Versioned Querying with OSTRICH and Comunica
in MOCHA 2018

Ruben Taelman, Miel Vander Sande, Ruben Verborgh
IDLab, Department of Electronics and Information Systems, Ghent University — imec

Abstract. In order to exploit the value of historical information in Linked
Datasets, we need to be able to store and query different versions of such datasets
efficiently. The 2018 edition of the Mighty Storage Challenge (MOCHA) is orga-
nized to discover the efficiency of such Linked Data stores and to detect their bot-
tlenecks. One task in this challenge focuses on the storage and querying of ver-
sioned datasets, in which we participated by combining the OSTRICH triple store
and the Comunica SPARQL engine. In this article, we briefly introduce our sys-
tem for the versioning task of this challenge. We present the evaluation results
that show that our system achieves fast query times for the supported queries, but
not all queries are supported by Comunica at the time of writing. These results of
this challenge will serve as a guideline for further improvements to our system.

1. Introduction

The Semantic Web [1] of Linked Data [2] is continuously growing and changing
over time [3]. While in some cases only the latest version of datasets are required,
there is a growing need for access to prior dataset versions for data analysis. For ex-
ample, analyzing the evolution of taxonomies, or tracking the evolution of diseases in
biomedical datasets.

Several approaches have already been proposed to store and query versioned
Linked Datasets. However, surveys [4, 5] have shown that there is a need for im-
proved versioning capabilities in the current systems. Existing solutions either per-
form well for versioned query evaluation, or require less storage space, but not both.
Furthermore, no existing solution performs well for all versioned query types, namely
querying at, between, and for different versions.

In recent work, we introduced a compressed RDF archive indexing technique [6]—
implemented under the name of OSTRICH— that enables highly efficient triple pat-
tern-based versioned querying capabilities. It offers a new trade-off compared to other
approaches, as it calculates and stores additional information at ingestion time in or-
der to reduce query evaluation time. This additional information includes pointers to
relevant positions to improve the efficiency of result offsets. Furthermore, it supports
efficient result cardinality estimation, streaming results and offset support to enable
efficient usage within query engines.

The Mighty Storage Challenge (MOCHA) (https://project-hobbit.eu/challenges/
mighty-storage-challenge2018/) is a yearly challenge that aims to measure and detect
bottlenecks in RDF triple stores. One of the tasks in this challenge concerns the stor-
age and querying of versioned datasets. This task uses the SPBv [7] benchmark that
consists of a dataset and SPARQL query workload generator for different versioned

bronigeq pA gpeur NIl Yeggewic Bip|lodisbpA

AIEM We[gqury’ cifgriou guq 21l bgbele g1 To16 S MK pLondps fo Aot pA 7 COBE
pie

T


https://core.ac.uk/display/159328725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.rubensworks.net/
https://ruben.verborgh.org/
http://ceur-ws.org/Vol-1377/paper6.pdf
https://rdfostrich.github.io/article-demo/
https://project-hobbit.eu/challenges/mighty-storage-challenge2018/
http://ceur-ws.org/Vol-1932/#paper-06

query types. All MOCHA tasks are to be evaluated on the HOBBIT benchmarking
platform (https://project-hobbit.eu/). SPBv evaluates SPARQL queries [8], hence we
combine OSTRICH, a versioned triple index with triple pattern interface, with Comu-
nica [9], a modular SPARQL engine platform.

The remainder of this paper is structured as follows. First, the next section briefly
introduces the OSTRICH store and the Comunica SPARQL engine. After that, we
present our preliminary results in Section 3. Finally, we conclude and discuss future
work in Section 4.

2. Versioned Query Engine

In this section we introduce the versioned query engine that consists of the OS-
TRICH store and the Comunica framework. We discuss these two parts separately in
the following sections.

2.1. OSTRICH

OSTRICH is the implementation of a compressed RDF archive indexing
technique [6] that offers efficient triple pattern queries in, between, and over different
versions. In order to achieve efficient querying for these different query types, OS-
TRICH uses a hybrid storage technique that is a combination of individual copies,
change-based and timestamp-based storage. The initial dataset version is stored as a
fully materialized and immutable snapshot. This snapshot is stored using HDT [10],
which is a highly compressed, binary RDF representation. All other versions are
deltas, i.e., lists of triples that need to be removed and lists of triples that need to be
added. These deltas are relative to the initial version, but merged in a timestamp-based
manner to reduce redundancies between each version. In order to offer optimization
opportunities to query engines that use this store, OSTRICH offers efficient cardinali-
ty estimation, streaming results and efficient offset support.

2.2. Comunica

Comunica [9] is a highly modular Web-based SPARQL query engine platform. Its
modularity enables federated querying over heterogeneous interfaces, such as SPAR-
QL endpoints [11], Triple Pattern Fragments (TPF) entrypoints [12] and plain RDF
files. New types of interfaces and datasources can be supported by implementing an
additional software component and plugging it into a publish-subscribe-based system
through an external semantic configuration file.

In order to support versioned SPARQL querying over an OSTRICH backend, we
implemented (https://github.com/rdfostrich/comunica-actor-rdf-resolve-quad-pattern-
ostrich) a module for resolving triple patterns with a versioning context against an
OSTRICH dataset. Furthermore, as versions within the SPBv benchmark are repre-
sented as named graphs, we rewrite these queries in a separate module (https://
github.com/rdfostrich/comunica-actor-query-operation-contextify-version) to OS-
TRICH-compatible queries in, between, or over different versions as a pre-processing
step. Finally, we provide a default Comunica configuration and script (https://github.-


https://project-hobbit.eu/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://comunica.github.io/Article-ISWC2018-Resource/
https://rdfostrich.github.io/article-demo/
http://www.websemanticsjournal.org/index.php/ps/article/view/328
https://comunica.github.io/Article-ISWC2018-Resource/
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://linkeddatafragments.org/publications/jws2016.pdf
https://github.com/rdfostrich/comunica-actor-rdf-resolve-quad-pattern-ostrich
https://github.com/rdfostrich/comunica-actor-query-operation-contextify-version
https://github.com/rdfostrich/comunica-actor-init-sparql-ostrich

com/rdfostrich/comunica-actor-init-sparql-ostrich) to use these modules together with
the existing Comunica modules as a SPARQL engine. These three modules will be
explained in more detail hereafter.

OSTRICH Module OSTRICH enables versioned triple pattern queries at, between,
and for different versions. These query types are respectively known as Version Mate-
rialization (VM), Delta Materialization (DM) and Version Querying (VQ). In the con-

text the SPBv benchmark, only the first two query types (VM and DM) are evaluated,

which is why only support for these two are implemented in the OSTRICH module at

the time of writing.

The OSTRICH Comunica module consists of an actor that enables VM and DM
triple pattern queries against a given OSTRICH store, and is registered to Comunica’s
rdf-resolve-quad-pattern bus. This actor will receive messages consisting
of a triple pattern and a context. This actor expects the context to either contain VM
or DM information, and a reference to an OSTRICH store. For VM queries, a version
identifier must be provided in the context. For DM queries, a start and end version
identifier is expected.

The rdf-resolve-quad-pattern bus expects two types of output:

1. A stream with matching triples.
2. An estimated count of the number of matching triples.

As OSTRICH enables streaming triple pattern query results and corresponding car-
dinality estimation for all query types, these two outputs can be trivially provided us-
ing the JavaScript bindings for OSTRICH (https://github.com/rdfostrich/ostrich-
node).
Versioned Query Rewriter Module The SPBv benchmark represents versions as
named graphs. Listing 1 and Listing 2 respectively show examples of VM and DM
queries in this representation. Our second module is responsible for rewriting such
named-graph-based queries into context-based queries that the OSTRICH module can accept.

SELECT ?s ?p ?0 WHERE {
GRAPH <http://graph.version.4> { ?s ?p 20 }
}

Listing 1: Version Materialization query for the ?s ?p 2o pattern in version
http://graph.version.4 in SPV’s named graph representation.

SELECT * WHERE {
GRAPH <http://graph.version.4> { ?s ?p 20 }
FILTER (NOT EXISTS {
GRAPH <http://graph.version.1> { ?s ?p 20 }
})
}

Listing 2: Delta Materialization query for the ?s ?p 2o pattern to get all additions
between version http://graph.version.1l and http://
graph.version.4 in SPV’s named graph representation.


https://github.com/rdfostrich/comunica-actor-init-sparql-ostrich
https://github.com/rdfostrich/ostrich-node

In order to transform VM named-graph-based queries, we detect GRAPH clauses,
and consider them to be identifiers for the VM version. Our rewriter unwraps the pat-
tern(s) inside this GRAPH clause, and attaches a VM version context with the detected
version identifier.

For transforming DM named-graph-based queries, GRAPH clauses with corre-
sponding FILTER-NOT EXISTS-GRAPH clauses for the same pattern in the same
scope are detected. The rewriter unwraps the equal pattern(s), and constructs a DM
version context with a starting and ending version identifier. The starting version is
always the smallest of the two graph URIs, and the ending version is the largest, as-
suming lexicographical sorting. If the graph URI from the first pattern is larger than
the second graph URI, then the DM queries only additions. In the other case, only
deletions will be queried.

SPARQL Engine The Comunica platform allows SPARQL engines to be created
based on a semantic configuration file. By default, Comunica has a large collection of
modules to create a default SPARQL engine. For this work, we adapted the default
configuration file where we added our OSTRICH and rewriter modules. This allows
complete versioned SPARQL querying, instead of only versioned triple pattern query-
ing, as supported by OSTRICH. This engine is available on the npm package manager
(https://www.npmjs.com/package/@comunica/actor-init-sparql-ostrich) for direct us-
age.

3. Evaluation

In this section, we introduce the results of running the SPBv benchmark on Comu-
nica and OSTRICH.

As the MOCHA challenge requires running a system within the Docker-based
HOBBIT platform, we provide a system adapter with a Docker container (https://
github.com/rdfostrich/challenge-mocha-2018) for our engine that is based on Comu-
nica and OSTRICH. Using this adapter, we ran the SPBv benchmark on our system
on the HOBBIT platform with the parameters from Table 1.

Parameter Value
Seed 100

Data form Changesets
Triples in version 1 100,000
Versions 5

Version deletion ratio 10%
Version addition ratio 15%

Table 1: Configuration of the SPBv benchmark for our experiment.


https://www.npmjs.com/package/@comunica/actor-init-sparql-ostrich
https://github.com/rdfostrich/challenge-mocha-2018

For the used configuration, our system is able to ingest 29,719 triples per second
for the initial version, and 5,858 per second for the following changesets. The com-
plete dataset requires 17MB to be stored using our system. The initial version inges-
tion is significantly faster because the initial version is stored directly as a HDT snap-
shot. For each following changeset, OSTRICH requires more processing time as it
calculates and stores additional metadata and converts the changeset to one that is rel-
ative to the initial version instead of the preceding version.

For the 99 queries that were evaluated, our system failed for 27 of them according
to the benchmark. The majority of failures is caused by incomplete SPARQL expres-
sion support in Comunica, which is not on par with SPARQL 1.1 at the time of writ-
ing. The other failures (in task 5.1) are caused by an error in the benchmark where
changes in literal datatypes are not being detected. We are in contact with the bench-
mark developer to resolve this.

For the successful queries, our system achieves fast query evaluation times for all
query types, as shown in Table 2. In summary, the query of type 1 (queries starting
with a 1-prefix) completely materializes the latest version, type 2 queries within the
latest version, type 3 retrieves a full past version, type 4 queries within a past version,
type 5 queries the differences between two versions, and type 8 queries over two dif-
ferent versions. Additional details on the query types can be found in the SPBv [7]
article.

Query Time Results Query Time Results
1.1 34,071 141,782 4.5 197 708
2.1 49 128 4.6 1,119 25
2.2 59 32 5.1 13,871 59,229
2.3 27 12 8.1 59 171
2.5 233 969 8.2 56 52
2.6 1,018 19 8.3 31 22
3.1 18,591 100,006 8.4 44 0
2.6 230 46 8.5 709 2,288
4.1 37 91 8.6 8,258 346
4.2 43 16

4.3 21 2

Table 2: Evaluation times in milliseconds and the number of results for all SPBv
queries that were evaluated successfully.


http://ceur-ws.org/Vol-1932/#paper-06

4. Conclusions

This article represents an entry for the versioning task in the Mighty Storage Chal-
lenge 2018 as part of the ESWC 2018 Challenges Track. Our work consists of a ver-
sioned query engine with the OSTRICH versioned triple store and the Comunica
SPARQL engine platform. Preliminary results show fast query evaluation times for
the queries that are supported. The list of unsupported queries is being used as a
guideline for the further development of OSTRICH and Comunica.

During the usage of the SPBv benchmark, we identified several KPIs that are ex-
plicitly supported by OSTRICH, but were not being evaluated at the time of writing.
We list them here as a suggestion to the benchmark authors for future work:

e Measuring storage size after each version ingestion.

e Reporting of the ingestion time of each version separately, next of the current

average.

¢ Evaluation of querying all versions at the same time, and retrieving their applica-

ble versions.

¢ Evaluation of stream-based query results and offsets, for example using a dieffi-

ciency metric [13].

In future work, we intend to evaluate our system using different configurations of
the SPBv benchmark, such as increasing the number of versions and increasing the
change ratios. Furthermore, we intend to compare our system with other similar en-
gines, both at triple index-level, and at SPARQL-level.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American.
284, 28-37 (2001).

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - the story so far. Semantic Ser-
vices, Interoperability and Web Applications: Emerging Concepts. 205-227
(2009).

3. Umbrich, J., Decker, S., Hausenblas, M., Polleres, A., Hogan, A.: Towards dataset
dynamics: Change frequency of Linked Open Data sources. 3rd International
Workshop on Linked Data on the Web (LDOW). (2010).

4. Fernandez, J.D., Polleres, A., Umbrich, J.: Towards efficient archiving of Dynam-
ic Linked Open Data. In: Debattista, J., d’Aquin, M., and Lange, C. (eds.) Pro-
ceedings of te First DIACHRON Workshop on Managing the Evolution and
Preservation of the Data Web. pp. 34—49 (2015).

5. Papakonstantinou, V., Flouris, G., Fundulaki, I., Stefanidis, K., Roussakis, G.:
Versioning for Linked Data: Archiving Systems and Benchmarks. In: BLINK
ISWC (2016).

6. Taelman, R., Vander Sande, M., Verborgh, R.: OSTRICH: Versioned Random-Ac-
cess Triple Store. In: Proceedings of the 27th International Conference Compan-
ion on World Wide Web (2018).



10.

I1.

12.

13.

. Papakonstantinou, V., Flouris, G., Fundulaki, 1., Stefanidis, K., Roussakis, G.:

SPBv: Benchmarking Linked Data Archiving Systems. In: Proceedings of the 2nd
International Workshop on Benchmarking Linked Data and NLIWoD3: Natural
Language Interfaces for the Web of Data (2017).

. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language.

W3C, http://www.w3.0org/TR/2013/REC-sparql11-query-20130321/ (2013).

. Taclman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a

Modular SPARQL Query Engine for the Web. In: Proceedings of the 17th In-
ternational Semantic Web Conference (2018).

Fernandez, J.D., Martinez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Bi-
nary RDF Representation for Publication and Exchange (HDT). Web Semantics:
Science, Services and Agents on the World Wide Web. 19, 2241 (2013).
Feigenbaum, L., Todd Williams, G., Grant Clark, K., Torres, E.: SPARQL 1.1
Protocol. W3C, http://www.w3.0org/TR/2013/REC-sparql11-protocol-20130321/
(2013).

Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., De
Meester, B., Haesendonck, G., Colpaert, P.: Triple Pattern Fragments: a Low-cost
Knowledge Graph Interface for the Web. Journal of Web Semantics. 37-38,
(2016).

Acosta, M., Vidal, M.-E., Sure-Vetter, Y.: Diefficiency metrics: Measuring the
continuous efficiency of query processing approaches. In: International Semantic
Web Conference. pp. 3—19. Springer (2017).


http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/

