
ImprovingQuality and Scalability of
WebRTC Video Collaboration Applications

Stefano Petrangeli, Dries Pauwels, Jeroen
van der Hooft, Tim Wauters, Filip De Turck

Ghent University – imec
name.surname@ugent.be

Jürgen Slowack
Barco N.V. – Corporate Technology Center

jurgen.slowack@barco.com

ABSTRACT
Remote collaboration is common nowadays in conferencing, tele-
health and remote teaching applications. To support these interac-
tive use cases, Real-Time Communication (RTC) solutions, as the
open-source WebRTC framework, are generally used. WebRTC is
peer-to-peer by design, which entails that each sending peer needs
to encode a separate, independent stream for each receiving peer in
the remote session. This approach is therefore expensive in terms of
number of encoders and not able to scale well for a large number of
users. To overcome this issue, a WebRTC-compliant framework is
proposed in this paper, where only a limited number of encoders are
used at sender-side. Consequently, each encoder can transmit to a
multitude of receivers at the same time. The conference controller, a
centralized Selective Forwarding Unit (SFU), dynamically forwards
the most suitable stream to each of the receivers, based on their
bandwidth conditions. Moreover, the controller dynamically recom-
putes the encoding bitrates of the sender, to follow the long-term
bandwidth variations of the receivers and increase the delivered
video quality. The benefits of this framework are showcased using
a demo implemented using the Jitsi-Videobridge software, a Web-
RTC SFU, for the controller and the Chrome browser for the peers.
Particularly, we demonstrate how our framework can improve the
received video quality up to 15% compared to an approach where
the encoding bitrates are static and do not change over time.

CCS CONCEPTS
• Information systems → Multimedia streaming; Web con-
ferencing; • Networks → Public Internet;

KEYWORDS
Real-Time Communication, Remote Video Collaboration, WebRTC,
Selective Forwarding Unit, ILP, Jitsi-Videobridge

ACM Reference Format:
Stefano Petrangeli, Dries Pauwels, Jeroen, van der Hooft, TimWauters, Filip
De Turck, and Jürgen Slowack. 2018. Improving Quality and Scalability of
WebRTC Video Collaboration Applications. In MMSys’18: 9th ACM Multi-
media Systems Conference, June 12–15, 2018, Amsterdam, Netherlands. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3204949.3208109

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MMSys’18, June 12–15, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5192-8/18/06.
https://doi.org/10.1145/3204949.3208109

1 INTRODUCTION
Remote video collaboration is widely used in a variety of appli-
cations nowadays [6, 10]. Remote conferencing solutions as the
open-source Web Real-Time Communication (WebRTC) framework
are preferred in these scenarios over classical streaming techniques
based on HTTP, which cannot guarantee the required degree of in-
teractivity of these applications. Even though WebRTC guarantees
the low-latency and interactivity required in remote collaboration,
it is affected by a scalability issue. The WebRTC framework has
indeed been developed with a peer-to-peer architecture in mind. In
standard WebRTC, the peers in communication, or senders, would
need to encode a separate stream for each receiving peer, the re-
ceivers. This aspect entails that each receiver is associated with
an independent and dedicated encoder at sender-side, which is
expensive in terms of encoders and does not scale well.

In order to reduce the scalability issue of such a peer-to-peer ar-
chitecture, we propose a WebRTC-compliant framework to support
the delivery of real-time communication streams. In this frame-
work, the WebRTC sender only needs to encode a limited number
of streams, much smaller than the number of receivers, at different
bitrates. Consequently, multiple receivers are assigned to the same
encoder at sender-side. A centralized node, called the conference
controller, is aware of the bandwidth conditions of the WebRTC
receivers and dynamically forwards the stream at the best bitrate
in order to follow their bandwidth variations. Moreover, instead
of keeping the encoding bitrates of the sender fixed to predefined
static values, the conference controller can periodically recompute
these to better follow the bandwidth conditions of the receivers,
even though only a limited number of encoders is actually used. In
the WebRTC domain, the conference controller functionalities can
be carried out by a Selective Forwarding Unit (SFU), whose task is
to receive all the streams and decide which stream should be sent
to which participant [3].

The proposed framework can be applied in any remote collab-
oration scenario. In the remainder of this paper, though, we relax
this condition and consider a one-to-many scenario only, where the
interaction among the participants is usually dominated by a single
entity. A classical example of such one-to-many communication is
a remote teaching application. In a virtual classroom, the students,
or receivers, remotely attend a live lecture given by the lecturer, the
sender. Interactivity is required in this case, as the students can ask
questions and actively participate to the discussion. Nevertheless,
most of the communication occurs from the lecturer to the students.
Particularly, we focus on the downstream side of the problem (e.g.,
from sender to receivers), as most of the communication follows
this path (Figure 1). It is nevertheless implied that the proposed

533

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/159328783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


MMSys’18, June 12–15, 2018, Amsterdam, Netherlands S. Petrangeli et al.

framework can guarantee the required level of interactivity, by
allowing the receivers to participate in the communication.

To demonstrate the gains brought by the proposed approach,
we developed a Proof of Concept (PoC) using state-of-the-art Web-
RTC software. The PoC is composed of one sender, equipped with
three encoders, and ten receivers. Both sender and receivers uses
the Google Chrome browser, while the conference controller is im-
plemented using the Jitsi-Videobridge software, a state-of-the-art
WebRTC SFU [7]. The PoC allows to clearly quantify the gains of
the dynamic association of the encoding bitrates in terms of average
played rate at the receivers, as opposed to a scenario where the
bitrates are statically associated and do not change over time.

The remainder of this paper is structured as follows. Section
2 presents related work on conferencing solutions for WebRTC.
Section 3 describes the functionalities of the conference controller
and the dynamic encoding bitrates recomputation. In Section 4, the
proof of concept is presented, while Section 5 concludes the paper.

2 RELATEDWORK
Xu et al. perform a measurement study on real-world conferenc-
ing systems [15]. The authors report that a complete peer-to-peer
architecture is never used as it does not scale to a large number
of users. A Multipoint Conferencing Unit (MCU) can be used in
WebRTC to improve scalability. The MCU receives all the streams,
decodes and composes them in a single common stream that is sent
back to the participants. Grand et al. divide the participants into
regional clusters, each associated to an MCU [2]. All the MCUs
are interconnected in a mesh network. This hybrid architecture
allows to support a large number of users. Ma et al. use an MCU to
transcode the sender stream and adjust it to the viewing conditions
of the receiver [9]. The authors consider the viewing distance and
the pixel density of the receiver’s screen to transcode the stream to
an optimal bitrate, in order to save bandwidth. Nevertheless, MCU
operations are extremely computationally intensive, due to the
decoding-mixing-encoding processes to be carried out. To reduce
this issue, MCU functionalities can be dynamically migrated among
conference participants to meet certain bandwidth, latency and
CPU constraints [5]. Alternatively, MCU low-level functionalities
can be virtualized and deployed on-the-fly [14]. Unlike an MCU, an
SFU does not require decoding/encoding operations. Its main task
is to receive all the streams and selectively forward one or more
streams to each participant. In this case, the amount of forwarded
streams should be selected to avoid wasting bandwidth. Grozev et
al. develop a speaker identification algorithm to be deployed on an
SFU, to identify the last N dominant speakers of the conference [3].
Only these N streams are forwarded to the conference participants.
The authors also propose to use simulcast in combination with an
SFU [4]. Each participant can send up to three streams, encoded at
different bitrates. The SFU forwards the highest quality to partici-
pants involved in the conversation, and the lowest quality to the
remaining ones.

Unlike previous works, the proposed conference controller, im-
plemented using the SFU principle, forwards the most suitable
stream based on the bandwidth conditions of the receivers. More-
over, the dynamic computation allows the encoding bitrates to be
always representative of the network conditions of the receivers,

Figure 1: The conference controller is the terminal endpoint
for both the sender and the receivers, and performs the dy-
namic stream forwarding and encoding bitrate recomputa-
tion tasks.

and therefore maximize the received bitrate. A preliminary evalu-
ation of the proposed framework has been presented in previous
work [11], where we showed that the dynamic bitrate recomputa-
tion results in 15% higher video rate at the receivers compared to a
static, fixed association of the encoding bitrates.

3 WEBRTC CONFERENCE CONTROLLER
The central component of the proposed WebRTC framework is the
conference controller, which performs two main tasks. First, the
controller receives all the encoded streams from the sender and dy-
namically forwards them to the receivers, based on their available
bandwidth (Figure 1). Second, it periodically recomputes the encod-
ing bitrates of the sender to better follow the long-term network
variations of the receivers. In the remainder of this section, we de-
tail the operations performed by the conference controller in terms
of dynamic stream forwarding (Section 3.1) and encoding bitrate
recomputation (Section 3.2). It is worth noting that the two tasks
are performed at different timescales. The bitrate recomputation is
executed on a timescale of seconds, to take into account long-term
variations of the receivers’ network conditions. On the contrary,
the stream forwarding is executed on a timescale of milliseconds, to
closely follow the changing bandwidth conditions of the receivers.

3.1 Dynamic Stream Forwarding
The conference controller acts as an endpoint for the sender and
for the receivers, by receiving the encoded streams from the sender
and forwarding them to the receivers. Particularly, the controller
forwards the highest sustainable stream to each receiver, based on
its estimated bandwidth. In a classic peer-to-peer WebRTC archi-
tecture, a receiver periodically reports statistics and feedback to the
corresponding sender, which allows it to estimate the end-to-end
bandwidth. In the proposed framework, the conference controller
acts as the actual sender for the receivers. This aspect entails that
the controller can intercept the WebRTC Receiver Estimated Max-
imum Bitrate (REMB) messages, which are used in WebRTC to
estimate the bandwidth of the remote receivers [1]. Each time an
REMB message is received by the controller, the corresponding
bandwidth estimation is updated and a new stream is selected for
the receiver, if needed. REMBmessages are usually generated by the
receivers every 250 to 500 ms. Consequently, the dynamic forward-
ing is performed at a very fine-grained timescale, which allows to
accommodate the short-term bandwidth variations of the receivers
and guarantee a continuous playback.

534



ImprovingQuality and Scalability of WebRTC Video Collaboration Applications MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

3.2 Encoding Bitrate Recomputation
A second, more long-term optimization is performed by the con-
ference controller to recompute the set of encoding bitrates at
sender-side. In the proposed framework, each encoder at sender-
side transmits to multiple receivers at the same time. In order to
maximize the video rate received by the receivers, the encoded
rate should be as close as possible to the actual bandwidth of the
receivers. Static, fixed encoding bitrates are suboptimal, as the re-
ceivers’ conditions can change over time. By allowing the encoding
bitrates to dynamically vary, it is possible to follow the long-term
bandwidth variations of the receivers and, therefore, maximize the
delivered video quality.

We formulate the dynamic bitrate recomputation problem as an
Integer Linear Programming (ILP) formulation, which is executed
every Topt seconds by the conference controller. At time t when
the recomputation takes place, the virtual room is composed of
R receivers, each associated with a bandwidth measure br . The
sender is equipped with lmax encoders (with lmax ≪ R), which
can encode the video in the range [Bmin ;Bmax ], where Bmin and
Bmax are the minimum and maximum encoding rates, respectively.
We indicate with L the number of possible encoding levels in this
interval, each associated to a rate Bl . The goal of the controller is to
select the lmax encoding levels, among the possible L levels, which
are the closest to the bandwidth measures br of the receivers. The
complete ILP formulation is as follows:

min
α

R∑

r=1

L∑

l=1
αr ,l

(
br − Bl

)2

s.t. αr ,l ∈ {0, 1} ∀r ∈ {1, . . . , R }, l ∈ {1, . . . , L }
βl ∈ {0, 1} ∀l ∈ {1, . . . , L }
βl ≥ αr ,l ∀r ∈ {1, . . . , R }, l ∈ {1, . . . , L }

L∑

l=1
αr ,l = 1 ∀r ∈ {1, . . . , R }
L∑

l=1
βl ≤ lmax

β0 = Bmin
L∑

l=1
αr ,l Bl ≤ br ∀r ∈ {1, . . . , R }

(1)

The solution of the problem is characterized by two sets of
boolean decision variables, namely αr,l and βl . αr,l is equal to
1 when client r is associated to encoding level l , and 0 otherwise.
Similarly, βl is equal to 1 when encoding level l is selected for
one of the encoders, and 0 otherwise. The optimization problem is
designed to find the lmax encoding levels whose bitrates allow to
minimize the quadratic difference with the receivers’ bandwidth
measures. The first three constraints of the ILP formulation set up
a consistent relation between the decision variables α and β . The
fourth constraint indicates that each receiver can only be associ-
ated with one specific encoding level. The last three constraints are
representative of the analyzed problem. First, only lmax encoding
levels can be selected out of the L available levels (constraint 5),
as lmax indicates the number of encoders available at sender-side.
Second, we always select the lowest possible encoding bitrate as a
solution (constraint 6). This way, we guarantee the receivers can
always play the lowest available quality and avoid playout inter-
ruptions. Third, the encoding bitrate associated to receiver r must
be lower than the bandwidth measure for r (constraint 7), in order
to guarantee a continuous playout.

Figure 2: The PoC is composed of a single sending peer com-
posed of three sub-senders (each encoding the video stream
at a different bitrate), ten receivers, one conference con-
troller and two layer 2 switches.

4 PROOF OF CONCEPT SETUP
The proposed framework has been implemented using state-of-the-
art WebRTC software and the containernet network emulator to
evaluate its performance in a realistic environment [12]. The setup
of the PoC, shown in Figure 2, is composed of two layer 2 switches,
ten receiving peers, one sending peer equipped with three encoders
and one conference controller.

To implement the receivers and the sender, the Google Chrome
browser is used. Nothing is changed of the Google’s original Web-
RTC stack, which makes our solution completely WebRTC compli-
ant. From an implementation perspective, the sender is decoupled
into three WebRTC sub-senders, each encoding the video stream at
a different bitrate. Each Google Chrome instance runs in an inde-
pendent and separate docker container. Moreover, each receiver is
applied with a different bandwidth trace (red dashed links in Figure
2), collected on a real 3G network [13].

To implement the conference controller, the Jitsi-Videobridge
software is used, an open-source WebRTC SFU [7], which has been
extended to implement the dynamic stream forwarding and bit-
rate recomputation functionalities1. The default behavior of the
Jitsi-Videobridge is to relay a subset of the WebRTC streams in
the conference to all the participants. The stream of the partici-
pant who is currently speaking, the so-called dominant speaker, is
automatically detected by the software and is always included in
these streams. The dynamic stream forwarding is carried out by
overriding this logic, so that a different dominant speaker can be
manually set per receiver. Moreover, the amount of streams that
can be sent to a specific receiver is limited to only one, selected as
previously explained. Using this mechanism, the Jitsi-Videobridge
dynamically assigns a sub-sender per receiver, so that the encoding
bitrate is lower than the receiver’s estimated bandwidth.

As the long-term network conditions of the receivers can change
over time, it is required to periodically recompute the set of en-
coding bitrates of the sub-senders, as described in Section 3. Once
these values are computed, they have to be enforced on the Web-
RTC sub-senders. However, there is no standardized way to set the
encoding bitrate of a WebRTC client. To perform this task, we use
the RTCP REMB messages, which contain the receiver’s estimated
available bandwidth. In WebRTC, the congestion control mecha-
nism of a sender considers this estimation as the maximum bitrate
that can be sent to a receiver. Consequently, the sender’s encoder
uses this value as its current target bitrate. Once the new bitrates
1https://github.com/twauters/WebRTC_dynamic_SFU

535



MMSys’18, June 12–15, 2018, Amsterdam, Netherlands S. Petrangeli et al.

Figure 3: The HTML5 dashboard allows to control the PoC
setup and to monitor the evolution of the encoding bitrates
together with the performance of the receivers.

are computed, the Jitsi-Videobridge modifies the REMB feedback
messages for the sub-senders by setting the newly computed bit-
rate instead of the bandwidth estimation of the receivers. This way,
the sub-senders are forced to modify their encoding bitrates. To
implement this mechanism, we changed the way RTCP messages
are generated in libjitsi [8], the underlying Java media library used
by Jitsi-Videobridge. Instead of setting the maximum bitrates in the
REMB messages for the sub-senders to the latest estimated remote
bandwidth of the receivers, we set them to the bitrates generated
by the ILP recomputation presented in Section 3.

Using the setup presented in Figure 2, the users will be able to
test the PoC in two different scenarios. First, a static one, where the
encoding bitrates are fixed and do not change over time. Second, a
dynamic scenario, where the bitrates are recomputed as presented
in Equation 1. An HTML5 dashboard (Figure 3) allows to visualize
the performance of the system and compare the static and dynamic
scenarios in three differentways. First, the evolution of the encoding
bitrates is displayed (top left graph in Figure 3), to show how the
dynamic recomputation can consistently alter the bitrates compared
to a static association. Second, the evolution of the average played
rate among the group of receivers (top right graph) is presented,
both for the static and dynamic scenario. This graph allows to
confirm that a dynamic recomputation can guarantee a higher
video quality to the receivers compared to a static association, as the
encoding bitrates are more representative of the actual bandwidth
conditions of the receivers. A third graph (bottom left) displays
the behavior of one particular receiver in terms of available and
perceived bandwidth and played rate. The Google Chrome instance
of this particular receiver will also be visualized (bottom right in
Figure 3) to show how the conference controller can forward the
best stream depending on the available bandwidth of the receiver.

5 CONCLUSIONS
In this paper, we presented a proof of concept for the efficient
delivery of WebRTC streams in the context of remote video col-
laboration applications. Classical streaming techniques as HTTP

adaptive streaming cannot guarantee the low latency and interac-
tivity required in these scenarios. Consequently, the open-source
WebRTC protocol has been used instead, which is peer-to-peer by
design and therefore presents scalability issues. In the proposed
framework, instead, only a few encoders are used at sender-side,
each transmitting to several WebRTC receivers at the same time.
A conference controller, implemented using the Jitsi-Videobridge
SFU software, dynamically forwards the most suitable stream to
the receivers, based on their bandwidth conditions. Besides this
short-term adaptation, the controller periodically recomputes the
set of encoding bitrates using an ILP formulation, to better follow
the long-term network conditions of the receivers. The gains of this
approach are showcased using a virtualized network composed of
ten receivers and one single sending peer equipped with three en-
coders. Particularly, the dynamic recomputation allows to increase
the average played rate at the receivers up to 15%, compared to a
static association of the encoding bitrates.

6 ACKNOWLEDGMENTS
Jeroen van der Hooft is funded by grant of the Agency for Innova-
tion by Science and Technology in Flanders (VLAIO). This research
was performed partially within the project G025615N "Optimized
source coding for multiple terminals in self-organising networks"
from the fund for Scientific Research-Flanders (FWO-V). This re-
search was performed partially within the imec PRO-FLOW project
(150223).

REFERENCES
[1] H. Alvestrand. RTCP message for Receiver Estimated Maximum Bitrate. Internet-

Draft draft-alvestrand-rmcat-remb-03 (work in progress), 2013.
[2] J. C. Granda et al. Overlay Network Based onWebRTC for Interactive Multimedia

Communications. In 2015 International Conference on Computer, Information and
Telecommunication Systems (CITS), pages 1–5, July 2015.

[3] B. Grozev et al. Last N: Relevance-Based Selectivity for Forwarding Video in
Multimedia Conferences. In Proceedings of the 25th ACM Workshop on Network
and Operating Systems Support for Digital Audio and Video. ACM, 2015.

[4] B. Grozev et al. Experimental Evaluation of Simulcast for WebRTC. IEEE Com-
munications Standards Magazine, 1(2):52–59, 2017.

[5] M. A. Hossain et al. Distributed Dynamic MCU for Video Conferencing in Peer-
to-Peer Network. In 2016 IEEE 35th International Performance Computing and
Communications Conference (IPCCC), pages 1–8, Dec 2016.

[6] J. Jang-Jaccard et al. WebRTC-Based Video Conferencing Service for Telehealth.
Computing, 98(1):169–193, Jan 2016.

[7] Jitsi-Videobridge. Webrtc compatible video router and sfu. https://github.com/
jitsi/jitsi-videobridge.

[8] Libjitsi. Advanced java media library for secure real-time audio/video communi-
cations. https://github.com/jitsi/libjitsi.

[9] L. Ma et al. User Adaptive Transcoding for Video Teleconferencing. In 2015 IEEE
International Conference on Image Processing (ICIP), pages 2209–2213, Sept 2015.

[10] H. Oh et al. WebRTC Based Remote Collaborative Online Learning Platform. In
Proceedings of the 1st Workshop on All-Web Real-Time Systems, AWeS ’15, pages
9:1–9:5, New York, NY, USA, 2015. ACM.

[11] S. Petrangeli et al. Dynamic Video Bitrate Adaptation for WebRTC-Based Re-
mote Teaching Applications. In IEEE/IFIP Network Operations and Management
Symposium (NOMS), April 2018.

[12] M. Peuster et al. Medicine: Rapid prototyping of production-ready network
services in multi-pop environments. In 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), Nov 2016.

[13] H. Riiser et al. Video Streaming Using a Location-based Bandwidth-Lookup
Service for Bitrate Planning. ACM Transactions on Multimedia Computing, Com-
munications and Applications, 8(3):24:1–24:19, Aug. 2012.

[14] P. Rodríguez et al. Materialising a New Architecture for a Distributed MCU in
the Cloud. Computer Standards and Interfaces, 44(Supplement C):234 – 242, 2016.

[15] Y. Xu et al. Video Telephony for End-Consumers: Measurement Study of Google+,
iChat, and Skype. IEEE/ACM Transactions on Networking, June 2014.

536


