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Abstract

This paper considers an M/G/1 queue with the following vacation discipline. The server
takes a vacation as soon as it has served a certain amount of work since the end of the previous
vacation. If the system becomes empty before the server has completed this amount of work, then
it stays idle until the next customer arrival and then becomes active again. Such a vacation
discipline arises, for example, in the maintenance of production systems, where machines or
equipment mainly degrade while being operational.

We derive an explicit expression for the distribution of the time it takes until the prespecified
amount of work has been served. For the case the total amount of work till vacation is expo-
nentially distributed, we derive the transforms of the steady-state workload at various epochs,
busy period, waiting time, sojourn time, and queue length distributions.

1 Introduction

Queueing systems with vacations have been studied extensively [7, 20, 21] and have applications in
a wide range of areas. Many vacation policies have been studied in literature, such as exhaustive,
gated, number-limited and time-limited service. In the exhaustive case, the server initiates a
vacation when the system becomes empty, whereas in the gated case, it starts a new vacation when
all customers that were present at the end of the previous vacation have been served. In number-
limited systems, a vacation is initiated when the server has served a predetermined number of
customers or when the system becomes empty. Similarly, in time-limited systems [12, 16, 17], a
vacation starts when the server has served a predetermined amount of time or when the system
becomes empty.

In queueing theory, the objective is to characterize performance measures of a system in terms
of descriptive parameters. In the context of manufacturing systems, queueing models are often used
to predict the work in process (WIP) and lead time in terms of the customer demand (arrival rate),
processing speed (service rate), etc. (see e.g. [4, 10, 19]). In this case vacations typically describe
sharing of resources (machines, tools, operators, etc.) among production processes. For example,
from the point of view of the production process of a specific part type, a vacation of a machine
may correspond to, e.g., the processing of another part type. Several production scheduling policies
exist and these are often modelled by exhaustive, gated, number-limited or time-limited service.
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Vacations can also be used to model maintenance activities in manufacturing systems. During
such a vacation, the machine is not working, because it is being maintained, either preventively
or correctively. Maintenance activities in manufacturing systems are usually modelled as single
vacations after time-limited service: after some time of processing has elapsed, maintenance is
carried out, either because the machine has failed or because preventive maintenance is planned
(see e.g. [6, 8, 15, 22]). However, time-limited service is not always an adequate model to describe
maintenance activities. Stoppages resulting in corrective maintenance may only occur when the
machine is running. In addition, preventive maintenance policies can also be usage-based, because
machine tools deteriorate while being used and not while being idle. Boring equipment and roller
bearings, for instance, degrade while being operational, due to friction forces. Usage-based preven-
tive maintenance policies schedule maintenance after the machine has been used for some time (see
e.g. [23, 11, 18, 2]). Such policies keep track of the operational hours, and maintenance is carried
as soon as the threshold for the operational hours has been reached.

To the best of our knowledge, no vacation queueing models exist that adequately model main-
tenance activities that are not triggered by time but by actual usage of a machine. The objective
of this paper is to develop such a model. To incorporate this usage-based maintenance feature, we
introduce a new vacation queueing system with modified time-limited service. We study a system
where the server starts a vacation when a predetermined amount of work distributed like A has
been completed since the most recent service initiation. If the system becomes empty beforehand,
then no vacation is initiated, that is, the server remains idle and begins serving the next arriving
customer as soon as it arrives. Hence, the system alternates between single vacations and visit
periods during which an amount of work distributed like A is completed.

This paper is in some respects a companion paper of [1], where the server takes a vacation if it
has served a random number N of customers, staying idle in the queue when the system becomes
empty before N customers have been served. In [1], the following expressions were established: the
joint transform of the length of a visit period and the number of customers in the system at the
end of that period, the generating function of the number of customers at a random instant and
the Laplace-Stieltjes transform of the delay of a customer. The key idea was to exploit a link with
a result from Cohen [5] about the transient behavior of the queue length at customer departure
epochs in an ordinary M/G/1 queue and to apply contour integration and the Fuhrmann-Cooper
decomposition. In the present paper, however, the server goes on vacation after having served
an amount of work. This is better suited for modelling the work in process at a machine that is
maintained after having worked a prespecified amount of time.

We consider various performance measures for the vacation model under consideration. We
determine the distribution of the total time until a certain amount of work x has been served, first
when starting in an empty system and subsequently when starting from a workload level z > 0
(this total time may also include idle periods). We then use this result to determine the total time
until a random amount of work distributed like A has been served, starting from some workload
level z.

From then on, we focus on the case where A ∼ exp(µ). The memoryless property of the expo-
nential distribution allows us to establish a link between the vacation model under consideration
and two other M/G/1 queues (referred to as Model I and Model II). Model I is an M/G/1 queue
with two types of customers; the first type corresponds to the customers in the vacation queue
under consideration, and the second type arrives according to a Poisson process with rate µ and
has service requirements corresponding to the total amount of work that arrives during a vacation
of the original system. Model II has the same Poisson arrival process as the vacation model under
consideration, but extended service requirements: an extended service time consists of an ordinary
service time of the vacation model plus all the vacations which interrupt that service time. The
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relation with Model I allows us to determine the steady-state workload distribution of the original
model. The relation with Model II allows us to determine the steady-state busy period, waiting
time, sojourn time and queue length distribution. In the case of workload, we also distinguish
several time epochs, deriving the workload transform at the beginning of a vacation, at the end of
a vacation, and at an arbitrary epoch.

The paper is organized as follows. In Section 2 we provide a detailed model description. Sec-
tion 3 focuses on the time it takes to serve a fixed amount of work x, or a random amount of work
distributed like A. We use some of the ideas of that section in Section 4 to derive an expression for
the Laplace-Stieltjes transform of the workload at the beginning of a vacation. Triggered by the
remarkable and quite suggestive form of this transform, we relate our queueing model to Model I
mentioned above, with two types of customers. The steady-state workload at an arbitrary epoch
can also be obtained via this analogy, but this requires a less straightforward approach; it is pre-
sented in Section 5. In Section 6 we outline the relation to Model II and exploit it to derive exact
expressions for the transforms of busy period, waiting time, sojourn time and queue length. Finally,
Section 7 concludes the paper and sketches a framework for formulating optimization problems.

2 Model description

We consider an M/G/1 queue with arrival rate λ and service requirements B1, B2, . . . which are
independent and identically distributed (i.i.d.). The special feature of the model is its vacation
mechanism. The server takes its ith vacation as soon as it has served (i.e., has been active) exactly
Ai amount of work since the end of the previous vacation. These active periods Ai, i = 1, 2, . . . ,
are i.i.d. We also assume successive vacation lengths V1, V2, . . . to be i.i.d. If the system becomes
empty between two successive vacations, the server stays in the system, remaining idle until another
customer arrives. Furthermore, when the server returns from a vacation and finds the system
empty, it also waits until a customer arrives. The server hence alternates between vacations and
periods which we call visit periods, during which it serves a random amount of work. We assume
independence between interarrival times, service times, active periods and vacation times. Finally,
A,B, V denote generic active periods, service times and vacations, and the distribution of a random
variable X will be denoted by FX(·), while F̄X := 1−FX . The behaviour of the system is illustrated
in Figure 1.

B1

B2 V1 V2

V3

A1 A2 A3 A4

Figure 1: Illustration of the behaviour of the system.
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3 Time until the cumulative busy time reaches some level

We start by assuming that the system is initially empty (this will be relaxed soon). Let θ, θ1, θ2, . . .
be i.i.d. random variables distributed like a busy period in an M/G/1 queue and let Nθ(·) be the
associated renewal counting process. Then Nθ(x) is distributed like the number of busy periods
completed until the server has been busy x time units. If e, e1, e2, . . . are i.i.d. with e ∼ exp(λ),
independent of the busy period and En :=

∑n
i=1 ei (with E0 = 0) then, as initially there is an idle

time (since the system starts empty), the total idle time until the server was busy for x units of
time is distributed like ENθ(x)+1 and thus has the transform

Ee−αENθ(x)+1 = E

(

λ

λ+ α

)Nθ(x)+1

. (1)

Since P (Nθ(x) = n) = F ∗n
θ (x)− F

∗(n+1)
θ (x), where Fθ(·) has the distribution of θ and F ∗n

θ (·) is its
nth-fold convolution, it is easy to check that for any 0 < u < 1 we have that (as for any renewal
counting process),

EuNθ(x)+1 =

∞
∑

n=0

un+1(F ∗n
θ (x)− F

∗(n+1)
θ (x)) = 1−

∞
∑

n=0

(1− u)unF ∗n
θ (x) .

It is interesting to note that (again, as for any renewal process) if Θn :=
∑n

i=1 θi (with Θ0 = 0)
and ν(u) + 1 ∼ Geometric(1− u) and is independent of everything else, then the right side can be
written as P (Θν(u) > x).

If A ∼ exp(β) and is independent of everything else, then clearly EF ∗n
θ (A) = P (Θn ≤ A) =

Ee−βΘn = (Ee−βθ)n so that

EuNθ(A)+1 = 1−
1− u

1− uEe−βθ
.

When we insert u = λ
λ+α we have, due to (1), that

Ee−αENθ(A)+1 =
λ(1− Ee−βθ)

λ(1− Ee−βθ) + α
, (2)

so that ENθ(A)+1 ∼ exp(λ(1 − Ee−βθ)). If this is all we wanted to obtain then we could have
deduced this from the following basic argument. Due to the memoryless property Nθ(A) + 1 ∼
Geometric(P (A ≤ θ)) and thus ENθ(A)+1 ∼ exp(λP (A ≤ θ)) where we finally note that P (A ≤

θ) = 1− Ee−βθ. Note that we now have an explicit formula for the double transform
∫ ∞

0
e−βx−αENθ(x)+1dx =

Ee−αENθ(A)+1

β
.

If the initial workload is some z > 0 rather than zero, then there is no initial idle time and we
replace Nθ(·) by a delayed renewal counting process N z

θ (x) where θ1 is distributed like θz: the time
until the system empties and θ2, θ3, . . . are distributed like θ. It is well known that

Ee−αθz = e−(α+λ(1−Ee−αθ ))z ,

and in particular if B is distributed like the service time and is independent of everything else, then
θB ∼ θ. Here the total idle time until the server has been busy for x time units is distributed like
ENz

θ (x)
and similar arguments lead to

Eu
ENz

θ
(x) = 1−

∞
∑

n=0

(1− u)unF ∗n
θ ∗ Fθz(x) .
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As for the case where z = 0, we can either directly or by applying the memoryless property obtain
that when A ∼ exp(β) then

Ee
−αENz

θ
(A) = 1− Ee−βθz + Ee−βθz λ(1− Ee−βθ)

λ(1− Ee−βθ) + α
. (3)

That is, with probability P (θz ≥ A) = 1−Ee−βθz there are no idle times and hence the conditional
transform is 1 and with probability P (θz < A) = Ee−βθz the conditional transform of the total idle
time is like the one starting from an empty system. Note that when z = 0 then (3) reduces to (2)
and that also here we have an explicit expression for the double transform

∫ ∞

0
e
−βx−αENz

θ
(x)dx =

Ee
−αENz

θ
(A)

β
.

Since the time until the server is busy for x time units is distributed like τ zx = x + ENz
θ (x)+1, we

can insert α+ β instead of β to obtain the double transform of this time resulting in

∫ ∞

0
e−βx

Ee−ατzxdx =
1

α+ β

(

1− Ee−(β+α)θz + Ee−(β+α)θz λ(1− Ee−(β+α)θ)

λ(1− Ee−(β+α)θ) + α

)

, (4)

or equivalently, if A ∼ exp(β) then

Ee−ατzA =
β

α+ β

(

1− Ee−(β+α)θz + Ee−(β+α)θz λ(1− Ee−(β+α)θ)

λ(1− Ee−(β+α)θ) + α

)

. (5)

Remark 1. If A ∼ H(p1, . . . , pK , µ1, . . . , µK) (hyper-exponential), then one can take a weighted
sum of terms as appearing in (5), with β replaced by µi. If A ∼ Erlang(n, µ), then

Ee−ατzA =
µn

(n− 1)!

∫ ∞

0
xn−1e−µx

Ee−ατzxdx =
(−1)n−1

(n − 1)!
µn dn−1

dµn−1

∫ ∞

0
e−µx

Ee−ατzxdx

and in principle one can obtain an expression for Ee−ατzA by differentiating (4).

4 The workload at the end of a visit period

In this section we consider Z+, the workload at the end of a visit period, that is the workload at
the beginning of a vacation. We assume from now on that A ∼ exp(µ).

We first consider the case where the visit starts at workload level z. Let W z
t be the workload

at time t when the process starts from z at time 0 and Xt :=
∑N(t)

i=1 Bi − t is the net input process.
Recall the definition of τ zx and θz from Section 3. Then τ zA is the length of the first visit.

If A > θz, then at time θz the workload hits zero and, after an exponentially distributed idle
time, jumps by a random amount distributed like B. Due to the memoryless property of A and
the Markov property of W z

t , the conditional distribution of WτzA
given that A > θz is the same as

the distribution of Y B = WB
τBA

.

If A ≤ θz, then the conditional distribution of WτzA
is the same as the conditional distribution

of z +XA given that A ≤ θz. Let Y z have this distribution. Then,

W z
τzA

∼ (1− I)Y z + IWB
θBA

, (6)
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where I, Y z, Y B are independent random variables with I ∼ 1{A>θz}. By substituting z = B in

(6), it is an easy exercise to show that WB
θBA

has the conditional distribution of B +XA given that

A ≤ θ = θB. Namely it is distributed like Y B and (6) becomes

W z
τzA

∼ (1− I)Y z + IY B .

Thus, we wish to identify
E[e−αY z

] = E[e−α(z+XA)|A ≤ θz] .

First, note that

P(I = 1) = P(A > θz) = Ee−µθz = e−(µ+λ(1−Ee−µθ ))z .

Denote
ϕ(α) = logEe−αX1 = α− λ

(

1− Ee−αB
)

,

then, it is well known and easy to check that ϕ(µ+ λ(1−Ee−µθ)) = µ, so that µ+ λ(1−Ee−µθ) =
ϕ−1(µ) and in particular, that Ee−µθ = Ee−ϕ−1(µ)B . Moreover,

Ee−α(z+XA) = e−αz
Eeϕ(α)A = e−αz µ

µ− ϕ(α)
.

Due to the memoryless property of A and the Markov property of X,

E

[

e−α(z+XA)|A > θz
]

= Ee−αXA =
µ

µ− ϕ(α)
.

Clearly,

Ee−α(z+XA) = P(I = 0)E
[

e−α(z+XA)|A ≤ θz
]

+ P(I = 1)E
[

e−α(z+XA)|A > θz
]

,

and thus

Ee−αY z
= E

[

e−α(z+XA)|A ≤ θz
]

=
e−αz − e−ϕ−1(µ)z

1− e−ϕ−1(µ)z

µ

µ− ϕ(α)
,

and similarly

Ee−αY B
= E

[

e−α(B+XA)|A ≤ θ
]

=
Ee−αB − Ee−ϕ−1(µ)B

1− Ee−ϕ−1(µ)B

µ

µ− ϕ(α)
,

for 0 ≤ α < ϕ−1(µ). Thus, using (6),

Ee
−αW z

τz
A =

(

e−αz − e−ϕ−1(µ)z
) µ

µ− ϕ(α)
(7)

+e−ϕ−1(µ)z Ee
−αB − Ee−ϕ−1(µ)B

1− Ee−ϕ−1(µ)B

µ

µ− ϕ(α)

=

(

e−αz − e−ϕ−1(µ)z 1− Ee−αB

1− Ee−ϕ−1(µ)B

)

µ

µ− ϕ(α)

=

(

e−αz − e−ϕ−1(µ)z α

ϕ−1(µ)

Ee−αBe

Ee−ϕ−1(µ)Be

)

µ

µ− ϕ(α)
,

where Be has the stationary residual life distribution associated with B, that is, with density
(1− FB(·))/EB.
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We have thus obtained the LST of the workload at the end of a visit period, when starting that
visit period with an amount of work z. By adding the amount of work that enters in the subsequent
vacation, we express the LST of the workload at the start of a visit period in terms of the workload
at the start of the previous visit period. We can thus derive the steady-state workload distribution
in our M/G/1 queue with vacations, at the beginning of an arbitrary vacation (i.e., the end of a
visit period), and then also at the end of a vacation (i.e., the beginning of a visit period). Let Z+

be the steady-state workload at the beginning of an arbitrary vacation, and Z− the steady-state
workload at the end of an arbitrary vacation. We make the following two observations. First,

Z− ∼ Z+ + U ,

where Z+, U are independent and

U =

Nλ(V )
∑

i=1

Bi (8)

denotes the amount of work that enters in an arbitrary vacation, with Nλ(V ) being the number
of (Poisson with rate λ) arrivals during a vacation V , with an empty sum being equal to zero.
Therefore,

Ee−αZ− = Ee−αZ+Ee−λ(1−Ee−αB)V . (9)

Second, in steady state the workloads at two successive vacation beginnings should have the same
distribution:

Ee−αZ+ = E exp

(

−αW
Z−

τ
Z−
A

)

.

In combination with (7) and (9) this yields a relation involving Ee−αZ+ on both sides:

Ee−αZ+ =

(

Ee−λ(1−Ee−αB)V
Ee−αZ+ − Ee−λ(1−Ee−ϕ−1(µ)B)V

Ee−ϕ−1(µ)Z+
α

ϕ−1(µ)

Ee−αBe

Ee−ϕ−1(µ)Be

)

µ

µ− ϕ(α)
,

and thus

Ee−αZ+ [1−
µ

µ− ϕ(α)
Ee−λ(1−Ee−αB)V ]

= −Ee−λ(1−Ee−ϕ−1(µ)B)V
Ee−ϕ−1(µ)Z+

µ

µ− ϕ(α)

α

ϕ−1(µ)

Ee−αBe

Ee−ϕ−1(µ)Be
.

Hence, with C some constant,

Ee−αZ+ = C
α

ϕ(α) − µ(1− Ee−λ(1−Ee−αB)V )
Ee−αBe .

Letting α ↓ 0 determines the normalizing constant: C = ϕ′(0) + µEV λEB, so

Ee−αZ+ =
(1− ρ(1 + µEV ))α

ϕ(α) − µ(1− Ee−λ(1−Ee−αB)V )
Ee−αBe . (10)

Finally the LST of the steady-state workload at the end of a vacation, Z−, follows from (10) and (9).
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The form of the LST of Z+ in (10) is quite interesting. It is the product of two LSTs of positive
random variables. The second one obviously is a residual service time Be. To analyze the first LST,
we rewrite it as follows, introducing ρu := µEU = µλEBEV :

(1− ρ(1 + µEV ))α

ϕ(α) − µ(1− Ee−λ(1−Ee−αB)V )
=

(1− ρ− ρu)α

α− λ− µ+ (λ+ µ)( λ
λ+µEe

−αB + µ
λ+µEe

−λ(1−Ee−αB)V )
.

This is the Pollaczek-Khintchine formula for the LST of the waiting time, or workload, in an
ordinary M/G/1 queue where the input is the sum of two compound Poisson processes. The first
is the original compound Poisson process with arrival rate λ and jumps distributed like B. The
second has arrival rate µ and jumps distributed like U (cf. (8)). Put differently, this is the input
process of some M/G/1 queue with arrival rate λ+ µ and service time distribution

λ

λ+ µ
FB(·) +

µ

λ+ µ
FU (·) .

In Section 1 we referred to this M/G/1 queue as Model I. In conclusion, we have

Z+ ∼ ZI +Be ,

with ZI the steady-state workload in model I.

5 The workload at an arbitrary epoch

In this section we consider the steady-state workload, at an arbitrary epoch, for the M/G/1 queue
with vacations and exp(µ)-distributed active periods. Our approach will be to take a weighted av-
erage of the workloads during vacations, busy periods and idle periods (the workload then trivially
is zero).

(i) The workload process Zv(t) restricted to vacations
It can be readily observed that the steady-state workload Zv restricted to vacations is distributed
like

Zv ∼ Z+ + Ue , (11)

with Ue the amount of work that has arrived during the elapsed vacation time, that is

Ue :=

Nλ(Ve)
∑

i=1

Bi ,

with Ve the elapsed vacation time. The LST of Ue reads (see e.g. Theorem 3.2 of [13]):

Ee−αUe =
1− Ee−λ(1−Ee−αB)V

λ(1− Ee−αB)EV
= Ee−λ(1−Ee−αB)Ve . (12)

The combination of (11) and (12) yields

Ee−αZv = Ee−αZ+
1− Ee−λ(1−Ee−αB)V

λ(1− Ee−αB)EV
. (13)
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(ii) The workload process Zb(t) restricted to busy periods
As during busy periods vacations are generated according to a Poisson process with rate µ, the
PASTA property states that the workload at the start of a vacation has the same distribution as
the workload at an arbitrary epoch of a busy period:

Zb ∼ Z+ . (14)

Remark 2. The distribution of Zb can also be established alternatively by linking Zb(t) to the
virtual waiting time in model I. This is elaborated upon in Appendix A.

The stability condition for thisM/G/1 queue without vacations and idle periods is λEB+µEU =
ρ + ρu < 1, as this is the condition that the workload hits zero after a finite expected amount of
time starting from any initial level having a finite expectation (this is in fact true in general for
Lévy processes with no negative jumps and a negative mean). Therefore, this is also the stability
condition for the M/G/1 queue under consideration in this paper, viz., the M/G/1 queue with
vacations and exp(µ) active periods.

(iii) The workload process restricted to idle periods
During idle periods the workload is zero.

In order to identify the complete stationary distribution Z we need to compute the fractions of
time the process spends in each state (busy/vacation/idle) and take the corresponding mixture.
First, a standard balancing argument gives

ρ = P[busy] =P[busy|not idle] (1− P[idle]) . (15)

The process restricted to not being idle alternates between busy (mean length 1/µ) and vacation
(mean length E [V ]). Hence,

P[busy|not idle] =

1
µ

1
µ + EV

=
1

1 + µE [V ]
. (16)

Combining (15) and (16) yields

P[idle] =1− ρ(1 + µE [V ])

=1− ρ− µλE [B]E [V ]

=1− ρ− µE [U ]

=1− ρ− ρu . (17)

Finally,

P[vacation] = 1− (1− ρ− ρu)− ρ = ρu . (18)

Combining (15), (17), (18), (13), (14) and (10) we find after some straightforward manipulations:

Theorem 1. The steady-state workload Z in the M/G/1 queue with vacations and exp(µ)-distributed
active periods has the following LST:

Ee−αZ =(1− ρ− ρu)

[

1 +
ρEe−αBe + ρuEe

−α(Be+Ue)

1− (ρ+ ρu)Ee−αGe

]

=
1− ρ− ρu

1− (ρ+ ρu)Ee−αGe

[

1− ρuEe
−αUe(1− Ee−αBe)

]

,
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where,

Ee−αGe :=
1− Ee−αG

αEG
=

ρEe−αBe + ρuEe
−αUe

ρ+ ρu
,

with

EZ =
ρ+ ρu

1− ρ− ρu
EGe + ρuEBe ,

and

EGe =
ρ

ρ+ ρu
EBe +

ρu
ρ+ ρu

λEBEVe =
ρEBe + ρρuEVe

ρ+ ρu
.

6 Waiting time, queue length and busy period

In this section we shall derive the (transform of the) steady-state busy period, waiting time, sojourn
time and queue length in the M/G/1 queue with exp(µ) active periods and vacations. In doing
this, we rely on a relation between that M/G/1 queue and the following M/G/1 queue without
vacations, but with extended service times; we refer to the latter system as Model II (cf. Section 1)
or as the extended system. We should add that the relation crucially depends on the fact that
vacations (ends of active periods) occur according to a Poisson process.

The extended system is an M/G/1 queue with arrival rate λ and with service times

Bext ∼ B +

Nµ(B)
∑

i=1

Vi .

The interpretation is the following. During the service time B of a customer, vacations arrive
according to a Poisson process with rate µ. The ith such vacation extends B by its length Vi. All
customer interarrival times, service times, exp(µ) interarrival times of vacations and all vacation
times are assumed to be independent, and we have the usual i.i.d. assumptions. It is easily verified
that

Ee−αBext = Ee−(α+µ(1−Ee−αV ))B ,

and
EBext = EB(1 + µEV ) ,

yielding a total load λEBext = ρ+ ρu in the extended system.

Let us now couple both M/G/1 queues, in the sense that arrivals occur at identical moments in
both systems, and the service requirement Bext,i of the ith customer in the extended system is
chosen exactly equal to the sum of the service requirement Bi in the other system, plus the lengths
of all vacations that occur during its service. Figure 2 presents a realization of the workload in
the original M/G/1 queue with vacations and in the extended system. It reveals something that,
after some thinking, appears to be obvious: When defining a busy period in both systems as the
time from the arrival of a customer into an empty system until the first departure thereafter of
a customer who leaves the system behind empty, the busy periods of both systems have identical
lengths. In fact, each arriving customer spends exactly the same time in both systems. Indeed,
the arrivals in both systems coincide, but also the time that a customer in the extended system
spends in service is identical to the time its counterpart in the original system spends either in
service or in an interruption mode in which the server has taken a vacation. Also, the time a
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time

work

busy period

Figure 2: Work in the vacation system (solid line) and work in the M/G/1 system with extended
service times (dotted lines): the lengths of the busy periods are equal.

customer in the extended system spends waiting until its service begins is identical to the time a
customer in the original system spends waiting until its service begins for the first time, because
those times are determined by the arrival intervals (which are the same in both systems) and the
previous service times (in the extended system), respectively, the service plus interruption times
(in the original system). Similarly, the sojourn times in both systems coincide. Finally, since not
only the arrival times but also the departure times of any customer in both systems agree, also the
system content (those in service included) distributions in both systems are identical. Relying on
well-known M/G/1 results as can be found, e.g., in Chapter II.4 of [5], we may now conclude the
following.

Theorem 2. Let Θ, M , W , D and H denote, respectively, the steady-state busy period, number
served in a busy period, waiting time, sojourn time (service time included) and system content in
the M/G/1 queue with exp(µ)-distributed active periods and vacations. Then
EzMe−αΘ is the unique solution in the unit circle |x| ≤ 1 of the equation

x = zEe−(α+λ(1−x))B ;

Ee−αW =
(1− ρ− ρu)α

α− λ(1− Ee−αBext)
; (19)

Ee−αD = Ee−αW
Ee−αBext ; (20)

EzH =
(1− ρ− ρu)(1− z)Ee−λ(1−z)Bext

Ee−λ(1−z)Bext − z
. (21)
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Remark 3. It should be observed that the relation between the original system and Model II does
not allow us to derive the workload distribution in the original system. For that purpose, Model I
is the right choice.

Remark 4. Equation (21) can be rewritten as

EzH = χ(z)
(1 − ρ)Ee−λ(1−z)B(1− z)

Ee−λ(1−z)B − z
, (22)

where

χ(z) =
(1− ρ− ρu)

(

Ee−λ(1−z)B − z
)

Ee−λ(1−z)Bext

(1− ρ)
(

Ee−λ(1−z)Bext − z
)

Ee−λ(1−z)B
.

By virtue of Fuhrmann-Cooper decomposition [9] and the quotient in (22) being the pgf of the system
content in the classic M/G/1 queue, χ(z) is the pgf of the system content at a random moment in
vacation. In addition, Fuhrmann-Cooper decomposition [9] also gives the following relation between
the sojourn time D in the system and the sojourn time DM/G/1 in the classic M/G/1 system:

Ee−αD =Ee−αDM/G/1χ(1− α/λ) . (23)

After some calculations (23) can be rewritten as

Ee−αD =
(1− ρ− ρu)α

α− λ (1− Ee−αBext)
Ee−αBext ,

which is consistent with (19) and (20).

7 Summary and concluding remarks

In this paper, we have studied an M/G/1 queueing model with a modified time-limited vaca-
tion mechanism. Contrary to the traditional time-limited vacation mechanism, the server does not
switch to vacation mode after a predefined time or when the system is empty, but the server switches
to a vacation only after a predefined amount of work has been processed. The main contribution of
this paper is the mathematical analysis of this model. More specifically, we have derived an explicit
expression for the distribution of the time it takes until the prespecified amount of work has been
served. For the case the total amount of work till vacation is exponentially distributed, we have
derived the transforms of the steady-state workload at various epochs, busy period, waiting time,
sojourn time, and queue length distributions.

Depending on the practical context, this model could be used as a framework for formulating and
solving optimization problems. For example, in the context of sharing resources among production
processes, keeping the work in process (WIP) low while avoiding high opportunity costs of frequently
keeping the server idle is the trade-off to tackle. Therefore, the optimization problem may be defined
as minimizing the weighted sum of the costs associated with the mean workload (E [Z]) and the
costs of keeping the server idle (P[idle]). In the context of maintenance, the challenge is to determine
the optimal timing of preventive maintenance such that on one hand, the WIP level is low, while
on the other hand, unscheduled breakdowns are avoided. Our results enable to express WIP as
E [Z] and the risk of failure can be expressed as the probability that the usage time to failure is
smaller than the amount of work A to be executed, which in case of A exponentially distributed
with parameter µ can be readily expressed as F ∗(µ) with F ∗(.) the Laplace transform of the usage
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time at failure of the machine. Formulating and solving optimization problems in detail is left as
future work as the scope of this paper is to characterize the performance measures of this modified
time-limited vacation system (E [Z], P[idle], et cetera) in terms of its input parameters (time A
until vacation, arrival rate, service rate, et cetera).

A Alternative approach for establishing Zb(t)

In the process Zb(t) restricted to busy periods, all idle periods are removed and the vacations are
condensed to instantaneous arrivals of work U , the total amount of work that accumulates during
the vacation. Hence, instead of vacations Vi occurring at rate µ in the original process, service
requirements Ui occur at rate µ in Zb(t); those service requirements Ui are i.i.d. with common
random variable U , which is distributed as

U ∼

Nλ(V )
∑

i=1

Bi .

The (restricted) workload process Zb(t) corresponding to the (unrestricted) workload process from
Figure 1 is illustrated in Figure 3.

B1

B2

U1

U2

U3

exp(λ + µ)
exp(λ + µ)

Figure 3: Restricted workload process Zb(t) corresponding to the unrestricted workload process
depicted in Figure 1; dotted lines illustrate secondary jumps, bold lines show arrivals of work U .

The workload process Zb(t) in fact corresponds to the workload process in an M/G/1 queue
with arrival rate λ+ µ and service time distribution

λ

λ+ µ
FB(·) +

µ

λ+ µ
FU (·) .

In Section 1 we referred to this M/G/1 queue as Model I. In addition, every time the workload
process Zb(t) hits zero there is an instantaneous jump up distributed like B (the service time that
appears at the end of an idle period). These instantaneous jumps are referred to as secondary
jumps and are illustrated as dotted lines in Figure 1. All other jumps, both those indicated with
normal and bold lines in Figure 1, are referred to as non-secondary jumps.

Note that the part above the dashed lines (starting at the first non-secondary jump after the
previous dashed period has finished and ends when the workload level reaches the same level as
just before that jump) corresponds to the workload process during a busy period in Model I. In
addition, the part below the dashed lines is distributed as a remaining or elapsed service time Be.
In the remainder, we prove that the limiting distribution Zb of the restricted workload process is
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that of an independent sum of two random variables. The first has the stationary distribution ZI

of the workload in Model I and the second has the distribution of Be:

Zb ∼ ZI +Be . (24)

The key is to note that Zb(t) corresponds to the virtual waiting time in model I with the extra feature
of having vacations distributed as B whenever the system becomes empty. Due to the Poisson
arrival process, the PASTA property holds, and thus this virtual waiting time is distributed as the
steady-state waiting time. Next, application of the Fuhrmann-Cooper decomposition [9] yields

Ee−αZb = Ee−αZIχI (1− α/λ) , (25)

with χI(z) the pgf of the system content at a random moment in a vacation in model I with
vacations. As a vacation starts only when the system becomes empty in that system, it holds that

χI(z) = Ee−λ(1−z)Be ,

and thus that

χI (1− α/λ) = Ee−αBe . (26)

The combination of (25) and (26) yields (24).

Remark 5. (24) can also be proved by [14] or [3], which is valid for a more general Lévy setting.
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[13] O. Kella (1998). An exhaustive Lévy storage process with intermittent output, Stochastic
Models 14, 979-992.

[14] O. Kella, W. Whitt (1991). Queues with server vacations and Lévy processes with secondary
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