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ARTICLE

Rethinking the explanatory power of dynamical models
in cognitive science
Dingmar van Eck

Department of Philosophy and Moral Science, Ghent University, Ghent, Belgium

ABSTRACT
In this paper I offer an interventionist perspective on the
explanatory structure and explanatory power of (some) dyna-
mical models in cognitive science: I argue that some “pure”
dynamical models – ones that do not refer to mechanisms at
all – in cognitive science are “contextualized causal models”
and that this explanatory structure gives such models genu-
ine explanatory power. I contrast this view with several other
perspectives on the explanatory power of “pure” dynamical
models. One of the main results is that dynamical models
need not refer to underlying mechanisms in order to be
explanatory. I defend and illustrate this position in terms of
dynamical models of the A-not-B error in developmental
psychology as elaborated by Thelen and colleagues, and
dynamical models of unintentional interpersonal coordina-
tion developed by Richardson and colleagues.
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1. Introduction

Perspectives diverge on the explanatory structure of dynamical models in
cognitive science (and other scientific domains). Some favor covering-law
interpretations of dynamical models (Bechtel, 1998; Walmsley, 2008), others
argue that some (though not all) models rather are mechanistic in character
(Kaplan & Bechtel, 2011; Zednik, 2011), a different set of authors claims that
they are causal explanations (Gervais &Weber, 2011;Weber, Van Bouwel, &
De Vreese, 2013), and yet others – in the context of (systems) neuroscience –
offer minimal model interpretations of dynamical models (Chirimuuta,
2017; Ross, 2015; Silberstein & Chemero, 2013; Woodward, 2017).

A related point of dispute concerns the explanatory power of dynamical
models in cognitive science (and other scientific domains). For some,
dynamical models have explanatory power to the extent – and only to
the extent – that they refer to underlying mechanisms. If they fail to do so,
they may have predictive and descriptive value, yet not explanatory force
(Kaplan & Bechtel, 2011). Others take it that predictive power, under
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certain circumstances, is sufficient for explanatory power (Stepp, Chemero,
& Turvey, 2011; Van Gelder, 1998),1 or that a measure of explanatory
power is secured by the fact that dynamical models convey scientific
understanding, namely that qualitative consequences (insights into how a
system behaves or will behave in a certain way, i.e., what it does or will do)
can be derived from these models (Gervais, 2015).

A key issue concerns whether or not dynamical models in cognitive
science have explanatory power when they do not refer to underlying
mechanisms. I argue that most extant defenses of the explanatory power
of “pure” dynamical models in cognitive science – ones that do not refer to
underlying mechanisms – fail to secure the explanatory value of such
models. Prediction is not sufficient for explanation, and neither is bona
fide understanding secured when dynamical models are completely uncon-
strained by mechanistic evidence, that is, when there is no evidence at all
that there are underlying mechanisms that operate in accordance with the
processes described in the dynamical models. I offer a novel, broadly inter-
ventionist, account of the explanatory power of pure dynamical models in
cognitive science.2

I argue that some pure dynamical models in cognitive science are contex-
tualized causal models and that this explanatory structure gives such models
genuine explanatory power. A main element of the model explanation con-
cerns a causal claim that cites a core causal factor thatmakes a difference to the
explanandum. Another important element concerns (mathematical) descrip-
tions of (internal and external) constraints and their relations with the core
causal factor, which specify when the core causal factor is (and when it isn’t) a
difference maker for the explanandum phenomenon. These (mathematically
described) contextual dependencies between constraints and core causal factor
(s) are counterfactual dependencies – answer what-if-things-had-been-differ-
ent questions – and thus show what the value of the explanandum phenom-
enon depends upon (in a broadlyWoodwardian sense): changing the values of
the constraints (captured by mathematical parameters) in these dependencies
leads to changes in the values of the explanandum phenomenon (also cap-
tured by a mathematical parameter). This counterfactual element gives such
explanations genuine explanatory power (despite the fact that they do not
specify mechanisms).

I take constraints, in general, to refer to task conditions and differentiate
between internal and external constraints. Whereas external constraints
refer to specific characteristics or properties of the task environment under
which a task is (to be) performed by subjects, internal constraints refer to
specific restrictions on the behaviors that subjects (are to) execute during a
task. These constraints are represented as parameters (and not as variables)
in the dynamical models considered in this paper.
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I elaborate this view in terms of dynamical models of the A-not-B error in
developmental psychology (Smith & Thelen, 2003; Thelen, Schöner, Scheier,
& Smith, 2001) and dynamical models of unintentional interpersonal coor-
dination (Richardson, Marsh, Isenhower, Goodman, & Schmidt, 2007).3

Let me stress that the above models are “pure,” that is, non-mechanistic,
ones. There is, I argue, a principled difference between these dynamical models
and mechanistic models (be they “complete,” schemata, or sketches). These
dynamical models list dependencies between external constraints and causal
factors. Since such external constraints are not, on any reading of constitutive
relevance, constituents of mechanisms, they are not articulated in mechanistic
models. Ipso facto, dependencies between external constraints and core causal
factors are not specified in mechanistic models. Therefore, dynamical/contex-
tualized causal models are importantly different from mechanistic models.

Furthermore, mechanistic information, specifically localization and
manipulation information with respect to mechanisms, is not required to
explain the explananda phenomena and their contextual variability, tar-
geted by contextualized causal models. Rather, contextual dependencies do
the explanatory work in explaining when a core causal factor is or isn’t a
difference maker for a target explanandum. However, I argue that such
mechanistic information is relevant from an evidential point of view.
Evidence that the operations specified in dynamical/contextualized causal
models actually (or probably) are component processes of mechanisms or
constituted by mechanisms confers plausibility on the specification of
operations in these models and, relatedly, information on mechanism
manipulations is relevant to back up the claim that the core causal factors
listed in contextualized causal models indeed are difference makers for the
targeted explananda phenomena.

The view that I elaborate in this paper thus agrees with those extant
perspectives that stress the relevance of mechanistic commitments, but
conceives of this relevance in different fashion: mechanistic commitments
are evidentially, rather than explanatorily, relevant.

The structure of the paper is as follows. In Section 2, I briefly outline
dynamical explanations and discuss the current controversy concerning the
explanatory status of dynamical models in cognitive science. In Section 3, I
elaborate my alternative account, according to which some dynamical models
are “contextualized causal models.” I illustrate the explanatory insights that
such models provide in terms of dynamical models of the A-not-B error in
developmental psychology. In Sections 3 and 4, I contrast my view with extant
perspectives on the explanatory status of pure dynamical models in cognitive
science. A key result is that these models can be explanatory, despite the fact
that they do not describe mechanisms. In Section 5, I discuss a second case,
unintentional interpersonal coordination, in order to show that the analysis
applies more broadly to dynamical models in cognitive science. Section 6
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contrasts the account advanced in this paper with a related but distinct
project, the regimentation of dynamical models as non-causal minimal mod-
els in the context of systems neuroscience, and offers conclusions.

2. Dynamical models in cognitive science

2.1. Dynamical explanation

Dynamical systems theory is a conceptual framework for studying dynami-
cal systems, in which concepts that capture key features of such systems are
related and elaborated in dynamical models of such systems in terms of
mathematical formalisms, typically difference and differential equations.
Dynamical systems theory has been applied to study phenomena in diverse
scientific fields, such as physics, economics, neuroscience, and cognitive
science. The term ‘dynamical system’ is used in a variety of scientific and
mathematical contexts and, consequently, there are many different interpre-
tations of the term ‘dynamical system’ (Van Gelder & Port, 1995). Here I use
the (slightly adapted) characterization given by Van Gelder and Port (1995),
which they deem most useful for characterizing natural cognitive systems
and the dynamical approach toward studying such systems. On their char-
acterization, dynamical systems are taken to be sets of changing properties
(they use the term ‘aspects’) of the world in which changes in properties are
induced by changes in one or more of the other properties. Some properties
thus interact with one another in this change-inducing sense (a specific
change in a specific property can result in several concurrent changes in
other properties. These other properties then merely change at the same
time, as a result of the change in that specific property, without there being a
change-inducing relation between these other properties). Furthermore,
systems at any point in time exhibit a state, which results from the values
that the properties belonging to the system have at that point in time.
Depending on the values of the properties, there are a large number of
states the system can be in. The totality of these possible states makes up the
state space of the system. The behavior displayed by a given system is
interpreted as the state changes the system goes through in real time, that
is, its trajectory through the state space of possible states (Van Gelder &
Port, 1995). State changes can result from property (variable) changes, that
is, changes of property (variable) values, within the system, and changes in
the system can result from factors outside the system that affect or constrain
the system’s trajectory through the state space. These external factors are
called ‘parameters’. Parameters affect or constrain change in the system, but
not vice versa (Van Gelder, 1998; Van Gelder & Port, 1995).

Properties of dynamical systems are captured in dynamical models of
those systems as variables (with certain values) and these variables and
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their values are related in terms of mathematical equations. These equa-
tions describe how the behavior of a system evolves in real time as a result
of the way in which changes in variable values impact values of other
variables, and they may capture how parameters affect or constrain change
in the system. These equations are considered (by most) to be law-like
mathematical regularities.

According to the “dynamical hypothesis” in cognitive science, cognitive
systems are dynamical systems (Van Gelder, 1998). On the dynamical
view, cognition is understood as a continuous and dynamic interaction
or coupling between organism and environment unfolding in real time.
Cognitive scientists endorsing this view, dynamicists, for short, apply
concepts from dynamical systems theory to the study of cognitive systems.
They aim to describe, explain, and predict the behavior of cognitive
systems, that is, the state changes the system goes through in real time,
in terms of dynamical models of these systems, specifically, in terms of the
equations governing the relations between changes in variable values in
these models.

Phenomena that have been extensively studied from a dynamical sys-
tems perspective include, among others, coordination dynamics phenom-
ena like rhythmic finger movements (Haken, Kelso, & Bunz, 1985),
circadian systems phenomena like circadian oscillations and anticipatory
synchronization (Stepp et al., 2011), and developmental psychological
phenomena like the A-not-B error in 7–12 months old infants in develop-
mental psychology (Thelen et al., 2001). This latter phenomenon has been
the subject of numerous investigations, in dynamical terms, of the research
group of Thelen, Smith, and collaborators.

The A-not-B error concerns the phenomenon, seen in 7–12 months old
infants, where infants continue to reach to a location where they have
uncovered a toy even when they see in subsequent trials the toy being hidden
at a new location (Thelen et al., 2001). Piaget (1954) was the first to describe
and attempt to explain the phenomenon, which he did in terms of develop-
mental stages with respect to the acquisition of knowledge of object perma-
nence. According to Piaget, only from the age of 12 months onwards do
children possess the knowledge that objects can exist independently of the
actions they direct against or perform with them. Following his influential
work, several other, sometimes competing, explanations for this phenom-
enon have been advanced over the last 60 years or so. These alternative
explanations were developed because Piaget’s view fails to accommodate the
finding that the error, although very robust in the canonical experimental
format, is highly sensitive to contextual effects that disrupt the occurrence of
the error (e.g., [slight] changes in the visual properties of the hiding loca-
tion). If the error were a faithful measure of the manner in which objects are
represented by 7–12 months old infants, that is, without object permanency
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being a property of the representation, how can it be that such infants
perform like 12 month olds, that is, do not commit the error and thus act
as if object permanence is a property of their object representations, when
contextual conditions are (slightly) altered? In Piaget’s wake, alternative
(developmental) explanations have been formulated to account for the
error and its contextual subtleties, focusing on, among others, shifting
representations of space when infants grow older, age-related changes in
functionality of prefrontal cortices, changes as regards response inhibition,
and the strengthening of representations when infants grow older (Smith &
Thelen, 2003; Thelen et al., 2001).

Commenting on these explanations, Thelen and colleagues state:

Each of these accounts captures some truths about infant perseverative reaching, but
none has a full explanation of both the canonical error, and the richly documented
effects of context which are part and parcel of the same phenomenon. (2001, p. 4).

Here is the most important dissimilarity to other explanations of the
A-not-B error and the key to the dynamical explanation advanced by
Thelen and colleagues (2001):

We deeply disagree with the widely held assumptions that knowing and acting are
modular and dissociable. Indeed the cornerstone of our dynamical model is that
“knowing” is perceiving, moving, and remembering as they evolve over time, and
that the error can be understood simply and completely in terms of these coupled
processes. (p. 4).

Motor memory is at the heart of the dynamical model explanation:

Infants make perseverative location errors because the motor memory of one reach
persists and influences subsequent reaches. (Thelen et al., 2001, p. 9).

So motor memory of previous reaches is, in this explanation, the key causal
factor that makes a difference to the occurrence of the error. This factor is
represented in a dynamical model as mutually interdependent or coupled
with processes of looking, motoric planning, and reaching. These factors/
processes and their couplings and the manner in which they unfold in real
time are formalized in terms of differential and difference equations and
represented as trajectories through a state space. More specifically, Thelen
and colleagues (2001), based on extensive experimental findings, simulated
the decisions of infants to reach to the A or B location by means of a
model, which they call the ‘dynamic field model’ (p. 10), in which the
various factors influencing those decisions are related and their impact on
one another captured by means of equations.

The key equation of the model reads as follows (Thelen et al., 2001, p. 17):

τ _u x; tð Þ ¼ � u x; tð Þ þ S x; tð Þ þ gintra�field u x0ð Þ; x0½ �
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X stands for the movement parameter, u(x) for its dynamic field, which
represents the values of the reaching movements of the infant during the
A-not-B task in terms of points on the field. Each point on the field corre-
sponds to a particular spatial location of the baby’s arm during the A-not-B
task. When the activation level of a specific point surpasses a particular
threshold level, a reach is induced toward the corresponding (A or B) location.
This dynamic field changes continuously with time t, captured by u (x, t). Task
inputs (structure of the task, the reaching cue [A or B] and, after the first
reach, motormemory of previous reaches) are represented by S(x, t) (more on
this below). Τ refers to the time scale parameter. Τ, together with – u(x, t),
characterizes the time scale over which the field builds up or decays. Gintra-

field, finally, captures cooperativity, that is, interactions between points on the
field that either enhance or inhibit activation levels of the field. Interactions
may initiate from any point x’ on the field. G corresponds (psychologically) to
an age-related developmental parameter that affects the ability of infants to
execute accurate reaching movements (perseverative reaching is, inter alia,
age dependent: in the canonical situation, it is observed in infants
7–12 months of age. Older infants do not display perseverative reaching in
the canonical situation). This model thus articulates, in terms of the above
equation, how the activation level of every point (x) on a dynamic motor
planning field (u) changes over time (t) as a function of the field’s previous
activation (_u), an input vector (S), a cooperativity parameter (g), and a
temporal decay constant (Τ plus – u(x,t)).

The task input driving the continuous evolution of the field comprises
three sources: specifications of the task environment (e.g., properties of the
hiding locations of the toy, such as ambiguous vs. salient, distinct loca-
tions), the cue to either reach to A or B, and (values of) motor memory
which, after the first reach, biases subsequent reaches. The action decision
that evolves in the motor planning field (S [x, t]), based on contributions
from these three sources, is formally captured by means of the following
equation (Thelen et al., 2001, p. 18):

S x; tð Þ ¼ Stask x; tð Þ þ Sspecific x; tð Þ þ Smemory x; tð Þ

S stands for the motor planning field, x is the movement parameter, and t
captures the “foundational assumption” (p. 16) that the field continually
changes with time. Stask (x, t) is the parameter representing the task
environment, Sspecific (x, t) the parameter representing the cueing event,
and Smemory (x,t) the parameter capturing the contribution of the motor
memory of the system on the current motor decision S (x, t).

Motor memory is a key factor: “Most crucial for this account is that
once infants reach, a memory of that reach becomes another input to the
next trial” (Smith & Thelen, 2003, p. 345; see Thelen et al. 2001, pp. 8–9).
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The stronger the memory becomes (due to repeated cues over time to a
certain location), the stronger the influence of motor memory on the
decision to reach to a certain location. (So, for instance, an infant cued
[correctly] to location A on three trials is more likely to make the error on
the fourth trial, i.e., continue to reach to A even though the target is now
hidden at location B, than an infant who is cued fewer times to location A.)

The values that can be assigned to the parameters and variables in the
dynamic field model are based on extensive experimental findings. So for
any given experimental situation, the model offers an explanation of the
error (and its variations) in terms of the values of the parameters and
variables which specify contextual dependencies or constraints in which
motor memory of previous reaches (the core causal factor) is or isn’t a
difference maker for the A-not-B error. The model expresses the fact that
perseverative reaching is highly dependent on such constraints as the relative
ambiguity of the task input; if the containers, that is, the hiding locations A
and B, are visually distinct, infants are less likely to commit the error. The
same goes with respect to the delay between looking and reaching; as
mentioned, motor memory of previous reaches does not cause the error
when there is no or very little delay between looking and reaching. Likewise,
posture changes affect the likelihood that motor memory of previous reaches
causes the error; 8–10 months old infants are less likely to commit the error
if they go through the trials standing rather than sitting (more precisely,
when they are being held in an upright, standing position by adults).

A key feature of the model is thus that it accounts for the error, as well
as contextual variations influencing its occurrence (or absence):

Because all the processes contributing to the behavior are coupled, continuous, and
based in time, we can account in one model for both the error itself and for the
decline in perseverative reaching in different situations and at different ages. (Thelen
et al., 2001, p. 4).

Phrased in (broadly) Woodwardian (2003) terms, the model answers what-if-
things-had-been-different questions, that is, the model makes clear how the
error, as well as its decline depends on (values of) contextual parameters – on
contextual dependencies between the core causal factor and internal and
external constraints.4 These dependencies are captured by means of a number
of equations, which represent how changes in the values of parameters affect
the value of the explanandum phenomenon, the presence or absence of the
A-not-B error. For instance, how changes in the delay between looking and
reaching affect whether motor memory of previous reaches is a difference
maker for perseverative reaching, or not. I further elaborate on this issue in
Section 3 where I address the explanatory structure and power of suchmodels.
First I discuss a number of other perspectives on the explanatory structure and
power of (pure) dynamical models.
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2.2. Diverging perspectives on explanatory structure and power

The use of dynamical models is widespread in cognitive science. There is,
however, ongoing controversy about the explanatory power of dynamical
models in this domain (as in neighboring fields like neuroscience). As
Kaplan and Bechtel (2011) rightly assert, “the real pivot point for the debate
centers on what makes explanatory dynamical models explanatory” (p. 439).
Is the model developed by Thelen and colleagues (2001) genuinely explana-
tory? Answers diverge depending on the perspective one adopts. Importantly,
although Thelen and colleagues (2001) take their model to be biologically
plausible, it is a pure dynamical model that does not reference mechanisms
and yet is considered explanatory nonetheless. By their lights, their model is
explanatory despite – or perhaps because of – the fact that “The model as it
stands is neutral as to an anatomical instantiation in the central nervous
system: is it a model of the behavioral dynamics” (Thelen et al., 2001, p. 28).

Whereas, Stepp and colleagues (2011) recently argued, by appealing to
prediction, unification, and counterfactual support, that pure dynamical
models are genuinely explanatory, Kaplan and Bechtel (2011) counter-
argued that appeal to these criteria fails to secure an explanatorily relevant
status for pure dynamical models in cognitive science. Pure dynamical
models, that is, ones that do not reference mechanisms, (re-)describe
cognitive phenomena and may predict them, yet do not explain them.
According to Kaplan and Bechtel (2011), bona fide explanation requires a
specification of or reference to the underlying mechanisms that produce
the behavioral regularities described in dynamical models. They thus
claim, “Dynamical explanations do not provide a separate kind of explana-
tion; when they explain phenomena, it is because they describe the
dynamic behavior of mechanisms.” (p. 440).

Indeed, the prevailing attitude seems to be that dynamical models in
cognitive science (and neuroscience) explain only insofar or to the extent
that they refer to details of mechanisms thought to produce, underlie, or
otherwise be responsible for the phenomena described and targeted for
explanation in dynamical models (Kaplan & Bechtel, 2011; Kaplan &
Craver, 2011). I agree with the mainstream here: prediction, unification,
and counterfactual support are by themselves not enough to secure an
explanatory role for dynamical models.5 Although dynamicists often stress
the descriptive and predictive power of dynamical models (Stepp et al.,
2011; Van Gelder, 1998; Van Gelder & Port, 1995), Kaplan and Bechtel
(2011) rightly argue that predictive force is not enough for explanatory
power. On the basis of law-like regularities, one may correctly predict the
occurrence of events but fail to explain them. To use an often-rehearsed
example, falling mercury in a barometer is a reliable indicator of impend-
ing storms, but mercury drops of course do not explain the occurrence of
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storms. Rather, drops in atmospheric pressure are a common cause of –
and so explain – both drops in the mercury values of barometers and the
occurrence of storms. This of course was precisely the problem that was so
devastating for Hempel’s (1965) covering law model of explanation. So, by
the same token, descriptive and predictive regularities are also not enough
to secure explanatory counterfactual dependencies and unifying relations.
Moreover, Kaplan and Bechtel (2011) point out that pure dynamical
models often describe and relate independent and dependent variables or
parameters at the macro-level of observable behaviors, and thus only
describe effects (Cummins, 2000) and not the systemic features giving
rise to these effects.6 In short, such predictivism (Kaplan & Bechtel, 2011)
falls short as an account of explanatory power.

In a recent paper, Gervais (2015) endorses this assessment, but argues
that there is another source of explanatory power that has been over-
looked in the debate, namely the ability to confer scientific understand-
ing to scientists. Scientific understanding amounts to the ability of
scientists to derive qualitative consequences (insights into how a system
behaves or will behave in a certain way, that is, what it does or will do)
from a given model without performing exact calculations.7 Some pure
dynamical models, by his lights, fare well on this score. His example
concerns Voss’ (2000) dynamical model of anticipating synchronization
in circadian systems. Although an interesting take on the issue, this view
also falls short in providing a suitable anchor for the explanatory power
of pure dynamical models. Somewhat ironically, the reason is given by
Gervais himself:

As Kaplan and Bechtel stress (2011, p. 443), the Voss model is only a how-possible
model: it has yet to be verified if the mammalian circadian system works that way . . .
this hypothetical character has no bearing on the fact that the model conveys
understanding . . . the realization that the mammalian system might operate in
accordance with the Voss model. (2015, p. 63)

So as things stand now, the mammalian system might or might not operate
in the way described in the Voss model. However, if plausibility, roughly,
the likelihood that the model is correct, carries weight in explanatory
power assessments, this approach fails: without reference to features that
would convert a how-possible model into a how-actually model (be it
information on the mapping between operations specified in dynamical
models and their component parts, laws, causal relations, or something
else that carries explanatory weight), dynamical models like the Voss
model are merely hypothetical or how-possibly models (see Kaplan &
Bechtel, 2011). Now, by their very nature, hypothetical models might be
wrong. Hence, it is quite conceivable that they provide incorrect under-
standing: if one derives qualitative consequences from an incorrect model,
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chances are good that these consequences are incorrect as well. But such
derivations will most likely fail to provide genuine insight into the system
under investigation.

This “plausibility worry” is accounted for by the perspective advanced in
this paper in several ways: First, a wealth of behavioral evidence supports
the claim that Thelen and colleagues’ dynamical model of the A-not-B
error (as well as the dynamical models of unintentional interpersonal
coordination discussed in Section 5) tracks actual (causal) dependency
relations. Second, although their dynamical model of the A-not-B error
does not reference localization information with respect to the mapping of
the operations specified in the dynamical model onto working parts, or
information on the mechanisms constituting those operations, it is con-
sistent with, inter alia, what is known about central nervous system func-
tion. In this sense, the model is evidentially supported by mechanistic
evidence. Yet, such localization information is not what gives contextua-
lized causal models their explanatory traction (I elaborate these points in
Sections 3 and 4, where I also argue that there is a principled difference
between such dynamical models and mechanistic models, be they “com-
plete,” schemata, or sketches. In a nutshell, such dynamical models list
dependencies between external constraints and causal factors. Since such
external constraints are not, on any reading of constitutive relevance,
constituents of mechanisms, they are not articulated in mechanistic mod-
els. Ipso facto, dependencies between external constraints and core causal
factors are not specified in mechanistic models. Therefore, contextualized
causal models are importantly different from mechanistic models.)

In the next section, I elaborate a broadly interventionist perspective on the
explanatory structure and power of some pure dynamical models in cognitive
science, in casu Thelen and colleagues’ (2001) dynamical model of the A-not-
B error. I argue that this model can be understood as a “contextualized causal
model.” This explanatory structure gives such models genuine explanatory
power.

3. Dynamical models as contextualized causal model explanations

3.1. Contextualized causal model explanations

Weber and colleagues (2013) argued that (some) dynamical models, among
which Thelen and colleagues’ (2001) model of the A-not-B error (and its
variations) and the rhythmic fingermovementmodel ofHaken and colleagues
(1985), are causal explanations, countering Walmsley’s (2008) idea that (all)
dynamical explanations are traditional covering law explanations. More spe-
cifically, Weber and colleagues (2013) argued that (some) dynamical models
are non-deductive, causal covering law explanations, in which the “laws”
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figuring in the explanans should be thought of as default rules, rather than
exceptionless laws, because these “laws” do not cover each and every case (e.g.,
as regards perseverative reaching, it is usually the case that perseverative
reaching occurs when infants have been repeatedly cued to a specific location;
or, the model addresses most contextual subtleties that affect whether or not
perseverative reaching occurs, yet not all contextual variation). The idea seems
to be that the system of equations relating parameters and variables makes up
a default rule or rules and that, by assigning specific values to these parameters
and variables, one can derive specific reaching behaviors as a consequence of
these interrelated parameter and variable values. Since these parameter and
variable values describe (in mathematical fashion) causes of the explanandum
(specific reaching behaviors can be derived as effects from these causes), the
explanation is interpreted as causal. Weber and colleagues (2013) are on to an
important idea, that is, that some dynamical models are causal ones, butmuch
more can be said on the nature of the relations holding between the para-
meters and variables described in causal dynamical models. Specifically, such
models, at least Thelen and colleagues’ (2001) model of the A-not-B error and
the models of unintentional interpersonal coordination developed by
Richardson et al. (2007) and Schmidt and Richardson (2008), are contextua-
lized causal models. That is, rather than taking every parameter and variable as
corresponding to a cause simpliciter, such models capture dependencies
between internal and external constraints and core causal factors, which
specify when the core causal factor is (and when it isn’t) a difference maker
for the explanandum phenomenon. And, moreover, the specification of such
dependencies affords formulating and answering explanatorily relevant what-
if-things-had-been-different questions (see Sections 2.1 and 3.2).

Two issues require some clarification at this point – what view on causa-
tion and causal relations grounds the claim that these models are contex-
tualized causal models and what makes these models relevantly different
from mechanistic models. I address these issues in turn.

I endorse the view championed by Woodward (2003) and others (e.g.,
Craver, 2007; Hausman, 1998; Mackie, 1980) that causal relations are ones
that are potentially exploitable for purposes of manipulation and control. If X
is to count as a cause of Y it must be shown that X makes a difference to Y,
namely, it should be possible to change Y by intervening on X, when other
(off-path) variables in the system are held fixed to their values. The interven-
tion on X thus should be such that the change in Y is only due to the change in
X. Now, such “ideal” interventions are hard to come by in scientific practice or
perhaps even impossible to attain. In scientific practice, it often seems not
feasible to control for all of-path variables (known or unknown) that might
affect a causal relation (as Woodward, 2003, 2017, p. 6, note 7 remarks, an
intervention is an “idealized non-confounded experimental manipulation”;
see also Craver, 2007). The best one can do, it seems, is to control for the
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known and salient ones. The idea of causation and causal relations as differ-
ence making and difference making relations, respectively, clearly applies to
the dynamical models discussed in this paper, and the developers of these
models also make efforts to control for off-path variables. Let me explain.

Manipulations of the core causal factors cited in the models show that
these make a difference to the explananda phenomena targeted by these
models. For instance, manipulating the strength (value) of motor memory
of previous reaches (variable) by administering repetitive cues over time to
a certain location impacts the strength of the influence of motor memory
on the decision to reach to a certain location, that is, perseverative reaching
errors occur more often when infants receive more repetitive location cues.
This is the “canonical” situation in which motor memory shows up as a
key causal factor for perseverative reaching. But as Thelen and colleagues
(2001) remark:

The model offers a powerful and parsimonious, yet biologically plausible, account of
the many contextual influences on A-not-B tasks that have puzzled developmental
psychologists for two generations. (p. 2, emphasis added)

Thelen and colleagues’ (2001) model is intricate, for it accounts both for
the canonical situation and for contextual influences (internal and external
constraints) that affect whether or not motor memory makes a difference
to perseverative reaching. Changes to the values of these constraints show
when the core causal factor is or isn’t a difference maker for perseverative
reaching. Like the relation between the core causal factor and the expla-
nandum phenomenon, these contextual variations are also explicable in
terms of an interventionist framework on causal relations.

In the canonical situation, the salient internal and external constraints are
held fixed to a certain value and under those (fixed) conditions it is assessed
whether or not motor memorymakes a difference to perseverative reaching (by
manipulating the number of location cues administered to the infants). We can
think of these internal and external constraints held fixed to a certain value as
off-path variables, that is, variables not on the causal path between motor
memory and perseverative reaching. Furthermore, we can think of each of the
contextual variations on or deviations from the canonical situation, captured by
the model simulations, in which one of the internal or external constraints (off-
path variables) is assigned a different value, as corresponding to a novel “causal
scenario” in which it is again assessed whether motor memory (still) makes a
difference to perseverative reaching. That is, in each novel causal scenario, an
internal or external constraint is held fixed to a specific value different from the
canonical situation (e.g., fixed to a specific different value with respect to the
ambiguity of the task input, body posture of the infant, etc.), and it is assessed
whether, under this condition, motor memory is still a difference maker for
perseverative reaching or not. To think of these internal and external constraints
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as off-path variables held fixed to a certain value in a particular causal scenario
accords with the extensive simulation runs done with the model and also
captures the insight that internal and external constraints are not to be thought
of as causal factors on a causal (directed) path from constraint to core causal
factor to explanandum phenomenon (effect), or directly from constraint to
explanandum phenomenon (effect). For instance, constraints like body posture
or ambiguity of the task input do not cause a specific value of motor memory of
previous reaches, of course. Cued reaches to specific locations is what causes
memory of these reaches. And neither do constraints directly cause persevera-
tive reaching. For that to occur, memory of previous reaches has to be in place.
These constraints rather set the context within which a core causal factor is a
difference maker or not. In sum, the claim that Thelen and colleagues’model of
the A-not-B error is a contextualized causal model can be backed up and made
precise in terms of an interventionist framework on causal relations.
Importantly, Thelen et al. (2001) and Smith and Thelen (2003) also clearly
consider their model to be a causal explanation. The view that their model
provides a causal explanation for the A-not-B error is a continuous thread
running through their research. As Smith and Thelen (2003), for instance,
state, the aim of the model “is to explain how the A-not-B error is the emergent
product of multiple causes interacting over nested timescales . . . there are many
causes that make the error appear and disappear” (pp. 345–346).8 This is of a
piece with their earlier mentioned claim that “infants make perseverative loca-
tion errors because the motor memory of one reach persists and influences
subsequent reaches” (Thelen et al., 2001, p. 9).

3.2. Contextualized causal models are non-mechanistic

Importantly, these dynamical models are causal, yet non-mechanistic. In a
recent paper on abstraction andmechanistic explanation, Boone and Piccinini
(2016) provide a generic characterization of mechanistic models that is widely
endorsed in the literature: “At each level of organization, a mechanistic model
articulates how the relevant properties [sets of causal powers] of the relevant
components, suitably organized, produce the phenomenon” (2016, p. 4).

They also endorse the widely held view that mechanistic (model) expla-
nations are constitutive. So, mechanistic models articulate how suitably
organized constitutively relevant components and their properties consti-
tute the phenomenon to be explained (one form of organization being the
causal intra-level interactions between components. Inter-level relations
between components and phenomena are constitutive and non-causal).
Thus, whether a model articulates a mechanism in full constitutively
relevant detail or abstracts away, for whatever reasons, from some or
many constitutively relevant features, as in the case of mechanism sketches

14 D. VAN ECK



and schemata, on this view, mechanistic models only list constitutively
relevant mechanistic features.

Contextualized causal models, in contrast, are not mechanistic models (be
they “complete,” schemata, or sketches) since they, inter alia, list dependencies
between external constraints and core causal factors. Such external constraints
are not constituents of mechanisms (they fail mutual manipulability interpreta-
tions of constitutive relevance [Craver, 2007], they fail no-decoupling require-
ments on constitutive relevance [Baumgartner & Casini, 2017], etc.). Consider
that two influential (and very different) mechanistic accounts of constitutive
relevance – Craver’s (2007) mutual manipulability account and Baumgartner
and Casini’s (2017) no-decoupling account – both require that evidence for
constitutive relevance relations between parts (putative components) and phe-
nomena entails that, following appropriate manipulations of a mechanism/
mechanistic system, macro-level changes in phenomena must be accompanied
by corresponding micro-level changes in components. If, following an appro-
priatemanipulation, there is amacro-level change in a phenomenonwithout an
accompanying change in the putative component, that putative component is
not a constituent (genuine component) of the mechanism. Both these mechan-
istic accounts diverge greatly with respect to the nature of possible manipula-
tions on mechanistic systems and the evidential import they convey, but both
stress that evidence for the constitutive relevance of a specific part requires that
when a macro-level phenomenon changes through an appropriate manipula-
tion, the partmust change as well.9 In light of this requirement, we can easily see
that external constraints are not, on such readings of constitutive relevance,
constituents of mechanisms. For instance, if you manipulate body posture (for
the sake of argument, a putative part), perseverative reaching (phenomenon) is
changed as well. Yet, if you manipulate perseverative reaching (by engaging
infants in the experimental task) body posture is not affected (e.g., in the
canonical situation they do it sitting on the lap of an adult on different trials).
Hence, body posture is not a constituent of perseverative reaching. Only should
body posture change in each and every experimental condition would one have
(abductive and fallible) evidence suggesting that body posture is a constituent in
perseverative reaching. Likewise, if you manipulate the salience of the hiding
conditions (again, for the sake of argument, a putative part), perseverative
reaching is changed as well. Vice versa, however, when you manipulate perse-
verative reaching (by engaging infants in the experimental task), the salience of
the hiding conditions is unaffected. The same goes, I submit, for each external
constraint taken into account in the dynamical explanation by Thelen and
colleagues (2001): these are not constituents of mechanisms.10,11

Moreover, external constraints are not to be confused with environmental or
contextual conditions of a mechanism, at least not in the causal sense in which
environmental/contextual conditions are understood in the mechanism litera-
ture. In the context of mechanistic explanation, it seems that environmental/
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contextual features are stressed as explanatorily relevant either as causal back-
ground conditions that have a causal impact on mechanism function or as
causally relevant components. For instance, how light understood as a causal
background condition impacts – plays a causal role in initiating – the operation
of the retina (Craver & Bechtel, 2007; Roe & Baumgaertner, 2017). However, as
explained, external constraints are not to be thought of as causal factors on a
causal (directed) path from constraint to core causal factor to explanandum
phenomenon (effect), or directly from constraint to explanandumphenomenon
(effect). Again, body posture does not cause a specific value ofmotormemory of
previous reaches; cued reaches to specific locations do. Body posture, rather, is a
constraint setting a context within which a core causal factor is a difference
maker or not. External constraints, hence, are (also) different from environ-
mental/contextual conditions of a mechanism as understood in the mechanism
literature.

The distinction is important. What the above discussion tells us is that
mechanistic (model) explanations track (inter-level) constitutive dependency
relations and (intra-level) causal ones. Environmental/contextual conditions
can figure in the latter dependency relations. External constraints, however,
figure in neither: dependencies between external constraints and core causal
factors are neither causal nor constitutive and, hence, not specified in mechan-
istic models (at least not according to extant conceptions of mechanistic
models).12 In light of this, we can also see that contextualized causal models
have more explanatory power thanmechanistic models with respect to explain-
ing the intricacies of perseverative reaching (and, more generally, phenomena
that are highly sensitive to contextual subtleties). Specifically, the model of
Thelen and colleagues (2001) answers what-if-things-had-been-different ques-
tions by spelling out the mutual interdependencies between the core causal
factor of motor memory of previous reaches and internal constraints, such as
looking, motoric planning, and reaching, and external ones like the relative
ambiguity of the task input and the delay between looking and reaching.
Simulations are run with the model, informed by extensive empirical findings
that characterize under which contextual conditionsmotormemory of previous
reaches makes a difference to perseverative reaching and when it does not. For
instance, as discussed earlier, how constraints like body posture, the delay
between looking and reaching, and the salience of the hiding locations affect
whether or not motor memory of previous reaches is a difference maker for
perseverative reaching. These contextual dependencies are captured in terms of
differential and difference equations, and these dependencies also tell us how
changes to the values of the constraints (captured by mathematical parameters)
in these dependencies result in changes in the value of the target explanandum
phenomenon, that is, they tell us under which parametric value changes motor
memory is and isn’t a difference maker for perseverative reaching. In interven-
tionist vein, Thelen and colleagues (2001) subscribe to this view by arguing that
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action dynamics can be studied through behavioral manipulations: “we contend
that the A-not-B error is . . . a window on these planning dynamics, with the
ambiguous targets and delays providing the necessary manipulations” (Thelen
et al., 2001, p. 13, emphasis added).

Mechanistic models, in contrast, do not articulate dependencies between
external constraints and core causal factors and, hence, do not offer the
resources to assess the contexts in which motor memory will or will not
make a difference to the A-not-B error. That is, they do not offer the resources
to answer what-if-things-had-been-different questions with respect to
changes in these dependencies. This is precisely what contextualized causal
models do13 (although good mechanistic models do provide answers to other
sorts of what-if-things-had-been-different questions, viz., questions with
respect to possible and/or actual manipulations of mechanisms and their
components [Craver, 2007]).14

Summing up, my view thus disagrees with Kaplan and Bechtel’s (2011)
perspective that dynamical explanations do not constitute a separate kind of
explanation, distinct from mechanistic explanation. Rather, dynamical expla-
nations, in fact, can provide a kind of explanation separate from mechanistic
explanation and deliver important explanatory insights. In the case of the
model of the A-not-B error, the model answers what if-things-had-been-
different-questions, clarifying how the error and its decline depend on the
nature of the contextual dependencies holding between motor memory of
previous reaches and (a variety of) internal and external constraints.

There is a further important issue that emerges, of course: how do such
dynamical models relate to mechanistic ones? I take the results of this
section to establish that mechanistic information with respect to the map-
ping of the operations specified in contextualized causal models onto
working parts, or their constitution by underlying mechanisms, is not
needed to deliver the explanatory insights that contextualized causal mod-
els offer. That said, in the next section I argue that such mechanistic
“mapping information” is relevant from an evidential point of view: it
confers plausibility on the specification of operations in these contextua-
lized causal models and, relatedly, information on mechanism manipula-
tions is relevant to backing up the claim that the core causal factors listed
in contextualized causal models indeed are difference makers for the
targeted explananda phenomena.

4. Comparison: The evidential role of mechanistic information

Thelen and colleagues (2001) claim that their model is biologically plau-
sible, despite the fact that it does not specify neural mechanisms. It is a
model of the behavioral dynamics involved in perseverative reaching.
Nevertheless, the dynamics specified by the model are in accord with
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what is known about central nervous system function: the close couplings
between looking, planning, motor memory, and reaching constitute pro-
cesses that are also detected, through a large number of studies, in the
brains of awake, behaving monkeys (Thelen et al., 2001, p. 9, table 2
marshals a great number of studies in support of this claim). These studies
use tasks similar to the A-not-B error and suggest that motor cortical areas
are recruited in sensorimotor transformations and in stimulus retention in
memory. What’s more, motor, premotor, parietal, and prefrontal cortical
areas show increased activation in response to reaching tasks and varia-
tions in task conditions, similar to the A-not-B error task and its variations
in task conditions.

Now, although one must be very cautious in extrapolating findings
across species, these findings do suggest that the dynamics specified in
the model explanation for perseverative reaching align with findings about
the functioning of neural mechanisms. There thus is evidence suggesting
that the dependencies between the internal constraints and the core causal
factor captured in the model are produced by actual underlying mechan-
isms and that these mechanisms are responsive to (changes in) external
constraints. This evidence thus confers plausibility, alongside the vast
behavioral evidence on which the model is based, on the dynamics speci-
fied in the model explanation for perseverative reaching. But it is impor-
tant to see that the fact that these processes (probably) correspond to
component parts or underlying mechanisms is not what gives the model
its explanatory traction. The key explanatory traction of contextualized
causal models, rather, consists in showing how core causal factors make a
difference to target explananda phenomena, relative to internal and exter-
nal constraints. That is, these models answer what-if-things-had-been-
different questions by capturing salient contextual variation under which
the core causal factors are or aren’t difference makers for explananda
phenomena.

Such mechanistic information plays an evidential role, not an explanatory
one. As I see it, the evidential import of mechanistic information, localiza-
tion information in particular, comes in two (related) ways. First, it consists
in showing that the operations specified in such contextualized causal
models can be mapped onto working parts or are constituted by underlying
mechanisms (see Piccinini & Craver, 2011). Such information thereby con-
fers plausibility on contextualized causal models by indicating that the
operations specified in them actually (or probably) are component processes
of mechanisms or are constituted by mechanisms. Second, and relatedly,
mechanistic information is evidentially relevant to backing up the claim that
the core causal factors listed in contextualized causal models indeed are
difference makers for the targeted explananda phenomena (they play this
role alongside behavioral evidence). For instance, if the mechanism
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constituting motor memory is incapacitated or weakened, this manipulation
will impact perseverative reaching: it will then not occur, or not as strongly.
So information on such mechanism manipulations confers plausibility on
the claim that a core causal factor (indeed) is a difference maker. However,
localization and manipulation information with respect to mechanisms is
not required to explain the explananda phenomena, and their contextual
variability, targeted by contextualized causal models. Rather, contextual
dependencies are invoked to explain when a core causal factor is or isn’t a
difference maker for a target explanandum. So, contextualized causal models
do the explanatory work, not localization and manipulation information
with respect to mechanisms.

Another way to phrase this point is that models work at different levels
or scales and address different questions; for example, what explains the
error and its variations vs. what mechanism constitutes a core causal
factor? For the latter explanation-seeking question, mechanistic models
are explanatorily relevant (specific details of the explanatory request will
further determine how much and what sort of localization information on
working parts is required). Yet for the former explanation-seeking ques-
tion, which of course is the question for which Thelen and colleagues
(2001) developed their model, localization information concerning opera-
tions and their working parts or constituting mechanisms is not explana-
torily relevant, since such information does not support answers to the
relevant what-if-things-had-been-different questions. The model for the
A-not-B error, however, precisely gives you these answers by articulating
how motor memory makes a difference (or not) to perseverative reaching,
relative to internal and external constraints. In sum, mechanistic informa-
tion with respect to localization plays an evidential role, alongside beha-
vioral evidence, in conferring plausibility on the behavioral processes
specified in the dynamical model. But one can do without this information
from an explanatory point of view.15

The upshot is that there are contexts in cognitive science in which pure
dynamical explanations do provide a separate kind of explanation from
mechanistic explanation, and in these contexts, when they explain phe-
nomena, it is not because they describe dynamic mechanisms. In recent
years, the point is increasingly being stressed that there are explanation-
seeking contexts in the life sciences in which other types of explanation,
like minimal model explanations (Batterman & Rice, 2014; Ross, 2015) and
optimality explanations (Rice, 2015), are better suited than mechanistic
explanations. The view developed here is on a par with these analyses.16

The “causal” analysis given in this paper is not restricted to dynamical
models of the A-not-B error, but applies more broadly to other pure dyna-
mical models in cognitive science, and thus strengthens the perspective that
dynamical models can be explanatory and can have explanatory power despite
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the fact that they do not describe mechanisms. In the next section I discuss a
second example of dynamical explanation in cognitive science to substantiate
this claim, namely dynamical explanations of unintentional interpersonal
coordination, which are a recent extension of the HKB model of coordination
dynamics (Richardson et al., 2007; Schmidt & Richardson, 2008). I close the
paper in the final section by (briefly) contrasting my causal perspective on
dynamical explanations with some recent analyses of dynamical explanation
in systems neuroscience – which borders closely to cognitive science and
according to some might be seen as a part of cognitive science – that also tell a
positive story about the explanatory power of pure models, but differ from the
perspective advanced here in a crucial respect. According to these analyses
some dynamical models in systems neuroscience are non-causal minimal
models. In contrast, the analysis advanced here is explicitly causal: causation
and counterfactual dependence are a package deal. The more general lesson
that I take to follow from these other works and the work discussed here is that
the explanatory power of pure dynamical models – ones that do not refer to
mechanisms at all – can be secured in different ways.

5. Interpersonal coordination dynamics

The influential HKB model of the bimanual coordination of rhythmic finger
movements (Haken et al., 1985) concerns the intrapersonal coordination of
movements. It subsequently inspired a wealth of research on interpersonal
coordination (Richardson et al., 2007; Schmidt & Richardson, 2008), that is,
coordinatedmovements between two people. As is well known, the HKBmodel
specifies the rate of change of the relative phase angle of two oscillators (the left
and right fingers) in terms of a differential equation that specifies the potential
states in which the finger movements settle or remain. These states (and thus
the relative phase angle of the oscillators) are essentially governed by parameters
(specified in the equation) that reflect movement (oscillation) frequencies.
Research indicates that rhythmic finger movements display two basic patterns:
inphase (both fingers move simultaneously to the left or right in alternating
fashion) or antiphase (one fingermoves to the left, the othermoves to the right).
The patterns are dependent on oscillation frequencies; at low frequencies, both
inphase and antiphase motion are observed. When the frequency of the move-
ments increases, and a certain oscillation frequency is reached, only inphase
motion is observed. The HKB model captures these behavioral patterns in
mathematical fashion (the details of the equation need not concern us here).

5.1. Unintentional interpersonal coordination

Following up on these intrapersonal dynamics, the research by Richardson,
Schmidt, and collaborators (2007, 2008) aims to investigate whether, and if
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so, how, the coordination principles that govern intrapersonal movements
apply to, and can be used to study, the coordination principles that govern
interpersonal coordinated movements. A wealth of research indicates that
this indeed is the case, both for intentional coordinated movements
between two people and unintentional coordinated movements. These
movements all display the same behavioral patterns captured and pre-
dicted by the HKB model.

Unlike intentional interpersonal coordination, in unintentional interperso-
nal coordination subjects are not instructed to coordinate their movements.
They are instructed to produce rhythmic movements at their own preferred
pace in proximity to one another, such as wrist pendulum-movements, but
they are asked to do so in light of other research objectives than studying
movement coordination, like studying aspects of problem solving or assessing
ergonomic features of artifacts, such as rocking chairs (Richardson et al.,
2007). However, despite the fact that subjects are not instructed to coordinate
their movements, and despite the fact that they are – as debriefings afterwards
indicate – not aware of the true purpose of the experiments, which of course is
studying coordination phenomena, interpersonal coordination of movements
does take place in such experiments.

A case in point is the research by Richardson and colleagues (2007) on
unintentional interpersonal coordination of rocking chair movements.
They investigated whether coordinated rocking chair movements also
emerge when subjects are not instructed to coordinate their movements
and, if so, whether the manipulation of visual focus (sharp visual focus of
the other subjects’ movements, observing the other subjects’ movements
from the periphery, or no visual information available) makes a difference
to unintentional interpersonal coordination. In each trial, two subjects
were instructed to rock a chair at their own preferred pace and were told
that the experiment was devised to investigate certain ergonomic features
of the rocking chairs. Subjects were furthermore (casually) told that they
were performing the rocking task in pairs for the sake of efficiency con-
siderations in data collection. They were also informed that the experiment
was conducted to assess how different postural configurations have an
impact on the stability of the rocking chairs. This was “tested” in different
trials by having the subjects look, while rocking, at a red dot at the arm rest
of the chair of the other subject (sharp visual focus), at a red dot right in
front of them (peripheral visual focus), or at a red dot to the side of them
(no visual information).

The results indicate that in this experimental setting, visual focus is a
core causal factor that makes a difference to unintentional interpersonal
coordination, and does so in different ways relative to specific external
constraints. One salient external constraint concerns mass differences
between the rocking chairs (which were manipulated by the experimenters
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by adding a 27 kg mass to the base of some chairs), leading to different
natural “rocking periods” of the chairs.17 As expected, in the no visual
information condition (in which subjects did not see each other’s move-
ments) entrainment or coordination of rocking movements did not occur.
However, in both the central and peripheral vision conditions, in line with
the HKB model, unintentional interpersonal coordination did occur: rela-
tive phase angles of the oscillators (rocking chair movements) near the
attractor states (inphase and antiphase) became dominant when subjects
could see one another’s movements, despite the fact that they were not
instructed to coordinate their movements. In other words, visual focus
makes a difference to the phenomenon of unintentional interpersonal
coordination. Interestingly, it does so in different ways relative to the
external constraint of mass difference, and thus different natural rocking
periods, between the rocking chairs.

Specifically, central visual focus makes a difference to the unintentional
interpersonal coordination of movements (measured in terms of distribu-
tions of the relative phase angles of the oscillators during the 90s trials)
both when there are 27 kg mass differences between the rocking chairs and
when there are no mass differences. However, central visual focus has a
greater impact on the unintentional interpersonal coordination of move-
ments when the chairs have the same mass than when they have a different
mass. Interestingly, in the peripheral vision condition, visual focus does
not make a difference across different mass conditions. It rather only
makes a difference to the unintentional interpersonal coordination of
movements when the chairs have the same mass. When the chairs differed
in mass by 27 kg, unintentional interpersonal coordination of movements
did not take place.

5.2. Contextualized causal model explanations, again

So what we see here is that this research can be interpreted as advancing a
contextualized causal model explanation of the unintentional interpersonal
coordination of rocking movements in which visual focus is the core causal
factor that makes a difference to the phenomenon. Furthermore, con-
straints are listed that affect the manner in which visual focus makes a
difference: the impact it has on the explanandum phenomenon is stronger
in the central vision condition than in the peripheral vision condition.
Furthermore, vision in the central condition makes a difference to coordi-
nated movements across different mass conditions in different ways: the
effect is stronger when the chairs have equal mass than when they differ in
mass. Finally, in the peripheral vision condition, visual focus only makes a
difference in the no mass difference condition. When chairs differ in mass,
(peripheral) visual focus is not a difference maker for unintentional
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interpersonal coordination. In other words, contextual dependencies
between the core causal factor and constraints are given that specify
when the core causal factor is (and when it isn’t) a difference maker for
the explanandum phenomenon, and how strong an effect it has on the
phenomenon. These dependencies thus answer what-if-things-had-been-
different questions, for they tell us under which conditions, and changes
therein, the core causal factor makes a difference to the explanandum
phenomenon, how strong its effect is, and when it does not make a
difference. As argued at length, the explanatory power of contextualized
causal model explanations resides in this ability.

Furthermore, like the model of the A-not-B error, these models are
“pure” in the sense that they do not describe underlying mechanisms, and
need not do so in order to confer relevant explanatory insights. The
developers of the model make this explicit by stating that:

Rhythmic interlimb coordination appears to be the result of the lawful relations that
exist between the sub-components [oscillators, such as moving fingers, legs, and
wrists] of perceptual-motor systems, rather than a specific anatomical or neural
mechanism. (Richardson et al., 2007, p. 869)

To be sure, the operation of neural mechanisms is, of course, required for agents
to engage in oscillatory behaviors. The point is that such mechanisms need not
be referred to in explanatory models of (intrapersonal and) interpersonal
coordination. Like the model of the A-not-B error, the model of unintentional
interpersonal entrainment captures different contexts under which the core
causal factor is or isn’t a difference maker for the target explanandum. For this
explanatory request, the articulation of dependencies between contextual con-
straints and core causal factors is what matters. In the case at hand, answers
require specifying different values of the behavioral and contextual parameters,
such as oscillation frequencies, and visual focus and mass difference conditions.
This is precisely what can be done with contextualized causal dynamical models
of unintentional interpersonal coordination. As argued at length in Section 4,
mechanistic information with respect to, inter alia, localization is evidentially
relevant, but it does not give explanatory traction in the explanatory context for
which the model of unintentional interpersonal entrainment was developed,
namely identifying the key causes of unintentional interpersonal entrainment
and the contextual variation it is subject to.

6. Discussion and conclusions

In this paper I have argued that some “pure” dynamical models – ones that
do not refer to mechanisms at all – in cognitive science are “contextualized
causal models” and that this explanatory structure gives such models
genuine explanatory power. I built this analysis in terms of dynamical
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models of the A-not-B error in developmental psychology (Thelen et al.,
2001) and dynamical models of unintentional interpersonal coordination
(Richardson et al., 2007). I contrasted this view with several other perspec-
tives on the explanatory power of pure dynamical models. One of the main
insights is that dynamical models need not refer to underlying mechanisms
in order to be explanatory.

The account elaborated in this paper agrees with some other recent
analyses of dynamical explanations in the context of systems neuroscience
as regards the idea that dynamical models can have explanatory value
despite the fact that they do not describe mechanisms (Chirimuuta, 2017;
Ross, 2015; Woodward, 2017), but it is important to carefully distinguish
these perspectives. Whereas the account advanced here is explicitly causal
– causation and counterfactual dependence go hand in hand – these other
perspectives argue that some dynamical models in systems neuroscience
are non-causal minimal models (some of which explicitly prize causation
and counterfactual dependence apart [Chirimuuta, 2017]). In my view,
both perspectives are valuable and complementary. Consider that the
explanatory traction of contextualized causal dynamical models hinges
on capturing variation, that is, spelling out under which conditions a
core causal factor is or isn’t a difference maker for the explanandum
phenomenon. Minimal models, and thus dynamical models plausibly
regimented as minimal models, in contrast, serve an opposite explanatory
goal. These models serve to explain how physically distinct systems all
display the same, uniform macro-level behaviors, and do so by identifying
those (non-causal) features that are common to these systems and in virtue
of which they are able to display uniform macro-level behaviors. For
instance, Ross (2015) discusses neuroscientists’ explanations of why dis-
tinct neural systems exhibit the same qualitative patterns of neural excit-
ability – how depolarization and repolarization trajectories change over
time – in terms of the idea that the application of mathematical abstraction
techniques, invoked to abstract away from details of mathematical models
of specific neural systems, all produce equivalent abstracted models, that is,
they converge to a single “canonical” model. Such abstraction procedures
indicate that system-specific mechanistic features are explanatorily irrele-
vant for explaining uniform macro-level behaviors of these systems. What,
rather, is explanatorily relevant are the common features across the
abstracted dynamical models, that is, the features listed in the canonical
model, such as the topological changes that neurons display if they transi-
tion from resting states to sustained firing states.

The more general lesson that I take to follow from these works on
dynamical minimal models and the “causal” work discussed here is that
the explanatory power of “pure” dynamical models – ones that do not refer
to mechanisms at all – can be secured in different ways, and that the
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structure and value of these models cannot be seen in isolation from the
explanatory ends for which they are used.

Notes

1. Stepp and colleagues (2011) advance multiple criteria for the explanatory power of
dynamical models, namely predictive power, counterfactual support, and unifica-
tion. In Section 2.2, I argue that this is not enough to secure the explanatory power
of such models.

2. Let me note that I restrict my account to the explanatory value of dynamical models
in cognitive science. Furthermore, I purposely claim that most extant defenses of the
explanatory power of pure dynamical models in cognitive science fall short of
securing the explanatory value of such models. If one is willing to count systems
neuroscience as part of cognitive science then, by my lights, there are some promis-
ing accounts available as regards the explanatory power of pure dynamical models.
In the context of systems neuroscience, I take several authors to have convincingly
argued that non-mechanistic dynamical models also can have explanatory force in
virtue of these models being minimal models in the sense discussed by Batterman
(2002) and Batterman and Rice (2014) (Chirimuuta, 2017; Ross, 2015; Woodward,
2017). That said, these accounts differ in a crucial respect from the one elaborated
here: they treat dynamical models as non-causal ones. In contrast, the account
advanced in this paper is explicitly causal. I briefly contrast my account with
minimal model interpretations of dynamical models in Section 6. One of the
important insights that derive from this comparison is that the explanatory power
of non-mechanistic dynamical models can be secured along both causal and non-
causal lines.

3. One of the reasons for assessing the model of the A-not-B error in detail is that its
explanatory structure (and thus its explanatory power) has been misrepresented in
the literature. For instance, while some take the model to be an instance of covering
law explanation (Walmsley, 2008), others interpret the model in mechanistic fashion
(Zednik, 2011). Yet others have been silent about its structure and power while
invoking the model as a paradigmatic case of dynamical explanation (Van Gelder,
2006). Another reason is historical: it is considered one of the flagship cases of
successful dynamical explanation in cognitive science. I also discuss more recent
work on dynamical explanation in cognitive science in order to show that the
“contextualized causal model” interpretation advanced in this paper is not restricted
to the model of the A-not-B error, but applies more broadly to dynamical explana-
tions in cognitive science.

4. As said, I take constraints to refer to task conditions and differentiate between
internal and external constraints. External constraints refer to specific characteristics
or properties of the task environment (e.g., the ambiguity of the task input in the
A-not-B task) under which a task is (to-be) performed by subjects (e.g., infants in
the A-not-B task). Internal constraints refer to specific restrictions on the behaviors
(e.g., the specific delay between looking and reaching in the A-not-B task) that
subjects (e.g., infants in the A-not-B task) (are to) execute during the task. These
constraints are represented as parameters (and not as variables) in the dynamical
models considered in this paper.

5. Of course, in Woodward’s account explanation also involves predictive elements:
answering what-if-things-had-been-different questions also concerns predicting
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what would happen in counterfactual scenarios. As will become clear in this section,
the claim that prediction does not provide sufficient grounds for explanatory power
concerns the idea that law-like regularities, while having predictive credentials, by
themselves need not be explanatory. The claim is not made in reference to
Woodward’s account, in which a variety of additional constraints are imposed on
generalizations being truly explanatory.

6. Parameters refer to conditions that affect or constrain how dynamical behavior
unfolds in real time, for example, how motor memory of previous reaches impacts
perseverative reaching. Dynamical behavior, such as perseverative reaching beha-
vior, is captured by means of variables that are assigned values which change from
one time step to the next, for example, the hand reaching trajectory of an infant
during the A-not-B task.

7. This skill-based account of understanding originates from the contextual theory of
understanding, which was originally developed by De Regt and Dieks (2005) in the
context of scientific theories in physics. Gervais (2015) applies the account to Voss’
dynamical model.

8. Smith and Thelen (2003) speak about “multiple causes”; I prefer to speak about a
core causal factor (i.e., motor memory) and internal and external constraints that
affect whether or not the core causal factor is a difference maker for perseverative
reaching. This re-characterization more precisely captures what goes on in the
experimental investigations and is in line with the repeated emphasis on motor
memory as cause of the A-not-B error.

9. Whereas Craver (2007) stresses ideal interventions that induce changes in one level
by inducing changes in the other, Baumgartner and Casini (2017) argue that such
ideal interventions, as defined by Craver (2007), are impossible in principle when
the relation between micro and macro levels is one of constitution. In their view,
micro and macro levels, in the case of constitution, can only be manipulated via fat-
handed interventions that cause changes at both levels via separate causal paths.
These differences, although intriguing, need not concern us here.

10. A similar argument can be run as regards internal constraints: since these refer to
restrictions on subjects’ behaviors that are (to be) executed during tasks (e.g., the
specific delay between looking and reaching in the A-not-B task) and not to such
behaviors themselves, such task conditions are also not constituents of mechanisms.
I focus the discussion on external constraints since I take their non-constitutive (and
non-causal) nature to be especially salient and establishing that suffices for my
purposes here, namely demonstrating that mechanistic and contextualized causal
models are importantly different.

11. Contextualized causal models are (also) different from mechanistic models as con-
strued by Woodward (2013). Woodward considers mechanisms to be sets of (mod-
ular) causal relationships. That is, he takes mechanisms to consist of components/
parts that can be characterized by variables, where these variables stand in causal
(i.e., difference making) relationships to one another, and in which these relation-
ships are viewed as intermediate or intervening links along the causal paths con-
necting mechanisms’ overall input to their overall output (these overall input-output
relationships characterize the overall behavior of mechanisms, i.e., their phenom-
ena). Mechanistic models represent such sets of (modular) causal relationships.
Now, Woodward says much more about features of mechanisms and models thereof
(in particular, with respect to stability, modularity, and sensitivity to organization),
but this brief sketch suffices to see that mechanistic models as understood by
Woodward are not to be equated with contextualized causal models: the latter do
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not represent sets of (modular) causal relationships. As said in Section 3.1, internal
and external constraints listed in contextualized causal models are not to be thought
of as causal factors on a causal (directed) path from constraint to core causal factor
to explanandum phenomenon (effect), or directly from constraint to explanandum
phenomenon (effect). For instance, constraints like body posture or ambiguity of the
task input do not cause a specific value of motor memory of previous reaches, of
course. Cued reaches to specific locations is what causes memory of these reaches.
And neither do constraints directly cause perseverative reaching. For that to occur,
memory of previous reaches has to be in place. These constraints rather set the
context within which a core causal factor is a difference maker or not. So, con-
textualized causal models articulate contextual dependencies between constraints
and core causal factors, not causal relationships between them (the causal relation-
ship holds between core causal factors and target explananda, relative to these
constraints).

12. I am not inclined to stretch the concept of mechanistic model further to also include
external constraints. There then would be little distinctive left about such models;
they may then include virtually anything. One needs to draw the line somewhere.

13. Schöner and co-workers have, since Thelen and colleagues’ (2001) publication,
focused a lot on dynamic field models understood as dynamic neural field models
in which “the different factors that impact on behavior are conceived of as ‘forces’ in
neural dynamics, ranging from intrinsic factors that reflect the neural circuitry to
environmental factors that act through sensory input. The joint effect of these forces
is the emergence of a stable state that becomes visible as overt behavior”
(Maruyama, Dineva, Spencer, & Schöner, 2014). The dynamic neural field model,
in the context of the A-not-B task, represents reaching directions in terms of
activation levels of neurons, that is, in terms of the distribution of neural activation
in the field. Such neural activation distributions results from perceptual inputs
(specifics of the task input) and recent motor memory traces. This might suggest
that the dynamic neural field model captures all the features of the original dynamic
field model of the A-not-B error in terms of characterizations of neural activations.
This is not the case, however. The model only articulates reaching directions and
motor memory traces in terms of characterizations of neural activations. Specifics of
the task environment (i.e., the external constraints) are considered key to infant
perseverative reaching and are viewed as “forces” providing input to these neural
activations, but are not themselves considered to be neural activation patterns and
neither are they represented as such (Maruyama et al., 2014). In light of this, it
would be a mistake to consider dynamic neural field models of the A-not-B error to
be merely mechanistic models of neural mechanisms underlying the A-not-B error,
for external constraints are assigned key importance. What it does show is that since
the 2001 formulation, work has been done on the neural underpinnings of the
internal operations listed in the 2001 model, thus conferring plausibility on the
dynamics specified in the 2001 model (see also Section 4).

14. A worthwhile follow-up project would be to assess what an application of Hitchcock
and Woodward’s (2003) (comparative) account of explanatory power, which builds
upon Woodward’s (2003) account of causal explanation, to contextualized causal
models would look like. For Woodward (e.g., 1997, 2000, 2003), the capacity to
answer what-if-things-had-been-different questions is a necessary condition for an
explanation to have genuine explanatory import or explanatory power. I take the
explanatory power of contextualized causal models to also reside in this ability (see
Sections 2.1 and 3.2). Hitchcock and Woodward (2003) also argue that one
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explanation can do better than another one with respect to this capacity – that one
explanation may be able to answer more what-if-things-had-been-different ques-
tions than another one and in this sense has more explanatory power than its
counterpart. I also think that this is a fruitful way to assess the comparative
explanatory power of contextualized causal models vis-à-vis mechanistic models.
Hitchcock and Woodward (2003) cash out this idea of comparative explanatory
power in terms of one explanatory generalization being more invariant under
(testing) interventions than another one; the more invariant explanatory general-
ization will answer more what-if-things-had-been-different questions than its less
invariant counterpart. In general terms, a generalization that describes a causal
dependency relationship between explanans and explanandum variables is invariant
if it would continue to hold – remain stable or unchanged – if various other
conditions were to change. However, whereas invariance under interventions and
the capacity to answer what-if-things-had-been-different questions are a package
deal in Woodward and Hitchcock’s (comparative) account of explanatory power, we
need to prize these features apart in the context of contextualized causal models. To
see this, consider that the dependency relation articulated in Thelen and colleagues’
(2001) model between motor memory and perseverative reaching is a fragile one;
whether or not motor memory is a difference maker for perseverative reaching is
relative to a variety of contextual constraints – manipulate these constraints (or off
path variables) and the dependency relation gets affected as well. Understanding
these contextual subtleties of the A-not-B error is precisely what drove Thelen and
colleagues’ (2001) research into the phenomenon. The power of the model precisely
resides in this feature of making explicit a number of constraints under which motor
memory is and isn’t a difference maker for perseverative reaching. So it answers
relevant what-if-things-had-been-different questions by highlighting the context-
sensitive – fragile – nature of the dependency relationship between motor memory
and the A-not-B error. The capacity to answer what-if questions and invariance
under interventions here, in a sense, pull in opposite directions.

15. Similar views can be found in Glennan (2005) and Woodward (2017) with respect to
how much detail ought to be included in mechanistic models. Woodward, for instance,
in discussing the Hodgkin and Huxley (HH) model of the action potential, writes: “The
HHmodel shows that the generation of the action potential depends on (or requires at a
minimum), among other things, the existence of at least two voltage gated and time
dependent ion channels . . . given that such a structure is present and behaves appro-
priately, the presence of the specific mechanism by which the ion channels in the giant
squid operates is not required for [explaining the] the generation of the action potential,
as long as some mechanism or other that plays this role is present.” (2017, p. 28).

16. To be sure, I do think that there are a lot of explanatory contexts in the life sciences
where mechanistic explanations do provide the best explanations.

17. Although the weight of a person sitting in a rocking chair decreases the chair’s
natural period by elevating the center of mass of the chair, different weights of the
subjects in other rocking chair experiments did not have a significant effect on
movement coordination. Although weight differences were not recorded in the
current experiment, given these previous outcomes, the experimenters take it that
possible effects of weight differences in all likelihood are minimal.
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