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Abstract—Remote teaching applications are common nowa-
days. Very often, these applications resemble video-on-demand
streaming platforms rather than real virtual classrooms, where
a group of students (the receivers) can remotely attend a live
lecture held by a lecturer (the sender). To better support this
live scenario, Real-Time Communication (RTC) solutions can be
used. WebRTC is an open-source project for real-time browser-
based conferencing, developed with a peer-to-peer architecture
in mind. To use WebRTC, each receiver requires a dedicated
encoder at sender-side. Using such approach is expensive in
terms of encoders, and does not scale well for a large number of
users. To overcome this issue, a WebRTC-compliant framework
is proposed, where only a limited number of encoders are
used. A centralized node, the conference controller, dynamically
forwards the most suitable stream to the receivers, based on
their bandwidth conditions. Moreover, the controller dynamically
recomputes the encoding bitrates of the sender. This approach
allows to closely follow the long-term bandwidth variations of
the receivers, even with a limited number of encoders at sender-
side. To evaluate the performance of the proposed framework
in a realistic environment, a testbed has been implemented
using the Chrome browser and the open-source Jitsi-Videobridge.
In a scenario with 10 receivers and 3 encoders, and under
realistic network conditions, the proposed framework improves
the received video bitrate up to 11%, compared to a static solution
where the encoding bitrates do not change over time.

I. INTRODUCTION

Video streaming is everywhere and has radically changed
the way we spend our free time and interact among each other.
Not only is streaming used for pure entertainment, it also
plays a fundamental role in making knowledge accessible to
everyone on the globe. For example, Coursera and Udacity are
among the most famous websites to stream high-quality online
courses [1]. Despite that, current remote teaching platforms
are actually closer to traditional video-on-demand platforms.
In a real virtual classroom scenario, the students (or receivers)
are remotely attending a live lecture given by the lecturer
(the sender). The receivers are usually geographically dis-
tributed and can experience different bandwidth and network
conditions. Remote conferencing solutions can be used to
implement such a live scenario, which is usually characterized
by a high degree of interactivity [2]. Particularly, the Web
Real-Time Communication (WebRTC) framework is an open-
source project started by Google in 2011 that provides plugin-
free real-time communication capabilities to browser-based
applications [3]. The WebRTC framework has been developed
with a peer-to-peer architecture in mind, where a small group
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Fig. 1: The conference controller is the terminal endpoint for
both the sender and the receivers, and performs the dynamic
stream forwarding and dynamic bitrate recomputation tasks.

of clients can directly communicate with each other. This
approach can suffer from scalability issues when multiple
participants are present at the same time, as in the virtual
classroom scenario. In such a peer-to-peer architecture, the
WebRTC sender would need to encode a separate stream for
each of the WebRTC receivers attending the virtual classroom.

In light of the above, we propose a WebRTC-compliant
framework to support the delivery of real-time communication
streams in a remote teaching scenario (see Figure 1). In this
framework, the WebRTC sender only needs to encode a limited
number of streams, much smaller than the number of receivers,
at different bitrates. This approach allows to overcome the
aforementioned limitation, where each receiver would need
to be associated to an independent, dedicated encoder. In
our framework instead, multiple receivers are assigned to the
same encoder at sender-side. A centralized node, called the
conference controller, is aware of the bandwidth conditions of
the WebRTC receivers and dynamically forwards the stream
at the best bitrate in order to follow the bandwidth variations
of the receivers. Besides this dynamic stream forwarding, the
conference controller has another fundamental task. Instead of
keeping the encoding bitrates of the sender fixed to predefined
static values, the conference controller can dynamically and
periodically recompute them based on the changing bandwidth
conditions of the receivers. This approach allows to better
follow the bandwidth conditions of the receivers, even though
only a limited number of encoders is actually used. In the
WebRTC domain, the conference controller functionalities can
be easily carried out by a Selective Forwarding Unit (SFU),
whose task is to receive all the streams and decide which
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stream should be sent to which participant [4].
The contributions of this paper are two-fold. First, we

present in detail the proposed framework and the conference
controller functionalities. Particularly, we model the bitrate re-
computation problem as an Integer Linear Programming (ILP)
formulation, which is periodically solved by the centralized
node. Second, we present a real-world testbed, implemented
using the WebRTC framework and Jitsi-Videobridge [5], to
evaluate the performance of the proposed framework. Prelim-
inary results illustrate the benefits of the developed solution.

The remainder of this paper is structured as follows. Section
II presents related work on remote conferencing solutions
for WebRTC. Section III describes the functionalities of the
conference controller and the ILP formulation for the dynamic
encoding bitrates recomputation, while Section IV details the
implementation of the real-world testbed. Preliminary results
are shown in section V. Section VI concludes the paper and
discusses future work.

II. RELATED WORK

Xu et al. perform a measurement study on real-world
conferencing systems [6]. The authors report that a complete
peer-to-peer architecture is never used as it does not scale
to a large number of users. A Multipoint Conferencing Unit
(MCU) can be used in WebRTC to improve scalability. The
MCU receives all the streams, decodes and composes them in
a single common stream that is sent back to the participants.
Grand et al. divide the participants into regional clusters, each
associated to an MCU [7]. All the MCUs are interconnected in
a mesh network. This hybrid architecture allows to support a
large number of users. Ma et al. use an MCU to transcode
the sender stream and adjust it to the viewing conditions
of the receiver. The authors consider the viewing distance
and the pixel density of the receiver’s screen to transcode
the stream to an optimal bitrate, in order to save bandwidth.
Nevertheless, MCU operations are extremely computationally
intensive, due to the decoding-mixing-encoding processes to
be carried out. To reduce this issue, MCU functionalities
can be dynamically migrated among conference participants
to meet certain bandwidth, latency and CPU constraints [8].
Alternatively, MCU low-level functionalities can be virtualized
and deployed on-the-fly [9]. Unlike an MCU, an SFU does
not require decoding/encoding operations. Its main task is to
receive all the streams and selectively forward one or more
streams to each participant. In this case, the amount of for-
warded streams should be selected to avoid wasting bandwidth.
Grozev et al. develop a speaker identification algorithm to be
deployed on an SFU, to identify the last N dominant speakers
of the conference [10]. Only these N streams are forwarded to
the conference participants. The authors also propose to use
simulcast in combination with an SFU [11]. Each participant
can send up to three streams, encoded at different bitrates.
The SFU forwards the highest quality to participants involved
in the conversation, and the lowest quality to the remaining
ones. In a measurement study, Xhagjika et al. find that the
load pattern on an operational system of SFUs is periodic and

can be easily predicted [12]. The prediction can be used to
allocate the streams to the right SFU and avoid overloading the
system. The software-defined networking principle can be used
to optimize a system of distributed SFUs [13], by dynamically
creating a multicast tree for the optimal delivery of the streams.

Unlike previous works, the proposed conference controller,
implemented using the SFU principle, forwards the most suit-
able stream based on the bandwidth conditions of the receivers.
Moreover, the dynamic computation allows the encoding bi-
trates to be always representative of the network conditions of
the receivers, and therefore maximize the received bitrate.

III. WEBRTC CONFERENCE CONTROLLER

The conference controller is the main component of the
proposed WebRTC framework for remote teaching applica-
tions. The goal of the controller is to maximize the video
bitrate sent to the receivers, given the constraint on the avail-
able bandwidth. Two functionalities are implemented by the
controller, namely dynamic stream forwarding and dynamic
encoding bitrates computation.

The controller acts as an endpoint for the sender and for
the receivers (see Section IV for more details). This aspect
entails that the controller can intercept the WebRTC Receiver
Estimated Maximum Bitrate (REMB) messages, which are
used in WebRTC to estimate the bandwidth of the remote
receivers [14]. Using this bandwidth estimation, the conference
controller forwards the stream to each receiver at the highest
sustainable bitrate. This dynamic forwarding is performed at
a very fine-grained timescale, in the order of 250 to 500 ms,
to accommodate the bandwidth variations of the receivers and
guarantee a continuous playback. This period mainly depends
on the timing of REMB messages reported by the receivers,
which are used to update the bandwidth estimation.

Together with this short-term control loop, a second long-
term optimization is performed on a longer timescale, to
recompute the set of encoding bitrates at sender-side. By al-
lowing the encoding bitrates to dynamically vary, it is possible
to follow the long-term bandwidth variations of the receivers
and, therefore, maximize the delivered video quality. A shorter
period is desirable, but is more computationally expensive
when the number of receivers is high. We formulate the
dynamic bitrate computation problem as an ILP formulation.
The virtual classroom is composed of R receivers and one
sender, where lmax encoders are available (with lmax � R).
Each receiver r ∈ {1, . . . , R} is associated with a bandwidth
measure br. Different options are possible on how to compute
br for a given time window of multiple seconds, as for
example the average or the minimum estimated bandwidth
over the period. In this work, br is simply equal to the latest
bandwidth estimation available to the conference controller.
We also assume a set of L encoding levels are available, each
associated to a nominal bitrate Bl. The goal is to select the
lmax encoding levels, among the possible L levels, which are
the closest to the bandwidth measure br of the receivers. The
optimization problem, which is executed periodically by the
controller, is given in the following:



min
α

R∑
r=1

L∑
l=1

αr,l(br −Bl)2

s.t. αr,l ∈ {0, 1} ∀r, l
βl ∈ {0, 1} ∀l
βl ≥ αr,l ∀l

L∑
l=1

αr,l = 1 ∀r

L∑
l=1

βl ≤ lmax

L∑
l=1

αr,lBl ≤ br ∀r

(1)

The solution of the problem is characterized by two sets
of boolean decision variables, namely αr,l and βl. αr,l is
equal to 1 when client r is associated to encoding level l,
and 0 otherwise. Similarly, βl is equal to 1 when encoding
level l is selected, and 0 otherwise. The optimization problem
tries to find the lmax encoding levels whose bitrates allow to
minimize the quadratic difference with the receiver bandwidth
estimations. The first three constraints set up a consistent
relation between the decision variables α and β. The fourth
constraint indicates that each receiver can only be associated
with one specific encoding level. The last two constraints are
representative of the analyzed problem. First, only lmax en-
coding levels can be selected (constraint 5), as lmax indicates
the maximum number of encoders available at sender side.
Second, the encoding bitrate associated to receiver r must be
lower than the bandwidth measure for r (constraint 6), in order
to guarantee a continuous playout.

It is worth noting that the two tasks carried out by the
conference controller are performed at different timescales.
The bitrate computation presented in Equation 1 is executed on
a tens of seconds timescale, and is used to adjust the encoding
bitrates to take into account long-term variations of receivers’
network conditions. On the contrary, the stream forwarding
is executed on a millisecond timescale, to closely follow the
changing bandwidth conditions of the receivers.

IV. TESTBED IMPLEMENTATION

In order to evaluate the performance of the proposed solu-
tion in a realistic environment, we implemented our framework
on the imec iLab.t Virtual Wall emulation platform [15]. To
implement the receivers and the sender, we use the Google
Chrome browser. Nothing was changed of the Google’s orig-
inal WebRTC stack, which makes our solution completely
WebRTC-compliant. From an implementation perspective, the
sender is decoupled into lmax WebRTC sub-senders, each
encoding the stream at different bitrates. To implement the
conference controller, we used the Jistsi software, a set of
open-source projects to easily build and deploy secure video-
conferencing solutions [16]. Particularly, the Jitsi-Videobridge,
a WebRTC SFU, has been used as the main component. Its
default functionality is to relay all the streams generated by
the conference to all the participants. Jitsi-Meet, a JavaScript

application running on top of the browser WebRTC stack,
is used at the sub-senders and receivers to interface with
the Jitsi-Videobridge [17]. We modified the code so that the
receivers do not generate any video stream. In the remaining
of this section, we will explain the modifications we made
on the Jitsi-Videobridge to implement the stream forwarding
and bitrate recomputation functionalities. To implement these
functionalities, the conference controller has to estimate the
available bandwidth of the receivers first. This estimation is
performed by default by the Jitsi-Videobridge, which forwards
all WebRTC traffic among the conference participants, im-
plemented using the RTP/RTCP protocol suite. In WebRTC,
bandwidth estimation is performed using RTCP REMB mes-
sages, a feedback used by a receiver to notify its media
stream sender over the same RTP session of the estimated
available bandwidth on the path to the receiving side. The
Jitsi-Videobridge intercepts these RTCP REMB messages and
is therefore aware of the available bandwidth at the receivers.

A. Stream Forwarding Selection

By default, the Jitsi-Videobridge forwards multiple streams
to a participant. The stream of the participant who is currently
speaking, the so-called dominant speaker, is automatically
detected by the software and is always included in these
streams. We override this logic so that a different dominant
speaker can be manually set per receiver. Moreover, we limited
the amount of streams that can be sent to a specific receiver
to only one, selected as previously explained. Using this
mechanism, the Jitsi-Videobridge dynamically assigns a sub-
sender per receiver, so that the encoding bitrate is lower than
the receiver’s estimated bandwidth.

B. Dynamic encoding bitrates recomputation

As the long-term network conditions of the receivers can
change over time, it is required to periodically recompute
the set of encoding bitrates of the sub-senders, as described
in Section III. Once these values are computed, they have
to be enforced on the WebRTC sub-senders. However, there
is no standardized way to set the encoding bitrate of a
WebRTC client. To perform this task, we use the RTCP REMB
messages, which contain the receiver’s estimated available
bandwidth. In WebRTC, the congestion control mechanism
of a sender considers this estimation as the maximum bitrate
that can be sent to a receiver. Consequently, the sender’s
encoder uses this value as its current target bitrate. Once the
new bitrates are computed, the Jitsi-Videobridge modifies the
REMB feedback messages for the sub-senders by setting the
newly computed bitrate instead of the bandwidth estimation
of the receivers. This way, the sub-senders are forced to
modify their encoding bitrates. To implement this mechanism,
we changed the way RTCP messages are generated in lib-
jitsi [18], the underlying Java media library used by Jitsi-
Videobridge. Instead of setting the maximum bitrates in the
REMB messages for the sub-senders to the latest estimated
remote bandwidth, we set them to the bitrates generated by
the ILP presented in Section III.
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Fig. 2: Dynamically recomputing the encoding bitrates allows
to both increase the received rate and reduce the error com-
pared to a static association. Results are reported for the static
and dynamic associations with several optimization periods.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed framework
using the testbed presented in Section IV. The virtual class-
room is composed of ten receivers and one sender (Figure 1).
Depending on the experiments, the sender is decoupled into
three or four sub-senders, each encoding the video at different
bitrates (i.e., lmax can be equal to three or four). No real video
capture is carried out. Instead, we use a predefined video as
input for the encoders1. Two parameters have to be defined for
the conference controller. First, the period of the optimization
executed in Equation 1, which has been fixed to 4, 8 and
16 seconds. A shorter optimization period allows to better
follow the network conditions of the receivers, but it is more
computationally expensive. Second, the number of possible
encoding levels L to be used in the optimization problem, with
the corresponding bitrates. Nineteen different levels are used,
with bitrates equal to 250 + 125l kbps, with l = 0, 1, . . . , 18.
Consequently, the lowest and highest encoding bitrates are 250
and 2500 kbps, respectively. To evaluate the approach under
realistic network conditions, we apply a different bandwidth
pattern on each link connecting the conference controller to
the receivers, collected on a real 3G network [19]. Each
experiment configuration, in terms of optimization period and
number of encoders, has been repeated five times.

We compare the performance of the proposed framework to
a solution where the encoding bitrates are statically fixed and
are not dynamically recomputed during the experiment. The
static bitrates are equidistantly assigned to 250 + 2500−250

lmax−1 l
kbps, with l = 0, 1, . . . , lmax − 1. For each receiver, we keep
track of two metrics. First, the average video rate received dur-
ing the experiment. Second, the average rate loss, computed as
the difference between the available bandwidth at the receiver

1https://media.xiph.org/video/derf/y4m/factory 1080p30.y4m

and the actual received rate. The rate loss represents the gap
between the rate a receiver is able to sustain (i.e., the available
bandwidth) and the rate actually received. Figure 2 reports the
results of this investigation, averaged over the entire group of
receivers with the corresponding standard deviations.

In all cases, increasing the number of encoders allows to
increase the received rate and reduce the error, up to 10% and
35% in the static case. When more encoders are used, it is
possible to follow the bandwidth variability of the receivers
in a more fine-grained way. This behavior is clear when the
encoding bitrates are dynamically recomputed. In the case with
an optimization period of four seconds and three encoders,
the received rate is increased by 11%, while the rate loss is
reduced by 35%. Similar conclusions can be drawn when using
four encoders instead. The dynamic recomputation allows to
adjust the encoding bitrates to the network conditions of
the receivers. This aspect entails that the encoding bitrates
are usually closer to the actual bandwidth conditions of the
receivers, which improves the analyzed metrics. As expected,
a longer optimization period degrades the performance of the
system. When compared to a 4 seconds optimization period,
the average rate loss increases by 5% and 12% when the
period is set to 8 and 16 seconds, respectively. The relevance
of the encoding bitrates tends to decrease over time, as the
long-term bandwidth conditions of the receivers might change.
A shorter period can reduce this side effect, but it is more
computationally expensive, especially when the number of re-
ceivers is large. Even in the 16 seconds case though, a dynamic
approach is able to outperform a static one. Interestingly, using
a dynamic approach with three encoders leads to a similar
received rate and rate loss compared to a static approach with
four encoders. The dynamic framework can reach the same
performance of a static association while reducing the number
of encoders, and is therefore more efficient.

VI. CONCLUSIONS

In this paper, a framework has been proposed for the
efficient delivery of WebRTC streams in the context of remote
teaching applications. At sender-side, only a few encoders
are used, which allows to scale the proposed approach to a
large number of receivers and reduce the encoding costs. A
conference controller, implemented using the Jitsi-Videobridge
software, periodically recomputes the set of encoding bitrates
to better follow the network conditions of the receivers.
Besides this long-term optimization, the controller also dy-
namically forwards the most suitable stream to each receiver,
to accommodate fast bandwidth variations and ensure a con-
tinuous playout. Compared to a static, fixed association of the
encoding bitrates, the proposed dynamic bitrate recomputation
results in 11% higher video rate at the receivers, when three
encoders are used. Moreover, the dynamic recomputation is
more efficient than a static approach, as less encoders are
needed to obtain similar performance. Future work will focus
on large-scale evaluations of the proposed framework to test
the scalability of the ILP formulation and on machine learning
algorithms to perform the bitrate recomputation task.
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