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Abstract 

The probabilistic index (PI), also known as the probability of superiority or the common 

language effect size, refers to the probability that the outcome of a randomly selected subject exceeds 

the outcome of another randomly selected subject, conditional on the covariate values of both 

subjects. This summary measure has a long history, especially for the two-sample design where the 

covariate value typically refers to one of two treatments. Despite some of the attractive features of 

the PI, it is often not used beyond the two-sample design. One reason is the lack of a flexible 

regression framework that embeds the PI and that allows the user to estimate it for more complicated 

designs. However, Thas, De Neve, Clement, and Ottoy (2012) recently developed such a regression 

framework, named Probabilistic Index Models (PIMs). In this tutorial we provide an introduction to 

PIMs where we discuss several theoretical properties, motivate why we think PIMs could be useful 

for behavioral sciences, and illustrate how it can be used in practice using the R package pim. 

Keywords: common language effect size, nonparametric, probability of superiority, regression, rank 

tests, semiparametric probability of superiority 

  



3 
 

   

A tutorial on probabilistic index models: Regression models for the effect size P (Y1 < Y2) 

Probabilistic index models (PIMs) are a class of semiparametric regression models in which 

the probabilistic index (PI) is modeled as a function of covariates. The PI refers to the probability 

that the outcome of a randomly selected subject exceeds the outcome of another randomly selected 

subject, conditional on the covariate values of both subjects. Let 𝑌 denote the univariate outcome and 

𝑿 the 𝑝-dimensional vector of covariates. If (𝑌𝑖 , 𝑿𝑖
𝑇) denotes the observation of subject i and 

 (𝑌𝑗 , 𝑿𝑗
𝑇) that of subject j, then the PI is given by P (𝑌𝑖 <  𝑌𝑗 | 𝑿𝑖,  𝑿𝑗).  

Throughout this article we consider an example case study to make the notation more 

concrete. Let Y denote the Beck Depression Inventory (BDI) II depression score (range 0 – 63, with 

lower scores indicating less severe depression) after treatment, where patients were randomized to an 

innovative therapy (dummy coded as 𝑋 =  0) or a conventional therapy (𝑋 =  1). We deliberately 

choose this dummy coding (with the innovative therapy as the reference) because the PI 

P (𝑌𝑖 <  𝑌𝑗 | 𝑋𝑖 = 0,  𝑋𝑗 = 1) then gives the probability that a randomly selected patient of the 

innovative therapy group (subject 𝑖) will have a better (thus lower) BDI score than a randomly 

selected patient of the conventional therapy group (subject 𝑗). A PI exceeding 50% states that 

subjects more often have lower BDI scores when receiving innovative treatment as compared to 

subjects receiving conventional treatment. In other words, it is more likely that a patient from the 

innovative treatment will be better off than a patient from the conventional treatment. For a PI less 

than 50%, the opposite holds: It is less likely that a patient from the innovative treatment will be 

better off than a patient from the conventional treatment. Or equivalently, it is more likely that a 

patient from the conventional treatment will be better off than a patient from the innovative 

treatment. This follows from P (𝑌𝑖 >  𝑌𝑗 | 𝑋𝑖 = 0,  𝑋𝑗 = 1)  = 1 −  P (𝑌𝑖 <  𝑌𝑗 | 𝑋𝑖 = 0,  𝑋𝑗 = 1), so 

if P (𝑌𝑖 <  𝑌𝑗 | 𝑋𝑖 = 0,  𝑋𝑗 = 1) < 0.5 then P (𝑌𝑖 >  𝑌𝑗  | 𝑋𝑖 = 0,  𝑋𝑗 = 1) > 0.5. A PI of 50% 

indicates that a patient of the innovative treatment is as likely to be better or worse as compared to a 

patient from the conventional treatment: P (𝑌𝑖 >  𝑌𝑗  | 𝑋𝑖 = 0,  𝑋𝑗 = 1) =  P (𝑌𝑖 <  𝑌𝑗 | 𝑋𝑖 = 0,  𝑋𝑗 =

1) = 0.5.  
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The PI is the effect measure associated with the Wilcoxon–Mann–Whitney test (also known as 

the Mann–Whitney test or the Wilcoxon-rank-sum test; Wilcoxon, 1945; Mann and Whitney, 1947) 

and has been studied extensively since the introduction of the Wilcoxon–Mann–Whitney test. We 

provide a brief and selective review of the PI where we make a distinction between advantages and 

disadvantages of using the PI as an effect measure.  

Cliff (1993) argued that much behavioral data can only be given an ordinal-scale status. That 

is, the interval-scale status of some given data requires nontrivial empirical support for the assertion 

that nominally equal intervals at different points on the scale are equal. The majority of 

psychometrically defined variables do not meet this criterion. The PI is an appropriate effect measure 

because it provides an ordinal answer to an ordinal question. As such, the PI is relevant for ordinal 

data, because it only exploits the order of the variables (i.e. 𝑌𝑖 < 𝑌𝑗) and not the magnitude of their 

differences (i.e. 𝑌𝑖 − 𝑌𝑗). Acion, Peterson, Temple, and Arndt (2006) argued that the PI can be a 

better effect size measure when distributions are highly skewed than one using a standardized 

difference, because shifts expressed in standard deviations might then be difficult to understand. This 

is discussed in more detail in the next section. Ruscio (2008) illustrated that, unlike Cohen’s d or the 

point-biserial correlation, the PI estimator is robust to base rates (i.e. unequal sample sizes). Because 

the PI is unaffected by monotone transformations, it can be considered a relevant effect measure 

when the observed outcome is monotonically related to an underlying latent variable (Grissom & 

Kim, 2001). For reaction time experiments, for example, the latency can be considered as a surrogate 

for some unobserved variable such as processing difficulty (Cliff, 1993). Instead of modeling the 

reaction time, one could then also model the reciprocal of time (i.e. the response frequency). The PI 

will not be affected by this reciprocal transformation, because P (𝑌𝑖 <  𝑌𝑗) =  P (𝑌𝑖
−1 >  𝑌𝑗

−1). 

Another attractive feature of the PI is its robustness against outliers. Because it only exploits the 

order of the outcomes, extreme large or small values have limited impact.  

In a series of papers, Senn (1997, 2006, 2011) discussed several limitations of the PI as an 

effect measure in clinical trials. The PI is an ordinal measure and does not provide information on 

the magnitude of the difference between two populations. Thus, for interval-scale data, the PI does 
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not fully exploit the information available in the data. Further, the PI can be easily misinterpreted. 

For instance, for the example case study, the PI does not give the probability that a single patient will 

benefit from the innovative treatment as compared to the conventional treatment. Instead, the PI 

compares two different subjects, each from one treatment.  The PI is also unable to distinguish 

between distributions with minimal overlap. Several of the properties of the PI (advantages and 

disadvantages) are discussed in more detail in the next section.  

For the two-sample problem, P (𝑌𝑖 <  𝑌𝑗  | 𝑋𝑖 = 0,  𝑋𝑗 = 1) has been given many names: the 

measure of stochastic superiority, the probability of superiority, the common language effect size, 

the dominance statistic, the nonparametric treatment effect, the relative treatment effect, the 

individual exceedance probability, and the probabilistic index, among others. We choose the latter, a 

term coined by Acion et al. (2006), while acknowledging that this name is not optimal (this also 

holds true for the other names), because other probability based effect measures can be constructed 

and therefore, the probability P (𝑌𝑖 <  𝑌𝑗 | 𝑋𝑖 = 0,  𝑋𝑗 = 1) can be considered as a PI and not 

necessarily the PI. 

The vast majority of articles on the PI focus on the two-sample design because an estimator of 

the PI can then be obtained from the Wilcoxon–Mann–Whitney test. Some authors have extended the 

estimation to more complicated designs. Tian (2008), for example, developed a parametric 

regression model for the PI assuming a normal linear regression model. Brumback, Pepe, and Alonzo 

(2006) developed a semiparametric model by using methods for receiver operating characteristic 

curve regression analysis to accommodate the Wilcoxon–Mann–Whitney test for covariate 

adjustment (Dodd & Pepe, 2003). Their methodology is, however, still restricted to two-sample 

designs, and does not allow quantification of the effect of a continuous covariate on the outcome in 

terms of the PI. Thas et al. (2012) introduced a class of regression models, named Probabilistic Index 

Models (PIMs), where they model the PI directly as a function of the covariates and this in a 

semiparametric fashion. This methodology allows estimating the PI for a variety of designs, 

including designs with multiple and/or continuous covariates. This allows, for example, to estimate 

the PI for comparing two treatments (e.g. innovative versus conventional therapy) within 
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subpopulations (e.g. patients of a certain age). In De Neve and Thas (2015) it was further shown that 

many well-known nonparametric rank tests (e.g. Wilcoxon–Mann–Whitney, Kruskal–Wallis, 

Friedman rank tests) can be embedded in the PIM-framework in a similar fashion as how t- and F-

tests can be embedded in a linear regression model.  

Since the introduction of PIMs in Thas et al. (2012), several follow-up articles have been 

written (De Neve, Thas, & Ottoy, 2013a; De Neve, Thas, Ottoy, & Clement, 2013b; De Neve, Meys, 

Ottoy, Clement, & Thas, 2014; De Neve & Thas, 2015; Vermeulen, Thas, Vansteelandt, 2015; 

Amorim, Thas, Vermeulen, Vansteelandt, & De Neve, 2017). These articles are not tutorials but 

instead focus on applications of PIMs in the health and biological sciences. In this article we provide 

an introduction to PIMs with specific focus on the behavioral sciences. We discuss both theoretical 

and practical results and provide R code in the supplementary material on how the R package pim 

(Meys, De Neve, Sabbe, & Amorim, 2017; R Core Team, 2017) can be used.  

The remainder of the paper is organized as follows. We first discuss several aspects of the PI 

in the two-sample design. Some of these results have been discussed in the literature. Nevertheless, 

we repeat them here as they are relevant for understanding PIMs. We then introduce PIMs by 

considering a univariate continuous covariate, before extending it to the multi-variable setting. We 

illustrate the relationship between PIMs and several other models, including normal linear regression 

and the Wilcoxon-Mann-Whitney test. We discuss goodness-of-fit assessment and illustrate the 

method on a case study. 

The Probabilistic Index for the Two-sample Design 

We start by comparing the PI with the mean difference and the standardized mean difference 

when the outcome follows a normal or a skewed distribution.  

The (Standardized) Mean Difference and the Probabilistic Index under Normality 

For the normal distribution, the PI is an effect measure that captures effects on both the mean 

and the variance. We consider the context of the introduction example, with 𝑌 the BDI score and 𝑋 

the treatment, where each patient is assigned to a single treatment. By 𝑌𝐼𝑇 (𝑌𝐶𝑇) we denote the 

outcome of the innovative (conventional) therapy so that we can write the PI compactly as P (𝑌𝐶𝑇 <

 𝑌𝐼𝑇). We further assume that both outcomes are independent and normally distributed: 
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𝑌𝐼𝑇 ~ 𝑁(𝜇𝐼𝑇 , 𝜎𝐼𝑇
2 ), and 𝑌𝐶𝑇  ~ 𝑁(𝜇𝐶𝑇 , 𝜎𝐶𝑇

2 ). To summarize the association between Y and X, we can 

look at the mean difference 𝜇𝐶𝑇 −  𝜇𝐼𝑇, or its standardized version: 

𝛿 =  
𝜇𝐶𝑇− 𝜇𝐼𝑇

√(𝜎𝐶𝑇
2 +𝜎𝐼𝑇

2 )/2

 . 

This definition of 𝛿, as proposed in Cohen (1988), allows the variances of the groups to differ and 

simplifies to  (𝜇𝐶𝑇 −  𝜇𝐼𝑇)/𝜎, when the variances are equal.  

The PI and the standardized difference now have the following relationship: 

P (𝑌𝐼𝑇 <  𝑌𝐶𝑇) = Φ(δ/√2) , (1) 

where Φ(∙) denotes the standard normal cumulative distribution function. We refer to the 

supplementary material for more information.  

We consider three examples to illustrate the three effect measures: the mean difference, the 

standardized mean difference 𝛿 and the PI. None of these examples are intended to promote one 

measure over the other; instead, they are meant to demonstrate their differences and similarities.  

Example 1: constant mean difference, varying 𝛿, and PI. Figure 1 (panels a and b) provides 

artificial data for BDI depression scores for two groups of patients receiving the different treatments 

(innovative or conventional). Within each treatment cohort there are two groups of patients: patients 

that receive antidepressants (panel a) and patients that do not receive antidepressants (panel b). We 

first consider panel a. The mean difference is 5 and 𝛿 =  1.05. It is clear that the treatment affects 

both the mean and the variance of the distribution. The standardized mean difference captures both 

effects in a single summary measure. The interpretation of 𝛿 might, however, be more difficult to 

understand as compared to the mean difference: It states that the mean BDI score in the innovative 

treatment group will be 1.05 standard deviations lower as compared to the mean BDI score in the 

conventional treatment group. Thinking in units of standard deviations might be difficult, because it 

refers to a statistical unit instead of a clinically useful unit (Acion et al., 2006). Cut-off values can 

however help to improve the understanding of the magnitude of 𝛿. The rules proposed in Cohen 

(1988) are often (explicitly or implicitly) used, where an effect is small if 𝛿 = 0.20, medium if 𝛿 =

0.50, and large if 𝛿 = 0.80. It is important to realize that this classification is derived assuming both 
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normality and constant variances and might not be appropriate when these assumptions are violated. 

We demonstrate this for a skewed distribution at the end of this section. 

The third effect measure, the PI, accounts for the change in variability, while retaining an 

understandable interpretation in terms of a probability. For panel a of Figure 1, it holds that 

P (𝑌𝐼𝑇 <  𝑌𝐶𝑇) =  Φ(𝛿/√2) = 77%, that is, there is a 77% chance that a patient of the innovative 

treatment group will have a lower BDI score as compared to a patient of the conventional treatment 

group. The interpretation of the PI might be easier to communicate than 𝛿, because it is a probability 

that a patient from the innovative group will be better off as compared to a patient from the 

conventional group and it is not expressed in units of standard deviation.  

The importance of standardization becomes even more apparent when looking to panel b of 

Figure 1. It is visually clear that the effect of the therapy is different as compared to panel a. The 

mean difference, however, does not pick this up: It remains 5. In contrast, the standardized difference 

(𝛿 = 0.53) and the PI (P (𝑌𝐼𝑇 <  𝑌𝐶𝑇) = 65%) pick up this change and show a decreased effect due 

to an increase in variability.  

Example 2: constant PI and varying mean difference and 𝛿. The interpretation of the PI 

can be considered an attractive property. However, as mentioned in the introduction, it also has 

limitations. It is, for example, not able to distinguish between normal distributions that show minimal 

overlap. Panels c and d of Figure 1 illustrate this. The mean difference for the patients receiving 

antidepressant drugs is 10, while for patients not receiving antidepressants this is 20. For the 

standardized differences, effects are 𝛿 =  5 and 𝛿 =  10. Both the mean difference and the 

standardized difference indicate a larger treatment effect for the no antidepressant group. The PI, on 

the other hand, is not capable of quantifying this difference because it is approximately 1 for both 

groups because Φ(5/√2) ≈ 99.98% and Φ(10/√2) ≈ 100%. Thus, from the moment that all the 

outcomes of one group exceed most of the outcomes of another group, the PI will be close to one, 

independent of how far both distributions are separated.  

Example 3: constant 𝛿 and PI and varying mean difference. Panels e and f of Figure 1 

show mean differences that are not equal: 4 for panel e and 8 for panel f. Both 𝛿 = 1.33 and the PI 
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P (𝑌𝐼𝑇 <  𝑌𝐶𝑇) = 83% are constant however, because the change in variability between both panels 

cancels out the change in difference in means.   

The three examples illustrate that the mean difference, the standardized mean difference and 

the PI are three different measures to quantify treatment effects, each with their own strengths and 

weaknesses.  

The (Standardized) Mean Difference and the Probabilistic Index for Skewed Distributions 

When we leave the strict assumption of normality and consider skewed distributions, the 

difference between the PI and 𝛿 becomes more apparent. To illustrate this, we consider the log-

normal (LN) distribution 𝑌𝐼𝑇 ~ 𝐿𝑁(𝜇𝐼𝑇 , 𝜎𝐼𝑇
2 ) and 𝑌𝐶𝑇 ~ 𝐿𝑁(𝜇𝐶𝑇 , 𝜎𝐶𝑇

2 ). For the log-normal 

distribution, the mean difference equals 

E(Y𝐶𝑇) −  E(Y𝐼𝑇)  = exp (𝜇𝐶𝑇 +
𝜎𝐶𝑇

2

2
) − exp (𝜇𝐼𝑇 +

𝜎𝐼𝑇
2

2
), 

and the standardized mean difference equals 

𝛿 = √2
exp(𝜇𝐶𝑇+

𝜎𝐶𝑇
2

2
)−exp (𝜇𝐼𝑇+

𝜎𝐼𝑇
2

2
)

√exp(𝜎𝐶𝑇
2 −1) exp(2𝜇𝐶𝑇+𝜎𝐶𝑇

2 )+exp(𝜎𝐼𝑇
2 −1) exp(2𝜇𝐼𝑇+𝜎𝐼𝑇

2 )

. 

The log-normal distribution arises from exponentiating normal variables and because the PI is not 

affected by the exponentiation it follows that 

P (𝑌𝐼𝑇 <  𝑌𝐶𝑇) = Φ (
𝜇𝐶𝑇− 𝜇𝐼𝑇

√𝜎𝐶𝑇
2 +𝜎𝐼𝑇

2
) ; 

we refer to the supplementary material for more information.   

This demonstrates that the PI is not just a transformation of 𝛿 to a probability. It is instead an 

effect measure on its own. Figure 2 illustrates this numerically. Panel a displays two normal 

distributions with variance 1 and mean difference 0.5, resulting in 𝛿 = 0.5 and P (𝑌𝐼𝑇 <  𝑌𝐶𝑇) =

63.8%. Panel b shows two log normal distributions with variance 4.7 and a mean difference of 1.09, 

so that 𝛿 = 0.5 and P (𝑌𝐼𝑇 <  𝑌𝐶𝑇) = 77.5%. Both standardized differences are equal, but from the 

panels it is clear that log normal distributions are more separated from each other. This visual 

difference is numerically translated in the PI, but not in the standardized difference. The figures 

further demonstrate that classifying 𝛿 = 0.5 as a medium effect (Cohen, 1988) does not translate 
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over distributions: Both panels would be classified as a medium effect, while panel b shows less 

overlap.  

Interpretation 

The PI discussed in this article gives a probabilistic statement about the relative ordering of the 

outcomes of two independent subjects from the two treatment groups (innovative or conventional), 

and this is not the same as comparing the same subject under the two treatments. To illustrate this, 

we resume the depression example, where 𝑌𝐼𝑇 denotes the depression score under innovative 

treatment, and 𝑌𝐶𝑇 the depression score under conventional treatment.  

To simplify the exposition, we assume that 𝑌𝐼𝑇 ~ 𝑁(𝜇𝐼𝑇 , 𝜎𝐼𝑇
2 ), and 𝑌𝐶𝑇 ~ 𝑁(𝜇𝐶𝑇 , 𝜎𝐶𝑇

2 ), so that 

𝑌𝐼𝑇 −  𝑌𝐶𝑇 ~ 𝑁(𝜇𝐼𝑇 −  𝜇𝐶𝑇 , 𝜎∗2), where 𝜎∗2  = Var(𝑌𝐼𝑇 − 𝑌𝐶𝑇) . It follows that: 

P (𝑌𝐼𝑇 <  𝑌𝐶𝑇) = 𝑃(𝑌𝐼𝑇 − 𝑌𝐶𝑇 < 0) =  Φ (
𝜇𝐶𝑇− 𝜇𝐼𝑇

𝜎∗ ). 

If 𝑌𝐶𝑇 and 𝑌𝐼𝑇 refer to outcomes of two independent subjects, then 𝜎∗2  = 𝜎𝐶𝑇
2 +  𝜎𝐼𝑇

2 , so that the PI 

equals 

Φ (
𝜇𝐶𝑇− 𝜇𝐼𝑇

√𝜎𝐶𝑇
2 +𝜎𝐼𝑇

2
). 

However, if 𝑌𝐶𝑇 and 𝑌𝐼𝑇 refer to outcomes of the same subject, then 𝜎∗2  = 𝜎𝐶𝑇
2 +  𝜎𝐼𝑇

2 −

2Cov(𝑌𝐶𝑇 , 𝑌𝐼𝑇), where the covariance is different from zero because the outcomes are not 

independent (they are measured on the same subject). The PI now becomes 

Φ (
𝜇𝐶𝑇− 𝜇𝐼𝑇

√𝜎𝐶𝑇
2 +𝜎𝐼𝑇

2 −2Cov(𝑌𝐶𝑇 ,𝑌𝐼𝑇)

). 

Both PIs are not the same, and if each subject only receives one of the two treatments we can 

estimate the former, but it will in general not be possible to estimate the latter. This is fundamentally 

different when we look at the mean difference as an effect size. In both settings we have  

𝐸(𝑌𝐼𝑇) − 𝐸(𝑌𝐶𝑇) =  𝜇𝐼𝑇 − 𝜇𝐶𝑇. 

Consequently, when we choose the mean difference as effect measure and for this simple setting, we 

do not need to make a distinction whether we compare the same subject or if we compare two 

different subjects, the effect size is the same. We refer to Morris and DeShon (2002) for a more 
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detailed discussion on effect sizes for repeated measures and independent designs and to Fay, 

Brittain, Shih, Follmann, and Gabriel (2018) for a detailed discussion on the causal interpretation of 

the PI in randomized experiments.  

Gaining Power by Exploiting Order 

A popular estimator of the PI is the one that forms the basis of the non-parametric Wilcoxon–

Mann–Whitney (WMW) test. If we have 𝑛𝐼𝑇 subjects receiving innovative therapy and 𝑛𝐶𝑇 subjects 

receiving conventional therapy, the PI can be unbiasedly estimated via the Mann–Whitney statistic 

𝑀𝑊 =  
1

𝑛𝐼𝑇𝑛𝐶𝑇
∑ ∑ I(𝑌𝐼𝑇,𝑖 < 𝑌𝐶𝑇,𝑗)

𝑛𝐶𝑇
𝑗=1

𝑛𝐼𝑇
𝑖=1 ,   (2) 

where I(∙) denotes the indicator function for which I(𝑌𝐼𝑇,𝑖 < 𝑌𝐶𝑇,𝑗) = 1, if  𝑌𝐼𝑇,𝑖 < 𝑌𝐶𝑇,𝑗, and 

I(𝑌𝐼𝑇,𝑖 < 𝑌𝐶𝑇,𝑗) = 0, otherwise (ties are addressed later). Each subject of the innovative treatment is 

thus compared to each subject of the conventional treatment. A one is assigned if the outcome of the 

innovative treatment is the lower of the two, and a zero otherwise. The statistic MW then equals the 

mean of these binary values. Under the null hypothesis of equal distributions, it holds that 

P(𝑌𝐼𝑇 < 𝑌𝐶𝑇) = 0.5 and, in the absence of ties, that Var(𝑀𝑊) =  (𝑛𝐼𝑇 +  𝑛𝐶𝑇 + 1)/12𝑛𝐼𝑇𝑛𝐶𝑇 

(Hollander, Wolfe and Chicken, 2013). Standardizing the Mann-Whitney statistic then results in the 

in the WMW test statistic: 

√
12𝑛𝐼𝑇𝑛𝐶𝑇

𝑛𝐼𝑇+ 𝑛𝐶𝑇+1
 (𝑀𝑊 − 0.5). 

This expression makes it clear that the PI is the effect size associated with the WMW test: The test 

statistic is composed of an unbiased estimator of the PI. The null hypothesis of the WMW test states 

that both distributions are equal, and the (two-sided) alternative that P(𝑌𝐼𝑇 < 𝑌𝐶𝑇) ≠ 0.5 (Hollander 

et al, 2013). 

At first sight, it might seem that the WMW test will lose power by only considering the 

relative ordering of the outcomes and by ignoring the magnitude of the differences. However, 

performing a hypothesis test based on Equation 2 can lead to a substantial gain in power as compared 

to a test based on the difference in sample means (Hollander et al., 2013). Table 1, taken from Van 

der Vaart (1998) and Hollander et al. (2013), shows the asymptotic relative efficiency (ARE) of the 
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two-sample 𝑡-test relative to the WMW test when both groups only differ in their means; i.e. both 

distributions are identical, up to a location shift. The ARE is the limit of the fraction of two sample 

sizes. In the numerator we have the sample size of the 𝑡-test while the denominator gives the sample 

size the WMW test requires to have the same power as the 𝑡-test. When the distributions are normal 

(the data of both groups follow a normal distribution with the same variance, but different means), 

the ARE is less than one. This implies that the 𝑡-test is superior to the WMW test: For large samples, 

using the 𝑡-test requires only 95% observations of the WMW test to achieve the same level of power. 

Notice that this superiority is rather modest. 

There are, however, several distributions for which the ARE exceeds one, implying that the 

WMW test is (substantially) superior. If the data in both groups are exponentially distributed, the 𝑡-

test needs three times as many observations as the WMW test to achieve the same power. It is worth 

mentioning that the superior performance of the 𝑡-test is bounded: It cannot perform better than 

when data are samples from the (artificial) density 𝑓(𝑦) = max (1 − 𝑦2, 0) (Lehmann, 2004). In 

contrast, the superiority of the WMW test is unbounded when data are coming from the heavy-tailed 

Cauchy distribution.  

To illustrate that the WMW test can also be superior in small samples (thus not relying on 

results displayed in Table 1 which are derived assuming large samples), we consider a Monte-Carlo 

simulation study to compare the power function of both tests.  Figure 2 gives the power 

(approximated based on 10000 Monte-Carlo simulations) for balanced two-sample designs (with 20 

or 40 observations per group), where the mean difference between both groups equals a half standard 

deviation and the variances are equal. A permutation null distribution is used for both tests so that 

deviations from normality do not invalidate the statistical inference. The ARE considers the relative 

sample sizes needed for both tests to achieve the same power and only holds for large samples. 

Figure 2, on the other hand, gives the power of the tests for fixed sample sizes and holds for small 

samples. We can see that even for small samples, the WMW test can outperform the 𝑡-test in terms 

of power. For the normal and the uniform distributions, the 𝑡-test is slightly more powerful, while for 

the other distributions the WMW test is more powerful. For the exponential distribution, the 
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difference is most pronounced: The WMW test with 40 observations per group has a power of more 

than 85% to detect a difference of a half standard deviation, while for the 𝑡-test the power is 

approximately only 60%. 

Extension to a Regression Context 

Equation 2 can only be used to estimate the PI for a two-sample design where the covariate 𝑋 

is binary. If we want to estimate the PI when 𝑋 denotes a continuous covariate or when there are 

multiple covariates, we need to embed the PI in a regression model. The Probabilistic Index Model 

(PIM) is such a regression model. For didactic reasons, we start by introducing PIMs for a univariate 

covariate. These univariate PIMs can then be extended to multiple covariates. 

One Covariate 

Consider a sample of 𝑛 identically and independently distributed (i.i.d.) observations (𝑌𝑖, 𝑋𝑖). 

A PIM models the conditional PI directly as a function of the covariates. More specifically, a PIM is 

given by  

P (𝑌𝑖 <  𝑌𝑗| 𝑋𝑖,  𝑋𝑗) = 𝑚( 𝑋𝑖 ,  𝑋𝑗;  𝛽).   (3) 

Here 𝑚(∙) is a user-specified function and 𝛽 is the regression parameter that we want to estimate. As 

will be explained in the next section, the following choice of 𝑚(∙) will be convenient for a variety of 

applications:  

𝑚(𝑋𝑖 ,  𝑋𝑗;  𝛽) =  𝑔−1[(𝑋𝑗 − 𝑋𝑖)𝛽],   (4) 

where 𝑔−1(∙) denotes an inverse-link function mapping the real line on the unit interval. Examples 

include the logit with 𝑔(𝑥) = logit(𝑥) =  log [𝑥/(1 − 𝑥)] and 𝑔−1(𝑥) = expit(𝑥) = exp(x) /[1 +

exp(x)], or the probit with 𝑔(𝑥) = 𝛷−1(𝑥) and 𝑔−1(𝑥) = 𝛷(𝑥). 

The interpretation of the regression coefficient can be obtained by comparing two individuals 

with covariates that differ by one unit: 𝑋𝑖 = 𝑥 and 𝑋𝑗 = 𝑥 + 1. We substitute these values in 

Equation 4 and then replace this expression in Equation 3 to obtain: 

𝑔−1(𝛽) = P(𝑌𝑖 <  𝑌𝑗| 𝑋𝑖 = 𝑥,  𝑋𝑗 = 𝑥 + 1).   (5) 

Hence 𝑔−1(𝛽) gives the probability that a randomly selected subject with covariate value 𝑥 will have 

a lower outcome as compared to a randomly selected subject with covariate value 𝑥 + 1. When 𝑋 is 
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binary, then the two sample PI P (𝑌𝑖 <  𝑌𝑗 | 𝑋𝑖 = 0,  𝑋𝑗 = 1) arises from Equation 5 by setting 𝑥 =

 0. The advantage of modeling the PI directly as a function of covariates is that Equation 3 can also 

be used when 𝑋 is continuous. Equation 5 then gives the PI when X is increased by one unit. This is 

similar to the interpretation of a conventional linear regression model. When E(𝑌𝑖|𝑋𝑖) =  𝛼0 + 𝛼𝑋𝑖, 

then 

𝛼 =  E(𝑌𝑗|𝑋𝑗 = 𝑥 + 1) − E(𝑌𝑖|𝑋𝑖 = 𝑥) =  E(𝑌𝑗 − 𝑌𝑖|𝑋𝑖 = 𝑥,  𝑋𝑗 = 𝑥 + 1). 

Whereas a PIM quantifies the effect in terms of the probability of an ordering between two 

outcomes, the linear regression models quantifies the effects in terms of the expected differences 

between two outcomes.  

When X is binary, we know that we can estimate the PI via Equation 2. How can we estimate 

the PI when X is continuous? From Equation 5 we see that we can estimate the PI via 𝑔−1(�̂�), 

where �̂� denotes an estimator of 𝛽. This brings us to the question: How can we estimate 𝛽? The 

solution lies in rewriting the PI as an expectation. Recall that I (𝑌𝑖 <  𝑌𝑗) is 1 if the outcome of 

subject 𝑖 is lower than the outcome of subject 𝑗, and is 0 otherwise (see Equation 2). In the 

supplementary material we show that   

P (𝑌𝑖 <  𝑌𝑗| 𝑋𝑖,  𝑋𝑗) = E( I (𝑌𝑖 <  𝑌𝑗)| 𝑋𝑖,  𝑋𝑗) .   (6) 

The probability statement on the left hand side of Equation 6 can thus be written as an expectation of 

transformed outcome I (𝑌𝑖 <  𝑌𝑗) that takes on the value 0 or 1. We introduce the compact notation 

𝐼𝑖𝑗 = I(𝑌𝑖 < 𝑌𝑗) and 𝑋𝑖𝑗 =  𝑋𝑗 − 𝑋𝑖 and we consider the logit link to make the formulation more 

concrete. Combining Equations 3, 4 and 6 gives  

E(𝐼𝑖𝑗|𝑋𝑖𝑗) = expit(𝑋𝑖𝑗𝛽). 

This is exactly a logistic regression model applied to the transformed binary outcomes 𝐼𝑖𝑗, and the 

transformed predictors 𝑋𝑖𝑗 , (𝑖, 𝑗 = 1, … , 𝑛). Thas et al. (2012) show that this strategy results in an 

asymptotically normal and consistent estimator of β. Hence, fitting a PIM to the data (𝑌𝑖 ,  𝑋𝑖) is 

equivalent to fitting a binary regression model to the transformed data (𝐼𝑖𝑗,  𝑋𝑖𝑗). By rewriting a PIM 
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as a binary regression model, we can use existing software to fit PIMs in practice. More formally, the 

estimator �̂� for 𝛽 in Equation 3 is obtained by solving the estimating equations  

∑ ∑ 𝐴(𝑋𝑖 , 𝑋𝑗; 𝛽)[𝐼𝑖𝑗 − 𝑚(𝑋𝑖, 𝑋𝑗; 𝛽)] = 0𝑛
𝑗=1

𝑛
𝑖=1 ,  

𝐴(𝑋𝑖, 𝑋𝑗; 𝛽) =

𝜕𝑚(𝑋𝑖,𝑋𝑗,
;𝛽)

𝜕𝛽

𝑚(𝑋𝑖,𝑋𝑗;𝛽)[1−𝑚(𝑋𝑖,𝑋𝑗;𝛽)]
 . 

 

(7) 

The standard errors obtained by fitting a binary regression model to the transformed data cannot be 

used for inference. Despite the data (𝑌𝑖 ,  𝑋𝑖) being mutually independent, the transformed data 

(𝐼𝑖𝑗,  𝑋𝑖𝑗) are no longer mutually independent. To illustrate this, consider two transformed outcomes 

𝐼𝑖𝑗 = I(𝑌𝑖 < 𝑌𝑗) and 𝐼𝑖𝑘 = I(𝑌𝑖 < 𝑌𝑘). Both binary outcomes share 𝑌𝑖, making them no longer 

independent. The transformed outcomes 𝐼𝑖𝑗 have a correlation structure which is different from the 

typical block correlation structure in multilevel or longitudinal data (Thas et al, 2012). Thas et al. 

(2012) provide a consistent sandwich estimator for the standard errors that takes the correlation into 

account. These standard errors are implemented in the package pim (Meys et al., 2017) of the R 

programming language (R Core Team, 2017).  

Note that rewriting a PIM as a binary regression model has implications for its computational 

complexity: Whereas the original sample is of size 𝑛, the transformed sample (𝐼𝑖𝑗 ,  𝑋𝑖𝑗) has 𝑛2 

elements because we compare all pairs of subjects 𝑖 and 𝑗. Thas et al. (2012) show that it sufficient to 

only consider the pairs of subjects for which 𝑖 < 𝑗, resulting in 𝑛(𝑛 − 1)/2 comparisons.  

In summary, the theory provided by Thas et al. (2012) and implemented in the pim package, 

provides a consistent estimator for 𝛽 that is asymptotically normal and a consistent estimator for its 

standard error (𝑆𝐸�̂� ).  

Confidence intervals for 𝛽 are given by (𝛽 ̂ − 𝑧𝛼 2⁄ 𝑆𝐸�̂� , 𝛽 ̂ + 𝑧𝛼 2⁄ 𝑆𝐸�̂�), with 𝑧𝛼 2⁄  the quantile 

so that Φ(𝑧𝛼 2⁄ ) = 1 −  𝛼/2.  Because 𝑔−1(∙) is strictly increasing, a confidence interval for 𝑔−1(𝛽) 

is given by (𝑔−1[𝛽 ̂ − 𝑧𝛼 2⁄ 𝑆𝐸�̂�], 𝑔−1[𝛽 ̂ + 𝑧𝛼 2⁄ 𝑆𝐸�̂�]), see the supplementary material. Hypothesis 

tests for 𝐻0: 𝛽 = 𝛽0 are obtained by constructing the test statistic (�̂� − 𝛽0)/𝑆𝐸�̂� which has an 

asymptotic standard normal distribution under the null hypothesis.  
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Because these confidence intervals and hypothesis tests can perform poorly in small samples, 

mainly due to the small sample bias of the sandwich estimator, Amorim et al. (2017) proposed a 

bias-reduced version of the bootstrap and adjusted jackknife empirical likelihood that lead to drastic 

improvements in small sample inference for PIMs. Discussing these estimators, however, falls 

beyond the scope of this article.  

Despite the close connection with logistic regression, it is important to mention that the link-

function of a PIM plays a different role than the link function in a generalized linear model. In 

logistic regression, we model the probability of a ‘success’ as a function of the covariate via 

P(succes|𝑋𝑖) = expit(𝛾0 + 𝛾𝑋𝑖). From this model, we then derive an interpretation of 𝛾 via  

exp(𝛾) =  
odds(succes|𝑋𝑖=𝑥+1)

odds(succes|𝑋𝑖=𝑥)
,  odds(success|𝑋𝑖) =  

P(succes|𝑋𝑖)

1−P(succes|𝑋𝑖)
. 

Here the choice of link function is crucial in obtaining this odds ratio interpretation. When a different 

link function is used, e.g. the probit, then exp(𝛾) has no interpretation in terms of an odds ratio. For 

a PIM, this is different. From Equation 5, we see that we can always transform 𝛽 via 𝑔−1(∙) to get an 

interpretation in terms of the PI. This holds for all link functions. This is a consequence of the fact 

that a PIM models an effect size directly, whereas in logistic regression the effect sizes are derived 

from modeling the probability of success. 

Multiple Covariates 

The rationale of the previous section can be adopted to a multivariable context. Let 𝑿 denote 

the p-dimensional vector of covariates associated with Y, then a PIM is given by  

P (𝑌𝑖 <  𝑌𝑗| 𝑿𝑖,  𝑿𝑗) = 𝑔−1[( 𝑿𝑗 −  𝑿𝑖)
𝑇

𝜷],  (8) 

with 𝜷 the p-dimensional vector of interest. To estimate 𝜷 we transform the outcomes as before to 𝐼𝑖𝑗 

and the vector of covariates to 𝑿𝑖𝑗 =  𝑿𝑗 − 𝑿𝑖. Similar to how logistic regression can deal with 

multiple covariates, so too can the PIM (Thas et al, 2012). The regression coefficient can be 

estimated by solving the estimating equations (7) where the function 𝑚(⋅) is replace by the right-

hand side of Equation 8.  

To illustrate the interpretation, we consider a bivariate regressor: 𝑿𝑇 = (𝑍1, 𝑍2) with 𝜷𝑇 =

(𝛽1, 𝛽2). We consider two subjects, 𝑖 and 𝑗, with covariate patterns (𝑍1𝑖, 𝑍2𝑖) = (𝑧1, 𝑧2) and 
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(𝑍1𝑗, 𝑍2𝑗) = (𝑧1 + 1, 𝑧2), respectively. Both subjects have the same value of 𝑍2, while 𝑍1 differs by 

one unit. It follows that (𝑿𝑗 − 𝑿𝑖)
𝑇

= (1, 0) so that from the Equation (8) we obtain the following 

interpretation of the regression coefficient:   

P(𝑌𝑖 <  𝑌𝑗|𝑍1𝑖 = 𝑧1, 𝑍1𝑗 = z1 + 1, 𝑍2𝑖 = 𝑍2𝑗) =  𝑔−1(𝛽1), 

i.e., 𝑔−1(𝛽1) gives the probability that a randomly selected subject with covariate value 𝑧1 for 𝑍1 

will have a lower outcome as compared to a randomly selected subject with a covariate value that is 

one unit higher, where 𝑍2 is the same for both subjects. Similar as for the univariate covariate, we 

can estimate this PI by plugging in an estimate for 𝛽1.  

Notice that the PIM of Equation 8 has no intercept. This can be explained as follows: If 𝑿𝑗 −

𝑿𝑖 = 𝟎, then  𝑿𝑖 = 𝑿𝑗 so that Equation 8 reduces to 

 P (𝑌𝑖 <  𝑌𝑗| 𝑿𝑖 =  𝑿𝑗) = 𝑔−1(0). 

For both the logit and probit link it follows that 𝑔−1(0) = .5. The model thus implies that the PI 

equals 50% when the covariates of both subjects are the same. Indeed, when 𝑿𝑖 = 𝑿𝑗 then 𝑌𝑖 and 𝑌𝑗 

have the same conditional distribution so that P (𝑌𝑖 <  𝑌𝑗| 𝑿𝑖 =   𝑿𝑗) = 0.5 has to hold. Setting the 

intercept to zero thus automatically satisfies this restriction.  

Dealing with Ties  

The definition of the PI can be extended to P (𝑌𝑖 <  𝑌𝑗| 𝑿𝑖,  𝑿𝑗) +  
1

2
P (𝑌𝑖 =  𝑌𝑗| 𝑿𝑖,  𝑿𝑗) to 

account for ties. The PIM estimation theory can now be adopted by considering the transformed 

outcomes I(𝑌𝑖 < 𝑌𝑗) + 0.5 I(𝑌𝑖 = 𝑌𝑗). The remainder of the estimation theory is unaffected by these 

ties. We refer to Thas et al. (2012) for more details. 

Estimating PIMs in Practice 

In R, PIMs can be fitted using the package pim. The online supplementary material includes 

all R code to reproduce the results presented in this article. For other statistical packages, no ready-

to-use software is yet available. However, logistic and probit regression routines can be used to 

obtain point estimators for the regression coefficients of a PIM. Bootstrap procedures can then be 

used for obtaining interval estimators and p-values. This can be achieved as follows.   
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1. For each pair of subjects 𝑖 and 𝑗 create transformed outcomes 𝐼𝑖𝑗 =  I(𝑌𝑖 < 𝑌𝑗) + 0.5I(𝑌𝑖 = 𝑌𝑗) 

and transformed predictors 𝑿𝑖𝑗 = 𝑿𝑗 − 𝑿𝑖. If the predictors include categorical variables, we 

assume that 𝑿 is numerically coded (e.g. using a dummy coding). When subject 𝑖 is compared 

with subject 𝑗, it is not necessary anymore to compare subject 𝑗 with 𝑖. If the original sample size 

is 𝑛, then the transformed data will have size 𝑛(𝑛 − 1)/2. To facilitate creating this transformed 

data, a shiny app has been developed at datapp.ugent.be/shiny/trans4pim/. 

2. For a PIM with logit link, fit a logistic regression model with outcome 𝐼𝑖𝑗 and predictor 𝑿𝑖𝑗. The 

logistic estimates are now exactly the estimates proposed by Thas et al. (2012). For a PIM with 

probit link, probit regression should be considered.  

3. The standard errors and the p-values from a logistic (or probit) regression routine cannot be used 

because they do not take into account the correlation structure of the transformed outcomes. 

Bootstrapping can resolve this as follows: Sample with replacement 𝐵 bootstrap samples of size 𝑛 

from the original data (not the transformed data) and repeat step 1 and 2 for each bootstrap 

sample. Compute the standard error as the standard deviation of the 𝐵 bootstrap samples and use 

this standard error to compute p-values and to construct confidence intervals as explained at the 

beginning of this section.  

Comparison with Other Methods 

For a better understanding of PIMs, we study its relationship to several other methods. We 

start with the connection between the Wilcoxon–Mann–Whitney test and the parametric regression 

model with normal errors. These relationships are then extended to a semiparametric context. To 

make the comparison more concrete, we illustrate each connection on a case study. We consider data 

from a clinical trial where a computerized, interactive cognitive behavioral therapy for patients with 

depression is evaluated. The original study is reported in Proudfoot et al. (2003), and the data are 

available in the R package of Hothorn and Everitt (2017a,b). Patients with depression were recruited 

in primary care and were randomized over two treatments: an innovative treatment or a conventional 

treatment. The conventional treatment (coded as 𝑋 = 1 with 36 patients) consisted of face-to-face 

cognitive behavioral therapy, while the innovative treatment consisted of an interactive computerized 
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program called Beat the Blues™ (coded as 𝑋 = 0, with 37 patients) replacing the face-to-face 

counselling. The outcome of interest 𝑌 is the Beck Depression Inventory (BDI) II score after three 

months. Figure 4 shows boxplots of the depression score for both treatments. For the ease of 

exposition, we consider a univariate predictor in this section. We fit the PIM  

𝑃( 𝑌𝑖 < 𝑌𝑗 ∣∣ 𝑋𝑖 , 𝑋𝑗 ) = 𝛷[𝛽(𝑋𝑗 − 𝑋𝑖)].       (9) 

 

The estimated regression coefficient equals �̂� = 0.357 with standard error 0.17 and 95% confidence 

interval [0.02, 0.69] (𝑝 = .036).  We first compare these results with those of the WMW test, and 

then with the results of a normal linear regression model.   

Wilcoxon-Mann-Whitney Test 

The WMW test shows marginal evidence against the null hypothesis 𝐻0: 𝐹𝐼𝑇 = 𝐹𝐶𝑇 in favor of 

the alternative 𝐻𝐴: 𝑃(𝑌𝐼𝑇 < 𝑌𝐶𝑇) ≠ .5 (𝑝 = .041). Here 𝐹 denotes the depression score distribution 

function. The WMW statistic from Equation 2 equals 𝑀𝑊 =  .639: The probability that a patient 

receiving the innovative treatment will have a lower depression score as compared to a patient 

receiving the conventional treatment is estimated as 63.9%. De Neve and Thas (2015) derived the 

following explicit relationship between WMW statistic and the estimated PIM parameter: 𝛷(𝛽)̂ =

𝑀𝑊. Applied to the case study we have 𝛷(0.357) = .639, confirming this relationship. Using a 

PIM in a two-sample study is thus similar to using the WMW test. When we look at the p-values, we 

notice that they are similar but not identical: .036 for the PIM and .041 for the WMW test. This can 

be explained as follows: Both p-values are derived from a standardized statistic. The standard error 

used by the WMW test (in absence of ties) equals √(𝑛𝐼𝑇 + 𝑛𝐶𝑇 + 1)/12 𝑛𝐼𝑇𝑛𝐶𝑇, and is only correct 

under 𝐻0: 𝐹𝐼𝑇 = 𝐹𝐶𝑇. The standard error estimator of the PIM, on the other hand, is also consistent 

when this null hypothesis does not hold. This explains the difference in p-values: They rely on 

standardized statistics that use different estimators of the standard error. The standard error provided 

by the PIM has three consequences:  

1. It allows testing 𝐻0: 𝛽 = 0 versus 𝐻𝐴: 𝛽 ≠ 0. From Equation 9 we see that 𝑃(𝑌𝐼𝑇 < 𝑌𝐶𝑇) =

 𝑃( 𝑌𝑖 < 𝑌𝑗 ∣∣ 𝑋𝑖 = 0, 𝑋𝑗 = 1 ) = 𝛷[𝛽(1 − 0)] =  𝛷(𝛽) , so the PIM tests 𝐻0: 𝑃(𝑌𝐼𝑇 < 𝑌𝐶𝑇) =
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𝛷(0) =  .5 versus 𝐻𝐴: 𝑃(𝑌𝐼𝑇 < 𝑌𝐶𝑇) ≠ .5. This null hypothesis is less restrictive than the null 

hypothesis of the WMW test in the sense that equal distributions imply that the PI equals .5, while 

the opposite does not necessarily hold. We refer to the supplementary material for more details.  

2. Because the standard error has to be estimated, the small sample performance (e.g. control of the 

Type I error) of the test based on the PIM will be not as good as that of the WMW test because 

the standard error under the null of equal distribution does not involve parameters that need to be 

estimated.   

3. It allows for the construction of confidence intervals for 𝛽, and hence 𝛷(𝛽) = 𝑃(𝑌𝐼𝑇 < 𝑌𝐶𝑇). We 

refer to the previous section for details on how the confidence interval can be constructed.  

This last point is the most important implication: Using PIMs allows going beyond null hypothesis 

significance testing by providing interval estimators for the PI effect measure. This might lead to a 

better understanding of the data under study.  

Similar connections can be established for other rank tests, such as the Kruskal–Wallis rank 

test and the Friedman rank test; we refer to De Neve and Thas (2015) for details.  

The Normal Linear Model 

The linear regression model with normal errors is given by  

𝑌𝑖 = 𝛼0 +  𝛼1𝑋𝑖 + 𝜖𝑖,  𝜖𝑖 ~ 𝑁(0, 𝜎2).   (10) 

In the supplemental material we show that this normal linear model implies  

P (𝑌𝑖 <  𝑌𝑗| 𝑋𝑖 ,  𝑋𝑗) =  Φ (
𝛼1(𝑋𝑗−𝑋𝑖)

√2𝜎
).   (11) 

From this relationship we recognize the form of Equation 9 with 𝛽 =  𝛼1/√2𝜎. This derivation 

implies that the formulation of Equation 9 arises naturally when a normal linear model holds.  

To make this relationship more concrete, we fit the linear model to the depression case study. 

With BDI score as outcome, the residuals of the linear regression model indicated a significant 

deviation from normality (Shapiro-Wilk 𝑝 =  .0008). Transforming the BDI score by taking the 

square root resolved the deviation from normality (Shapiro-Wilk 𝑝 =  .76) and we therefore 

continue with this transformed outcome: 𝑌 = √𝐵𝐷𝐼. The estimated slope is �̂�1 =  0.8 (SE = 0.36, p 

= .031, 95% CI [0.08,1.51]), indicating that the mean square root BDI score is an estimated 0.8 units 
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lower for the innovative treatment as compared to the conventional treatment. The maximum 

likelihood estimate of the standard deviation is �̂� = 1.52. From Equation 11 it follows that  

 𝑃(𝑌𝐼𝑇 < 𝑌𝐶𝑇) =  P (𝑌𝑖 <  𝑌𝑗| 𝑋𝑖 = 0,  𝑋𝑗 = 1) = 𝛷 (
𝛼1

√2𝜎
), 

and upon plugging in 𝛼1̂ and  �̂� the PI is estimated as 64.4% (using the unrounded estimates). This 

estimate is close to the estimate 63.9% obtained from the PIM of Equation 9. Recall, however, that 

the PIM is fitted to the BDI score and not to its square root. Both estimates are still close because the 

PIM estimator of 𝛽 is not affected by this square root transformation. This can be seen by looking at 

Equation 7, taking into account that 𝐼(𝑌𝑖 < 𝑌𝑗) =  𝐼[ℎ(𝑌𝑖) < ℎ(𝑌𝑗)] for every order preserving 

function ℎ(⋅) (including the square root). Consequently, transforming the outcome via any strictly 

increasing function has no impact on the results of a PIM: The estimates, p-values, and confidence 

intervals will not change.  

So far, we have discussed two ways to estimate 𝑃(𝑌𝐼𝑇 < 𝑌𝐶𝑇). The first approach uses 𝛷(�̂�) 

where �̂� is the estimator of the PIM from Equation 9. This is exactly the same as using the 

nonparametric Mann-Whitney statistic of Equation 2.   The second approach consists of plugging in 

the linear regression estimators of 𝛼1 and 𝜎 in Equation 11. For brevity, we refer to the first 

estimator as the nonparametric estimator, and the second as the parametric estimator. Below we list 

the differences between the two approaches.  

1. Bias and consistency. The parametric estimator is only valid when the normal linear model holds 

and will be biased because 𝐸[ 𝛷 (
 �̂�1

√2�̂�
)] ≠ 𝛷(

𝛼1

√2𝜎
). When the errors in Equation 10 are not 

normally distributed the parametric estimator will in general not be a consistent estimator for the 

PI. The nonparametric estimator, on the other hand, does not require any distributional 

assumptions: It is an unbiased and consistent estimator of the PI for every distribution. It is also 

the estimator with the smallest standard error among all unbiased estimators (Lehmann, 1951).  

2. Robustness. The nonparametric estimator is robust against outlier because it only involves the 

ordering of the outcomes, i.e. 𝐼(𝑌𝑖 < 𝑌𝑗), and not their actual values. The parametric estimator, on 

the other hand, will be sensitive to outliers because it relies on the linear regression estimators.  
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3. Transformations. The nonparametric estimator is not affected by an order preserving 

transformation of the outcome. This does not hold for the normal least squares estimator.  

From Parametric to Semiparametric Regression 

When we leave the two-sample design and let 𝑋 be a continuous covariate, we cannot use the 

WMW test anymore. On the other hand, the PIM of Equation 9 can still be used, because the PIM 

estimation theory holds for any type of covariate (binary, continuous, multivariable). From Equation 

11 we can justify this probit PIM formulation: If the normal linear model from Equation 10 holds, 

Equation 9 follows automatically from Equation 11. This might give the impression that the probit 

PIM is a parametric model which is only valid when the parametric normal linear model holds. This, 

however, is untrue. PIMs are substantially less restrictive than the normal model. This can be seen as 

follows: The left-hand side of Equation 9 is the same for any order preserving transformation ℎ(⋅) of 

the outcome: 

P (ℎ(𝑌𝑖) <  ℎ(𝑌𝑗)| 𝑋𝑖,  𝑋𝒋) =  P (𝑌𝑖 <  𝑌𝑗| 𝑋𝑖,  𝑋𝒋). 

This implies that, from the moment we can find any order preserving transformation of the outcome 

for which the normal linear model holds, the relationship from Equation 11 holds, and the PIM with 

probit link from Equation 9 is justified. We can write this down more formally. We assume that the 

following model holds 

ℎ(𝑌𝑖) =  𝛼0 +  𝛼1𝑋𝑖 + 𝜖𝑖 , 𝜖𝑖 ~ 𝑁(0, 𝜎2)  (12) 

where ℎ(∙) denotes an unknown strict increasing function. This model is semiparametric because ℎ(∙) 

is left unspecified (the nonparametric component) and 𝜖𝑖 has a fully specified distribution (the 

parametric component). The model in Equation 12 is known as the semiparametric linear 

transformation model (Cheng, Wei, & Ying, 1995; Zeng & Lin, 2007). In the supplementary material 

we show that Equation 12 implies Equation 11.  

What is the most important conclusion from this? A PIM with probit link is justified from the 

moment that there exists an unknown strictly increasing function ℎ(⋅) so that the regression model 

with transformed outcome ℎ(𝑌) has a normally distributed error. This function ℎ(⋅) can be as simple 

as the identity function or the square root, but it can also be more complicated, such as one or two-
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parameter Box-Cox transformations. For a PIM we do not need to estimate this function, it merely 

serves as theoretical argument to demonstrate its semiparametric nature and to justify the functional 

form of the PIM as described in Equation 9. As we will demonstrate in the next section, the 

relationship between Equations 9 and 12 can be used to assess the goodness-of-fit of a PIM. 

So far, we have focused on the PIM with probit link. This leads to the question: Does it make 

sense to use a PIM with logit link? The answer is yes, we can think of data generating models that 

result in a logit PIM.  In the supplementary material we show that 

ℎ(𝑌𝑖) =  𝛼0 +  𝛼1𝑋𝑖 + 𝜖𝑖,         𝜖𝑖 ~ 𝐹𝐸𝑉(𝑒) = 1 − exp [− exp(𝑒)],  (13) 

where 𝐹𝐸𝑉(∙)denotes the extreme value distribution, implies  

P (𝑌𝑖 <  𝑌𝑗| 𝑋𝑖,  𝑋𝒋) =  expit[𝛼1(𝑋𝑗 − 𝑋𝑖)]. 

Consequently, the semiparametric transformation model assuming an extreme value error implies 

that a PIM with logit link (recall that expit is the inverse of the logit) holds. The model of Equation 

13 is also known as the Cox proportional hazards model (Cox, 1972, Cheng et al, 1995), a model that 

is extensively used in biostatistics.  

The choice of link function, logit or probit, will have little impact on the estimated PIs in 

practice, because 𝛷 (
𝑥

1.7
) ≈ expit(𝑥), implying that the estimated coefficients from a probit PIM will 

approximately differ by a factor 1.7 of the estimated coefficients of a logit PIM. We refer to the 

supplementary material for more details.   

Goodness-of-fit 

Because PIMs are semiparametric, inference is only valid when the proposed model is 

consistent with the underlying data-generating model. Therefore, it is important to assess the 

goodness-of-fit (GOF) of a PIM. De Neve et al. (2013a) developed a formal GOF-test together with 

GOF-plots for PIMs. These methods rely on nonparametric smoothers and require large datasets 

when there are multiple predictors. This makes them not useful in many practical situations. We will 

therefore address the GOF differently. More specially, we will exploit the connection with the 

semiparametric linear transformation models of the previous section. We consider the following 

procedure: 
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1. Fit the PIM 

 𝑃( 𝑌𝑖 < 𝑌𝑗 ∣∣ 𝑿𝑖, 𝑿𝑗 ) = 𝛷 [(𝑿𝑗 − 𝑿𝑖)
𝑇

𝜷].       

2. Check the assumptions of the linear model (linearity of the model and constant variance and 

normality of the errors). If they are fulfilled, go to step 3. If some of the assumptions are violated, 

go to step 4. 

3. Due to the connection with the normal linear model, the PIM can be used for further analysis. 

4. Perform a Box–Cox transformation on the linear regression model. 

5. Check the assumptions of the linear model applied to the Box–Cox transformed outcome 

(linearity of the model, constant variance, and normality of the errors). If they are fulfilled, go to 

step 6. If some of the assumptions are violated, go to step 7. 

6. Due to the connection with semiparametric linear transformation model with normal error, the 

PIM can be used for further analysis. 

7. If the linearity of the model of the Box-Cox transformed model is violated, try to include 

quadratic terms or splines in the PIM. If the residuals show a systematic deviation from normality 

and they show an approximate extreme value distribution, the probit link can be replace with the 

logit link.  

The above procedure is heuristic and indicates that more research on assessing the adequacy of PIM 

is needed.  

Full Illustration 

We illustrate the methodology on data from a cross-sectional lifespan investigation of 

deception in a large community sample. In the original study, reported in Debey, De Schryver, 

Logan, Suchotzki, and Verschuere (2015), the ‘skill’ to deceive was measured using the Sheffield lie 

test. This test is a reaction time (RT) deception task whereby participants are instructed to alternately 

lie or tell the truth on 120 simple yes/no questions. Because the truth response is, in general, assumed 

to be activated first, faster responses are expected for truth trials compared to lie trials. The outcome 

of interest is the difference in the median reaction time between lie trials and truth trials. This 
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difference is referred to as the RT lie-effect, and larger values indicate a larger lie-effect. A larger 

lie-effect for a participant can be interpreted as that participant being less skilled at lying. 

For the current illustration, the median is used to aggregate the reaction time per participant, in 

order to reduce the impact of outlying values. After excluding cases with missing values, and 

participants with a negative lie-effect, 831 participants remain in the present analysis. We consider 

the following variables: the RT lie-effect (ranging from 2 ms to 2819 ms, with a mean of 253 ms and 

a median of 207 ms), gender (42% male, 58% female), and age (ranging from 6 to 76 years, with a 

mean age of 28 and a median age of 20).  It is of interest for this illustration to study the association 

between the lie-effect and age while accounting for gender. Panel a of Figure 5 displays the RT lie-

effect according to age group, where groups are formed as in Debey et al. (2015).  The plot 

demonstrates a non-linear effect of age. Panel b of Figure 5 shows a scatterplot with the fit of a linear 

regression with age included as a cubic polynomial.  

We fit the PIM with the RT difference as outcome (𝑌), a linear, a quadratic, and cubic effect 

of age (variable 𝐴) and a dummy variable for gender (variable 𝐺 which equals 1 for females). The 

vector of covariates then becomes 𝑿𝑖
𝑇 = (𝐴𝑖, 𝐴𝑖

2, 𝐴𝑖
3, 𝐺𝑖), and plugging this in Equation 8, upon using 

the probit link, gives 

𝑃(𝑌𝑖 < 𝑌𝑗) = 𝛷[(𝐴𝑗 − 𝐴𝑖)𝛽1 + (𝐴𝑗
2 − 𝐴𝑖

2)𝛽2 + (𝐴𝑗
3 − 𝐴𝑖

3)𝛽3 + (𝐺𝑗 − 𝐺𝑖)𝛽4] , (14) 

where we have omitted the conditioning statement in the probability for notational 

convenience. The probit link is considered after a careful exploration of the goodness-of-fit of the 

PIM. We refer to the R Markdown supplemental material for more details. 

The estimates are 𝛽1̂ = −0.084 (SE = 0.021, 𝑝 <  .001), 𝛽2̂ = 0.003 (SE = 0.0006, 𝑝 <  .001), 𝛽3̂ =

−0.00003 (SE = 0.00001, 𝑝 <  .001), and 𝛽4̂ = 0.094 (SE = 0.051, 𝑝 =  .07). To illustrate the 

interpretation, we compare subjects of the same gender (𝐺𝑖 = 𝐺𝑗). Figure 6 visualizes the non-linear 

effect of age. The PI always refers to the outcomes of two subjects, (𝑌𝑖 , 𝑌𝑗), and we consider 3 

choices for the age of subject 𝑖 in Figure 6:  (a) a randomly chosen subject with age 𝐴𝑖 =  20 which 

we compare to randomly chosen subjects with ages varying from 6 to 76, (b) a randomly chosen 

subject with age 𝐴𝑖 =  40 which we compare to randomly chosen subjects with ages varying from 6 
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to 76, and (c) a randomly chosen subject with age 𝐴𝑖 =  60 which we compare to randomly chosen 

subjects with ages varying from 6 to 76. This plot is the result of plugging in these values in 

Equation 14. When we compare a subject of age 20 (dashed line) with any other subject, 

probabilities are estimated to be larger than 50% (note that if we compare two subjects of age 20, the 

probability of observing a smaller lie-effect equals 50%): It is more likely that a given twenty year 

old will have a smaller lie effect (i.e. a lower outcome) compared to subjects that are older or 

younger. If we compare this 20-year-old with someone of age 60, the estimated probability of 

observing a smaller lie-effect for the younger subject equals about 80%: It is more likely to observe a 

smaller lie effect at the age of 20.  

Now let us compare a subject of age 40 with younger subjects. From the solid line in Figure 6, 

we can see that the estimated probabilities to observe smaller lie-effects are less than 50%: 

Compared to their younger counterparts, 40-year-old subjects seemed to be less skilled at deception. 

On the other hand, if we compare them with older subjects, the estimated probabilities are above the 

50% line (ignoring the probabilities for subjects older than 72 years). Hence, compared to older 

people, a 40-year-old person will likely be more gifted with lie skills. Finally, estimated probabilities 

comparing a 60-year-old subject with other subjects are depicted by the dotted line. All estimated 

probabilities are less than 50%, indicating that it would be rather unlikely to observe a smaller lie-

effect for a 60-year-old person compared to anyone else.  

The PIM in Equation 14 further allows to estimate the effect of gender while controlling for 

age. When we compare men and women of the same age, we obtain 𝑃(𝑌𝑖 < 𝑌𝑗 ∣ 𝐺𝑖 = 0, 𝐺𝑗 = 1, 𝐴𝑖 =

𝐴𝑗) = Φ(𝛽4), which is estimated by Φ(0.094) = 0.54. Therefore, the estimated probability that men 

will have a smaller lie effect than women of the same age is 54%.  

Discussion 

This article serves as an introduction to PIMs: A class of regression models where the 

association between an outcome and a covariate can be expressed in terms of the PI. This is 

fundamentally different from (generalized) linear regression models where associations are 

expressed in terms of mean differences. We have devoted a substantial part of this tutorial to the 
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discussion of the PI as an effect measure, because a good understanding of PIMs starts with a good 

understanding of the PI. Furthermore, a PIM can be seen as a flexible procedure to estimate the PI 

for a variety of designs and datatype. So when can it be appropriate to analyze your data with a PIM? 

We believe that PIMs are suitable when the PI is an appropriate effect measure to summarize the 

association between the covariate and the outcome. Examples where the PI can be useful include 

outcomes with skewed distributions, outcomes that contain outliers, and ordinal outcomes. PIMs 

might also be considered when the outcome requires a monotone transformation (e.g. Box-Cox 

transformations) before linear regression can be applied. These transformations can obscure the 

interpretation of the linear regression coefficient, while they do not affect the PIM. PIMs are 

semiparametric regression models and do not require strong distributional assumptions such as 

normality. This does not mean that they are free of assumptions: The functional form of model has to 

be correctly specified. If important predictors are missing, or if the link function is not supported by 

the data, the statistical inference of the PIMs will not be valid.  

We want to stress that we do not see the PIM as a replacement of the linear regression model 

(or any other regression model). Instead, we consider it as a complementary, robust tool which the 

analyst can use to gain more insights into the psychological processes that generate the data. When 

several regression models are used in a single analysis, family-wise type I errors can be inflated due 

to multiple testing, and this should be accounted for. The decision to use a PIM should be made 

before the data are analyzed, or on features of the outcome (e.g. ordinal, skewed or outliers), and 

should not be based on the p-values it generates.  

Via this tutorial, we hope to stimulate the community to apply and investigate these models in 

the behavioral sciences. Despite several publications on PIMs and availability of the R package pim, 

more research has to be conducted to make these models applicable for many practical situations. 

Challenges include: (a) the extension of PIMs to multilevel data, (b) embedding latent variables in 

PIMs, (c) extending goodness-of-fit methods, (d) providing 𝑅2-like measures, and (e) developing 

software for statistical packages other than R.  
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Table 1  
 

Asymptotic relative efficiency (ARE) of the t-test versus the WMW test  

 
     Distribution     

 max(1-y2,0) Normal Uniform Logistic t3 Laplace t5 Exp Cauchy 

ARE 0.86 0.95 1 1.1 1.24 1.5 1.9 3 ∞ 

 

Note. The ARE of the two-sample t-test relative to the WMW test for different distributions. A value 

larger than 1 implies that the WMW is (asymptotically) more efficient. 

  



32 
 

   

 

Figure 1. Artificial data where the innovative treatment outperforms the conventional treatment in 

terms of BDI scores for patients that receive antidepressants (panels a, c, e) or that do not receive 

antidepressants (panels b, d, f). All distributions considered are normal distributions and the mean 

and standard deviation are given for each group. Panels a and b: the standardized mean difference 

and the PI are larger for panel a, while the mean difference is the same for both panels. For panels 

c and d the mean difference and its standardized version is smaller for panel c, while the PI is 

approximately 1 for both panels. The mean difference in panel f is larger than the mean difference 

of panel e, while the standardized mean difference and the PI are equal for both panels.  
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Figure 2. Two normal distributions (panel a) and two log normal distributions (panel b) for which the 

standardized mean difference is equal, but the PI’s differ.   
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Figure 3. Power for a balanced two-sample design with 20 or 40 observations per group and for 

several choices of distributions. Both groups have the same distribution except for half standard 

deviation difference in location. 
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Figure 4. BDI scores at 3 months according to treatment group  
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Figure 5. Difference in the median reaction time between lie trials and truth trials as a function of 

age category (panel a) and age (panel b).  
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Figure 6. Estimated probabilities for a randomly chosen subject with age 𝐴𝑖 =  20 compared to 

randomly chosen subjects with ages varying from 6 to 76 (dashed line), a randomly chosen subject 

with age 𝐴𝑖 =  40 compared to randomly chosen subjects with ages varying from 6 to 76 (solid 

line),  and a randomly chosen subject with age 𝐴𝑖 =  60 compared to randomly chosen subjects 

with ages varying from 6 to 76  (dotted line). 

 


