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Abstract

We demonstrate the use of a conjecturing program that can be a tool for re-
searchers investigating bounds of invariants of chemical graphs by investigating up-
per bounds for the domination number of a benzenoid. The program is open-source,
of general use, and can be used to generate conjectured bounds for any invariant of
any class of chemical graphs.

1 Introduction

A benzenoid is a graph that represents the carbon structure of a benzenoid hydrocarbon

molecule. Mathematically, it is the graph corresponding to any cycle in the infinite

hexagonal lattice. (These graphs are variously called benzenoid systems, polyhexs, and

hexagonal systems, among many others; see [1, 2, 3]). A dominating set D in a connected

graph is a set of vertices such that all remaining vertices are each adjacent to at least one

in D. The domination number of a graph is the cardinality of a minimum dominating

set. The domination number of a general graph is a widely-studied NP-hard-to-compute

graph invariant [4, 5].
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Study of the domination number of a benzenoid is limited; formulas for specific classes

of benzenoids may be found in [6, 7]. While minimum dominating sets and domination

numbers in benzenoids have no apparent chemical relevance, chemically unmotivated

graph invariants can have surprising chemical correlations: small order stable fullerenes,

for instance, tend to minimize their graph theoretic independence number [8]—initially

surprising—but an analogous fact was known to hold for benzenoids.

The results presented here all follow from conjectures of a computer program, con-

jecturing, developed by the third and sixth authors. The motivation of this research is

to demonstrate the utility of this program in chemical graph theory. conjecturing can

be used to generate conjectured bounds for any invariant of any class of chemical graphs;

it is one more tool that mathematical chemists can use to help advance their research

goals. This investigation of upper bounds of the domination number of a benzenoid is

presented as a demonstration of what is possible.

Table 1: Four small benzenoids: benzene, anthracene, naphthalene, phenanthrene

The program Conjecturing produces invariant-relation conjectures and is based on

a heuristic of Fajtlowicz [9]. This program and several experiments are described in [10].

The user of this program may input example objects of any type, choose invariants (num-

bers that can be computed from the objects, specified as functions) that may appear in

the conjecture statements, choose a specific invariant that will appear on the left-hand

side of the conjecture, and choose the form of the inequality: either upper bounds or

lower bounds for the chosen invariant. The reported conjectures came from the domains

of graph theory, matrix theory, number theory, and combinatorial game theory. Conjec-

turing is open-source, and operates in Sage (a free and growing mathematical computing

environment, similar to Maple, Matlab and Mathematica). The program, examples, and

set-up instructions are available at: http://nvcleemp.github.io/conjecturing/

The program produces inequalities between algebraic relations of the input invariants

(the expression generator is a descendant from Grinvin [11]). Here the objects are ben-

zenoids. By the design of the program, each produced conjecture is “significant” with
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respect to the previously produced conjectures—in the sense that each conjecture gives a

better bound for one of the example benzenoids than any previously produced conjecture.

This also implies that each newly produced conjecture is not implied by the previously

produced conjectures. Furthermore, it means that the number of conjectures (of any

particular form) cannot exceed the number of example benzenoids.

Figure 1: A sample run. Here is how a call to conjecturing looks to a user of the
SageMathCloud interface. Some number of invariants and objects are defined and
these are input as parameters to the conjecture function call.

Conjecturing comprises an expression generator, code for evaluating expressions in-

volving specified invariants and example objects, and uses Fajtlowicz’s Dalmatian heuris-

tic to conjecture relations between real number invariants of benzenoids. This Dalmatian

heuristic comprises a truth-test and a significance test. The inequalities produced by

the program are then checked if they are true for all examples that are provided to the

program. This is the truth test. If a produced statement is false for an input benzenoid,

the statement is rejected as a potential conjecture. Each statement is then tested for sig-

nificance with respect to the input benzenoids and the database of previously produced

conjectures. Informally, a statement is “significant” if it is not implied by the totality of

previously made conjectures. By the design of the program, each produced conjecture is

then “significant” with respect to the previously produced conjectures.

It is also possible to inform the program of existing “theory”, or theoretical knowledge.

The program is required to produce conjectures that are mathematically significant in a
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precise sense: they will give better invariant value predictions for some objects than

any known bounds will. This keeps the program both from repeating already-proved

conjectures and from making conjectures that were implied by existing theory. See Fig.

2.

Figure 2: Here the theory variable is defined and contains two proved upper bounds for
the domination number of a benzenoid: two hexes and n over 2 minus 1, representing
Theorems 3.3 and 3.5 below. After telling the program about these known bounds, new
conjectures must “improve” on these bounds—that is, a new conjecture must give a bound
that is better for at least one input object than either of these bounds.

There are many useful programs available to chemical graph theorists. One that is

included in Sage and that we made heavy use of in searching for counterexamples to con-

jectures is Brinkmann and Caporossi’s benzenoid generator Benzene [12]. A benzenoid

embedding program derived from CaGe [13] is another useful package included in Sage.

2 Notation, Definitions, Basic Results

We use the following notation: a benzenoid B contains n vertices, m edges and h hexagons

(hexagonal faces). The hexagons in B are denoted H1, . . . , Hh. For a face Hi, edge e ∈ Hi

is shared if it also belongs to another Hj, j 6= i; otherwise, the edge is independent. For a

hexagon H in B, parallel (or antipodal) edges in H are pairs. If e is an edge in a hexagon

H, the edge that forms a pair with e in hexagon H is denoted e′H .

For a graph G = (V,E), a set of vertices S ⊆ V forms a dominating set if each vertex

in the graph either belongs to S or is adjacent to some vertex in S. The domination
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number γ(G) of a graph G is the size of a smallest dominating set in G.

By definition benzenoids are planar graphs, that is, graphs which can be embedded in

the plane. The dual of a planar graph G, denoted DG, is constructed by having a vertex

for every face in G and an edge between two vertices if and only if the two corresponding

faces of G share an edge. We are interested in the inner dual of G, denoted IG, which is

the subgraph of DG obtained by deleting the vertex representing the outer (unbounded)

face of G. The vertices of the inner dual IB of a benzenoid B benzenoid B are {v1, . . . , vh},

where vi is the vertex corresponding to hexagon Hi in B. A hexagon Hi is called a leaf if

vi has degree 1 in IB.

A catacondensed benzenoid is a benzenoid whose inner dual is a tree, that is, a graph

which is connected and acyclic. For a hexagon H in a catacondensed benzenoid B, at

most three of its edges are shared. Call a hexagon Hi in B branching if either vi has

degree 3 in GB or vi has degree 2 and the two shared edges in Hi do not form a pair. We

call the two types of branching hexagons 3-branching and 2-branching respectively. Let b

and l denote the number of branching and leaf hexagons in B.

A catacondensed benzenoids whose inner dual is a path is a snake. A snake that has

the additional property that there are no branching (2-branching, to be precise) hexagons

is a linear benzenoid.

Observe that every vertex in a benzenoid B has degree two or three. For a benzenoid

B, and i, j ∈ {2, 3}, let di be the number of vertices having degree i, let an (i, j)-edge

be an edge adjacent to two vertices with degrees i and j respectively, and let eij be the

number of (i, j)-edges. Similarly, let exij denote the number of (i, j)-edges on the outer

face of B; these are exterior edges. All other edges are interior edges. Vertices on the

outer face are exterior vertices; the number of these is ne. The number of interior vertices

is ni. The perimeter is the number of edges on the bounding face; which is also ne.

The following useful relations between benzenoid invariants are recorded in Cyvin and

Gutman’s standard and extremely useful reference [1].

Theorem 2.1. For any benzenoid,

1. n = 4h+ 2− ni

2. m = 5h+ 1− ni
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3. m = n+ h− 1

4. ne = 4h+ 2− 2ni

5. d2 = 2h+ 4− ni

6. d3 = 2h− 2

7. internal vertices of degree two = 0

8. external vertices of degree two = 2h+ 4− ni

9. internal vertices of degree three = ni

10. external vertices of degree three = 2h− 2− ni

11. internal edges = h− 1 + ni

12. internal (3, 3)-edges = h− 1 + ni

3 Results

Some of the following results have been recorded in the Master’s thesis of the fifth author

[14].

Many of our proofs use the notion of hexagon removal. We say that a hexagon H

is removed from a benzenoid B when all vertices and edges that belong to H but to no

other hexagon in B are removed from B—and denote the resulting graph by B −H. A

hexagon H in a benzenoid B is removable if H has at least one external edge and the

graph obtained by removing H is a benzenoid.

We will frequently make use of the following result.

Lemma 3.1. Every benzenoid on h ≥ 2 hexagons contains a removable hexagon having

at least two vertices of degree 2. Every non-trivial benzenoid has at least two removable

hexagons.

Proof. The first claim follows directly from Corollary 2 of [15]. Many further sophisticated

results than we require may be found in [16] (for instance, Lemma 6.3.25). But what we

need is much more basic. It can easily be verified for all small benzenoids, so assume that
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B is a benzenoid with at least 7 hexagons. Let H be an external hexagon that is not

removable. Let B1 and B2 be components of B −H. B1 and B2 cannot share any edges,

and are smaller benzenoids which must each have a removable hexagon not sharing an

edge with H. These must be removable in B.

Note that for smaller benzenoids the two removable hexagons may be adjacent, as

they are in naphthalene.

All theorems here were conjectured by a conjecturing program. The iteration of con-

jectures led to the creation of counterexamples—new knowledge—that was added to the

program as well as new invariants. This both imitates how human mathematical research

works, but is sped up and systematized by the use of a computer assistant.

We first prove some general upper bounds for all benzenoids, before proceeding to

prove stronger results for catacondensed benzenoids.

We begin with an observation.

Observation 3.2. Let B be a benzenoid, and let H be a removable hexagon of B containing

t ∈ {2, 3, 4} vertices of degree 2. If t ∈ {2, 3}, then we have γ(B) ≤ γ(B − H) + 1.

Otherwise we have that γ(B) ≤ γ(B −H) + 2.

This observation easily follows from seeing that if t is two or three, those vertices can

be dominated by a single vertex, and if t is four, those can be dominated by two vertices.

The following upper bound, in terms of the number of hexagons h, is also not difficult

to see.

Theorem 3.3. A benzenoid with h hexagons has γ ≤ 2h.

Proof. It is easy to note that for any hexagon H, picking a pair of antipodal vertices

dominates all vertices of that hexagon. For each 1 ≤ i ≤ h, let Pi = {ai, bi} be any

arbitrarily chosen pair of antipodal vertices from hexagon Hi Let D = ∪i∈[h]Pi. Clearly,

D is a dominating set for benzenoid B. As |D| ≤ 2h, the bound follows.

We will now prove a useful lemma on the structure of minimal dominating sets in

certain benzenoids. The lemma will be used in the proof of the following theorem, and

then extensively to prove results on catacondensed benzenoids.
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Lemma 3.4. Let H be a leaf hexagon in a benzenoid B, and let e be its shared edge.

Then B has a minimum dominating set S that contains a vertex from e′H .

Proof. Let H be a leaf hexagon in a benzenoid B. Let {v1, . . . , v6} be the vertices of the

hexagon, and let {v1v2, v2v3, v3v4, v4v5, v5v6, v6v1} (with vivj = {v,vj}) be the set of edges

in H. Without loss of generality, let v1v2 be the shared edge of H, and let e′H = v4v5.

We will construct a minimum dominating set that contains either v4 or v5. Let S be a

mininum dominating set that contains neither. This implies that {v3, v6} ∈ S. So the set

S ′ = S \ {v3, v6} ∪ {v1, v4} is a minimum dominating set containing v4.

Theorem 3.5. For any benzenoid, γ ≤ n
2
− 1.

After the program conjectured this and we found a proof, we then added the result to

the “theory” of the program. We omit the proof as the program then made the following

conjecture which implies and supersedes it. Benzenoids are connected bipartite graphs.

In chemistry this concept for benzenoids is often referred to as alternant, and the different

partite sets are referred to as starred/non-starred sites. Since either of the partite sets is

a dominating set, then the cardinality of the smaller of these must also be a dominating

set. Let sp be the cardinality of a the smaller partite set. It follows immediately that

γ ≤ sp for benzenoids. And in fact this can give a great improvement over the n
2

bound:

the difference between the smaller and larger partite sets can be arbitrarily large. In [1]

Cyvin and Gutman showed that the difference between the cardinalities of these sets in a

benzenoid is the same as the difference between the number of peaks and the number of

valleys. In the triangular-shaped benzenoids (triangulenes) the number of peaks is exactly

one, while the number of valleys grows with the number of “layers” of the triangulene

(see Fig. 3).

In fact the program made a slightly better conjecture.

Theorem 3.6. For any benzenoid, γ ≤ sp− 1.

Proof. Let B be a benzenoid. We denote by Bs(B), respectively Bl(B), the smaller,

respectively larger, bipartite set of B. If the two sets have the same size, we choose Bs(B)

and Bl(B) arbitrarily, but distinct.

The claim can easily be checked for benzenoids with one or two hexagons. Let B′ be

a benzenoid with at least three hexagons. We assume the claim is true for benzenoids
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Figure 3: A triangulene with two layers, one peak and two valleys.

with fewer hexagons than B′. Let H be a removable hexagon in B′, and let B = B −H.

Below we several times use Observation 3.2 to get the relation between γ(B′) and γ(B).

First, suppose that H has two degree-2 vertices. Since H has only two degree-2

vertices, they must be adjacent. As the vertices are adjacent, each one belongs to a

separate bipartite set. Notice that |Bs(B)| = |Bs(B′)| − 1 and |Bl(B)| = |Bl(B′)| − 1. By

assumption, γ(B) ≤ |Bs(B)| − 1. It must be that

γ(B′) ≤ γ(B) + 1 ≤ (|Bs(B)| − 1) + 1 = |Bs(B)| = |Bs(B′)| − 1.

Now suppose the case that H has four degree-2 vertices. This case is very similar to the

first one. It must be that removing H removes two vertices from each bipartite set. Then

|Bs(B)| = |Bs(B′)| − 2 and |Bl(B)| = |Bl(B′)| − 2. By assumption γ(B) ≤ |Bs(B)| − 1.

Observe that

γ(B′) ≤ γ(B) + 2 ≤ (|Bs(B)| − 1) + 2 = |Bs(B′)| − 1.

Consider the final case where H has three degree-2 vertices. In the first subcase, only

one of the three vertices that we remove from B′ are in Bs(B′). Then |Bs(B)| = |Bs(B′)|−1

(even if the larger partition becomes the smaller one after this removal) and

γ(B′) ≤ γ(B) + 1 ≤ (|Bs(B)| − 1) + 1 = |Bs(B′)| − 1.

In the second subcase, two of the three vertices we remove from B′ are in Bs(B′). Note

that we are also in this situation if both partitions of B′ have the same size. Notice that

|Bs(B)| = |Bs(B′)| − 2 and

γ(B′) ≤ γ(B) + 1 ≤ (|Bs(B)| − 1) + 1 = |Bs(B′)| − 2 ≤ |Bs(B′)| − 1.
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It follows by induction that γ(B) ≤ |Bs(B)| − 1 = sp− 1.

Theorem 3.7. For any benzenoid, γ ≤ e33 + 2.

Proof. Let B be a benzenoid. We proceed by induction on the number of hexagons h.

The statement is trivial for h = 1 (where e33 = 0 and γ = 2) and h = 2 (where e33 = 1

and γ = 3), so suppose B has at least 2 hexagons. Using Lemma 3.1, we know that B

contains a removable hexagon, say H, containing 2 ≤ t ≤ 4 degree-2 vertices. If t ∈ {2, 3},

then the induction proceeds easily as Observation 3.2 gives us that γ(B) ≤ γ(B−H) + 1,

and by removing H we destroy at least two (3,3)-edges, so e33(B − H) ≤ e33(B) − 2.

Combining everything and using the induction hypothesis, we get

γ(B) ≤ γ(B −H) + 1 ≤ (e33(B −H) + 2) + 1 ≤ e33(B) + 1.

So now we assume that t = 4, and we use the naming conventions as shown in Figure 4.

H1 He

e1

e2

Figure 4: A removable hexagon H with 4 vertices of degree 2.

Suppose first that either e1 or e2 is a (3,3)-edge. In this instance, we have e33(B−H) ≤

e33(B)−2 as e and at least one of e1 and e2 are no longer (3,3)-edges in B−H. Combining

this with Observation 3.2 and the induction hypothesis, we get

γ(B) ≤ γ(B −H) + 2 ≤ (e33(B −H) + 2) + 2 ≤ e33(B) + 2.

Finally we assume that neither e1 nor e2 is a (3,3)-edge. This implies that H1 is a leaf

hexagon in B −H, and so Lemma 3.4 gives us that γ(B) ≤ γ(B −H) + 1.

The edge e is no longer a (3,3)-edge in B−H, so e33(B−H) = e33(B)−1. Combining

this with the induction hypothesis, we get

γ(B) ≤ γ(B −H) + 1 ≤ (e33(B −H) + 2) + 1 ≤ (e33(B) + 1) + 1 ≤ e33(B) + 2.
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We now prove several upper bounds for the domination number of catacondensed

benzenoids. First we state and prove some observations and a technical lemma that we

use in the proof of the theorems.

Observation 3.8. Every tree T is either a path or contains a vertex of degree at least 3.

Lemma 3.9. For a tree T on n vertices, there exists a leaf such that its neighbor either

has degree two, or is adjacent to another leaf.

Proof. Consider a tree T and suppose P is a maximum length path in this tree. Let u

and v be the endpoints of this path. Consider v, which is clearly a leaf as the path is

maximal. Let x be its neighbor which also lies on P . If x does not have degree 2, then it is

adjacent to another vertex, say w, which is not in P . Clearly w must be a leaf, otherwise

we can extend the path between u and w to obtain one longer than P , which contradicts

the maximality of P .

Finally, we make some observations on the number of vertices and edges in catacon-

densed benzenoids in terms of the number of hexagons. These follow immediately from

Theorem 1, together with the observation that catacondensed benzenoids have no internal

vertices and ni = 0.

Observation 3.10. A catacondensed benzenoid with n vertices, m edges and h hexagons

has n = 4h+ 2 and m = 5h+ 1.

Theorem 3.11. For any catacondensed benzenoid, γ ≤ n
3
.

Proof. The statement can easily be verified for catacondensed benzenoids with h ≤ 3. Let

B be a benzenoid with h > 3. Following Observation 3.8 there are two cases to consider.

If the inner dual IB is a path v1−v2− . . .−vh, we let B3 be the subgraph of B formed

by the hexagon H1, H2, H3 corresponding to vertices v1, v2, v3. Let e3 be the unique shared

edge of H3 that also belongs to H4. Let B′ be the benzenoid obtained from B by deleting

every vertex in B3 except the two endpoints of e3. It follows from the induction hypothesis

that γ(B′) ≤ n−12
3

and γ(B3) ≤ 4. We find that γ(B) ≤ γ(B′) + γ(B3) ≤ n−12
3

+ 4 = n
3
.

If the inner dual IB is not a path, and thus contains a 3-branching vertex v, let H be

the corresponding hexagon. Let e and f be any two shared edges in H; and note that

they cannot contain a common vertex. Let e1, e2, e3 be the three independent edges in H,
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and f1, f2, f3 be the three shared edges. Let G be the graph obtained by removing edges

e1, e2, e3 from B. G is a disjoint union of three benzenoids, say B1, B2, B3 (containing

edges f1, f2, f3 respectively), each of which necessarily contains fewer hexagons than B.

Moreover, γ(B) ≤
∑3

i=1 γ(Bi). Let |Bi| = ni. The induction hypothesis implies that

γ(Bi) ≤ ni

3
. This implies that γ(B) ≤

∑3
i=1

ni

3
= n

3
.

Theorem 3.12. For any catacondensed benzenoid, γ ≤ m
2
− h.

Proof. First, using Observation 3.10, we have that m/2−h = (3h+1)/2. Also, for h ≥ 1,

it is easy to verify that (4h + 2)/3 ≤ (3h + 1)/2. Thus, using Theorem 3.11, we get

γ ≤ m/2− h.

4 Conjectures & Open Problems

As conjectures are the lifeblood of mathematics, we conclude with a selection of some of

the conjectures that we worked on and tested but could not solve. We hope they are of

interest to the reader.

We proved above that for catacondensed benzenoids, γ ≤ m/2−h. In fact, this conjec-

ture appears regularly in the general (non-catacondensed) case. Despite our best efforts,

publicizing it, and even offering a $10 prize for its resolution, it has not been resolved.

We can prove it for certain well-structured benzenoids. It is true for linear chains, trian-

gulenes, and the family of graphs derived from coronene by successively adding an extra

ring of hexagons (these include circumcoronene and circum-circumcoronene). But our

ideas do not apply to less structured cases, and exhaustive computer search of relatively

small examples did not produce a counterexample.

These conjectures below are presented in the form they were output by the conjec-

turing program—except domination number was replaced with the symbol γ in order

to fit the conjectures on single lines.

This first list of conjectures should be interpreted as applying to catacondensed ben-

zenoids. The invariants here include numbers of coves, bays, fissures, and fjords—

topological features of the benzenoid boundary which happened to be easy to code, and

will be familiar to all readers of [1].

1. γ(x) <= number of 2 3 edges(x) + 2
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2. γ(x) <= size(x)/coves(x)

3. γ(x) <= maximum(degree 3 vertices(x), sqrt(order(x)))

4. γ(x) <= maximum(degree 3 vertices(x), hexagons(x)+1)

5. γ(x) <= bays(x) + 1/2*degree 2 vertices(x)

6. γ(x) <= maximum(hexagons(x), number of 3 3 edges(x))+1

The remaining conjectures should be interpreted for all benzenoids.

1. γ(x) <= hexagons(x)+number of external 3 3 edges(x)+1

2. γ(x) <= 1/2*number of 2 2 edges(x)+

number of internal 3 3 edges(x)-1

3. γ(x) <= -number of external 3 3 edges(x) + 1/2*size(x)

4. γ(x) <= 1/2*degree 2 vertices(x) +

2*number of 2 3 edges(x)

5. γ(x) <= maximum(hexagons(x), number of 2 3 edges(x))+1
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