4 PM DT19
3 2 16 5 13 0112 

 

Discussion 

This study found a broad distribution at a low prevalence (± 7%) of two Salmonella 

Typhimurium phage types (DT99 and DT193) in populations of apparently healthy great and 

blue tits in Flanders, Belgium. The low prevalence was also confirmed by the seroprevalence 

of the fledglings. Surprisingly, none of the fledglings originating from a nest where we detected 

Salmonella on the eggshell was seropositive and conversely, all Salmonella seropositive 

fledglings were not from a nest containing a positive eggshell. This could have different 

reasons. Firstly, it is possible that the isolated strains have a limited chance of trans-shell 

infection, explaining the fact that egg yolk and white were negative for Salmonella. Secondly, 

nestlings became infected after hatching. This could occur through contact with contaminated 

nest material, which we did not screen for the presence of Salmonella. Thirdly, as we only 

screened one egg per nest, it possible that we missed other positive eggs in the nest, or that the 

other eggs in the nest were negative. Therefore, it is possible that our results are an 

underestimation of the Salmonella prevalence. Fourth, it is possible that the detected antibodies 

are maternal antibodies from an earlier infection. In chickens, around 3-4 days after hatching 

the juveniles begin to synthesize their own antibodies, however maternal antibodies can persist 

in the chick's circulation for 14 days after hatching [36]. Therefore, it is possible that the 

maternal immunity biased the serological results.  

DT99 is usually considered a pigeon-adapted variant of Salmonella Typhimurium, which 

circulates endemically in feral pigeons in Belgium [37] but has also been associated with 
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mortality in passerines [26, 38]. Infections can cause systemic disease associated with high 

mortality rates in pigeons [14]. Clinical manifestations include gastroenteritis, arthritis, 

oophoritis or orchitis and systemic granulomatous inflammation [39]. Feral pigeons may serve 

as a source of infection for passerines especially in high aggregation areas such as bird feeding 

stations. DT193 is commonly associated with human infections [33, 40-44]. Additionally, this 

phage type has also been associated with disease outbreaks in birds on a few occasions  [3]. 

Wild birds are considered as carriers of Salmonella, causing salmonellosis in both humans and 

domestics animals [10, 13]. The MLVA typing of both tit phage types in comparison with 

human isolates of Salmonella Typhimurium showed a high level of genetic similarity between 

the different tit isolates, but a large distinction between human and tit isolates. It is therefore 

possible that the isolates belonging to DT193 in this study represent avian-adapted Salmonella 

Typhimurium strains in free-ranging tits. If so, these Salmonella Typhimurium tit isolates 

possibly have a low impact on humans. However, more epidemiological data are needed to 

confirm the host range and to support our hypothesis. Furthermore, our data cannot be 

generalized as nest location and contact with human-made environment are important factors 

that can influence the epidemiology of specific Salmonella strains [3, 4]. Possibly, providing 

nest location in the surrounding of human settlements could lead to the isolation of Salmonella 

isolates with an MLVA profile closely linked to human isolates and with zoonotic and epizootic 

potential. Taking this in account, it is very likely that the distinction that we observe between 

the human and tit isolates is related to the sampling location. Therefore, it would be interesting 

to investigate the difference in Salmonella presence and their impact in both rural and urban 

forests.  

Although pathogen persistence in specific host populations is an essential mechanism of 

host-adapted pathogens [45], costs and benefits for the host population during a state of 

pathogen endemism have been poorly studied. Host adaptation has been associated with 

systemic disease and increased severity of infection [46, 47]. On the contrary, hosts can benefit 

from host–pathogen coevolution, as it can lead to a lower pathogenicity and mortality [27, 28]. 

We did not observe any health or reproduction-related impacts from the presence of Salmonella 

Typhimurium on the eggshells. This finding is in line with the hypothesis that a limited impact 

of pathogen burden on host health allows host-pathogen co-existence and pathogen population 

maintenance in its primary niche, the host. However, the limited number of Salmonella positive 

nests in our study raises the need for extra experimental or field studies with a much bigger 

positive sample size.  
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In summary, our results indicate that Salmonella Typhimurium is present in free-ranging tit 

populations, without representing a major risk for reproductive success and health status. It is 

possible that, by limiting the impact of the pathogen burden on host health, Salmonella is able 

to persist and establish a wide distribution pattern. Although there is limited evidence that these 

strains currently have epizootic and/or zoonotic potential, we cannot state that free-ranging tits 

cannot transmit Salmonella Typhimurium to humans and other non-human animals. Since the 

host-pathogen interaction is driven by host characteristics, pathogen virulence and 

environmental drivers, including static and dynamic pathogen reservoirs, changes in any of 

these compounds of the disease triangle [48] may shift the state of co-existence towards the 

epizootics that have been described before [16, 49]. Future studies on the drivers of infection 

and disease dynamics are thus vital to understand the impact of Salmonella infections in wild 

birds.  
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Supporting information 

S1 Table: Overview of the Salmonella status, reproductive parameters and SMI in nests 

of blue and great tits. Shown are the nests with eggs of blue (PC) and great (PM) tits in 53 

different plots. Every 5th egg was weighted (volume) and bacteriologically analyzed for the 

presence of Salmonella (negative or positive). Per nest box, the clutch size, number of nestlings 

and number of fledglings are given, as well as the mean scaled-mass index (SMI) ± stdev of 

the nestlings. Due to practical issues, some samples were not collected (NC). If the number of 

fledglings was equal to 0, brood reduction and SMI could not be calculated (not applicable or 

NA). An asterisk (*) indicates a nest box that was occupied twice by both PC and PM. 

 

Forest 
fragment 

Forest 
fragment 
surface 

area (ha ) Plot 
Nest 
box Spp 

Eggshell 
Salmonella 

status 

Egg white 
Salmonella 

status 

Egg yolk 
Salmonella 

status 

Egg 
volume 
(mm3) 

Clutch 
size 

N° 
nestling 

N° 
fledgling 

Mean SMI ± 
stdev 

Vurtzak 
(Merelbeke) 16.68 1 1.2 PM negative negative NA 10254.51 8 7 7 15.78 ± 0.15 

     1.3 PC negative NA negative NC 11 0 0 NA 

     1.4 PM negative NA NA 12034.81 9 8 8 NC 
Nerenbos 

(Merelbeke) 41.74 2 2.1 PC negative negative negative 7602.91 11 10 9 11.60 ± 0.70 

     2.2 PC negative NA negative NC 8 7 7 11.79 ± 3.33 

     2.3 PM negative negative negative 12742.74 8 5 5 18.03 ± 0.62 

     2.4 PM negative negative negative 9651.30 8 4 4 16.76 ± 1.13 

  3 3.2 PM negative NA NA 7602.91 5 4 4 18.55 ± 1.20 

     3.4 PC negative negative negative 15599.59 10 7 4 10.45 ± 1.15 
Heilig 

Geestgoed 
(Merelbeke) 27.49 4 4.1 PM negative negative negative 12034.81 8 5 5 20.29 ± 2.70 

     4.3 PM negative negative negative 11326.88 10 7 0 NA 

  5 5.1 PM negative negative negative 8109.77 7 2 2 17.83 ± 1.29 

     5.2 PM negative negative negative 10254.51 6 4 4 16.36 ± 0.52 
Makegembos 
(Merelbeke) 83.77 7 7.1 PM negative negative negative 12742.74 9 7 3 13.33 ± 1.00 

     7.2 PC negative negative negative 6283.40 10 9 9 11.83 ± 0.40 

     7.3 PM negative negative negative 11460.92 9 8 8 17.15 ± 0.89 

  8 8.2 PC negative negative negative 5864.51 10 9 9 9.49 ± 0.70 

  9 9.1 PC negative negative NA 8109.77 10 9 9 NC 

     9.3 PM negative negative negative 16965.18 8 7 7 16 54 ± 0.39 

     9.4 PM negative negative negative 10857.72 7 5 5 16.97 ± 0.93 

  10 10.3 PM negative negative negative 10857.72 10 6 6 NC 
Harentbeek 

bos 
(Merelbeke) 83.77 12 12.1 PC negative negative negative 7602.91 8 6 5 11.98 ± 0.56 

     12.3 PM negative negative negative 12742.74 9 7 7 17.62 ± 1.17 

     12..4 PM negative negative NA 12034.81 9 8 8 15.97 ± 0.39 
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Forest 
fragment 

Forest 
fragment 
surface 

area (ha ) Plot 
Nest 
box Spp 

Eggshell 
Salmonella 

status 

Egg white 
Salmonella 

status 

Egg yolk 
Salmonella 

status 

Egg 
volume 
(mm3) 

Clutch 
size 

N° 
nestling 

N° 
fledgling 

Mean SMI ± 
stdev 

  13 13.2 PC negative negative negative 8109.77 11 10 10 11.71 ± 0.51 

     13.3 PC* negative negative negative 7602.91 

11 9 8 

12.71 ± 2.36 

       PM* NC  NC NC NC 14.88 ± 0.39 

  16 16.1 PM negative negative negative 9630.36 6 5 4 16.59 ± 0.31 

     16.2 PC negative negative negative 7602.91 9 7 7 10.74 ± 0.94 

     16.4 PM negative negative negative 10857.72 8 7 5 16.57 ± 0.76 

  17 17.1 PC negative negative negative 6283.40 14 13 13 9.83 ± 0.36 

     17.2 PM negative negative negative 10857.72 8 6 6 16.90 ± 0.82 

     17.3 PC negative negative negative 14778.56 12 10 9 10.80 ± 0.51 

  18 18.1 PM negative negative negative 10254.51 11 10 10 18.75 ± 1.80 

     18.2 PM negative negative negative 9123.50 8 6 6 16.89 ± 1.00 

     18.3 PM negative negative negative 11326.88 8 5 5 NC 

     18.4 PM negative negative negative 10254.51 10 7 7 17.11 ± 1.09 

  19 19.3 PM negative negative negative 6283.40 9 8 8 16.99 ± 0.66 

     19.4 PC negative negative negative 7841.68 14 9 9 11.30 ± 0.68 
Wannegatstrt 

(Gavere) 3.03 20 20.1 PM negative negative negative 12742.74 13 11 9 NC 

     20.2 PC negative negative negative 7602.91 11 9 7 NC 

     20.3 PC negative negative NA 6283.40 13 11 0 NA 
Bueren 
(Melle) 6.19 21 21.1 PC negative NA negative 8109.77 12 9 9 10.41 ± 0.56 

     21.2 PM negative negative negative 10254.51 7 5 5 17.40 ± 0.89 
Aelmoesenei
bos (Melle) 23.57 22 22.1 PM negative negative negative 13450.66 8 6 6 NC 

     22.2 PM negative NA NA 14778.56 6 4 0 NA 

     22.3 PC positive negative negative 7602.91 11 9 8 NC 

     22.4 PC negative NA negative 8109.77 11 8 7 9.52 ± 1.87 

  23 23.1 PM negative NA NA 6283.40 8 7 6 23.57 ± 1.57 

     23.3 PM negative negative negative 6283.40 8 5 5 22.25 ± 1.56 

  24 24.1 PM negative negative negative 10254.51 6 5 5 NC 

     24.2 PM negative negative negative 6702.29 9 8 0 NA 

     24.4 PM negative negative negative 12742.74 10 9 7 NC 
Spiegeldries 

bos 
(Oosterzele) 11.37 25 25.1 PM negative NA negative 12742.74 10 9 8 18.72 ± 1.00 

     25.2 PM negative negative negative 9048.10 10 9 7 17.78 ± 0.76 

     25.3 PM negative negative NA 10254.51 9 0 0 NA 
St-Lievens-

Houtem 1.31 27 27.4 PM negative negative negative 12034.81 9 4 0 NA 

 1.59 28 28.2 PC negative negative negative 8109.77 12 9 7 NC 

     28.3 PC negative negative negative 6283.40 NC NC NC NC 

     28.4 PM negative negative negative 10254.51 8 6 5 18.02 ± 0.70 

 5.63 29 29.2 PC negative negative negative NC 10 9 9 11.80 ± 1.47 

     29.4 PM negative negative negative 10254.51 10 9 9 17.29 ± 0.65 
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Forest 
fragment 

Forest 
fragment 
surface 

area (ha ) Plot 
Nest 
box Spp 

Eggshell 
Salmonella 

status 

Egg white 
Salmonella 

status 

Egg yolk 
Salmonella 

status 

Egg 
volume 
(mm3) 

Clutch 
size 

N° 
nestling 

N° 
fledgling 

Mean SMI ± 
stdev 

Borsbeke 
(Herzele) 12.04 30 30.1 PC negative negative negative 8109.77 13 8 5 11.69 ± 0.56 

     30.2 PC positive negative negative 5445.61 12 10 7 10.43 ± 0.66 

     30.3 PM negative NA negative 15599.59 11 7 5 NC 

     30.4 PC negative NA NA NC 12 11 11 10. 98 ± 0.47 

 9.21 31 31.3 PM negative negative negative 8109.77 8 7 7 18.23 ± 1.83 
Nonnenbos 
(Serskamp) 32.69 32 32.2 PM negative negative negative 6283.40 11 9 0 NA 

Serskamp 58.90 36 36.2 PC positive negative negative 6283.40 9 8 6 11.05 ± 0.97 

     36.4 PC negative negative negative 8109.77 7 6 5 11.53 ± 0.13 

  37 37.2 PM negative negative negative 13450.66 9 7 2 14.96 ± 0.33 

     37.3 PM negative negative negative 10254.51 7 6 3 17.10 ± 1.78 

     37.4 PM negative negative negative 10857.72 8 5 3 17.52 ± 1.02 
Oud 

smetledebos 47.77 38 38.1 PM negative negative negative 11326.88 11 10 10 16.50 ± 0.58 

(Smetlede)     38.3 PM negative negative negative 12742.74 6 4 4 18.33 ± 1.08 

     38.4 PM negative negative negative 10254.51 8 7 7 17.95 ± 2.20  

   39 39.4 PM negative NA negative 13957.53 7 6 0 NA 

  40 40.1 PM positive negative NA 10254.51 8 0 0 NA 

   41 41.3 PM negative NA negative NC 8 7 6 17. 72 ± 0.79 

  43 43.1 PC negative negative negative 8109.77 12 10 10 11.47 ± 0.61 

     43.2 PM negative negative negative 12742.74 8 7 7 17.89 ± 0.85 

  44 44.1 PM negative negative negative 12742.74 8 7 6 17.36 ± 0.67 

 58.90 45 45.2 PM* negative negative negative 7602.91 

17 14 10 

14.66 ± 0.82 

       PC* NC  NC  NC  NC 8.77 ± 1.22 
Hospiesbos 
(Wetteren) 18.73 46 46.3 PC negative negative negative 8109.77 11 10 9 12.34 ± 0.27 

  47 47.1 PM negative NA negative NC 7 5 5 17.36 ± 0.69 

     47.2 PM negative negative negative 10254.51 8 5 5 17.30 ± 2.42 

  48 48.1 PC negative negative negative NC 10 9 9 10.48 ± 1.18 

     48.2 PM negative NA NA 12742.74 8 6 6 18.12 ± 0.15 

     48.4 PM negative NA NA 12742.74 8 7 0 NA 
Moortelbos 
(Oosterzele) 30.65 49 49.1 PM negative NA NA 7602.91 6 5 5 18.63 ± 1.21 

     49.3 PM negative NA negative 12742.74 8 6 6 16.49 ± 0.87 

     49.4 PC negative negative negative 10618.95 12 9 9 11.51 ± 0.41 

  50 50.1 PC positive NA negative NC 7 6 0 NA 

     50.2 PM negative negative negative 12742.74 10 9 8 16.52 ± 0.60 

     50.3 PC negative negative negative 6702.29 13 12 0 NA 

     50.4 PM negative negative negative 12742.74 10 0 0 NA 

  51 51.1 PM negative negative negative 10254.51 9 7 7 16.60 ± 0.77 

     51.2 PC negative NA NA 7841.68 12 10 10 NC 

     51.4 PC negative NA negative 8109.77 9 9 9 11.02 ± 0.74 
Ooidonk 
(Deinze) 46.16 52 52.2 PM positive negative negative 10254.51 10 8 NC NC 
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Forest 
fragment 

Forest 
fragment 
surface 

area (ha ) Plot 
Nest 
box Spp 

Eggshell 
Salmonella 

status 

Egg white 
Salmonella 

status 

Egg yolk 
Salmonella 

status 

Egg 
volume 
(mm3) 

Clutch 
size 

N° 
nestling 

N° 
fledgling 

Mean SMI ± 
stdev 

  53 53.1 PC negative NA NA 8616.64 13 11 11 11.12 ± 1.07 

     53.4 PM positive negative negative 12742.74 7 NC 4 16.84 ± 1.01 
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S2 Table: IgY antibody assessment in blood of great tits. Using a Salmonella specific 

ELISA, as described in the materials and methods section, the presence of IgY antibodies in 

the blood of blue tits (PM) was analyzed as negative or positive. Due to practical issues, some 

samples were not collected (NC). If the number of fledglings was equal to 0, no blood could 

be taken (not applicable or NA).  

 

Forest Plot Nestbox Spp. Juvenile Salmonella ELISA 
Vurtzak (Merelbeke)   1.2 PM 58V92692 negative 
        58V92693 negative 
        58V92694 negative 
        58V92698 NC 
    1.4 PM 58V92930 negative 
        58V92932 negative 
        58V92933 negative 
Nerenbos (Merelbeke) 2 2.3 PM 58V92852 negative 
        58V92853 negative 
        58V92854 negative 
        58V92855 NC 
        58V92966 negative 
    2.4 PM 58V92857 negative 
        58V92858 negative 
        58V92859 NC 
  3 3.2 PM 58V92861 negative 
        58V92862 negative 
        58V92863 negative 
        58V92864 NC 
Heilig Geestgoed (Merelbeke) 4 4.1 PM 58V92812 negative 
        58V92813 NC 
        58V92814 negative 
        58V92815 negative 
        58V92816 NC 
    4.3 PM NA NA 
  5 5.1 PM 58V92796 negative 
        58V92797 positive 
    5.2 PM 58V92601 NC 
        58V92602 negative 
        58V92798 negative 
        58V92799 negative 
Makegembos (Merelbeke) 7 7.1 PM 58V92545 negative 
        58V92546 NC 
        58V92547 NC 
    7.3 PM 58V92537 negative 



Chapter I 
 

79 
 

Forest Plot Nestbox Spp. Juvenile Salmonella ELISA 
        58V92538 negative 
        58V92539 negative 
        58V92541 negative 
  9 9.3 PM 58V92605 negative 
        58V92607 negative 
        58V92609 negative 
        58V92611 negative 
    9.4 PM 58V92549 negative 
        58V92550 negative 
        58V92551 negative 
        58V92552 NC 
  10 10.3 PM NC NC 
Harentbeekbos (Merelbeke) 12 12.3 PM 58V92866 negative 
        58V92867 negative 
        58V92868 negative 
        58V92869 negative 
    12..4 PM 57V84782 negative 
        57V84783 negative 
        57V84784 negative 
        57V84785 negative 
  13 13.3 PM 58V92581 NC 
        58V92583 negative 
        58V92584 NC 
        58V92586 negative 
  16 16.1 PM 58V92615 negative 
        58V92616 negative 
        58V92617 negative 
        58V92618 negative 
    16.4 PM 58V92620 negative 
        58V92621 negative 
        58V92622 NC 
        58V92624 negative 
  17 17.2 PM 58V92628 negative 
        58V92629 negative 
        58V92630 negative 
        58V92633 NC 
  18 18.1 PM 58V92873 negative 
        58V92874 negative 
        58V92875 negative 
        58V92876 negative 
        58V92877 negative 
        58V92878 negative 
        58V92879 negative 
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Forest Plot Nestbox Spp. Juvenile Salmonella ELISA 
        58V92880 negative 
    18.2 PM 58V92642 negative 
        58V92643 negative 
        58V92644 NC 
        58V92645 negative 
    18.3 PM NC NC 
    18.4 PM 57V84790 NC 
        57V84791 negative 
        57V84792 negative 
        57V84793 negative 
  19 19.3 PM 58V92634 negative 
        58V92635 negative 
        58V92638 NC 
        58V92639 negative 
Wannegatstraat (Gavere) 20 20.1 PM NC NC 
Bueren (Melle) 21 21.2 PM 58V92671 negative 
        58V92672 negative 
        58V92674 negative 
        58V92675 negative 
Aelmoeseneiebos (Melle) 22 22.1 PM NC NC 
    22.2 PM NA NA 
  23 23.1 PM 58V92656 negative 
        58V92657 NC 
        58V92660 negative 
        58V92662 negative 
    23.3 PM 58V92663 negative 
        58V92664 negative 
        58V92667 negative 
        58V92668 NC 
        58V92669 negative 
  24 24.1 PM NC NC 
    24.2 PM NA NA 
    24.4 PM NC NC 
Spiegeldriesbos (Oosterzele) 25 25.1 PM 58V84797 negative 
        58V84798 negative 
        58V84799 NC 
        57V84800 negative 
    25.2 PM 58V92805 NC 
        58V92806 NC 
        58V92807 NC 
        58V92808 NC 
    25.3 PM NA NA 
St-Lievens-Houtem 27 27.4 PM NA NA 
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Forest Plot Nestbox Spp. Juvenile Salmonella ELISA 
  28 28.4 PM 58V92990 negative 
        58V92991 NC 
        58V92992 negative 
        58V92993 negative 
  29 29.4 PM 58V92701 negative 
        58V92704 negative 
        58V92997 negative 
        58V92998 negative 
Borsbeke (Herzele) 30 30.3 PM 58V92766 negative 
        58V92768 negative 
  31 31.3 PM 58V92742 negative 
        58V92744 negative 
        58V92745 negative 
Nonnenbos (Serskamp) 32 32.2 PM NA NA 
Serskamp 37 37.2 PM 58V92504 NC 
        58V92505 negative 
        58V92506 NC 
        58V92507 positive 
    37.3 PM 58V92501 negative 
        58V92502 NC 
        58V92503 negative 
        58V92900 negative 
    37.4 PM 58V94773 negative 
        58V94774 negative 
Oud smetledebos (Smetlede) 38 38.1 PM 57V84756 NC 
        57V84757 NC 
        57V84758 NC 
        57V84759 NC 
    38.3 PM 58V92758 negative 
        58V92759 negative 
        58V92760 NC 
        58V92761 negative 
    38.4 PM 57V84766 NC 
        57V84767 NC 
        57V84768 NC 
   39 39.4 PM 58V92883 NC 
        58V92884 negative 
  40 40.1 PM NA NA 
   41 41.3 PM 58V92787 negative 
        58V92788 negative 
        58V92789 negative 
        58V92790 negative 
  43 43.2 PM 58V92763 negative 
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Forest Plot Nestbox Spp. Juvenile Salmonella ELISA 
        58V92764 NC 
        58V92765 NC 
        58V92766 NC 
        58V92776 negative 
        58V92898 NC 
        58V92899 negative 
  44 44.1 PM 58V92777 negative 
        58V92778 negative 
        58V92779 negative 
        58V92781 positive 
  45 45.2 PM 58V92571 NC 
        58V92572 negative 
        58V92575 positive 
        58V92577 negative 
Hospiesbos (Wetteren) 47 47.1 PM 58V92710 negative 
        58V92711 negative 
        58V92712 negative 
        58V92713 negative 
    47.2 PM 58V92733 negative 
        58V92734 negative 
        58V92736 negative 
        58V92737 NC 
  48 48.2 PM 58V92683 negative 
        58V92685 negative 
        58V92687 negative 
        58V92688 negative 
    48.4 PM NA NA 
Moortelbos (Oosterzele) 49 49.1 PM 58V92820 NC 
        58V92821 negative 
        58V92822 negative 
        58V92823 negative 
    49.3 PM 58V92564 negative 
        58V92565 NC 
        58V92566 negative 
        58V92568 NC 
  50 50.2 PM 58V92532 negative 
        58V92533 NC 
        58V92535 negative 
    50.4 PM NA NA 
  51 51.1 PM 58V92827 negative 
        58V92828 NC 
        58V92829 negative 
        58V92830 negative 



Chapter I 
 

83 
 

Forest Plot Nestbox Spp. Juvenile Salmonella ELISA 
Ooidonk (Deinze) 52 52.2 PM NC NC 
  53 53.4 PM 58V92983 NC 
        58V92984 negative 
        58V92985 negative 
       58V92986 Negative 
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Abstract 

The hatching success of a bird’s egg is one of the key determinants of avian 

reproductive success, which may be compromised by microbial infections causing embryonic 

death. During incubation, outer eggshell bacterial communities pose a constant threat of 

pathogen translocation and embryo infection. One of the parental strategies to mitigate this 

threat is the incorporation of maternal immune factors into the egg albumen and yolk. It has 

been suggested that habitat changes like forest fragmentation can affect environmental factors 

and life-history traits that are linked to egg contamination. This study aims at investigating 

relationships between microbial pressure, immune investment and hatching success in two 

abundant forest bird species and analyzing to what extent these are driven by extrinsic 

(environmental) factors. We here compared (1) the bacterial load and composition on 

eggshells, (2) the level of immune defenses in eggs, and (3) the reproductive success between 

great (Parus major) and blue (Cyanistes caeruleus) tits in Belgium and examined if forest 

fragmentation affects these parameters. Analysis of 70 great tit and 34 blue tit eggshells 

revealed a similar microbiota composition (Enterobacteriaceae, Lactobacillus spp., Firmicutes 

and Bacteroidetes), but higher bacterial loads in great tits. Forest fragmentation was not 

identified as an important explanatory variable. Although a significant negative correlation 

between hatching success and bacterial load on the eggshells in great tits corroborates microbial 

pressure to be a driver of embryonic mortality, the overall hatching success was only 

marginally lower than in blue tits. This may be explained by the significantly higher levels of 

lysozyme and IgY in the eggs of great tits, protecting the embryo from increased infection 

pressure. Our results show that immune investment in eggs is suggested to be a species-specific 

adaptive trait that serves to protect hatchlings from pathogen pressure, which is not directly 

linked to habitat fragmentation.  

 

Keywords: forest fragmentation, IgY, lysozyme, passerine, pathogen pressure, reproductive 

success   
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Introduction 

Embryonic development of birds is a process that is threatened by microbial invasion [1-4]. 

Vertical transmission of pathogens during egg formation [5-6] and horizontal transmission after 

oviposition [7-8] may threaten the individual fitness and viability of the embryo and result in 

hatching failure [3, 9-12]. Shortly after laying, the eggshell becomes susceptible to pathogen 

penetration [13-14]. As such, environmental factors such as nest materials, bacteria on the 

female’s skin, feathers and feces, nest visitors, and airborne bacteria are important risks of egg 

contamination [15-17].  

To minimize embryonic contamination, the composition of the egg creates a natural physical 

barrier against bacterial penetration [18-19], and together with antimicrobial substances within 

the egg yolk and albumen [20-21], they constitute a first line of defense. In birds, females can 

influence the phenotype and fitness of their offspring by modifying the egg composition 

through the transfer of immunoglobulins (e.g. IgY) and antibacterial proteins to their eggs [22-

23]. These maternal immune factors protect the embryo against bacteria which have succeeded 

in penetrating the eggshell, and the hatchling after the resorption of the remaining egg yolk and 

albumen [24]. Amongst antimicrobial proteins in the egg albumen, lysozyme, ovotransferrin, 

and avidin are the three most abundant ones [25]. 

Several studies showed that the number of bacteria present on the eggshell is positively 

associated with the risk of trans-shell infection [1, 3, 26-27].  Not only the bacterial load is a 

forerunner of hatching failure, but also the composition of the bacterial community and 

certainly the presence of pathogenic bacterial strains could play a role [28]. In the 

gastrointestinal tract of avian species, the phyla Firmicutes (including Lactobacillus) and 

Bacteroidetes and the family of Enterobacteriaceae are amongst the most abundant bacterial 

groups [29-30]. Most of the enteric bacteria have established a commensal status [31-33] 

however, some members are also known as pathogens, especially Enterobacteriaceae such as 

Escherichia coli, Salmonella spp. and Yersinia spp., but also Clostridium perfringens 

belonging to the Firmicutes phylum [34-36]. 

It has been suggested that habitat change, such as fragmentation of large, homogenous habitat 

blocks into small, isolated patches, can affect both extrinsic (environmental traits) and intrinsic 

(life-history traits) factors linked to egg contamination. For instance, brood parasitism [37], 

climatic conditions [1], dispersal opportunities, and feeder visiting are all presumed to alter 

host-pathogen dynamics, breeding performance and risk of trans-shell infection [38-39]. 

Although some research has been performed on the effect of human encroachment on natural 
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environments of wild bird populations and its effect on host-pathogen interactions, how 

extrinsic (environmental) drivers shape relationships between infection pressure, immune 

investment and breeding performance in forest birds, remains poorly known.  

To fill this knowledge gap, this study aims at investigating these relationships in great and blue 

tits, two relatively closely-related [40] forest species with strongly overlapping ecological 

niches that are widely distributed and abundant throughout Europe. We first examined bacterial 

infection pressure (load and community composition) on eggs of free-ranging blue and great 

tits in 19 mature deciduous forest fragments in East-Flanders (Belgium) and analyzed to what 

extent bacterial loads varied with fragment area. Next, we analyzed variation in maternal 

immune investment (IgY, avidin, lysozyme and ovotransferrin) into eggs and the extent to 

which this was correlated with hatching success.  

 

Materials and Methods 

Study design and study site 

We performed a study of blue and great tits in 53 study plots located in 19 mature (> 60 years) 

deciduous forest fragments in the south of Ghent (coordinates: 50°57'19"N, 3°43'31"E), 

northern Belgium (Fig 1, S1 Table). All study plots (30 x 30 m) were established in 2014 to 

study effects of tree species diversity and forest fragmentation on food web dynamics [as 

explained in 41]. Forest fragments in which these plots were located, strongly varied in size 

(range: 1.3 to 90.4 ha). Surface area sizes for each forest fragment were calculated from detailed 

GIS layers.  

During autumn 2014, 212 standard nest boxes for blue and great tits (dimensions 23 x 9 x 12 

cm, entrance 32 mm) were installed at a height of 1.5 m, at each corner of a plot, of which 3 

broke during the experiment [see 42 for more information]. During the breeding season of 

2015, all nest boxes were checked at least twice a week to determine the total number of eggs 

produced (clutch size) and the total number of hatchlings (S1 Fig). To avoid intra-clutch 

variation, the fifth egg of each great and blue tit clutch was collected using sterile gloves, stored 

in a sterile bottle and transported to the laboratory where the eggs were cracked under a laminar 

flow cabinet. Egg yolk and egg white were collected and stored separately at -20°C. In order 

to avoid antimicrobial activity of the albumen, the inside of the eggshells was washed with 

sterile phosphate buffered saline (PBS) to remove the adhering egg albumen. The eggshell, 

including shell membranes, was transferred to an Eppendorf tube and stored at -20°C.  
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The percentage of hatching failure was calculated as ((1-(number of hatchlings/(clutch size – 

1)))*100). 

 

 

Figure 1: Map showing the location of all the study plots. The study of great and blue tit 

nests was performed in 53 study plots, established in 19 forest fragments. 

 

Antimicrobial assays: lysozyme, avidin and ovotransferrin 

We assessed lysozyme concentrations following Ruuskanen et al. (2011) [43]. Briefly, 

albumen was diluted in phosphate buffer (67 mM, pH 6.2, dilution 1:500). A Micrococcus 

lysodeikticus (Sigma-Aldrich, Darmstadt, Germany) suspension was prepared in phosphate 

buffer (0.5 mg/ml). A hundred µl of the diluted albumen and 100 µl of the Micrococcus 

suspension were added to a 96 well plate (MaxiSorp Nunc-ImmunoTM plate, Thermo Fisher 

Scientific, Massachusetts, USA) and the absorbance was measured every 2 minutes, during 30 

min at room temperature and at 450 nm using a Multiskan MS Reader (Labsystem Diagnostics 

Oy, Vantaa, Finland) with the Ascent Software, version 2.6. Each sample was analyzed in 

duplicate and before each measurement, the plate was mixed for 10 s. The results, given as 
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Unit/mg protein, were calculated from the changes in absorbance per minute and compared to 

the standards (lysozyme from chicken egg white, Sigma-Aldrich). 

To measure avidin, we used a modified version of the colorimetric method of Gan & Marquardt 

(1999) [44]. Therefore, each albumen sample was diluted 1:4 in carbonate–bicarbonate buffer 

(Sigma-Aldrich) and 100 µl of each 10-fold serial dilutions was added to a 96 well plate 

(MaxiSorp Nunc-ImmunoTM plate), until a dilution factor of 11 was achieved. Serial dilutions 

of avidin (5 – 0.002 µg/ml, Sigma-Aldrich) were used as a standard. The plates were incubated 

at 4 °C overnight and then rinsed 3 times with phosphate-buffered saline (PBS)/0.05% Tween-

20 (Sigma-Aldrich). Superblock buffer (Pierce, Rockfords, USA) was added for 30 s at room 

temperature to prevent nonspecific binding. This was repeated twice. Subsequently, we added 

100 µl of a 1:4000 dilution of biotin/horseradish peroxidase (Sigma-Aldrich) in 

Superblock/0.05% Tween-20 to each well. The plates were incubated for 25 min at room 

temperature, followed by a wash step with PBS/0.05% Tween-20. After washing the plate 5 

times, 100 µl of blue peroxidase (POD) substrate (Roche, Reinach, Switzerland) were added 

to each well before incubating the plates at room temperature for 30 min. Finally, the 

absorbance was measured at 450 nm using a Multiskan MS Reader. The concentration of avidin 

(µg/ml) in each sample was calculated by comparison of absorbance values to those in the 

standard curve. 

The concentration of ovotransferrin was determined using the total iron binding capacity assay 

of  Yamanishi et al. (2002) [45]. Therefore, 125 µl of a 1:500 dilution of an iron-standard 

solution (1000 mg/ml; Sigma-Aldrich) in a buffer (pH 8.4) containing 300 mmol/l Tris 

(Thermo Fisher Scientific), 150 mmol/l sodium hydrogen carbonate (EMD Millipore, 

Darmstadt, Germany), and 4.2 g/l Triton X-100 (Sigma-Aldrich) was added to 24 µl of each 

albumen sample in wells of a 96-well plate (Nunc MaxiSorp). After 5 min of incubation at 37 

°C, a second reagent (pH 4.0) containing 10 mmol/l ferrozine (Baker, Maine, USA) and 32.6 

mmol/l L-ascorbic acid (Thermo Fisher Scientific) in 50 mmol/l Tris buffer were added to each 

well and incubated at 37 °C for 5 min. Subsequently 100 µl of a third reagent containing 600 

mmol/l citric acid (Baker) and 25.6 mmol/l thiourea (Baker) was added. The absorbance was 

measured every 20 s at 570 and 660 nm for 6.2 min using Multiskan MS Reader. To calculate 

ovotransferrin concentration, we determined the difference in absorbance at 570/660 nm at the 

beginning and end of the 6.2-min period. The absolute ovotransferrin concentration (mg/ml) 

was calculated by comparing these values with those in a standard curve. 
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Antibody titre analysis (IgY) 

The antibody (IgY) level was determined using an indirect enzyme-linked immunosorbent 

assay (ELISA), modified from Morosinoto et al. (2013) [46]. Briefly, ELISA plates (MaxiSorp 

Nunc-ImmunoTM plates) were coated overnight at 4°C with 50 µl anti-chicken IgG (produced 

in rabbit) diluted 1/2000 in carbonate coating buffer. Egg yolk was diluted 1/3 with distilled 

water and supernatant was collected after centrifugation at 13 000 rpm for 15 min (4°C). 

Subsequently, the supernatant diluted 1/2000 in 1% bovine serum albumin in phosphate 

buffered saline (BSA-PBS) was added to the wells (50 µl) and incubated for 3 hours at room 

temperature. An alkaline phosphatase conjugated rabbit anti-chicken IgY antibody (1/2000) 

(Sigma-Aldrich) was added overnight at 4°C as a secondary antibody. The plate was developed 

using p-nitrophenyl phosphate for 30 min. The optical density was measured at 405 nm using 

a Multiskan MS Reader. 

 

Bacteriological analysis: Enumeration of bacterial load by qPCR 

DNA was extracted from the eggshell using a PowerLyzer® PowerSoil® DNA Isolation Kit 

(Qiagen, Venlo, The Netherlands) according to the manufacturer’s guidelines. The abundance 

of total bacteria, Firmicutes and Bacteroidetes phyla, Enterobacteriaceae family and 

Lactobacillus spp. were quantified using the primers and PCR protocols described in Table 1. 

Amplification and detection were performed using the CFX384 Bio-Rad Real-time PCR 

detection system (Bio-Rad, Nazareth, Belgium). Each reaction was done in duplicate in a 12-

µl total reaction mixture using 2 x SensiMix SYBR No-ROX mix (Bioline, Luckenwalde, 

Germany) and 2 µl of DNA.  

 

Table 1: Primers and qPCR protocols used to quantify the total bacteria, Firmicutes, 

Enterobacteriaceae, Bacteroidetes and Lactobacillus spp. 

 

Bacterial groups Reference Primers (5' -3') Primer 
concentration PCR program 

Firmicutes 
  

[68] 
 

F: GGA GYA TGT GGT TTA ATT 
CGA AGC A  0.5 µM 

10' 95°C; (30'' 
95°C, 30'' 60°C) x 
40; 15'' 95°C 
  R: AGC TGA CGA CAA CCA TGC AC 0.5 µM 

Enterobacteriace
ae 
  

[69] 
 

F: CAT TGA CGT TAC CCG CAG 
AAG AAG C 0.5 µM 

10' 95°C; (30'' 
95°C, 1' 63°C) x40; 
15'' 95°C 
  
 

R: CTC TAC GAG ACT CAA GCT 
TGC 0.5 µM 
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Bacterial groups Reference Primers (5' -3') Primer 
concentration PCR program 

Bacteroidetes 

[70] 

F:  
CRA ACA GGA TTA GAT ACC CT 0.75 µM 

10' 95°C; (15'' 
95°C, 15'' 61.5°C, 
20'' 72°C) x40; 15'' 
95°C 

R;  
GGT AAG GTT CCT CGC GTA T 0.75 µM 

Lactobacillus 
spp. 
  

[71] 
 

F: GGA ATC TTC CAC AAT GGA CG 0.5 µM  20'' 95°C; (3''95°C, 
30'' 57°C) x40; 15'' 
95°C 
  

R: CGC TTT ACG CCC AAT AAA 
TCC GG 0.5 µM 

Total bacteria 
  

[72] 
 

F: CGG YCC AGA CTC CTA C 
GG G 0.5 µM 

10' 95°C; (1' 94°C, 
1' 53°C, 2' 60°C) x 
40;15'' 95°C 
  R: TTA CCG CGG CTG CTG GCA C 0.5 µM 

 

Statistical analysis 

First, in order to test whether total eggshell bacteria, Firmicutes, Bacteroidetes, 

Enterobacteriaceae and Lactobacillus numbers were influenced by fragment area, egg and nest 

characteristics (i.e. egg volume, clutch size and laying date) or species identity (i.e. great versus 

blue tit), linear mixed models (‘glmer’ function of R library ‘lme4’ [47] were run using bacteria 

counts as dependent variable. Forest fragment identity was included as a random effect to 

account for possible non-independence of nests within the same forest fragment, and models 

were run with a Poisson error distribution as bacterial loads were expressed as count data. An 

observation-level random effect was added in order to account for overdispersion present in 

the data [48]. Second, in order to test whether bacterial eggshell communities significantly 

differed between great tits and blue tits, we applied an analysis of dissimilarity (ADONIS, as 

implemented in the R library ‘vegan’ [49]. Third, to compare concentrations of egg protein 

concentrations (i.e. concentrations of egg lysozyme, IgY, avidin and ovotransferrin) between 

both species, Gaussian linear mixed models were applied, using egg protein concentrations as 

dependent variable and species as explanatory variable while including forest fragment identity 

as a random effect. All model residuals were normally distributed (Shapiro-Wilk W > 0.90). 

Lastly, to explore the relationship between egg immune factors and reproductive success, 

hatching failure was modelled as a binominal process, comparing success against failure. All 

statistical tests were performed with R [50]. 

 

Ethical considerations 

All trapping and sampling protocols were approved by the Ethical Committee VIB Ghent site 

(EC2015-023). 
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Results 

Bacterial abundance is higher on eggshells of great tits, but with a similar 

microbiota composition as in blue tits 

The bacterial loads of 70 eggs of great tits collected from nest boxes in 42 plots, and of 34 eggs 

of blue tits collected in nests from 25 plots (summarized in S1 Table), were determined by 

qPCR. Bacterial loads were higher (p < 0.001) on the eggshells of great tits compared to those 

on the shells of blue tits (Fig 2 and S2 Table). The mean (± SE) eggshell total bacterial count 

(gene copies / eggshell) of great and blue tit eggs was 8.57 x 105 ± 1.83 x 105 and 3.67 x 105 ± 

5.49 x 104, respectively. This corresponds to a Log10 value of 5.70 ± 0.05 for great tits and 5.42 

± 0.07 for blue tits (Table 2). Fragment area, egg volume, laying date and clutch size could not 

explain the pattern of bacterial load on eggs of great and blue tits (all p > 0.05; S3 Table). 

Although more bacteria were present on the eggshells of great tits, no significant differences 

were observed in the relative abundance of the composition of eggshell microbiota (Fig 3). 

Similar proportions (%) of Enterobacteriaceae, Lactobacillus spp., Firmicutes, and 

Bacteroidetes were observed relative to the total amount of bacteria present on the eggshell of 

both bird species (Table 2 and S2 Table). 

 

 
Figure 2: Number of total bacteria present on the eggshell of great and blue tits. The 

eggshells of great (n = 70; 42 different plots) and blue tits (n = 34; 25 plots) were analyzed 

using qPCR for bacterial presence. The results are expressed as the log10 of the copy number 

of the gene per eggshell. The whiskers represent the mean ± standard error of the mean. 

Statistical significance is shown by the p value.  
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Figure 3: The relative abundance of bacterial groups present on the eggshell of great and 

blue tits. Box plots showing the relative abundance of Enterobacteriaceae, Lactobacillus spp., 

Firmicutes and Bacteroidetes compared to the total bacterial numbers present on the eggshell 

of great and blue tits, as assessed with qPCR. The whiskers represent the median, the minimum 

and maximum values, and the first and third quartiles. The plus indicates the mean value.  

 

Higher immune factor concentrations in eggs of great tits  

Egg lysozyme and IgY levels were significantly (p < 0.001) higher in egg albumen and egg 

yolk of great tits compared to blue tits (Fig 4 and S2 Table). Mean (± SE) concentrations of 

lysozyme and IgY were 68675.56 ± 5878.35 and 0.48 ± 0.037 in blue tits and 107952.81 ± 

3991.08 and 0.74 ± 0.036 in great tits. These differences are species specific as “species” was 

shown to be a driver for IgY and lysozyme concentrations (p < 0.001; S4-S5 Table). Great tits 

eggs also tended to show higher concentrations of avidin and ovotransferrin, but without 

reaching statistical significance (p > 0.05; Table 2 and S2 Table).  
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Figure 4: Concentration of antimicrobial proteins and IgY antibodies. Lysozyme, avidin, 

ovotransferrin and IgY was determined in the eggs of great and blue tits. The results are 

expressed as unit/mg lysozyme, µg/ml avidin, mg/ml ovotransferrin or as OD value for IgY. 

The whiskers represent the mean ± standard error of the mean. Statistical significance is shown 

by the p value. 

 

Table 2: Difference in bacterial load, microbiota composition, IgY and presence of 

antibacterial proteins between blue and great tits. Shown in the mean ± SEM of the total 

eggshell bacterial load, the proportion (in %) of Enterobacteriaceae, Lactobacillus spp., 

Firmicutes, and Bacteroidetes and egg immune factors of blue and great tit eggs. 

 

Measurement Blue tit Great tit 
Eggshell total bacterial count  
(gene copies/eggshell) 

3.67 x 105 ± 5.49 x 104 8.57 x 105 ± 1.83 x 105 

Log10 eggshell total bacterial count 
(gene copies/eggshell) 

5.42 ± 0.07 5.70 ± 0.05 

Proportion of Enterobacteriaceae 
(%) 

1.6 ± 0.49 1.6 ± 0.43 

Proportion of Lactobacillus spp. 
(%) 

2.5 ± 0.79 3.0 ± 0.68 

Proportion of Firmicutes (%) 27.3 ± 3.90 38.5 ± 7.38 
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Measurement Blue tit Great tit 
Proportion of Bacteroidetes (%) 7.8 ± 1.99 9.5 ± 2.17 
IgY (OD) 0.48 ± 0.037 0.74 ± 0.036 
Lysozyme (unit/mg) 68675.56 ± 5878.35 107952.81 ± 3991.08 
Avidin (µg/ml) 0.23 ± 0.035 0.32 ± 0.034 
Ovotransferrin (mg/ml) 3.63 ± 0.46 4.34 ± 0.35 

 

Hatching success in great tits is only slightly impacted by the increased 

microbial pressure 

Hatching success in clutches of great tits declined with increasing bacterial load of the fifth egg 

(p = 0.024; S6 Table). In blue tits, none of the studied variables were found to correlate with 

hatching success. At species level, hatching failure was significantly higher in great tits (16.66 

± 2.79) than in blue tits (10.02 ± 2.92 %) (p = 0.025; Fig 5 and S2 Table).  

 

 
Figure 5: Hatching failure in nests of great and blue tits. Shown is the percentage of 

hatching failure. The whiskers represent the median, the minimum and maximum values, and 

the first and third quartiles. The plus indicates the mean value. Statistical significance is shown 

by the p value. 

 

Discussion 

We provide evidence for a higher infection pressure in great tit eggs than in those of 

the sympatric, ecologically similar blue tit, while the bacterial load of neither species was 

associated with variation in fragment area, egg volume, laying date or clutch size.  
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Avian species are known to apply different behavioral, chemical and physical strategies to 

control embryo infections, such as the use of intrinsic properties of plants to protect their 

nestlings against contamination with parasites and pathogens [19, 51-52]. Among passerines, 

blue tits have been reported to use aromatic plants as nest materials, possibly exploiting the 

antimicrobial properties of essential oils [51-52]. In our study, we detected leaves of the 

aromatic plant Stachys sylvatica, and pine needles in a number of blue tit nests, and essential 

oils of both plant species are believed to have antimicrobial activities [53-55]. As no such 

leaves or needles were detected in great tit nests, differential use of nest material may partly 

explain the observed differences in microbial pressure between both species. Alternatively, or 

in addition, differential bacterial accumulation may result from differences in nest sanitization, 

and results of our study would point towards a higher nest hygiene in blue tits. However, this 

hypothesis contradicts the results of Goodenough & Stallwood (2010) showing higher bacterial 

loads in blue tit nests than in those of great tits, hence more empirical studies are needed to test 

this hypothesis [56].  

In contrast to bacterial load, relative egg microbiota composition (Enterobacteriaceae, 

Lactobacillus spp., Firmicutes and Bacteroidetes) did not differ between great and blue tits, 

with the Firmicutes phylum being the most abundant in both species. Such pattern is in line 

with gastrointestinal microbiota sampled in adults from various bird species [30, 57-58], 

supporting the hypothesis that bacteria are transmitted from the female cloaca to the eggs [17, 

28]. Although most members of these bacterial groups are commensals, several bacterial 

species are also known as primary or opportunistic pathogens. Especially bacteria of the 

Enterobacteriaceae family such as E. coli, Salmonella, Yersinia, Klebsiella, Citrobacter and 

Enterobacter have been reported to cause disease and mortality in nestling passerines [59-61]. 

Additionally, Streptococcaceae of the phylum Firmicutes has been reported to cause 

embryonic death and infections in nestlings [9, 62]. 

Transmission of antimicrobials and IgY antibodies to the egg constitutes an important 

chemical defense mechanism in birds [63]. Lysozyme catalyzes the lysis of cell walls of gram-

positive bacteria [64] and plays an important role pre-hatching, whereas IgY antibodies 

particularly protect nestling post-hatching [65]. While still fairly speculative, some authors 

suggested that mothers may distribute antimicrobial proteins differentially within and among 

clutches [20, 24-25], based on food availability [66] and depending on male attractiveness [25, 

67]. These studies also provide evidence that birds may have evolved to differentially 

transmitting antimicrobials to increase the probability of offspring survival. In our study, great 

tits incorporated more lysozyme and IgY into the eggs than blue tits, suggesting that great tits 
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females may manipulate their antimicrobial allocation to compensate for the higher pathogen 

load. This, in turn, may explain why the reproductive success of great tits was only moderately 

lower than that of blue tits, despite their larger infection pressure and the observed correlation 

between infection pressure and hatching failure. To the best of our knowledge, this is the first 

study providing evidence for different maternal immune adaptations between two closely 

related bird species in order to increase the probability of offspring survival at different 

pathogen exposure probabilities. 

Summarized, our results show that although great and blue tits are relatively closely 

related and ecologically similar, eggs of great tits are exposed to higher microbial pressures, 

for which they have adapted their immunological transfer to the eggs in order to limit the 

negative effect on reproductive parameters. 
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Supplementary Information: 
 

 

S1 Figure: Overview of the clutch size and the number of hatchlings in the nests of great and 

blue tits.   

 

S1 Table: Summary of sampled great (PM) and blue (PC) tit eggs in the different study 
plots 
 

Forest  Plot Latitude Longitude Surface area (ha) tree diversity (spp.) Nestbox spp. 
Lemberge 1 50.990342 3.7732 16.68 2 1.2 PM 

      1.3 PC 

      1.4 PM 
Nerenbos 
(Merelbeke) 2 50.961391 3.73474 41.74 2 2.1 PC 

      2.2 PC 

      2.3 PM 

      2.4 PM 

 3 50.960503 3.73237 41.74 2 3.2 PM 

      3.4 PC 
Heilig 
Geestgoed 
(Merelbeke) 4 50.948551 3.728218 27.49 2 4.1 PM 

      4.3 PM 

 5 50.948747 3.728979 27.49 2 5.1 PM 

      5.2 PM 
Makegembos 
(Merelbeke) 7 50.951324 3.715364 83.77 2 7.1 PM 

      7.2 PC 

      7.3 PM 

 8 50.950905 3.716254 83.77 1 8.2 PC 

 9 50.949559 3.716739 83.77 1 9.1 PC 

      9.3 PM 

      9.4 PM 

 10 50.94883 3.718443 83.77 1 10.3 PM 
Harentbeekbos 
(Merelbeke) 12 50.9464 3.717465 83.77 1 12.1 PC 
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Forest  Plot Latitude Longitude Surface area (ha) tree diversity (spp.) Nestbox spp. 

      12.3 PM 

      12.4 PM 

 13 50.946545 3.715697 83.77 1 13.2 PC 

      13.3 PC* 

 16 50.947438 3.714835 83.77 1 16.1 PM 

      16.2 PC 

      16.4 PM 

 17 50.944474 3.718904 83.77 2 17.1 PC 

      17.2 PM 

      17.3 PC 

 18 50.943761 3.712352 83.77 1 18.1 PM 

      18.2 PM 

      18.3 PM 

      18.4 PM 

 19 50.9449 3.713682 83.77 1 19.3 PM 

      19.4 PC 
Wannegatstraat 
(Gavere) 20 50.937592 3.707042 3.03 1 20.1 PM 

      20.2 PC 

      20.3 PC 
Bueren (Melle) 21 50.9886 3.82614 6.19 2 21.1 PC 

      21.2 PM 
Aalmoezenijbos 
(Oosterzele) 22 50.976081 3.798739 23.57 2 22.1 PM 

      22.2 PM 

      22.4 PC 

 23 50.974748 3.797965 23.57 2 23.1 PM 

      23.3 PM 

 24 50.973663 3.802786 23.57 1 24.1 PM 

      24.2 PM 

      24.4 PM 
Spiegeldries 
bos 
(Oosterzele) 25 50.916874 3.760309 11.37 2 25.1 PM 

      25.2 PM 

      25.3 PM 
Zottegem 26 50.901508 3.819877 3.53 3 26.2 PM 

      26.3 PM 

      26.4 PM 
St-Lievens-
Houtem 27 50.908521 3.865333 1.31 2 27.4 PM 

 28 50.911148 3.871161 1.59 2 28.2 PC 

      28.3 PC 

      28.4 PM 

 29 50.913516 3.872813 5.63 1 29.2 PC 

      29.4 PM 
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Forest  Plot Latitude Longitude Surface area (ha) tree diversity (spp.) Nestbox spp. 

 30 50.91155 3.901021 12.04 1 30.1 PC 

      30.3 PM 

      30.4 PC 

 31 50.973112 3.946005 9.21 1 31.3 PM 
Nonnenbos 
(Serskamp) 32 50.985475 3.949129 32.69 2 32.2 PM 
Serskamp 36 50.976824 3.926348 58.9 2 36.2 PC 

      36.3 PM 

      36.4 PC 

 37 50.976977 3.9288 58.9 2 37.3 PM 

      37.4 PM 
Oud smetlede 38 50.978195 3.906263 47.77 1 38.1 PM 

      38.3 PM 

      38.4 PM 

 39 50.976306 3.907334 47.77 1 39.4 PM 

 40 50.975601 3.906863 47.77 2 40.1 PM 

 41 50.976082 3.908319 47.77 3 41.3 PM 

 43 50.970567 3.907196 47.77 1 43.1 PC 

      43.2 PM 

      43.3 PM 

 44 50.971339 3.907868 47.77 1 44.1 PM 

      44.3 PM 

 45 50.982 3.914797 58.9 2 45.2 PM* 
Hospicebossen 
(Nazareth) 46 50.99087 3.894436 18.73 1 46.3 PC 
  47 50.98917 3.897568 18.73 2 47.1 PM 

      47.2 PM 

 48 50.988468 3.89644 18.73 1 48.1 PC 

      48.2 PM 

      48.4 PM 
Oosterzele 49 50.962551 3.838403 30.65 1 49.1 PM 

      49.3 PM 

      49.4 PC 

 50 50.96349 3.842156 30.65 3 50.1 PC 

      50.2 PM 

      50.3 PC 

      50.4 PM 

 51 50.964019 3.840559 30.65 1 51.1 PM 

      51.2 PC 

      51.4 PC 
Ooidonk 
(Deinze) 52 50.996011 3.588524 46.16 1 52.2 PM 

 53 50.997431 3.585583 46.16 3 53.1 PC 

      53.4 PM 
An asterisk (*) indicates a nest where brood parasitism was observed.  
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S2 Table: Summary of statistical analyses examining the difference between blue and great 

tits. 

 

Factors t/z/f-value p-value 
Log10 eggshell bacterial load  3.685 0.000373 
Enterobacteriaceae  1.515 0.130 
Lactobacillus spp. 1.456 0.145 
Firmicutes  0.966 0.334 
Bacteroidetes  1.356 0.175 
Lysozyme 5.768 8.2 x 10-9 

Avidin 0.842 0.402 
Ovotransferrin 1.131 0.261 
IgY 4.598 1.26 x 10-5 

Hatching failure -2.241 0.025 
 

S3 Table: Summary of statistical analyses examining the driving factors for eggshell bacterial 

loads.  

 

Factors Great tit Blue tit 
z-value p-value z-value p-value 

Forest fragment surface area -0.10 0.917 1.31 0.191 
Egg volume -0.04 0.970 -0.27 0.785 
Clutch size -0.07 0.940 -1.94 0.065 
Laying date 0.50 0.614 1.31 0.191 

 

S4 Table: Summary of statistical analyses examining the driving factors for lysozyme 

allocation. 

 

Factors t-value p-value 
Eggshell bacterial load -0.418 0.676 
Species 5.412 6.3.x10-8 

 

S5 Table: Summary of statistical analyses examining the driving factors for IgY allocation. 

 

Factors t-value p-value 
Eggshell bacterial load -0.601 0.549 
Species 4.058 0.000103 
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S6 Table: Summary of statistical analyses examining the driving factors for hatching failure. 

 

Factors Great tit Blue tit 
z-value p-value z-value p-value 

Forest fragment surface area 0.715 0.474 0.961 0.337 
Eggshell bacterial load -2.262 0.024 1.562 0.118 
Enterobacteriaceae  -0.874 0.382 1.045 0.296 
Lactobacillus spp. 0.686 0.493 -0.082 0.935 
Firmicutes  1.39 0.165 1.729 0.839 
Bacteroidetes  1.23 0.219 -0.846 0.398 
Lysozyme -1.47 0.143 -1.492 0.136 
Avidin 0.037 0.970 0.170 0.865 
Ovotransferrin 0.438 0.662 0.877 0.380 
IgY 1.167 0.243 0.017 0.987 
Clutch size 1.149 0.250 -0.232 0.817 
Laying date -0.299 0.767 0.350 0.727 
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“We’re the only species that have crapped up the planet and the only species that can clean it up” 

 

In order to study the impacts of habitat fragmentation on microbial pressure and avian 

reproductive success, I have investigated the health status and microbial pressure of eggs and 

juveniles of great and blue tits along fragmentation gradients in Flanders. In the following 

section, we will discuss the major findings of this research, pinpoint the strengths and 

drawbacks of the thesis and formulate future perspectives. 

 

Salmonella Typhimurium in tits 
Three Salmonella Typhimurium DT99 and four Salmonella Typhimurium DT193 isolates 

were found on the eggs of great and blue tits inhabiting different forest fragments across our 

study area. From different nest boxes and study-plots, four fledglings harbored anti-Salmonella 

antibodies. The combination of these results suggests a low prevalence and widespread 

distribution of Salmonella Typhimurium in tit species without visible health related issues or 

reproductive problems (Chapter I), although this should be interpreted with care. When 

comparing to the prevalence of Salmonella Enteritidis, the most common serotype in laying 

hens in Europe (1.2%) (EFSA, 2016), the prevalence in the tit population is higher. This could 

be the result from preventive measure in laying hen flocks. 

The use of isolation methods in combination with serology (detection of IgG in fledgling 

blood) provides a more complete view of the actual Salmonella Typhimurium presence, since 

the isolation of the bacterium will depend on the excretion (which has been shown to be 

intermittent for Salmonella) (Connolly et al., 2006) and the serology provides information 

regarding previous contact with the bacterial agents (Hassan et al., 1991; Barrow, 1992; 

Wobeser 2006). However, since the blood was collected from fledglings that were 14-15 days 

of age, it is unsure whether the detected immunoglobulins are antibodies which originated from 

maternal passive transfer (Hamal et al., 2006; King et al 2010) or were endogenously produced 

by the fledgling (King et al., 2010). Most avian studies performed on maternal transfer of 

antibodies have been performed in chickens (e.g. Hassan et al., 1991; Barrow, 1992; Hamal et 

al., 2006), and extrapolation to other bird species is not always correct, as was demonstrated 

by King et al. (2010). They showed that house sparrows’ altricial young reached 

immunological independence earlier than precocial chicks, with maternal antibodies in altricial 

young having a shorter half-life (2,2 ± 0,25 days versus 3-7 days) and shorter persistence (8-9 
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days versus 14-21 days), although similar initiation for the de novo synthesis of 

immunoglobulins (3-6 days post hatching) was demonstrated for the chickens as well as the 

house sparrow offspring (King et al., 2010). Since great and blue tit nestlings are also altricial, 

it could be suggested that the detected antibodies in our study are endogenously produced 

antibodies. Nevertheless, species-specific tests should be performed to better understand the 

species differences in immunological investment, transfer of antibodies and start of de 

endogenous antibody production, which not only depend on the investigated species (King et 

al., 2010), but also on other factors such as the condition of the mother birds (Hargitai et al., 

2006) and the type and characteristics of the pathogen of interest (Barrow et al., 1992; Hamal 

et al., 2006; Staszewski et al., 2007). Furthermore, since I only tested one egg of the clutch and 

did not test the faeces of the offspring or parental birds nor the nest material for the presence 

of Salmonella, I could have missed positive eggs, birds or nests, and as such this prevalence 

could be an underestimation of the real Salmonella prevalence. 

In previous studies it has been suggested that environmental contamination with pathogenic 

bacteria, such as Salmonella Typhimurium, present a risk for wildlife for getting infected 

(Cízek et al., 1994; Andrés et al., 2013; Krawiec et al., 2015). Bird feeders in particular have 

been linked to the increased occurrence of Salmonella outbreaks in wild birds due to the 

aggregation of different bird species in high densities which enhances the faeco-oral contact 

(Brittingham and Temple, 1988; Pennycott et al., 2002 and 2010; Refsum et al., 2003; Hughes 

et al., 2010; Krawiec et al., 2015). Pigeons (Columba livia), also frequent visitors of bird 

feeders, have been shown to endemically carry Salmonella Typhimurium DT99, a host-adapted 

pigeon strain, in Belgium (Pasmans et al., 2003 and 2004). Since I cannot rule out that the tits 

in our study visited bird feeders in the neighboring environment (outside the forest fragments), 

it is possible that they came into contact with the host-adapted Salmonella Typhimurium DT99 

isolates. Unfortunately, I was unable to compare our DT99 strains to those isolated from 

pigeons using MLVA, as such no epidemiological link could be ascertained. No visible adverse 

health effects were detected in the nests where DT99 was recovered from eggshells (Chapter 

I), although previous studies have demonstrated mortality linked to DT99 in passerines 

(Refsum et al., 2002a; Rouffaer et al., 2016).  

Salmonella Typhimurium DT193, previously associated with salmonellosis in passerines 

(Lawson et al., 2011) could be hypothesized to have been acquired from the human waste. 

DT193 has previously been associated with human infections (Hampton et al., 1995; Hopkins 

et al., 2010; Brunelle et al., 2013; Wuyts et al., 2013), is present in pigs and poultry (Hopkins 
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et al., 2010; Parsons et al., 2013) and is one of the most encountered human phage types in 

Belgium (Wuyts et al., 2013). To test this assumption MLVA was performed, which 

demonstrated the distinctiveness between the human DT193 isolates and the ones from our tits, 

the latter clustering together and thus suggesting the presence of avian-adapted Salmonella 

Typhimurium in the tit species (Chapter I). In Belgium, only little research has focused on 

prevalence and effect of Salmonella on wild living birds (Pasmans et al., 2004; Haesendonck 

et al., 2016; Rouffaer et al., 2016). In tits, this is the first study demonstrating the presence of 

a possible host-adapted Salmonella Typhimurium in forest dwelling tit species (Chapter I). In 

Britain and other countries such as Norway, different studies have followed-up Salmonella 

Typhimurium outbreaks in passerines or have assessed the prevalence in apparently healthy 

passerines (Hughes et al., 2010; Lawson et al., 2010; Pennycott et al., 2002, 2006 and 2010; 

Refsum et al., 2002a and 2003). Some of the strains, which were isolated during these 

outbreaks, were considered passerine-adapted (DT40, DT56v) (Refsum et al., 2002b; Hughes 

et al., 2010; Lawson et al., 2011). Although adaptation of hosts and pathogens could reduce the 

overall pathogenicity of the pathogen through co-evolution (Anderson and May, 1982), host-

adaptation has been associated with systemic disease in the respective hosts (Faddoul et al., 

1965; Klemm et al., 2016), which have previously resulted in outbreaks in passerines (Hughes 

et al., 2010) and a declined reproductive success in pigeons (Faddoul et al., 1965). Despite the 

host-adaptive nature, spill-overs to humans have previously been observed with passerine-

adapted strains (Lawson et al., 2014).  

 

Microbial eggshell load and diversity - species specific maternal 

immune adaptations  

In this thesis I found that, despite the rather similar ecology of great and blue tit species, the 

comparison of eggs laid in comparable forest environments and in previously unused nest 

boxes, the eggshell bacterial load of great tits was higher than the one on the eggshells of blue 

tits. The relative microbial eggshell composition, however, was similar for both passerine 

species (Chapter II). Since none of the included variables in our models could explain the 

observed difference between great and blue tit eggshell microbial load, the reason for this 

difference can only be speculated on. Life history traits (e.g. nest sanitization efforts, the 

incubation onset, the type of nest materials used) (e.g. Cook et al., 2005a; Godard et al., 2007; 

Mennerat et al., 2009a and 2009b; Shawkey et al., 2009; Peralta-Sánchez et al., 2012; 
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Goodenough and Stallwood, 2010; Wang et al., 2011; Walls et al., 2012), climate (Cook et al., 

2003 and 2005b; Wang et al., 2011; Walls et al., 2012), nest orientation (e.g. Goodenough and 

Stallwoord, 2012) and individual differences in microbial communities of parental birds (e.g. 

Goodenough et al., 2017) could play a role in the bacterial exposure and community on the 

eggshells and subsequently the risk of trans-shell infections and reproductive success (Cook et 

al., 2003 and 2005a; Shawkey et al., 2009). When comparing blue and great tit nests, 

Goodenough and Stallwood (2010) also found a difference in microbial load as well as bacterial 

community between the two closely related species, although the bacterial load in the blue tit 

nests was found to be higher. Since the bacterial community of nests influences the eggshell 

bacterial load and diversity (Peralta-Sánchez et al., 2014; Ruiz-Castellano, 2016), I would have 

expected a higher bacterial load on the blue tit eggshells. This is in contrast with our results, 

although the use of culture methods (Goodenough and Stallwood, 2010) instead of molecular 

techniques (Chapter II) makes it difficult to properly compare the results since culture 

methods are known to highly underestimate the actual bacterial load and diversity (Amann et 

al., 1995). The use of aromatic plants with antimicrobial activities as nest lining material has 

previously (Mennerat et al., 2009a and 2009b; Goodenough and Stallwood, 2010) and in our 

study been observed in blue tit nests (Chapter II), nevertheless it has also been described in 

great tit nests although less well documented (Mainwaring, 2017). As such, it would be 

interesting to study the differences in behavioral adaptations between great and blue tits which 

they use to prevent microbial infections in detail.  

Despite the exposure of great tit eggs to a higher infection pressure, as a risk factor for 

hatching success, only a small reduction in hatching success was noticed. The increased 

transfer of IgY and lysozyme from the mother great tit to the egg yolk and albumen 

respectively, compared to the blue tit, could have contributed to the protection of the embryos. 

This was supported by the statistical analyses which showed that IgY allocation to the eggs 

was species specific, although not correlated with bacterial load (Chapter II). Whether or not 

this differential immune-transfer to the eggs could have evolved through natural selection is a 

matter of debate and would be interesting to further investigate.  

In our studies, I have investigated whether or not there were species-specific differences in 

immune-allocation of the best described and most abundant antimicrobial products in the egg 

content (lysozyme, avidin, ovotransferrin and immunoglobulin IgY (D’Alba and Shawkey, 

2015)). However, many other proteins are present in the egg content, for which the function is 

not yet understood (Mann, 2007; Mann and Mann, 2011; D’Alba and Shawkey, 2015). As such, 
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other antimicrobial proteins could be present in the egg content and potentially be affected by 

the environment or the species. Besides the antibacterial products, also the thickness and 

antimicrobial properties of the eggshell, the membranes and cuticle could be different between 

the two tit species or be affected by forest fragment characteristics (e.g. reduced eggshell 

thickness due to acidification (Graveland, 1996; Mänd et al., 2000a and b; Tilgar et al., 2005; 

Wuyts et al., 2008), which could be interesting to incorporate in further studies.  

Because of ethical considerations, only one egg (the fifth) per nest was investigated for the 

bacterial load, diversity, and presence of antimicrobial proteins and immunoglobulins. Since 

there are still many gaps in the knowledge on what influences the allocation of these 

antimicrobial products to the eggs and it is known that antimicrobial proteins and 

immunoglobulins can be distributed differentially within and between egg clutches (Blount et 

al., 2002; Saino et al., 2002; Hargitai et al., 2006; D’Alba et al., 2010), although this is not 

always the case and depends on the antimicrobial protein tested (Shawkey et al, 2008; D’Alba 

et al., 2010), I might have missed, over- or underestimated the correlation between the transfer 

of antibacterial products and the species specificity.   

Interestingly, despite the higher bacterial load on the eggshells of great tits, the relative 

composition of some important phyla (Firmicutes and Bacteroidetes), the Enterobacteriaceae 

family and the genus Lactobacillus, on the eggshell microbiota was similar for blue and great 

tit eggs (Chapter II). Nevertheless, the abundance of only two phyla (Firmicutes and 

Bacteroidetes <10%) was assessed, disregarding other phyla that have found to be abundant in 

the cloacal microbiota of passerine birds (e.g. Proteobacteria and Actinobacteria) (Teyssier et 

al., 2017). Since it has been suggested that the eggshell bacteria originate from the female 

cloaca (Ruiz-de-Castañeda et al., 2011a and b), it would be interesting to compare the eggshell 

microbiota to the cloacal microbiota of the parental birds. As was observed in other studies, 

Firmicutes were abundant in the cloacal microbiota of passerines (Garcia-Mazcorro et al., 

2017; Teyssier et al., 2018) and on the eggshells of the great and blue tits (Chapter II). 

Bacteroidetes have been shown to be one of the most important phyla in human microbiota 

(Arumugam et al., 2011), however they do not seem to be abundant in Passerine cloacal 

microbiota (<1%: Garcia-Mazcorro et al., 2017; Teyssier et al., 2018) or on the eggshells 

(<10%: Chapter II). The bacteria which represent this phylum and the function of this phylum 

in the avian microbiota is also not well understood (Garcia-Mazcorro et al., 2017). The family 

of the Enterobacteriaceae (Order: Enterobateriales; Class: Gammaproteobacteria; Phylum: 

Proteobacteria) and the genus Lactobacillus (Family: Lactobacillaceae; Order: 
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Lactobacillales; Class: Bacilli; Phylum: Firmicutes) have been chosen to be further 

investigated since many avian pathogenic bacteria belong to the former family (e.g. 

Escherichia coli, Salmonella spp., Y. pseudotuberculosis) (Pennycott et al., 2002; Cork et al., 

1999), and Lactobacillus spp. have been shown to decrease the number of pathogenic bacteria 

(such as Salmonella) in the intestines through the stimulation of butyrate-producing bacteria 

(Higgins et al., 2008; Onrust et al., 2015). Despite the identification and enumeration of these 

bacterial phyla and families, recent studies have shown that besides the composition of the 

microbiota, the function of this microbiota is important to understand the impact of 

environmental effects on host health (Teyssier et al., 2018) and functional genes within the 

microbiota can be linked to certain host properties (Arumugam et al., 2011).  

 

Impact of forest fragmentation and microbial pressure on avian 

reproductive success and juvenile health (and interactions) 

Fragmentation of suitable habitat can have immediate and long term effects on animal 

populations (Wilcox and Murphy, 1985; Rolstad, 1991; Saunders et al., 1991; Fischer and 

Lindenmayer, 2007). The population declines and extinctions of some species are the most 

obvious consequence from fragmentation, as the result of a reduction in carrying capacity in 

fragmented habitats. However, effects on faunal and floral biodiversity and density (Saunders 

et al., 1991; Andrén, 1997), the reproductive success of populations living in these fragments, 

and the effect of fragmentation on host-pathogen dynamics are under-investigated, despite their 

important effect on population dynamics (Saunders et al., 1991; McCallum and Dobson, 2002; 

Keesing et al., 2006; Daszak et al., 2010; Becker et al., 2015).  

Most research that investigates the effect of fragmentation on pathogen-prevalence in wild 

living avian populations has been performed on vector-borne diseases, and mostly in tropical 

zones (Ogrzewalska et al., 2010; Sehgal, 2010; Laurance et al., 2013). However, through the 

increasing human encroachment, pathogen pollution related to anthropogenic alterations is 

increasingly documented (Cunningham et al., 2003; Benskin et al., 2009; Andrés et al., 2013; 

Liang et al., 2015). For example, spreading of avian pathogens (e.g. enteropathogens, 

Mycoplasma gallisepticum, Trichomonas gallinae) through bird feeders are demonstrated to 

affect bird health and/or avian populations dynamics (Pennycott et al., 2002; Dhondt et al., 

2007; Lawson et al., 2012).  
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In order to increase the knowledge on the effect of habitat fragmentation on host-pathogen 

interactions in temperate forests, I have assessed the effect of forest fragmentation on the 

presence of an important avian pathogen (Salmonella Typhimurium) and on the reproductive 

success in relation to bacterial eggshell load, diversity and immune-allocation to the eggs, in 

two closely related passerine birds inhabiting various fragmented forests in Flanders, Belgium. 

Contrary to our expectations, habitat fragmentation did not explain any of the investigated 

variables (Chapter I and Chapter II).  

Following, I would like to discuss on the possible explanations for the lack of correlation 

and also on the interactions of the three factors.  

- Since I only focused on fragment size, some aspects of the health parameters (SMI) and 

of the reproductive success (hatching success) and only studied the tits during one breeding 

season, I could have missed the actual effects. Long term studies, including for example the 

effect of genetic diversity and density of different trophic levels (e.g. insect prey items versus 

blue and great tits) (Matthysen et al., 1995; Matthysen et al., 2001; Van de Casteele et al., 

2002), predators and stress (e.g. on health and immune-allocation) (Hargitai et al., 2006; 

Morosinotto et al., 2013), the accessibility of bird feeders (Benskin et al., 2009), presence of 

(non)infectious agents in the environment, decreased availability of essential micro-elements 

(Goosem, 2007; Wuyts et al., 2008), could show an effect on the egg- and offspring health, 

transfer of immunological substances to the eggs and/or reproductive success. 

- In Flanders, all the forest-fragments, even the larger ones, suffer from anthropogenic 

disturbance (Maelfait and Hendrickx, 1997; Bossuyt et al., 1999; De Keersmaeker et al., 2015). 

As such, the difference between the smallest and largest fragment may not be distinctive 

enough to demonstrate the difference using the data I have collected. In addition, even with a 

clear difference in size between the smallest fragment (1,31ha) and the largest fragment 

(83,77ha), the shape of the fragments could increase the edge-area and thus increase the edge 

effect and the likelihood of increased contact with anthropogenic waste outside the forest 

fragments (Saunders et al., 1991; Haddad et al., 2015). It would be interesting to assess the 

home range of all the investigated tits and to check whether or not they forage exclusively 

within the forest fragments, or whether they (occasionally) forage outside the forest borders.  

- The use of artificial nest may not reflect the natural level of nest predation and infection 

risks as they are considered to be safer and cleaner. 



General Discussion 
 

120 
 

-  Flanders is heavily fragmented and it is a process that has been going on for a long 

time. It is therefore possible that great and blue tits have been adapted to forest fragments.  

- With respect to Salmonella Typhimurium, no significant correlations between fragment 

size and the presence of Salmonella on the eggshell nor between the presence of Salmonella 

and the reproductive success were found. Possibly, the prevalence was too low to perform 

statistical analyses with enough power. As such this should be followed up in order to 

determine whether or not the pathogen prevalence is affected by fragmentation in Flanders. 

 

Future perspectives 

In general, it is difficult to accurately assess the effects of these (host adapted) Salmonella 

Typhimurium strains at the individual level (avian health) and the population level, especially 

since I could only monitor the reproductive success and the health of the offspring during one 

breeding season. Furthermore, the potential risk the isolated phage types pose to humans and 

other animals is currently unknown. Long term studies, covering all the seasons over multiple 

years, investigating individuals’ health, reproductive success and infection status 

(immunological and bacteriological) from all the age classes, using prevalence and incidence 

data are needed in order to more accurately assess the avian fitness and population effects in 

relation to Salmonella Typhimurium. 

An increased transfer of maternal protective antibacterial proteins (lysozyme) and 

immunoglobulins (IgY) to the eggs of great tits was observed, which most likely decreased the 

negative effect of the higher eggshell bacterial load on the eggs (i.e. risk of hatching failure) of 

great tits. It would be interesting to know how the blue tits manage to have lower bacterial 

eggshell loads compared to the great tits (with the focus on differences between the life history 

traits of these species). Do other factors which defend the egg-content, such as 

eggshell/membrane/cuticle thickness or antibacterial mechanisms within these layers differ 

between closely related avian species living in the same fragmented habitat? Also the in depth 

analysis of the bacterial composition on the eggshells, including the investigation of the 

microbial function would be interesting to assess the impact of eggshell the microbial 

community on the reproductive success. 

Although forest fragmentation did not seem to affect the health of the eggs and offspring or 

affect the reproductive success of the great and blue tits in our study area, our research was an 
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exploratory study and is a first step towards the understanding of the effect of forest 

fragmentation on avian health in temperate zones. The effects of habitat fragmentation are 

known to be complex and involve many factors. I only accounted for some characteristics of 

the fragments (fragment area-size), of the health parameters (SMI) and of the reproductive 

success (hatching success) and only performed a study covering one breeding season. Long 

term studies, including other factors such as the effect of the local and the surrounding 

environment (plant and animal diversity and density, intra- and interspecies interactions and 

the anthropogenic use of these environments), breeding close to or far from the fragment edge, 

plant and animal diversity in the fragment, access to bird feeders, density and diversity of insect 

prey items and/or predators, immigration and emigration of individuals, presence of (non)-

infectious agents, could all have an effect on the egg- and offspring health and, if logistically 

possible, should be included. Only by doing this, population effects of fragmentation might be 

investigated and contribution can be made to improve conservation policies. 
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Human encroachment of natural environments is placing a major pressure on natural 

ecosystems. Habitat alteration and destruction are some of the most important factors of the 

increasing (native) species loss across the world. One of these habitat alterations is the 

fragmentation of landscapes (e.g. forest fragmentation), which has major implications on all 

the organisms inhabiting these environments. Entire ecosystems can get imbalanced and 

besides the direct effect of habitat fragmentation (e.g. direct species loss), many indirect effects 

can affect the continued existence and dynamics of populations and forest communities. For 

example, the alterations in climatic conditions and floristics, in foraging and nesting habitats, 

in biodiversity and species density can alter the inter- and intraspecific interactions and 

increases the stress level of the animals. This in combination with altered host-pathogen 

interactions can change the disease occurrence and outcome. The understanding of these host-

pathogen interactions along a fragmentation gradient is of great importance to unravel the 

population dynamics in changing environments. 

One of these long term effects, which can have devastating effects on population-level, is 

the effect of habitat fragmentation and host-pathogen dynamics on the reproductive success of 

animals. Nevertheless, there is a lack of studies trying to understand if and how habitat 

fragmentation (environmental factor) affect the infection pressure (pathogen effect) and the 

host health and reproductive effect (host parameter) and if this effect differs between various 

species. 

In this thesis I have investigated the health status, reproductive success and infection 

pressure of apparently healthy great (Parus major) and blue (Cyanistes caeruleus) tits in 19 

mature deciduous forest fragments of Flanders, Belgium which differ in fragment surface area 

(Chapter I and II). I used great and blue tits as model species, since they are resident birds 

that inhabit fragmented forests of different sizes and readily breed into nest boxes, which makes 

it easier to study their reproductive success. 

During the first chapter I have focused on a well-known avian pathogen Salmonella enterica 

subspecies enterica serovar Typhimurium, which can be the cause of disease outbreaks and/or 

can have implications on the avian fitness and thus the reproductive success (e.g. increased 

hatching failure, retarded growth, reduced offspring survival). Therefore, I have sampled eggs 

for the presence of Salmonella Typhimurium, tested the fledglings for the presence of anti-

Salmonella antibodies and estimated their health status using the scaled mass index, as a proxy 

for body condition (Chapter I). 
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Using isolation methods and seroprevalence data, a low prevalence (± 7%) of Salmonella 

Typhimurium DT99 and DT193 was detected in great and blue tit populations originating from 

different forest fragments, suggesting an endemic Salmonella presence within a wide 

distribution range. None of the fledglings, which originated from a nest in which eggs positive 

for Salmonella were found, were positive for anti-Salmonella antibodies and no significant 

association between Salmonella Typhimurium presence on the eggshell and fledgling SMI 

could be detected. As DT99 is usually considered a pigeon adapted Salmonella Typhimurium 

phage type and circulates endemically in pigeon populations in Belgium, these birds could have 

been the source of infection for our tit species. Since DT193 on the other hand is usually 

associated with human infections, I have assessed the potential epidemiological relationship 

between the tit and human DT193 isolates. Multi-locus variable number tandem repeat 

analysis, using these tit-DT193 isolates in comparison with human isolates, revealed a clear 

distinction between the human and tit isolates, the latter clustering together. It seems therefore 

likely that the DT193 isolates in this study represent avian-adapted strains with a limited impact 

on host health, which allows host-pathogen co-existence and pathogen population maintenance 

in the tit species. However, despite the lack of observed disease, mortality or reproductive 

effects in the different tit species, and the potentially low impact on humans, changes in 

pathogen virulence, in environmental characteristics or in the hosts susceptibility can alter the 

co-existence towards disease outbreaks that have been described before with Salmonella 

Typhimurium (Chapter I).  

Besides the pathogenic bacteria, also opportunistic bacteria can affect the reproductive 

success. Microbial infections of the eggs (during the pre-hatching stage) and of the offspring 

(during the pre- and post-hatching stage) can lead to hatching failure, retarded growth of 

nestlings, mortality of the offspring, and thus lead to a reduced reproductive success. The 

infection risk has previously been linked to the bacterial load and/or the bacterial composition 

on the eggs, which can be influenced by life history traits of the species. Furthermore, female 

birds can allocate antibodies, and antibacterial proteins to the egg-content in order to protect 

the offspring against infections and to increase the overall reproductive success. In chapter II, 

I have compared great and blue tits and determined whether the bacterial load and microbial 

diversity, the immune investment and the hatching success differed between the two species. 

Furthermore, I have tested if the environmental factor “forest fragment size” is a driver for 

eggshell bacterial loads (Chapter II). 
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The eggshell bacterial load was found to be higher in eggs of great tit nests compared to 

blue tit nests. Despite this difference, the relative composition of the eggshell microbiota was 

the same between great and blue tits. The proportion of the family Enterobacteriaceae, the 

genus Lactobacillus, and the phyla Firmicutes and Bacteroidetes were similar for both tit 

species and are likely transmitted from the cloaca of the adult birds to the eggshells. Although, 

fragment area, egg volume, laying date and clutch size could not explain this species difference 

in microbial eggshell load, the use of different nest material (the use of aromatic plants with 

antimicrobial properties by blue tits) and differences in nest sanitization between the two 

species could explain the difference in microbial eggshell load (Chapter II). 

Not only the bacterial pressure differed between the two tit species, also the immune-

allocation to the eggs was found to be different between great and blue tits, with great tits 

significantly transferring higher concentrations of IgY and lysozyme to the egg yolk and 

albumen respectively. This immune-transfer was intrinsically linked to species of interest and 

not to the bacterial load as such, which indicates that the great tit embryos from our study are 

better protected against bacterial infection than the blue tit embryos (Chapter II).  

The hatching success of great tit eggs, as a measure of reproductive success, declined when 

the bacterial eggshell load increased, which suggests the negative effect of microbial pressure 

on hatching success. No such effect was noticed for the blue tit eggs. Nevertheless, despite the 

exposure of great tit eggs to a higher infection pressure, only a small reduction in hatching 

success was noticed. This is most likely due to the increased allocation of immune factors to 

the great tit eggs (Chapter II).  

Although our studies present interesting results related to potential host adaptation of 

Salmonella Typhimurium  DT193 to tit species (Chapter I), the different microbial exposure 

between great and blue tit eggs and the discrepant transfer of maternal immunity to the tit eggs 

in order to increase the offspring survival (Chapter II), future research is necessary to better 

understand the life history traits driving these discrepancies and the long term population 

impact of host-adapted Salmonella Typhimurium strains in wild living birds.
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 De mens oefent een steeds grotere druk uit op de natuur en heeft een grote invloed op 

natuurlijke ecosystemen en biodiversiteit. Veranderingen van de natuurlijke leefomgeving en 

habitat destructie zorgen voor afname van (inheemse) soortenaantallen of zelf het uitsterven 

van soorten wereldwijd. Een belangrijke verandering van de natuurlijke leefomgeving is 

landschapfragmentatie, zoals bosfragmentatie, wat een enorme impact heeft op alle organismen 

die in deze omgeving te vinden zijn. Het evenwicht in deze ecosystemen verdwijnt en naast de 

directe effecten van habitatfragmentie (bv. soortenverlies) zijn er tal van indirecte effecten die 

ook een invloed kunnen uitoefenen op het voortbestaan van populaties. Bijvoorbeeld 

klimaatveranderingen, veranderingen in flora, nestgelegenheid, foerageergebieden en 

soortendensiteit en het verlies van biodiversiteit kunnen de inter- en intraspecifieke interacties 

beïnvloeden en het stressgehalte van een dier verhogen. Dit op zijn beurt kan leiden tot 

veranderingen in kiem-gastheerinteracties, waardoor de ziektedynamiek beïnvloed kan 

worden. Om meer inzicht te krijgen in populatiedynamiek in veranderende omgevingen is het 

dus ook van groot belang om de invloed van habitatfragmentatie op kiem-gastheerinteracties 

na te gaan.   

 

Eén van de langetermijneffecten die een zware impact kan hebben op populatieniveau is het 

effect van habitatfragmentatie en kiem-gastheerdynamiek op het reproductief succes van het 

dier. Tot op vandaag zijn er echter weinig studies die proberen na te gaan of, en hoe, 

habitatfragmentatie (omgevingsfactor) een invloed heeft op de infectiedruk (pathogeen effect) 

en de gezondheid van de gastheer (gastheerparameter) en of dit varieert tussen verschillende 

soorten.  

 

In deze thesis hebben we de gezondheidsstatus, het reproductief succes en de infectiedruk 

van schijnbaar gezonde koolmezen (Parus major) en pimpelmezen (Cyanistes caeruleus) 

onderzocht in 19 mature loofbosfragmenten in Vlaanderen, België, die variëren in fragmentatie 

(Hoofdstuk I en II). We hebben gekozen voor kool- en pimpelmezen als modelsoort omdat 

deze vogels vaak in onze gebieden terug te vinden zijn, ze voorkomen in gefragmenteerde 

bossen van verschillende groottes en ze gemakkelijk broeden in nestkasten, wat het voor ons 

gemakkelijker maakt om hun reproductief succes op te volgen.  

 

In het eerst hoofdstuk van deze thesis hebben we ons gefocust op een gekend 

vogelpathogeen, namelijk Salmonella enterica subspecies enterica serovar Typhimurium, wat 

de oorzaak kan zijn van ziekte-uitbraken en/of een invloed kan hebben op de gezondheid van 
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het dier en ook het reproductief succes (bv. een verhoogde uitval van eieren, vertraagde groei 

en een daling in de overleving van nestjongen). Om de aanwezigheid en het effect van 

Salmonella Typhimurium na te gaan, werden eieren van kool-en pimpelmezen gesampled, 

werd het bloed van juveniele mezen onderzocht op de aanwezigheid van anti-Salmonella 

antilichamen en werd de “scaled mass index” bepaald als indicator voor de gezondheidsstatus 

van de dieren (Hoofdstuk I).  

Salmonella Typhimurium DT99 en DT193 werden met een lage prevalentie (± 7%) 

gedetecteerd in nesten van kool-en pimpelmezen afkomstig van verschillende bosfragmenten. 

Deze gegevens suggereren een endemische aanwezigheid van Salmonella en een groot 

verspreidingsgebied. De juveniele dieren waar anti-Salmonella antilichamen gedetecteerd 

werden, waren niet afkomstig van een nest waar Salmonella op de eischaal gedetecteerd werd. 

Daarenboven werd er geen significante associatie waargenomen tussen de aanwezigheid van 

Salmonella op de eischaal en de scaled mass index van de juveniele vogels. Salmonella 

Typhimurium faagtype DT99 wordt beschreven als een duif-geadapteerd faagtype en dit 

circuleert endemisch binnen duivenpopulaties in België. Het is dus ook hoogstwaarschijnlijk 

dat duiven een bron van infectie geweest zijn voor de kool-en pimpelmezen. Salmonella 

Typhimurium faagtype DT193 is een faagtype dat vaak geassocieerd wordt met humane 

infecties. Hierdoor hebben we de potentiële epidemiologische relatie tussen humane DT193 en 

onze mees isolaten onderzocht via “multi-locus variable number tandem repeat” analyse. Deze 

analyse toonde aan dat er een duidelijk verschil is tussen de humane isolaten en de mees 

isolaten, die duidelijk samen groeperen. Alles wijst er dus op dat de DT193 isolaten die in deze 

studie geïsoleerd werden, vogel-geadapteerde stammen zijn die geen risico vormen voor de 

mens, en die slechts een minimale impact hebben op de gezondheid van de kool- en 

pimpelmezen. Er ontstaat een kiem-gastheer co- existentie. Ondanks de lage impact op de mens 

en het gebrek aan duidelijke ziektebeelden, sterfte en een effect op het reproductief succes, 

kunnen veranderingen in pathogeniciteit, omgevingsfactoren of gastheergevoeligheid deze co- 

existentie beïnvloeden richting ziekte-uitbraken die in het verleden reeds beschreven zijn voor 

Salmonella Typhimurium (Hoofdstuk I).  

Naast pathogene bacteriën, zoals Salmonella, kunnen ook opportunistische bacteriën een 

effect hebben op het reproductief succes van vogels. Infecties van de eieren (tijdens het 

uitbroeden) of van nestjongen (tijdens het uitbroeden en na het uitkomen van het ei) kunnen 

leiden tot uitval van eieren, vertraagde groei van de nestjongen, sterfte, en kunnen dus een 

effect hebben op de voortplanting van vogels. Het risico op infectie werd in het verleden gelinkt 
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aan de hoeveelheid bacteriën en/of de samenstelling van bacteriën aanwezig op eieren, wat 

beïnvloed kan worden door de levenswijze van de vogelsoort. Om de kans op infectie te 

reduceren, kunnen vrouwelijke vogels antilichamen en antibacteriële eiwitten transloceren naar 

de ei-inhoud. In hoofdstuk II hebben we de bacteriële hoeveelheid en samenstelling bepaald 

van eieren van kool-en pimpelmezen. Daarenboven werd nagegaan of de hoeveelheid 

antilichamen en antibacteriële eiwitten in de eieren en het broedsucces verschillen tussen kool- 

en pimpelmezen. Tevens werd nagegaan of bosfragmentatie leidt tot hogere bacteriële 

aantallen.  

De hoeveelheid bacteriën aanwezig op de eischaal bleek significant hoger te zijn in 

koolmezen t.o.v. pimpelmezen. Ondanks het verschil in hoeveelheid, bleek de relatieve 

compositie van de eischaal microbiota gelijk te zijn tussen deze twee vogelsoorten. De 

proportie van de Enterobacteriaceae familie, het genus Lactobacillus, en de phyla Firmicutes 

en Bacteroidetes was gelijk en de bacteriën die hiertoe behoren worden heel waarschijnlijk 

getransloceerd vanuit de cloaca van de volwassen vogel naar de eischaal. Het verschil in de 

hoeveelheid bacteriën kon niet verklaard worden door bosfragmentatie, ei volume, legdatum 

en nestgrootte. Het gebruik van verschillend nestmateriaal (aromatische planten met 

antimicrobiële eigenschappen bij pimpelmezen) en een verschillend schoonmaakgedrag 

kunnen (deels en suggestief) het verschil in microbiële lading van het ei verklaren (Hoofdstuk 

II).  

Niet alleen de bacteriële druk, maar ook de verdeling van immuunfactoren verschilde tussen 

de twee vogelsoorten. Koolmezen transloceren significant meer IgY en lysozyme naar de 

eidooier en het eiwit, respectievelijk. Deze immuunoverdracht bleek intrinsiek gelinkt aan de 

vogelsoort, wat erop wijst dat embryo’s van koolmezen beter beschermd zijn dan deze van 

pimpelmezen (Hoofdstuk II).  

Het broedsucces van koolmezen, als een indicator voor reproductief succes, daalde wanneer 

de microbiële lading op de eischaal groter werd. Dit suggereert een negatief effect van de 

microbiële druk op het broedsucces. Dit werd niet waargenomen bij pimpelmezen. De daling 

in het broedsucces bleek echter minimaal te zijn, mogelijks doordat de eieren van koolmezen 

sterker beschermd zijn door immuunfactoren (Hoofdstuk II).   

Samengevat tonen deze studies aan dat Salmonella Typhimurium DT193 potentieel 

gastheer-geadapteerd is voor mezensoorten (Hoofdstuk I) en dat ondanks het feit dat kool- en 

pimpelmezen heel erg gelijkend zijn op elkaar, er toch verschillen zijn in pathogeen druk. De 
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microbiële lading op eieren van koolmezen is hoger, maar ze zijn meer beschermd met IgY en 

lysozyme, waardoor er slechts een minimaal effect op het reproductief succes wordt 

waargenomen (Hoofdstuk II). Er is echter verder onderzoek nodig om meer inzicht te krijgen 

in de kenmerken (levenswijze) die deze verschillen veroorzaken en om de langetermijnimpact 

van gastheer-geadapteerde Salmonella Typhimurium stammen te bepalen op populaties van 

wilde vogels. 
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