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English summary

Biological systems represent some of the most complex objects in nature to study.
In order to gain a deeper understanding of a biological system, accurate measure-
ments and observations have to be performed on different aspects of the systems,
from genomic, epigenomic, transcriptomic, proteomic, metabolomic, interactomic
as well as on the phenotypic level. These measurements have produced, at an
increasingly faster pace, a large quantity of data (commonly referred to as the
“omics” data). Along with the opportunities that come with the data, scientists
are also presented with the great challenge of how to analyze these data so as to
gain the best possible understanding of the biological systems they study. Con-
sequently, biology has become increasingly more quantitative, demanding an in-
creasingly more computational way of thinking, as well as concrete methods to
make sense of the growing size and complexity of the data. The technological
growth for computational power and storage alone is not enough to cope with this,
and different methods of data processing and analysis are continuously being de-
veloped to address a wide variety of needs, and to answer important questions in
biology, evidenced by the fast growing number of publications in computational
biology.

As in other scientific fields, quantitative data analysis and modelling have been
used to reduce the complexity and noise in the data, and to extract valuable in-
formation from it. In molecular biology, the omics data obtained from a system
represent different partial points of view of the whole system. Thus, it is often
the case that combining different types of omics data in an integrated analysis will
bring an advantage in comparison to methods that only look at different omics
data independently. In particular, biological interaction networks (interactome)
offer much potential to help make sense of the observations present in other omics
data, since they represent a high-level view of the “players” (typically genes and/or
proteins) and the interactions known between them. This motivates the develop-
ment of many methods that attempt to use knowledge about underlying biological
networks to obtain more insightful conclusions from particular omics data. It is
within this spirit that the research presented in thesis was done.

Our research comprises of two main parts. In the first part, we investigate the
use of discrete computational modelling methods to gain a high-level understand-
ing of the dynamic behavior of gene regulatory networks and the genes’ activa-
tion states based on the knowledge/assumptions about the interactions between the
genes. In this scope, we provide methods and tools to support such a modelling,
and we perform an assessment on the feasibility of such methods and tools when
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applied to real and synthetic data. In the second part, we turn our attention to the
problem of predictive modeling on omics data, and in particular the application of
machine learning for predicting cancer drug response. In this respect, we propose
a method to perform an integrative analysis to select genomic features (“biomark-
ers”) relevant for the prediction of drug response by employing an underlying prior
knowledge interaction network to steer the feature selection process. We perform
a validation analysis of the method and highlight its strength and weakness. The
following provides a more detailed summary of the content of this thesis.

Chapter 1 provides the introductory backgrounds and context of the thesis,
with an emphasis on the introduction of the needed biological concepts, especially
catered to people with a computer science background who, perhaps (like me), get
fascinated by biology, but also daunted by its complexity.

Chapter 2, 3 and 4 constitute the first part of the thesis. We first describe our
proposed methods for the simulation of the dynamics of gene regulatory networks
under the Boolean network formalism using a declarative programming paradigm
called Answer Set Programming (ASP). In Chapter 3, we describe our proposed
method for the design and implementation of a solver for Fuzzy Answer Set Pro-
gramming (FASP), which extends the expressiveness of ASP by allowing multi-
valued propositions to be encoded in the program. This is needed to extend our
proposed encoding described in Chapter 2 to allow for multi-level activation states
of the gene regulatory model, which is then explained in Chapter 4.

Chapter 5 presents the results of our investigation into the use of integrative
analysis using prior knowledge of interaction networks within the context of drug
response prediction. Here, we describe our proposed method that was built upon
an existing omics data integration method and adapted towards the goal of pre-
dictive modelling within the context of cancer drug response. We then report the
results of applying the method to publicly-available drug response data sets, and
we discuss the interesting findings from the methods from the biological point of
view. Finally, Chapter 6 provides some concluding remarks and further outlook on
the topics presented in this thesis.



Nederlandse samenvatting
–Summary in Dutch–

Biologische systemen maken deel uit van de meest complexe objecten in de na-
tuur om te bestuderen. Om een beter begrip van een biologisch systeem te krijgen,
moeten nauwkeurige metingen en observaties worden uitgevoerd op verschillende
aspecten van de systemen, van het genomisch, epigenomisch, transcriptomisch,
proteomisch, metabolomisch, interactomisch tot en met het fenotypisch niveau
toe. Deze metingen hebben, in een steeds sneller tempo, een grote hoeveelheid ge-
gevens geproduceerd (gewoonlijk aangeduid als de “omics”-gegevens). Naast de
mogelijkheden die de gegevens bieden, krijgen wetenschappers ook de grote uit-
daging voorgeschoteld hoe ze deze gegevens kunnen analyseren om zo het beste
inzicht te krijgen in de biologische systemen die ze bestuderen. Bijgevolg is on-
derzoek in de biologie steeds meer kwantitatief geworden, gekenmerkt door een
groeiende vraag naar meer computationeel denken en methoden om betekenis te
geven aan de steeds omvangrijkere en complexere gegevens. De technologische
groei in rekenkracht en gegevensopslag alleen is niet voldoende om hiermee om te
gaan, en nieuwe methoden voor dataverwerking en -analyse worden continu ont-
wikkeld om tegemoet te komen aan de behoeften voor verschillende doeleinden,
en om allerlei soorten vragen in de biologie te beantwoorden, wat blijkt uit het snel
groeiend aantal publicaties in de computationele biologie.

Net als in andere wetenschappelijke gebieden worden kwantitatieve gegevens-
analyse en modellering in de biologie gebruikt om de complexiteit en de ruis in
de gegevens te verminderen en er waardevolle informatie uit te extraheren. In
de moleculaire biologie vertegenwoordigen de omics data die werden verkregen
uit een systeem, verschillende gedeeltelijke gezichtspunten van het hele systeem.
De combinatie van verschillende soorten omics data in een geı̈ntegreerde analyse
biedt dikwijls veel meer mogelijkheden in vergelijking met methoden die alleen
naar verschillende omics-gegevens in isolatie kijken. In het bijzonder bieden bio-
logische interactienetwerken (interactome) een groot potentieel om de waarnemin-
gen in andere omics-gegevens beter te kunnen begrijpen, omdat ze een weergave
op hoog niveau van de “spelers” vertegenwoordigen (meestal genen en/of eiwit-
ten) en de interacties die tussen hen bekend zijn. Dit motiveert de ontwikkeling
van vele methoden die onderliggende biologische netwerken proberen te gebrui-
ken om meer inzichtelijke conclusies te trekken uit bepaalde omics-data. Het is
binnen dit kader dat het onderzoek gepresenteerd in dit proefschrift past.

Ons onderzoek bestaat uit twee hoofdonderdelen. In het eerste deel onder-
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zoeken we het gebruik van discrete computationele modelleringsmethoden om op
hoog niveau inzicht te krijgen in het dynamische gedrag van gen-regulerende net-
werken en in de activeringsstaten van genen, op basis van kennis en veronderstel-
lingen over de interacties tussen de genen. In dit kader stellen we nieuwe methoden
en hulpmiddelen ter ondersteuning van een dergelijke modellering voor, en evalue-
ren we de haalbaarheid en het nut van deze methoden en hulpmiddelen aan de hand
van echte en synthetische gegevens. In het tweede deel richten we onze aandacht
op het probleem van voorspellende modellering van omics data, en in het bijzonder
de toepassing van machine learning voor het voorspellen van de respons van kan-
kergeneesmiddelen. In dit opzicht stellen we een methode voor om een integrale
analyse uit te voeren om genomische kenmerken (“biomarkers”) te selecteren die
relevant zijn voor het voorspellen van de medicatierespons, gebruik makend van
een onderliggend interactienetwerk met achtergrondkennis dat het selectieproces
van de kenmerken kan sturen. We presenteren een validerende analyse van onze
methode met aandacht voor de sterke en zwakke punten. Hieronder geven we een
meer gedetailleerde samenvatting van de inhoud van dit proefschrift.

Hoofdstuk 1 schetst de achtergrond en context van dit proefschrift, met de na-
druk op de introductie van de benodigde biologische concepten, vooral gericht op
mensen met een achtergrond in de informatica die, misschien (zoals ik), gefasci-
neerd raken door de biologie, maar ook ontmoedigd door de complexiteit ervan.

Hoofdstuk 2, 3 en 4 vormen het eerste deel van het proefschrift. We beschrij-
ven eerst onze voorgestelde methoden voor de simulatie van het dynamisch gedrag
van gen-regulerende netwerken onder het Booleaanse netwerkformalisme met be-
hulp van een declaratief programmeerparadigma genaamd Answer Set Program-
ming (ASP). In Hoofdstuk 3 beschrijven we onze voorgestelde methode voor de
implementatie van een “solver” (oplosser) voor Fuzzy Answer Set Programming
(FASP), dat de expressiviteit van ASP uitbreidt door toe te staan dat meerwaardige
proposities worden gecodeerd in het programma. Dit is nodig om onze voorge-
stelde codering zoals beschreven in Hoofdstuk 2 uit te breiden om activering op
meerdere niveaus mogelijk te maken voor het gen-regulerend model, dat vervol-
gens wordt uitgelegd in Hoofdstuk 4.

Hoofdstuk 5 presenteert de resultaten van ons onderzoek naar het gebruik van
een integrale analyse met behulp van een interactienetwerk met achtergrondken-
nis binnen de context van de voorspelling van geneesmiddelreacties. We stellen
een methode voor die is gebaseerd op een bestaande omics data-integratietechniek
en aangepast om de respons van kankergeneesmiddelen te voorspellen. Vervol-
gens rapporteren we de resultaten van de toepassing van de methode op openbaar
beschikbare gegevensreeksen voor geneesmiddelenreacties en bespreken we de in-
teressante bevindingen van de methoden vanuit biologisch oogpunt. Hoofdstuk 6
tenslotte geeft enkele afsluitende opmerkingen en een verdere kijk op de onder-
werpen die in dit proefschrift worden gepresenteerd.
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1
Introduction

1.1 Preamble

In the recent decades, biologists and computer scientists have seen Computational
Biology grow from just a niche intersection between computer science and biol-
ogy, into an exciting, rich and fast changing interdisciplinary field that provides
huge promises as well as challenges to scientists in either fields. This develop-
ment is in part driven by two very important factors: (1) the increasing scalability
and precision in the measurement and extraction of molecular biological data, and
(2) the increasing computational power (both in storage and processing capabil-
ity) coupled with the appropriate methods and algorithms to process and extract
information out of the data. A visible pattern of interplay between these two devel-
opments is that, usually, given a newly-developed method in (molecular) biology
that generates a wealth of new types of data, a whole set of computational methods
are then developed and evaluated in order to make sense of the newly-generated
data and to extract meaningful biological insight from it.

One of the most well-known examples in this respect is the development of
DNA sequencing technology. From the work that lead to the first draft of the
human genome [1, 2] to recent developments in the high-throughput sequencing
technologies (HTS) [3], we have seen an exciting growth of data and information
accessible for computational biologists to make use of. Over the last two decades,
the advancement in sequencing technologies has increased the capacity and scal-
ability of genome sequencing significantly, (Figure 1.1, [4]) and at the same time,
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Figure 1.1 The increase in capacity for DNA sequencing in both the total number
of human genomes sequenced (left axis) as well as the worldwide annual sequenc-
ing capacity, taken from [4]

reduced the cost to a level that makes it possible for individuals to afford their own
genome sequencing (Figure 1.2, NHGRI).

Parallel to the advances in genomics, high-throughput measurement methods
have also been devised for the measurement and analysis of gene expressions
and transcripts, leading to the so-called transcriptomics data. From the already-
ubiquitous gene expression profiling techniques using microarrays, to the emerg-
ing technique of expression profiling using RNASeq, computational biologists
have been able to observe, with more granularity and accuracy, the pattern of
gene expressions in different conditions and contexts, allowing them to better un-
derstand the observed phenotypes. Publicly-available gene expression databases,
such as the Gene Expression Omnibus (GEO) [5], have helped preserve and dis-
seminate scientific records containing transcriptomics data to the scientific com-
munity. Similarly, techniques such as mass-spectometry and NMR spectroscopy
have been popularly used for measuring protein and metabolite abundances, gen-
erating huge amounts of proteomics and metabolomics data available for analysis
by the computational biologists and bioinformaticians.

Within the bigger picture, all these different types of data (generally being
referred-to as the “omics” data) are ultimately different aspects and different points
of view used by scientists to observe and measure the system they are trying to un-
derstand. As such, in many cases, it is often useful (or even necessary) to integrate
these different data types in order to obtain a more thorough understanding of the



INTRODUCTION 1-3

Figure 1.2 The decrease in cost for sequencing the whole human genome, as cal-
culated by the National Human Genome Research Institute (NHGRI).

system [6, 7].

Another important aspect of a biological system is the interrelationships be-
tween the different molecular components within the systems (DNA, RNA, genes,
proteins, etc). It is a well established fact that these components generally do not
function independently, but rather interdependently in a complex manner. These
inter-dependencies are captured as biological network data, in the form of, e.g.,
gene regulatory networks, protein-protein interaction networks, coexpression net-
works, etc. A more distilled (and curated) form of such biological networks usu-
ally takes the form of the so-called biological pathways and signaling networks,
where one typically needs to first filter the data, reduce the noise, and select only
the interactions with a high confidence value, and then integrate between different
types of networks (e.g., GRNs, PPI networks and metabolic networks) in order to
have a more complete picture of the interactions within the context of a particular
biological function. A large amount of efforts and resources have been dedicated
to generating and analyzing these different types of biological networks. Generic
biological networks/pathway databases such as KEGG [8] and Reactome [9] have
helped preserve and disseminate data on biological networks that can benefit re-
searchers from many different areas, while more specific-purpose biological net-
works such as the CMAP & LINCS [10, 11] or the Atlas of Cancer Signaling
Networks (ACSN) [12] have helped researchers in a specific domain (e.g., cancer
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omics analysis) leverage a more detailed knowledge of interactions specifically
tailored for their needs.

The availability of these network data presents an opportunity to better analyze
and understand the available omics data, e.g., by providing more context and/or
driving the analyses and their interpretation. This is particularly important when
we have limited and/or noisy omics data to work with. By integrating the relevant
underlying interaction data, we hope to be able to incorporate domain knowledge
into our analysis, and ultimately to minimize the effects of limited and/or noisy
data in the analysis. It is within the spirit of this idea, that the research in this thesis
was done. In the first part, we deal with a commonly-used logical based modelling
of biological regulatory networks called Boolean networks [13]: given a known
regulatory interaction network between genes/components, the model simulates
the trajectory of the activation states of the genes and determines the state(s) to-
wards which the system will eventually settles. Such a simulation is useful when
one has reliable data on the regulatory interactions between the genes involved in
certain biological functions, and wants to understand the dynamic behavior of the
system as well as find its potentially-“unobserved” stable states. We extend this
formalism to allow for more flexibility in the number of activation levels that each
node can have in the states, and we provide tools and benchmark tests to assess the
proposed solutions.

In the second part, we turn our attention to the problem of network-based ge-
nomic feature selection and phenotype prediction: given available omics data and
a relevant underlying prior-knowledge network, we present a method that attempts
to select the “best” set of features that are both predictive and “relevant” within the
context of the network. The word “relevant” here roughly means that the selected
features are closely connected to subsets of the networks that are known a priori to
be relevant to the biological function that is being studied. In particular, we apply
this method to the problem of predicting cancer drug response. Given a set of tu-
mour cells (with their respective genomic/transcriptomic profiles), as well as their
response towards a particular drug, the method performs an integrative analysis
combining these data with the available signaling pathway/network information in
order to prioritize the most relevant features. By using such an integrative method
that incorporates a prior knowledge interaction network, we are not only able to
derive statistically-predictive features, but also biologically-relevant features that
can be used to understand the mode-of-action of the drug.
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1.2 A computer scientist’s point of view of molecular
biology

Coming from a pure computer science background, the doctoral research we have
conducted has been a journey of constant learning of fascinating biological con-
cepts. Just like the saying goes, if all you have is a hammer, everything looks like
a nail, I could not help but to see all these new concepts and principles from the
eyes of a computer scientist. As such, as part of this thesis, this section is written
(in a somewhat less formal way) to provide the necessary biological background
knowledge necessary to fully understand this thesis, and particularly tailored to
resonate with those who have a computer science background. Fully knowing
the risks of receiving criticisms (especially from more biology-adept readers) for
sometimes making inappropriate analogies and possibly “dumbing down” the bi-
ological concepts, this section will try to make a comparison/analogy between a
computer system and a biological system. For simplicity, we will assume that the
smallest unit of a biological system is the cell, which we will compare to a single
unit of a computer (software) system.

1.2.1 DNA, AKA the source code of life

Just like a single machine instruction is the basic unit of a computer program, de-
oxyribonucleic acid (DNA) is the basic unit of genetic code in life. DNA forms
as a linked string of biochemical molecules known as the nucleic acids. Similar to
how digital instructions for computers are encoded in binary format, the genetic in-
structions for biological systems are encoded in a 4-letter code: the different types
of nucleobases on each of the DNA positions: Adenin (A), Thymin (T), Guanine
(G) and Cytosine (C). Using the combinations of these 4 letters, life (or rather bio-
chemistry) encodes all the information necessary to provide the molecular mech-
anisms needed during the growth, development, and functioning of a biological
system. This “genetic code” has been mapped and generally holds for all known-
living systems1. Just as the machine instruction set for computer systems is used
as a reference for the available instruction sets and how they are encoded digitally
in a computer architecture, the genetic code mapping (often referred as the codon
table) serves as a reference for decoding the DNA.

As can be seen in Figure 1.3, each combination of a 3-letter string codes for
either one of the 20 amino acids or the start/stop instruction. These amino acids
can combine in different ways (depending on which amino acids are present and
in which order) into the macro-molecules we commonly know as proteins. These
proteins in turn function as the main molecular actors in a biological action, per-
forming functions such as: catalyzing other biochemical reactions, carrying sig-

1There are known exceptions to this general code that will not be relevant for this discussion.
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Figure 1.3 The standard genetic code (codon table). U stands for Uracil, which
replaces Thymin in RNA. (Credit: The OpenStax College)

nals from one cell to another, regulating the rate of certain reactions, as well as
forming the necessary structural components for the living system (tissues, or-
gans). The start and stop codons function as a kind of begin and end marker for
reading and executing of set of instructions. A gene is a stretch of DNA, typically
containing several hundreds to thousands of base letters, marked with a start and
an end codon. A gene plays a role similar to a single procedure in a computer
program, which may be “executed” (or transcribed, in the case of the gene) to per-
form a specific functionality. There is typically a one-to-one relationship between
a gene and the protein it produces. However, just like a single program proce-
dure may be invoked in a different context, a gene maybe transcribed in different
conditions and contexts as well.

In computer software development, we are familiar with the term “bug” to refer
to a small defect in the underlying code of a software that leads to unintended con-
sequences (reduced functionality, incorrect behavior etc.). In a similar way, DNA
code may have a “defect”, occurring as either the substitution, deletion or insertion
of a single or multiple bases in a region (usually referred to as “mutations”). These
abnormalities typically manifest as diseases that hamper the individual’s biological
functions in one or a few ways. For example, β-thalassemia is a genetic disorder
affecting the blood caused by a mutation in the gene HBB that causes hemoglobin
to not be synthesized properly. Cancer is a set of diseases typically caused by a set
of genetic and/or epigenetic aberrations that promote the cells to undergo uncon-
trolled growth and non-differentiation, eventually disrupting the functions of other
cells, tissues and organs.
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Figure 1.4 The flow of genetic information (credits: Wikipedia)

1.2.2 Central dogma, AKA program execution

As mentioned previously, the code in the DNA needs to be “executed” in order
for it to take effect. This process of execution is described as the central dogma
of molecular biology, of which the flow of information can be summarized in
Figure 1.4.

The basic flow starts from the DNA, which gets transcribed into ribonucleic
acid (RNA) which carries the information from the DNA. Within the context of
a gene, transcription means that the gene is “expressed” (i.e., executed) and will
therefore, potentially have effects on the system. Some genes may only be ex-
pressed in certain contexts, and the extent to which this expression takes place
may vary between conditions. The resulting RNA molecules are then “translated”
(i.e. decoded) into the appropriate sequence of amino acids according to the ge-
netic code, which will then assemble and fold into the corresponding protein. An-
other basic flow of information is from DNA to DNA, which is typically “just” a
process of copying the DNA into a new identical copy (typically in cell division
processes). This copying process, however, can be imperfect. Some stretch of code
may not be properly copied, resulting in a non-identical copy, or some parts may
even be missing, leading to the genetic aberrations/mutations mentioned earlier. In
the reproductive context, these “faulty” copies can lead to slight variations in the
offspring, which is actually one of the main driving forces for evolution (the other
being selection of the fit). In non-reproductive contexts, the faulty copies may lead
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to abnormal cells, such as tumor/cancer cells.

1.2.3 Biological networks, AKA program inter-dependencies

In complex software, we usually need to break down the functionalities into differ-
ent modules, sub-modules, and eventually individual procedures, in order to cope
with the overall complexity. Once built, the complete software package will exhibit
a complex structure of interactions and inter-dependencies between different parts
in a module, or even between different modules. A similar situation occurs in a
biological system, where genes may depend on other genes, interact with and reg-
ulate the transcription of other genes, or whose proteins interact with the proteins
of other genes. Together with possibly other types of molecules (e.g., metabolites),
these genes and proteins play a role in certain biological functions and pathways.
From a broader perspective, we can picture a network of interactions between the
genes that spans the whole genome.

In the molecular biology literature, we recognize at least four types of biolog-
ical networks: (1) gene regulatory networks (GRNs), where a network of genes
regulate (determine the transcription levels of) each other, (2) gene co-expression
networks, where correlations between the expression levels of the genes indicate
similarity in role/function, (3) protein-protein interaction networks (PPIs), where
proteins may activate/deactivate, or fuse with other proteins to perform their func-
tions, and (4) metabolite networks, representing the network of interactions be-
tween all metabolic molecules that are involved in a particular metabolic pathway

There are various methods used to obtain/gather/infer such networks. For ex-
ample CHIP-chip and CHIP-seq are typically used to determine regulatory inter-
actions between genes by detecting transcription binding sites. Statistical meth-
ods that infer such regulatory interaction networks from expression (typically mi-
croarray) data are also quite commonly-found in the literature [14]. Various other
methods have also been developed to analyze omics data to infer other types of
biological networks.

1.3 Network-based methods for omics data

Given available biological networks, and interesting question then is, what can
we do with it to further our understanding regarding the biological system being
studied. One common theme that can be found in the literature is to typically use
the biological network information to provide context for analyzing other omics
data and to generate interesting hypothesis from it. In order to do this, one would
typically use the network in some kind of formal model that can be integrated with
the other omics data. Here we provide a very brief summary of the methods that
perform such modelling and integration.
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The first type of formal modelling using biological network that is typically
used in combination with a regulatory network is the steady-states dynamics of
GRN, for example using the Boolean network models [13] or the Piece-wise linear
models [15]. A review of available models on this topic is given in [16]. Boolean
networks model was first introduced by Kauffman ( [17] in the context of com-
putational evolutionary models, but have since be used in many applications, for
example, in understanding the dynamics of GRN involved in the development of
flowers in Arabidopsis thaliana [18, 19], or the GRN involved in the cell cycle
process in yeast [20]. These types of modelling generally require tools that can
perform discrete simulations of the activation states of the genes in the GRN, for
example [21, 22]. It is within this topic that the first part of the research was
conducted.

Another type of network-based model typically used in integrating and “driv-
ing” the analysis of omics data is where biological networks (typically from dif-
ferent sources) are used as prior knowledge network that can provide additional
benefits for the data when used in statistical/predictive analyses. By adding infor-
mation this prior knowledge, statistical analyses performed on the data might be
able to produce better results by reducing the effects of noise and/or the limited
number of samples. Examples of such methods are the use of networks to derive
important pathways in the context of cancer [23–25]. It is within the context of
this topic that the second part of this research was performed.

1.4 Problem statement
In this thesis, we are focusing our attention to two main problems:

• Simulation of GRN state dynamics using Boolean/discrete modelling:
given a known GRN structure, can we simulate its state dynamics and iden-
tify its attractors under the (discrete) multi-valued settings? The attractors
of a dynamic system refer to a set of states of the system to which the dy-
namics of the system converges in the longer term. In the context of biology,
the attractors of a GRN usually refer to the stable gene activation states that
the GRN can attain, and will usually correspond to the different phenotypic
states that the system can take, e.g., the different cell types. Being able to
simulate the dynamics of a GRN and identify its attractors are then quite im-
portant in understanding the behavior of the system. By having a tool that is
capable of simulating the dynamics of not only GRN models under Boolean
activation levels, but also multi-valued activation levels would serve to in-
crease the scope on which such a modeling approach can be applied.

• Network-based predictive modelling: One of the biggest challenges in
predictive modelling for biological data is the fact that the data often come
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in a less-than-ideal conditions: biological data are often obtained from noisy
measurements that can lead to lower data quality. Also, some data are just
too rare or too expensive to obtain, and hence they suffer from small sam-
ple sizes, often diminishing the statistical power of any predictive modelling
analysis. This problem is often exacerbated by the fact that omics data often
come with a high dimensionality. Transcriptomic data typically consist of
thousands of gene expression level measurements for each sample, while the
number of samples is quite often below the thousands. The combination of
small sample sizes and high data dimensionality can cause a decrease in the
predictive power of any model derived from the data, a phenomenon often
called “the curse of dimensionality”. In the context of computational biol-
ogy, interaction networks may serve as an underlying context to correlate
between the different molecular entities involved in a system, and thus can
provide information on how the different variables measured from the sys-
tem are correlated with each other (even with a low sample size), potentially
reducing the complexity of the data and allowing us to focus on the more
relevant variables. A predictive modelling approach that takes into account
these underlying biological interactions may be able to reduce the effects of
the noisy data and the small sample sizes, as well as to derive a more bio-
logically relevant set of predictors associated with the phenotype of interest.
In the context of this thesis, we want explore to what extent we can use an
interaction network (consisting of different types of molecular interactions)
between genetic entities to drive integrative genotype-phenotype association
of tumor cohorts. A tumor cohort typically consists of a set of patients with
distinct phenotypic behavior (e.g. drug responders and non-responders) for
which the tumors have been genotyped and molecularly phenotyped (using
transcriptomics etc).

1.5 Thesis structure

This content of this thesis is the result of four years of research within the con-
text of network-based modelling for omics data. These results can be broken
down into two major parts, described next. The first part deals with the logi-
cal modelling of biological networks and the simulation of their behavior, and in
particular, the development of the framework for computing the attractors of the
simulated biological networks. In Chapter 2, we first start with the development
of ASPG [26], which is a framework for simulating the behaviour of gene regu-
latory networks, as well as computing their trajectory and attractor states, using
the formalism of Boolean networks and implemented using Answer Set Program-
ming (ASP). ASP [27] is a popular declarative programming paradigm commonly
used for solving combinatorial search and optimization problems, such as attrac-
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tor state computation. Our ASPG framework allows computational biologists to
easily and flexibly encode the Boolean network model of a GRN and simulate
its state-transitions as well compute its steady state and attractors under flexible
conditions (different activation rules and update schemes).

For many different purposes, simulating the behavior of gene regulatory net-
works using a Boolean network (i.e., only two-levels of activation per gene) is suf-
ficient. However, in some conditions, this may not be enough [18, 28–30]. Indeed,
even the simulation of “simple” systems such as the regulation of lac operon in
bacteria may require at at least an intermediary level of activation, besides the stan-
dard “on” and “off” level in a Boolean network. This has motivated us to extend
the ASPG framework to allow for the representation of multiple levels of activation
of each node, leading to the definition of what we call “multi-valued networks”. To
this end we use an extension of ASP, known as Fuzzy ASP (FASP), which allows
for the encoding of multi-valued propositions (instead of just Boolean proposi-
tions, as in the case of ASP). We pursued this direction by first developing our
own solvers for evaluating FASP programs (Chapter 3, [31, 32]). In this respect,
we proposed a new method to translate FASP into ASP and characterized the con-
ditions by which we can obtain the answer sets of the former from the latter, and
we implemented a solver based on this idea. In Chapter 4, we use this newly-
developed solver to implement our framework for the simulation of multi-valued
networks [33, 34]. We then perform extensive benchmark simulations to assess the
correctness and computational feasibility of the implementation using both real bi-
ological networks as well as synthetic ones.

In the second part of the thesis, we turn our attention to another kind of network-
based data modelling, and in particular, network-based feature selection and pre-
diction. Within this topic, we work mainly with cancer omics and drug data, ob-
tained from publicly-available repositories [35]. In Chapter 5, we describe our
proposed network-based genomics feature selection method for modelling cancer
drug response [36, 37]. The method integrates omics data (mutations, copy num-
ber alterations, gene expressions) and prior knowledge in the form of biological
interaction networks in order to prioritize a set of features that are predictive of
a certain cancer drug response, while at the same time being closely-connected
within the network. Finally, in the last chapter, we discus some conclusions and
further outlook on these topics.
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2
Modelling GRNs with Boolean

Networks and ASP

2.1 Introduction

Gene Regulatory Networks (GRNs) consist of genes, proteins and other regulatory
molecules that undergo complex and dynamic interactions which drive gene ex-
pression, and ultimately, complex cellular behaviour. To be able to understand and
predict this behaviour, various mathematical models have been developed that de-
scribe the dynamics of these GRNs. Different model formalisms have been used,
as reviewed in [1]. One of the earliest models to describe GRNs are Boolean
network models ( [2]). Boolean network models are attractive because of their
simplicity ( [3]): by reducing the complexity of GRNs to qualitative logical mod-
els, Boolean network models are able to cope with the largely incomplete kinetic
information of biological networks. Despite their highly simplified representation
of biological reality, Boolean network models were shown to still grasp the impor-
tant dynamic properties of GRNs, such as the networks’ attractors. An attractor
represents a stable set of states towards which the transiently changing gene ex-
pression values converge. Evolving towards an attractor thus corresponds to reach-
ing a specific developmental stage (cell types, development stages of cells, etc.) or
functional mode ( [4], [2]), and the analysis of attractors in a regulatory network
thus hints towards the functional modes of the regulatory network ( [4]).

Current knowledge regarding GRNs is generally incomplete ( [5]). Compar-
ing simulated with observed attractors (states, e.g. developmental stages) of a
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certain network model can aid in evaluating existing network models and/or pre-
dict missing information in the current knowledge. For instance, [6], [7] and
more recently, [8] and [9] studied flower development in Arabidopsis thaliana
using Boolean network models of which the network attractors corresponded to
stable gene expression levels during the different stages of flower development.
These models helped predicting mutant phenotypes and the existence of a yet-
uncharacterized gene involved in the transition from the non-flowering to the flow-
ering state. [10] and [11] used a Boolean network model and its steady states to
describe the different stages in yeast cell cycle, where the stages of the cycle cor-
respond to the strong attractors of the network. [12] explained the various states
of the immune system with Boolean network models and [13], [14] and [15] used
Boolean network models and their attractors to describe the cellular development
of Drosophila melanogaster.

Key to simulating GRNs with Boolean network models is the choice of the
proper assumptions. These assumptions refer to the activation rules and update
scheme. Activation rules determine the way the activation state of each gene de-
pends on the activation states of its interactors in the previous transition step. The
update scheme determines how these activation states are updated, i.e,. either syn-
chronously or asynchronously. The exact choice of these assumptions largely de-
termines the number and characteristics of the attractors. As in most cases, the
true biological activation rules and update scheme are not known, one should be
able to easily test different activation rules and schemes, as this allows to have an
idea on the conditions under which the simulated network model would be able to
capture an observed biological phenomena (boundary conditions).

Several computational tools have been developed to perform the computation
of attractors in Boolean network models. [16] developed genYsis, which uses tech-
niques involving Binary Decision Diagrams (BDD) to computate attractors. [17]
used techniques based on Temporal Logic model checking in Antelope. [18] used
state-space pruning and randomized state-space traversal methods to improve the
scalability of the attractor computation. [19] used a Boolean Satisfiability (SAT)
solver, typically used for combinatorial modelling and problem solving, to com-
pute attractors of GRNs and obtained a better computational time and space ef-
ficiency compared to the BDD-based approach. More recently, [20] developed
geneFatt based on the Reduced Order BDD (ROBDD) data structure which fur-
ther improves the efficiency of the attractor computation.

Most of the above-mentioned systems to simulate Boolean network models in
principle can perform simulations with different assumptions. However, changing
these assumptions would require quite tedious modifications on these systems. For
instance, using the SAT-approach ( [19]), modifying the structure of the network
and the updating rules would require updating the truth tables in the cnet format.

To allow for a more flexible simulation framework we developed ASP-G which
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makes use of the declarative-programming paradigm Answer Set Programming
(ASP) ( [21]). The declarative nature of ASP allows one to specify and modify the
domain-specific logic (here the definition of the network interactions, activation
rules and update schemes) required to represent and solve the computational prob-
lem at hand (here dynamical modelling and attractor calculation) in an intuitive
and modular way ( [22]). To illustrate the flexibility of our approach, we applied it
to calculate attractors of previously published Boolean network models of GRNs
of different sizes and complexity, and different simulation assumptions. By trying
to mimic previous results under diverse settings, we can show that the main ad-
vantage of our approach consists of making the modelling more flexible and less
error prone, and therefore helps delineate the boundary conditions under which the
biological conclusions based on simulations of Boolean network models are valid.
At the same time, we also show that, with the use of fast and efficient ASP solvers,
the computational efficiency of our method is in the same range as that of the most
efficient dedicated methods for the simulation of Boolean network models and the
calculation of their attractors.

2.2 Methods and Models

2.2.1 Boolean network modelling of GRNs

In our work, we adopt the definition of Boolean networks as described in [2]: a
Boolean network model consists of network elements (nodes, here representing
structural and regulatory genes/proteins) which can either be active (ON) or in-
active (OFF) and interactions between these elements (edges, which represent the
directed regulatory interactions between the genes). We define two types of reg-
ulatory interactions between interacting nodes i.e. activation (up-regulation) and
inhibition (down-regulation). The activation state of a certain node at a certain
time step is determined by a logical function of the activation states at the previ-
ous time step of its interactors (where the interactors of a node are defined as the
incoming edges of a certain network node).

Formally, a Boolean network model G(V, F ) is defined by a set of nodes V =

{x1, . . . , xn} and a list of Boolean functions F = (f1, . . . , fn). Each xi ∈ {0, 1},
i = 1, . . . , n is a binary variable and its value at time t + 1 can be determined by
the values of some other nodes xj1(i), xj2(i), . . . , xjki

(i) at time t by means of a
Boolean function fi ∈ F . That is, there are ki nodes assigned to xi that determine
its state. The activation state of every node xi changes over time according to

xi(t+ 1) = fi

(
xj1(i) (t) , xj2(i) (t) , . . . , xjki

(i) (t)
)

A state s of a Boolean network is an assignment of {0, 1} to each node xi. Its
successor state is the state resulting of applying fi to each node xi. The dynamics
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Figure 2.1 A Boolean network model with three genes. Edges with arrowed tips
are activating interactions and edges with blunt tips are repressing (inhibiting)
links.

x1

x2

x3

Figure 2.2 State Transition Graph of the example Boolean network given in Fig-
ure 2.1, when we assume synchronous update and the r+ activation rule. The
nodes in this graph are states of the network. Since the network has 3 nodes, there
are 23 = 8 possible states, as shown by the 8 nodes in this graph. There are two
attractors in this network : {(000)} and {(010), (101)}

of the network consists of transitions between network states. An example of a
Boolean network is given in Figure 2.1. This network has 3 nodes, denoted by
x1, x2 and x3, and interactions between these nodes, represented by the edges.
The dynamics of the network can be described using a State Transition Graph
(STG) as given in Figure 2.2 & 2.3.

Attractors in a Boolean network model are defined as in [16] and [18].

Definition 1. Let S be a set of states of a Boolean network model. S is an attractor
if and only if the following conditions are satisfied:

1. The set of the successor states of all the states in S is equal to S.

2. For each si ∈ S, once it is visited, the probability of revisiting si in a finite
number of state transitions is equal to 1.
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Figure 2.3 State Transition Graph of the example Boolean network given in Fig-
ure 2.1, when we assume synchronous update and the r∗ activation rule.

2.2.2 Representing Boolean network models of GRNs and com-
puting their attractors using ASP

ASP-G framework
Our framework for modelling GRNs and computing attractors, called ASP-G,
uses Answer Set Programming (ASP). ASP is a declarative programing paradigm
( [21]), which is typically used to solve combinatorial search problems ( [22]).
The architecture of ASP-G is shown in Figure 2.4. ASP-G consists of four main
modules/parts of the system: the network description, the update scheme, the acti-
vation rules and the attractor computation algorithm. The following describes each
of these modules.

Network description module
This module contains the description of the structure of the network, encoded in a
set of facts provided by the user. Because of the declarative nature of ASP, such
a description can be written succinctly in an intuitive format. For example, the
following set of facts is used to describe the network depicted in Figure 2.1:

gene(x1). gene(x2). gene(x3).

activates(x1, x1). activates(x1, x2). activates(x1, x3).

activates(x2, x1). activates(x2, x3). inhibits(x3, x1).

activates(x3, x2). inhibits(x3, x3).

To compare the declarative specification of the network with the more classically-
used SAT notation [19], we give the network specification corresponding to the
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Figure 2.4 Architecture of ASP-G.

Boolean network depicted in in Figure 2.1 in cnet format, as follows:

.n 1 3 1 2 3 .n 2 2 1 3 .n 3 3 1 2 3
--1 0 1- 1 --1 0
1-0 1 -1 1 1-0 1
-10 1 00 0 -10 1
000 0 000 0

Each gene in the network is written with its label, e.g. .n 1 for node x1, followed
by the number of regulators and then their labels, e.g. (3 1 2 3). Next a truth
table follows that determines the behavior of the network (e.g. --1 0 in the truth
table for x1 means that whenever x3 is active then x1 will be inhibited irrespective
of the values of x1 and x2).

Activation rules
This module determines the activation rules used to update the activation state of
each gene at each transition step, based on the intended assumption by the user.
We implemented two frequently used activation rules:

1. A gene will be active in a subsequent time step t + 1 if at time step t at
least one active interactor is an activator and no active interactors that act as
inhibitors are present.

2. A gene will be active in a subsequent time step t+ 1 if there are more active
activators than active inhibitors among its interactors at time step t.
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In ASP-G this first type of activation rule is encoded as

r+1 : active(X,T ) ← A > 0, I = 0,#act(X,A, T − 1),

#inh(X, I, T − 1), gene(X),

T > 0.

r+2 : inhibited(X,T ) ← not active(X,T ), gene(X),

T > 0.

The second type of activation rule is encoded as

r∗1 : active(X,T ) ← A− I > 0,#act(X,A, T − 1),

#inh(X, I, T − 1), gene(X),

T > 0.

r∗2 : inhibited(X,T ) ← I −A ≥ 0,#act(X,A, T − 1),

#inh(X, I, T − 1), gene(X),

T > 0.

To illustrate the flexibility of ASP to express nearly any possible activation
rule, we implemented a more specific type of rules in which the activation of a
certain gene is expressed as a free-form gene-specific Boolean function of all the
interactors of that gene, such as the one used in [9] and [15]. For example, the
activation rule of a gene G1 might be expressed as a Boolean function of the form:

G1 = G1 and (not G2 or not G3)

where G2 and G3 are two other genes involved in the network. In this case, G1
has a self-activating interaction, while G2 and G3 act as inhibitors for G1. To
accommodate such an activation rule in ASP-G, we first convert the Boolean func-
tion into a Disjunctive Normal Form (DNF). For example, the activation rule given
above is rewritten into the following:

G1 = G1 and not G2

G1 = G1 and not G3

and then encoded in ASP as follows:

active(G1, T ) ← T > 0, active(G1, T − 1),

inhibited(G2, T − 1)

active(G1, T ) ← T > 0, active(G1, T − 1),

inhibited(G3, T − 1)
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Update scheme
Two update schemes were adopted in ASP-G: synchronous and asynchronous up-
dates. In the synchronous update scheme, we assume that all genes in the network
are updated simultaneously per evaluated time step. This implies that the transi-
tions between the network states are deterministic, i.e., for every state visited over
time, only one possible successor state exists. In the asynchronous update, no as-
sumptions of synchronicity is made, and genes may be updated at different time
steps. Therefore, transitions are non-deterministic: there may be several possible
next state after a certain transition. As illustrated in the Figure 2.2 and 2.5, an
asynchronous update scheme can result in a drastically different STG and leads to
different attractors.

Both the synchronous and the asynchronous updating were implemented in
ASP-G. For the synchronous update scheme, we use the following rules to generate
initial activation states of the genes:

active(X, 0) ← gene(X),not inhibited(X, 0).

inhibited(X, 0) ← gene(X),not active(X, 0).

and then use the following rules (in relation with the activation rules described
previously) to determine the activation state of each gene at each time step t:

active(X, t) ← active(X, t− 1),not inhibited(X, t).

inhibited(X, t) ← inhibited(X, t− 1),not active(X, t).

For the asynchronous update scheme, we need to add the following rules, in
addition to the previously described rules:

changed(X,T ) ← active(X,T ), inhibited(X,T − 1),

gene(X), T > 0.

changed(X,T ) ← inhibited(X,T ), active(X,T − 1),

gene(X), T > 0.

← #changed(N,X, T ), N ≥ 2,

gene(X), T > 0.

To obtain a better performance in the asynchronous case, we apply the STG reduc-
tion technique, as described in Figure 2.5.

Computing the attractors
The attractor computation in ASP-G is performed by Algorithm 1, which is based
on the algorithm by [19]. The main idea used in Algorithm 1 is to identify at-
tractors by looking at identical states in transition paths of certain lengths in the
STG of the network. Since there are exponentially many possible states in an STG
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Figure 2.5 An example of a State Transition Graph of the Boolean network given
in Figure 2.1, when we assume asynchronous update. Instead of the two attractors
as in the synchronous case, here we only have one attractors: {(000)}. As can
be seen, transitions are non-deterministic. For example: there are two possible
next states after (001): (000) or (011). To find the attractors in such case, we
apply the following STG reduction principle: remove states from the STG which
contain more than one outgoing (asynchronous) transition. It is safe to remove
such states, since they cannot satisfy the second condition of the definition of a
state in an attractor (cf. Definition 1). Therefore, we need only to look attractors
in the reduced STG obtained from such removal process. For example, applying
this principle to the STG in Figure A, we obtain the reduced STG (Figure B),
containing the only attractor {(000)}

(a) Figure A

(b) Figure B



2-10 MODELLING GRN WITH BOOLEAN NETWORKS AND ASP

(in relation to the number of nodes in the network), explicit enumeration of all
the states in an STG is unfeasible for larger networks. ASP-G avoids this explicit
enumeration by implicitly simulating the dynamics of the network. Furthermore,
once a state is identified as part of an attractor, it can be removed from the STG
to prune the search space. An illustration on how the algorithm works is given in
Figure 2.6.

Path generation and state removal are being done using ASP rules and ASP
constraints, respectively, as shown in Figure S5. To further increase the efficiency
of the computation, we use the incremental ASP approach described in [23] and
the clasp solver from the Potassco ASP suite ( [24]).

Algorithm 1 Algorithm to compute attractors in ASP-G

1: {P is the ASP program with the rules of the network}
2: k = n
3: attractor is found = False
4: attractors = ∅
5: while ASP finds a path of length k as an answer set in P do
6: {s = 〈s1, s2, . . . , sk〉 is the path found}
7: for j = k − 1 to 1 do
8: if sj = sk then
9: attractors = attractors

⋃
{〈sj+1, . . . , sk〉}

10: attractor is found = True
11: {The attractors already found are forbidden in P}
12: for s in {sk, ..., sj+1} do
13: {The states are added as constraints for the next path}
14: P = P

⋃
{← active(X1, T ), inhibited(X2, T ), . . . |Xi ∈ s}

15: end for
16: break
17: end if
18: end for
19: if attractor is found then
20: attractor is found = False
21: else
22: k = 2 · k
23: end if
24: end while
25: return attractors
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Figure 2.6 These figures illustrate the process of applying Algorithm 1 on the
STG in Figure 2.2. In (a), we have the original STG. We repeatedly find path of
arbitrary length, k, where k varies from 2 to 2n, where n is the number of nodes
in the Boolean network. Consider the case when k = 4. One path we might obtain
is (110) → (111) → (010) → (101) → (010) (Figure (b)). By extracting two
identical states from this path (010), we obtain the endpoints of a cycle, indicating
an attractor, in this case {(010), (101)}. By disallowing these states (Figure (c)),
we find the only other path of length 4, which is (000) → (000) → (000) →
(000)→ (000), from which we extract the second attractor, {(000)}. Disallowing
this state, we find no further path of length 4 (Figure (d)). Continuing in this
manner until k = 2n guarantees that all attractors are identified. The process of
generating and checking the path are performed by using ASP rules. The addition
of disallowed states is performed by using ASP constraints.
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2.3 Results

2.3.1 ASP-G: a novel framework for the simulation and attrac-
tor computation of GRNs with Boolean network models

Simulating Boolean network models implies that activation rules have to be de-
fined to decide how a gene is activated by its interactors. The exact choice of the
assumptions largely determines the outcome and the number and characteristics
of the attractors. Figures 2.2, 2.5 & 2.3 show that, for the example Boolean net-
work in Figure 2.1, the choices of activation rules and update scheme can result
in a different network behavior, and thus, different sets of attractors. As it is often
not known in advance which assumptions best match the biological reality of the
modeled GRN, testing different assumptions is advisable.

To have a generic framework that allows testing different assumptions, ASP-
G implements three different activation rules: the first one adopted by [10], [18]
and [11] in which a gene is considered to be activated if the majority of its active
incoming interactors (interactors that are themselves active) has an activating role.
Otherwise, the gene will become inactive. This is referred to as the r∗ rule in ASP-
G. A second one adopted by [25] and [16] assumes that a gene is activated only
when there is at least one active activator amongst its active incoming interactors
and no inhibitor. This is referred to as the r+ rule in ASP-G. In addition, we
implemented a third more detailed activation rule in which the activation for each
gene is expressed as a free-form Boolean function of its activators and inhibitors.
This type of rules better grasps the complexity of true biological interactions and
includes more detailed information on the specifics of the interactions, and was
used for instance in [9], [14] and [15].

Related to the update scheme, a choice has to be made between updating the
network elements simultaneously (synchronously) versus at different points (asyn-
chronously). Earlier work by [26] and [2] assumed synchronicity in their mod-
elling, mainly because of computational efficiency reasons. However, the assump-
tion of synchronicity was challenged in [27] and [28], who argued that, for many
biological systems, assuming an asynchronous update scheme is more realistic.
Subsequent work on Boolean network models ( [29], [16], [18], [30] and [15])
mainly applied asynchronous update schemes. Therefore, in ASP-G we imple-
mented both the synchronous and the asynchronous update scheme.

2.3.2 Simulation Results

To test the correctness of ASP-G in simulating Boolean network models and com-
puting attractors, we applied ASP-G on previously published Boolean network
models of GRNs and compared the obtained attractors with the originally pub-
lished ones. Like any other formalism to find attractors in Boolean network mod-
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els, ASP-G detects exhaustively all attractors of the network. Therefore, a correct
result corresponds to an exact match in the attractor set identified by ASP-G and
that present in the reference publications.

First we tested ASP-G on the relatively small GRNs involved in budding and
fission yeast cell cycle analyzed in [10], [18] and [11], as well as on the network
model of the GRN from the Th cell differentiation described in [16]. We used the
activation rules and update schemes that were also applied in the original studies,
except for the data set of [16], in which we applied also the synchronous update
scheme in addition to the originally applied asynchronous one (see Table 2.1).

As expected for each of these results, the attractors found by ASP-G match
exactly the ones found by the reference papers (data not shown). The table also
shows that ASP-G performs relatively fast for these small networks. We also ob-
serve that the attractors in the synchronous case often coincide with those in the
asynchronous case. This is due to the fact that simple attractors (i.e., attractors
that have only one state) are more commonly found, and that they are shared be-
tween synchronous and asynchronous update schemes. Only for the fission yeast
cell network under the r∗ activation rules there is a difference in the number of
synchronous attractors (13) and asynchronous attractors (15). The fact that there
are more attractors in the asynchronous case might seem counter-intuitive, since
the reduced STG used to calculate these attractors contains at most as many nodes
as the synchronous STG, and often less. However, the original STG for the asyn-
chronous case typically contains more edges than in the synchronous case, and
these additional edges can account for more attractors.

To show the flexibility of ASP-G in expressing different types of activation
rules, we also encoded the Boolean network model of the GRN involved in A.
thaliana flower development originally described in [9] with our ASP-G frame-
work. This network model consists of 13 genes and uses gene specific update
rules as described in Section 2.2.2 Activation rules. As in the original publica-
tion, we applied a synchronous update scheme. ASP-G correctly recapitulated all
10 attractors of the network as described in the original paper [9]. The computation
took only 0.479 seconds.

To test ASP-G on a larger network, we use the network data from the T-helper
(Th) cell differentiation described by [25]. The purpose of the study was to find
evidence supporting (or contradicting) the traditional view that the genes involved
in the regulation of the two types of Th cells, Th1 and Th2, have counter-regulatory
interaction. Similar to what has been done in [25], we first computed the attractors
of the original network in the presence of all genes and then searched for attractors
in different single-gene knock-out networks in silico to test the effect of knocking
out intracellular genes towards the attractors of the network. To show the added
value of using different simulation assumptions, we also performed the computa-
tions using an asynchronous update mechanism, as opposed to only synchronous
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update scheme, as performed by [25]. The results are presented in the Table 2.2.
In terms of computational efficiency, the result shows that ASP-G is able to

perform relatively well for the moderately-sized Th cell network. For the asyn-
chronous case, attractor computation required 0.6 seconds on average. For the
synchronous case where more attractors were found, the computation times took
71.9 seconds on average. When applying the synchronous update scheme as used
in [25], ASP-G reproduced the four attractors: Th0, Th1, Th2 and ThX, as in
the original paper. However, when trying to reproduce the attractors in the gene
knock-out setting, we found discrepancies with the results reported by [25]. These
discrepancies were caused by mistakes in the SAT-based truth table used in the
original publication. Table 2.2 shows the corrected results for completeness. Note
that these mistakes do not affect the biological conclusions made in the original
publication. However, it illustrates that specifying larger networks with rather
complicated behavior becomes cumbersome and error prone in paradigms like
SAT, whereas this is much less the case for a declarative approach such as ASP-G.

The existence of the ThX attractor and the observed pattern of gene activities
in the attractors of the knock-out networks caused the authors of [25] to conclude
that the active genes in Th1 and Th2 cells do not play a counter-regulatory roles
towards each other, contrary to what is traditionally believed. However, when us-
ing the asynchronous update scheme, we noted that the attractor ThX is no longer
obtained. A similar pattern occurs for the knock-out networks, where the use of
the asynchronous update scheme drastically changes the set of detected attrac-
tors compared to those detected using a synchronous update scheme: the number
of attractors found with the asynchronous update scheme for the knock-out net-
works ranges only between 2-5, whereas the number of attractors found in the
synchronous case ranged between 286-1154. This finding suggests that the oc-
currence of the ThX attractor and the existence of a large number of attractors in
the knock-out networks as found in [25] are only valid under the synchronous up-
date scheme. It thus defines the boundary conditions under which the conclusions
of [25] are valid and highlights the relevance of performing modelling under dif-
ferent scenarios, as offered by ASP-G, to put biological conclusions in perspective.

2.4 Conclusion

In this chapter, we presented ASP-G, a modular system to simulate Boolean net-
work models of GRNs and to subsequently compute their attractors. ASP-G is
based on the declarative ASP programming paradigm which has already been pre-
viously applied in the context of biological network data analysis and modelling
(see, e.g., [31], [32], [33], [34] and [35]). Recently, [36] showed in a theoreti-
cal comparison between Boolean networks and the underlying semantics of ASP,
that a strong mathematical relation exists between the attractors/steady states of
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Boolean networks and the notion of stable models commonly used in ASP. We
built upon this earlier result in our proposed method, ASP-G.

The main added value of ASP-G is in its declarativity and modularity: it al-
lows users to easily test different update schemes and activation rules when sim-
ulating the dynamics of their Boolean network model by selecting and modifying
the appropriate modules. In addition, the fact that ASP-G is based on a declarative
language makes it less error prone than other approaches such as SAT which de-
pend on the definition of difficult to interpret and tedious to construct truth tables.
Using an underlying declarative programming paradigm also makes ASP-G easily
extendable to other parameter settings. Decoupling the problem definition from
its solution thus allows for a greater flexibility compared to other ad hoc systems
such as genYsis ( [16]) and geneFAtt ( [20]), where assumptions such as update
scheme and activation rules are already built into the system.

We showed the correctness of ASP-G in simulating Boolean network models
and obtaining attractors under different assumptions by successfully recapitulating
the detection of attractors of previously published studies. Relying on a modular
and flexible declarative programming paradigm definitely comes at the expense of
being slower than the more dedicated systems to compute attractors, such as gen-
Ysis ( [16]) and geneFAtt ( [20]). However, in terms of computational efficiency,
ASP-G proved to be quite fast (for small networks i.e. up to 23 genes compu-
tations are below a second, for larger networks i.e. up to 51 genes, the longest
computation time took under 4.5 minutes). Also, ongoing research in ASP solvers
( [37]) will make it possible for ASP to reach a point where it outperforms other
logic paradigms. This is definitely the case when comparing ASP with Binary (or
multiple) Decision Diagrams ( [38]) used to calculate attractors in Boolean Net-
works models for GRNs ( [17], [29]) as they suffer from memory explosion when
the size of the network starts to become large ( [39]).

For larger-sized networks, any exhaustive method will face a challenge, as
the state space of the network increases exponentially w.r.t. the number of nodes
in the network. When dealing with such larger networks, methods that avoid an
exhaustive search as in [18] might become more suitable under these conditions.
Conclusively, ASP-G is tailored to simulate Boolean network models of GRNs
and to compute attractors in a diagnostic mode, where one wants to test different
update schemes and activation rules in order to find the setting that best matches
experimental data or to correctly delineate the boundary conditions under which
the biological conclusions based on these simulations are valid.
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Table 2.1 ASP-G results and running times for common GRNs found in the liter-
ature. Network: describes the original network model. Genes: number of genes
present in the network; Attractors: number of detected attractors; Update mecha-
nism: synchrounous versus asynchrounous updating was used as described in the
methods section; Activation rules: r∗ activation rules indicates that a gene be-
comes active when it has more active activating interactors than active inhibiting
ones, while the r+ activation rules indicate that a gene becomes active if it has at
least one active activating gene and no inhibiting ones. Time: running time on a
Dell Latitude D820 notebook.
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Table 2.2 Running times and the number of synchronous and asynchronous attrac-
tors computed by ASP-G for the gene knockout experiments described by Pedicini
et al. [25]. Inaccuracies in the orginal results in [25] are corrected in this work, re-
sulting in minor discrepancies between result represented in this table (e.g., the
number of attractors) and the one in [25].
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3
Modelling and solving problems using

FASP

3.1 Introduction

Fuzzy Answer Set Programming (FASP) is a declarative programming framework
aimed at solving combinatorial search/optimization problems in continuous do-
mains [1, 2]. It extends Answer Set Programming (ASP [3, 4]), a well known
declarative language that allows users to specify combinatorial search and opti-
mization problems in an intuitive way, as we did in Chapter 2. ASP stands out
among other logic-based programming frameworks by being more purely declar-
ative (compared to, e.g., Prolog), allowing for a more concise and intuitive encod-
ing, while at the same time being highly expressive. The availability of efficient
solvers, which are able to solve hard real-world problems, has also significantly
contributed to the popularity of this modelling language. In the wake of ASP’s
extensive development over the last decades [5], FASP has recently been gaining
more attention as well, including the development of FASP solvers that enable
the use of FASP for real-world problem solving beyond toy examples. In [6], the
authors developed a prototype FASP solver using the method of fuzzy set approx-
imations. They improved the solver further by using a translation to Satisfiability
Modulo Theory (SMT) [7], which increased the performance of their solver sig-
nificantly on many test instances. We have also developed our own FASP solver,
based on the idea of a translation to ASP, and making use of currently available
ASP solvers [8, 9].
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Figure 3.1 Work flow for solving problems using (F)ASP

In general, the work-flows used for problem solving with FASP or ASP are
quite similar, and can be summarized as follows (Figure 3.1): (1) first we encode
the problem as a (fuzzy) logic program, containing all the required facts, rules
and/or constraints required to define the conditions of the problem; (2) we then
call a (F)ASP solver, which will generate (any/all) answer sets from the specified
program; and (3) finally we decode the answer sets to obtain the solutions.

In this chapter, we give an introduction to FASP, as well as a description of our
state-of-the-art FASP solver and its use in practice. The remainder of this chapter
is structured as follows. In the next section, we provide a high-level explanation of
how ASP is typically used for solving problems, and the role that an extension to
FASP can play in applications. In Section 3.3, we present the syntax and seman-
tics of FASP, and explain how FASP programs can be used to encode problems.
Section 3.4 and 3.5 subsequently explain how our solver finds the answer sets of a
FASP program. Finally, in Section 3.6, we report the results of some benchmark
experiments we performed on the solver.

3.2 Modelling problems as logic programs
Declarative programming allows one to solve problems by encoding/expressing
them, usually in a rule-based logical language, allowing the programmer to specify
the problem in an intuitive manner, without having to explicitly say “how” to solve
the problem. It is then the task of the “solver” (which is an algorithm, or its
implementation) to find the solutions in accordance with the problem specification.
For example, the well-known Graph 3-coloring problem can be tackled in ASP
using the following encoding:

col(X, red) ∨ col(X, green) ∨ col(X, blue)← node(X) (3.1)

← col(X, c), col(Y, c), edge(X,Y )
(3.2)

As is common in logic programming, rules are written in the form α ← β

with β the antecedent (body) of the rule and α the consequent (head). When the
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Figure 3.2 Example graph

consequent of a rule is false, it is left empty, as in the second rule above, enforcing
that the antecedent of the rule must be false for the overall rule to be satisfied.
Rule (1.1) intuitively expresses that we wish to find all possible 3-colorings of the
nodes in a graph; the predicates node/1 and col/2 are used to encode the nodes
available in the graph and the colors assigned to them, respectively. The second
rule, which is a “logical constraint”, eliminates all the coloring schemes in which
two nodes X and Y sharing an edge receive the same color c. Given the above
program and a set of inputs representing all the nodes and edges of the graph, an
ASP solver, such as clasp [10] or DLV [11] then searches the answer sets of the
program, representing the possible solutions to the problem. For example, given a
graph in Figure 3.2, we can encode the input to the program using the set of facts
{node(a), . . . , node(d), edge(a, b), edge(a, c), edge(a, d), edge(b, c)}. An ASP
solver will then compute the answer sets, each of which corresponds to a solution.
For example, one answer set will contain the atoms col(a, red), col(b, blue),

col(c, green) and col(d, blue), which indeed corresponds to a valid coloring of the
given graph.

The declarative nature of the syntax of ASP and the efficiency of its solvers
makes ASP a popular approach for solving combinatorial search problems. ASP
has found applications in a wide range of areas, including cryptography [12], hard-
ware design [13], data mining [14], the space shuttle decision system [14], bioin-
formatics [15–17] and many others [4, 18].

FASP extends the expressiveness of ASP by allowing the use of fuzzy logic in
place of Boolean logic. The use of fuzzy logic in FASP means that predicates can
have a continuum of possible truth degrees (usually taken from [0, 1]), rather than
the discrete choices false and true. This enables the use of an ASP-like declarative
specification of problems involving continuous variables. As a simple toy exam-
ple, consider the problem of deciding whether to give a generous tip in a restaurant,
depending on the quality of the food and service, as follows:

good food← not bland (3.3)

generous← good food⊗ good service (3.4)
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Here, it can be more natural to express criteria such as bland and good service as
gradual properties. The truth degree of e.g. bland then expresses to what extent the
property is satisfied. These truth degrees can then be combined using fuzzy logic
operators.

3.3 Syntax and Semantics of FASP
Several different variants of FASP have been considered by different authors.
Here we will focus on the variant studied in [19], whose semantics is based on
Łukasiewicz logic. Similar to ASP, FASP assumes the availability of a set of
propositional atom symbols, BP . Alternatively, we can also consider a first-order
syntax with predicate symbols, in which case, BP is the set of ground atoms ob-
tained from the available predicate and constant symbols. Grounding is essentially
the process of replacing the variables occurring in any predicate symbols with the
available constant symbols. A (classical) literal is either a constant symbol cwhere
c ∈ [0, 1] ∩ Q, an atom a or a classical negation literal ¬a. An extended literal is
a classical literal l or a negation-as-failure (NAF) literal not l. Intuitively, classi-
cal negation differs from NAF in that the former expresses our knowledge about
something being not true, whereas the latter expresses our inability to prove that
something is true.

A head/body expression is a formula defined recursively as follows:

• any classical literal is a head expression;

• any extended literal is a body expression;

• if α and β are head (resp. body) expressions, then α⊗ β, α⊕ β, α Y β and
α Z β are also head (resp. body) expressions.

A FASP program is a finite set of rules of the form:

α← β

where α is a head expression (called the head of the rule) and β is a body expres-
sion (called the body of the rule). As in classical ASP, we write H(r) and B(r) to
denote the head and body of a rule r, respectively. A FASP rule of the form a← c

for a classical literal a and a constant c is called a fact.
A FASP rule of the form c ← β, with c ∈ [0, 1] ∩ Q is called a constraint. A

rule which does not contain any application of the operator not is called a positive
rule. A rule which has at most one literal in the head is called a normal rule. A
FASP program is called [positive, normal] iff it only contains [positive, normal]
rules, respectively. Conversely, a [rule/program] which is not normal is called a
disjunctive [rule/program]. A positive normal program which has no constraints is
called a simple program.
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The semantics of FASP is usually defined in relation to a chosen truth lattice
L = 〈L,≤L〉 [20]. We consider two types of truth lattices: the infinitely valued
lattice L∞ = 〈[0, 1],≤〉 and the finitely valued lattices Lk = 〈Qk,≤〉, for an
integer k ≥ 1, where Qk = { 0k ,

1
k , . . . ,

k
k}. Such a choice is usually determined by

the nature or the goal of the application. If each proposition can only take a finite
number of different truth levels, then using the Lk would be more appropriate. In
this case, FASP is used for modelling discrete problems, and thus remains very
close to classical ASP. For modelling continuous problems, or if we do not want
to fix the number of truth degrees in advance, we need to use the semantics based
on L∞.

For any choice of lattice L (among the considered possibilities L∞ or Lk),
an interpretation of a FASP program P is a function I : BP 7→ L which can be
extended to expressions and rules as follows:

• I(c) = c, for a constant c ∈ L

• I(α⊗ β) = max(I(α) + I(β)− 1, 0)

• I(α⊕ β) = min(I(α) + I(β), 1)

• I(α Y β) = max(I(α), I(β))

• I(α Z β) = min(I(α), I(β))

• I(not α) = 1− I(α)

• I(α← β) = min(1− I(β) + I(α), 1)

for appropriate expressions α and β. Here, the operators not, ⊗,⊕,Y,Z and ←
denote the Łukasiewicz negation, t-norm, t-conorm, maximum, minimum and im-
plication, respectively.

An interpretation I is consistent iff I(l) + I(¬l) ≤ 1 for each l ∈ BP . We
say that a consistent interpretation I of P satisfies a FASP rule r iff I(r) = 1.
This condition is equivalent to I(H(r)) ≥ I(B(r)). An interpretation is a model
of a program P iff it satisfies every rule of P . For interpretations I1, I2, we write
I1 ≤ I2 iff I1(l) ≤ I2(l) for each l ∈ BP , and I1 < I2 iff I1 ≤ I2 and I1 6= I2.
We call a model I of P a minimal model if there is no other model J of P such
that J < I .

For a positive FASP program P , a model I of P is called a fuzzy answer set
of P iff it is a minimal model of P . For non-positive programs, a common way
to define the answer set semantics, in the case of classical ASP is to the so-called
Gelfond-Lifschitz (GL) reduct to transform the program into a positive one, given
a guess of which atoms are true. For a non-positive FASP programP , a generaliza-
tion of the GL reduct was defined in [21, 22] as follows: the reduct of a rule r w.r.t.
an interpretation I is the positive rule rI obtained by replacing each occurrence of
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not a by the constant I(not a). The reduct of a FASP program P w.r.t. an inter-
pretation I is then defined as the positive program PI = {rI | r ∈ P}. A model
I of P is called a fuzzy answer set of P iff I is a fuzzy answer set of PI . The
set of all the fuzzy answer sets of a FASP program P is denoted by ANS(P). A
simple FASP program has exactly one fuzzy answer set. A positive FASP program
may have no, one or several fuzzy answer sets. In particular, disjunctive rules can
generate many fuzzy answer sets, in general. A FASP program is called consistent
iff it has at least one fuzzy answer set, and inconsistent otherwise.

Example 1. Consider the FASP program P1 which has the following rules:

{a← not c, b← not c, c← a⊕ b}

It can be seen that under both the truth-lattice L3 and L∞, the interpretation
I1 = {(a, 13 ), (b, 13 ), (c, 23 )} is a minimal model of PI11 , and hence it is an answer
set of P1. However, the program admits no answer sets under any Lk, where k is
a positive integer not divisible by 3.

Once a problem has been specified, or encoded, as a FASP program, the next
main steps are (1) to automatically determine the answer sets of the FASP program,
and (2) to map them back to solutions of the original problem.

3.4 Solving finite satisfiability of FASP using ASP

The results in [23] and [24] suggest that solving FASP programs using finite meth-
ods could potentially be useful. Call a fuzzy answer set A of P a k-answer set of
P iff the truth values of the atoms in A are taken from the set Qk. Then it can be
seen that every k-answer set of a FASP program P under the infinite-valued truth-
lattice L∞ is also an answer set of P under the finite-valued truth-lattice Lk. This
means that we can find every answer set of P under L∞ by iteratively finding its
answer sets under Lk, for k ≥ 1. A result in [23] shows that exponentially many k
need to be checked to exhaustively find all answer sets of the program under L∞.
As we will see in Section 5, however, in practice usually only a small number of
values for k needs to be checked.

We will show how answer sets of FASP programs under a finite-valued truth
lattice Lk can be found using a reduction to classical ASP. In the next sections,
we will show how we can rewrite FASP rules into equivalent forms prior to the
translation (to make the translation process more efficient) as well as the details
of the translation itself. Finally, we will analyse the conditions under which this
approach is also successful for finding answer sets in the infinitely-valued truth
lattice L∞.
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3.4.1 FASP rule rewriting

Before we perform the translation to ASP, we rewrite the FASP rules into an equiv-
alent set of rules which follow a certain “standardized form”, in order to make the
translation simpler and more efficient. First, if a rule r ∈ P contains a constant
symbol c in the body, replace r with

H(r)← B(r)[c/p]

where p is a fresh atom symbol. Here, x[y/z] is obtained by replacing each occur-
rence of y in x with z. If c > 0, add the rule p← c to the program. If a rule r ∈ P
contains a constant symbol c in the head, replace r with

H(r)[c/p]← B(r)

where a fresh atom symbol p is used for every constant appearing in the program.
If c < 1, add the rules {p ← c, c ← p} to the program. It is not hard to see that
these replacements do not change the meaning of the program.

Next, we rewrite each rule such that the resulting rules contain at most one
application of the logical operators (⊕,⊗,Z,Y,not ). The idea is to recursively
split each application of the operators on composite expressions by defining new
auxiliary atoms to capture the truth value of each of the composite expressions,
and then replace the original rule with a set of equivalent rules. For example, for
a rule r ∈ P of the form a ← β ∗ γ where ∗ ∈ {⊕,⊗,Y,Z}, a is a classical
literal and β and γ are composite expressions, we replace r with the following set
of rules {a← p∗q, p← β, q ← γ} where p and q are fresh atom symbols. While,
for a rule r ∈ P of the form α ∗ β ← c where ∗ ∈ {⊕,⊗,Y,Z} and α and β are
composite expressions and c is a classical literal, we replace r with the following
rules: {p ∗ q ← c, p ← α, α ← p, q ← β, β ← q} where p and q are fresh atom
symbols.

The following proposition holds.

Proposition 1. Using a finite number of rewriting steps, we can convert any pro-
gram P into an equivalent program Rw(P) containing only rules of the following
forms:

1. A fact a← c for an atom a and a constant c, c ∈ (0, 1].

2. A constraint c← a for an atom a and a constant c, c ∈ [0, 1).

3. A rule with no operator in the body nor in the head a← b.

4. A rule with NAF-literal in the body a← not b for atoms a and b.

5. A rule with a binary operator in the body a ← b ∗ c, with a, b and c atoms
and ∗ ∈ {⊗,⊕,Y,Z}.
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6. A rule with a binary operator in the head a ∗ b ← c, with a, b and c atoms
and ∗ ∈ {⊗,⊕,Y,Z}.

and that the size of Rw(P) is O(n ·m), where n is the number of rules in P and
m is the maximum number of atom occurrences in the rules of P .

3.4.2 Translation to classical ASP

To find the answer sets of P under Lk, we perform a translation of each rule of
P into ASP rules parametrized by k. Consider a FASP program P and an integer
k. Assume that each rule of P follows the “standardized” forms as described in
Proposition 1. We will translate P into a classical ASP program Tr(P, k). First,
we assume the availability of atom symbols ai for every a ∈ BP and 1 ≤ i ≤ k to
be used in Tr(P, k).

We translate each rule of P as follows:

1. For a fact r ∈ P of the form: a ← c, c ∈ (0, 1] we add the fact aj ← to
Tr(P, k), where j = k ∗ c.

2. For a constraint r ∈ P of the form c ← a, c ∈ [0, 1) we add a constraint
← aj+1 in Tr(P, k), where j = k ∗ c.

3. A FASP rule of the form: a← b can be easily translated into classical ASP
as {ai ← bi | 1 ≤ i ≤ k}

4. A FASP rule of the form: a ← b ⊗ c is equivalent to saying that I(a) ≥
max(I(b) + I(c) − 1, 0) for every answer set I of P . This means that to
obtain I(a) ≥ i

k for some 1 ≤ i ≤ k, we can choose I(b) = j
k for any

i ≤ j ≤ k and then I(c) = 1 − j−i
k . This corresponds to the following set

of ASP rules:

{ai ← bj ∧ ck−j+i | 1 ≤ i ≤ k, i ≤ j ≤ k}

5. A FASP rule of the form: a ← b ⊕ c is equivalent to saying that I(a) ≥
min(I(b) + I(c), 1) for every answer set I of P . This means that to obtain
I(a) ≥ i

k for some 1 ≤ i ≤ k, we can choose I(b) ≥ j
k for some 0 ≤ j ≤ i

and then I(c) ≥ i−j
k . This can be translated as the following set of ASP

rules:

{ai ← bi, ai ← ci, ai ← bj ∧ ci−j | 1 ≤ i ≤ k, 0 < j < i}

6. A FASP rule of the form a← b Y c implies that I(a) ≥ max(I(b), I(c)) in
every answer set I . This can be translated as the following set of ASP rules

{ai ← bi, ai ← ci | 1 ≤ i ≤ k}
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7. A FASP rule of the form a← b Z c can be translated into

{ai ← bi ∧ ci | 1 ≤ i ≤ k}

8. For the FASP rule a⊕ b← c we first create fresh atom symbols ps,t, where
0 ≤ s, t ≤ k such that 1 ≤ s + t ≤ k. Each ps,t encodes the situation
where a and b have truth values s

k and t
k , respectively. We then encode

the semantics saying that when c has a truth value of i
k , then the sum of

the truth values of a and b should be at least i
k . We must also ensure that

only “minimal choices” are generated in the answer sets. For example, if
I(c) = i

k and I(a) = j
k , we must eliminate the choices which generate

I(b) > i−j
k . We use the following set of ASP rules for this translation.

{p0,i ∨ p1,i−1 ∨ . . . ∨ pi−1,1 ∨ pi,0 ← ci | 1 ≤ i ≤ k} ∪
{ai ← pi,j , bj ← pi,j | 0 ≤ i, j ≤ k} ∪

{pi+1,j−1 ← pi,j ∧ ai+1 | 0 ≤ i ≤ k − 1, 1 ≤ i+ j ≤ k} ∪
{pi−1,j+1 ← pi,j ∧ bj+1 | 0 ≤ j ≤ k − 1, 1 ≤ i+ j ≤ k}

The first two sets of rules “distribute” the truth value of c to a and b, while
the last two sets of rules ensure that only minimal models are generated by
eliminating the non-minimal ones. For example, if we also have the fact
a← 1

k in P , then the rule

pk−1,1 ← pk,0 ∧ a1

will eliminate the (otherwise generated) non-minimal answer setA of Tr(P, k)

containing a1 and bk, which corresponds to a (non-minimal) fuzzy model I
of P having I(a) = i

k and I(b) = 1.

9. For the FASP rule a ⊗ b ← c a similar construct as the translation scheme
for a ⊕ b ← c can be used, as follows: create atom symbols ps,t, where
1 ≤ s, t ≤ k such that s+ t > k, with a similar meaning as before. The rule
a⊗ b← c can then be translated as:

{pk,i ∨ pk−1,i+1 ∨ . . . ∨ pi,k ← ci | 1 ≤ i ≤ k} ∪
{ai ← pi,j , bj ← pi,j | 1 ≤ i, j ≤ k, i+ j > k} ∪

{pi+1,j−1 ← pi,j ∧ ai+1 | 1 ≤ i < k, 1 ≤ j ≤ k, i+ j > k} ∪
{pi−1,j+1 ← pi,j ∧ bj+1 | 1 ≤ i ≤ k, 1 ≤ j < k, i+ j > k}

10. A FASP rule of the form a Y b ← c states that max(I(a), I(b)) ≥ I(c) in
every answer set I of P . Hence, we can translate it into the following set of
ASP rules: {ai ∨ bi ← ci | 1 ≤ i ≤ k}
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11. Similar to the previous translation, we can translate the FASP rule aZ b← c

into the following set of ASP rules: {ai ← ci, bi ← ci | 1 ≤ i ≤ k}

12. For a rule a← not b which states that I(a) ≥ 1− I(b) for every answer set
I , we use the following set of ASP rules:

{ai ← not bk−i+1 | 1 ≤ i ≤ k}

which enforces the constraint I(a) ≥ 1 − I(b) while at the same time pre-
serving the NAF-semantics.

Finally, we must add the set of rules

{ai ← ai+1 | a ∈ BP , 1 ≤ i ≤ k − 1}

into Tr(P, k) to ensure that the atoms ai are consistent with the interpretation that
the truth value of a is at least i

k . We can show the following result.

Proposition 2. The number of rules in Tr(P, k) is O(n · k2), where n is the
number of rules in P .

Now, consider a functionMk, mapping a classical interpretation A to a fuzzy
interpretation I , defined as follows:

I(a) =Mk(A)(a) = max{ i
k
|ai ∈ A}

We can show that the following proposition holds:

Proposition 3. A is an answer set of Tr(P, k) iff I =Mk(A) is an answer set of
P under the truth-lattice Lk.

For the case where the truth-lattice L∞ is assumed, one must perform the
translation and find k-answer sets for (possibly exponentially) many values of k.
If no constant symbols appear in P , we can start looking for k-answer sets for
k = 1, 2, . . . and so on. However, if P contains a constant symbol c, where c = a

b

for some integers a and b with gcd(a, b) = 1, then translating a rule such as
a ← a

b into an ASP rule aj ← where j = a/b ∗ k requires k to be a multiple
of b. Therefore, in the search for k-answer sets using the translation above, one
must always choose a value of k which is a multiple of every denominator of the
constants appearing in the program. In other words, if there are n constant symbols
{a1/b1, . . . , an/bn} in P , then we choose values of k which are divisible by the
least common multiple of b1, . . . , bn. The following proposition provides the result
for the infinite-valued truth lattice.

Proposition 4. For every answer set I of a FASP programP under the truth-lattice
L∞, there exists a positive integer k such that I =Mk(A) for some answer set A
of Tr(P, k).
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For normal programs, we additionally have the following proposition.

Proposition 5. If P is a normal FASP program and A is answer set of Tr(P, k),
then I =Mk(A) is an answer set of P under the L∞.

Example 2. Consider again the programP1 from Example 1. Obviously,Rw(P1) =

P1. Furthermore, one can check that Tr(P1, 1) and Tr(P1, 2) have no answer
sets. However, the ASP program Tr(P1, 3) containing the following rules:

{ai ← not c3−i+1 | 1 ≤ i ≤ 3}∪
{bi ← not c3−i+1 | 1 ≤ i ≤ 3}∪

{ci ← ai, ci ← bi, ci ← aj ∧ bi−j | 1 ≤ i ≤ 3, 1 ≤ j < i}∪
{pi ← pi+1 | i = 1, 2, p ∈ {a, b, c}}

does have an answer set, namely A1 = {a1, b1, c1, c2} which corresponds to the
only answer set I1 of P1 under L∞ (i.e.M3(A1) = I1).

For disjunctive programs, the result from Proposition 5 does not necessarily follow.
Consider the following example.

Example 3. Program P2 has the following rules: {a ⊕ b ← 1, a ← b, b ←
a}. Tr(P2, 1) has one answer set, namely A1 = {a1, b1}. However, I1 =

M1(A1) = {(a, 1), (b, 1)} is not an answer set of P2, whose only answer set
is I2 = {(a, 0.5), (b, 0.5)}.

For disjunctive programs, we only have the following weaker result.

Proposition 6. If P is a disjunctive FASP program and A is an answer set of
Tr(P, k), then I =Mk(A) is an answer set of P under the infinitely-valued truth
lattice L∞ iff there is no other model J of PI such that J < I .

This means that for disjunctive programs, when our method has found a k-
answer set, we still need to verify whether it is an answer set under L∞. This can
easily be checked using a mixed integer programming solver, or any other method
for entailment checking in Łukasiewicz logic.

3.5 Evaluating disjunctive rules
In this section we will identify a large fragment of the class of disjunctive FASP
programs which can be reduced in polynomial time to a normal FASP program.
Subsequently, we will show how this reduction can be used to develop a sound
method for finding answer sets of general disjunctive FASP programs.

Following [25], the head-cycle free (HCF) ASP programs are programs whose
positive dependency graphs (see Section 3.3) do not contain cycles that go through
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two literals occurring in the head of a rule. In [26], it was shown that any HCF
program can be reduced to an equivalent program using the shift operator. Briefly,
the shift operator replaces any rule a1 ∨ . . . ∨ an ← B with the set of rules R =

{ai ← B ∧NBi | 1 ≤ i ≤ n}, where NBi =
∧

1≤j≤n,j 6=i not aj . For example,
the program {a∨b←} can be reduced to the equivalent program {a← not b, b←
not a}. However, when we introduce head cycles, such as in the program P3 =

{a∨b←, a← b, b← a}, shifting is no longer guaranteed to produce an equivalent
normal program. Interestingly, in the case of FASP programs, the syntactically
similar program P4 = {a ⊕ b ← 1, a ← b, b ← a} is equivalent to the shifted
version: P ′4 = {a ← not b, b ← not a, a ← b, b ← a}. In fact, we will show
that any strict disjunctive FASP program can be reduced to an equivalent normal
FASP program in this way. This explains the observation in [19] that allowing
disjunction in the head does not affect the computational complexity of strict FASP
programs. For programs with disjunction in the body, shifting does not always
yield an equivalent FASP program, for e.g., P4 ∪ {a ← a ⊕ a} is not equivalent
to P ′4 ∪ {a ← a ⊕ a}. Intuitively, we can safely shift disjunctive rules if there
is no interaction between disjunctions in the body and a head cycle. We will now
formalize this idea based on the notion of a self-reinforcing cycle.

3.5.1 SRCF programs

We first extend the notion of proof for classical disjunctive programs as defined
in [25]. Let 0 denotes the interpretation that assigns zeros to all atoms. Let I be
an interpretation of a program P , and let a be any atom such that I(a) > 0. Then,
a support of a in P w.r.t. I is defined as a sequence of rules r1, r2, . . . , rn ∈ PI
such that:

1. 0(Body(r1)) > 0

2. a ∈ Head(rn)

3.
∑
a∈Lit(Head(ri)) I(a) = I(Body(ri)) for all 1 ≤ i ≤ n

4. For every x ∈ Lit(Body(ri)) there exists a j < i such that x ∈ Lit(Head(rj))

We characterize the non-existence of self-reinforcing cyclic rules in a program
using the following definition: for a FASP program P , we say that P is self-
reinforcing cycle free (SRCF) w.r.t. an atom a, iff we can find a stratification
function f : BP → N, such that for every rule r ∈ P which contains a, it holds
that:

1. f(x) ≥ f(y) for every x ∈ Lit(Head(r)) and y ∈ Lit(Body(r))

2. If r ≡ x← y ⊕ z, then f(x) > f(y) and f(x) > f(z).
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Intuitively, we can see that that a program P is SRCF w.r.t. atom a iff the depen-
dency graph does not contain any cycle which goes through a and involves at least
one rule with disjunction in the body. We say that a program P is SRCF iff it is
SRCF w.r.t every atom a ∈ BP . The following theorem characterizes the notion
of support for SRCF programs.

Theorem 3.5.1 (Support). Let P be an SRCF program and let I be a consistent
interpretation. Then I is an answer set of P iff:

1. I is a model of P .

2. Every a ∈ {x | I(x) > 0} has a support in P w.r.t. I .

The proof runs parallel to the proof of Theorem 2.3 in [25] by noting that support
plays a similar role for the answer sets of SRCF FASP programs as proof does for
HCF ASP programs.

Example 4. Consider program P5 = {a ⊕ b ← 1, c ← b ⊗ not a, c ← a}. It is
clear that I = {(a, 0.3), (b, 0.7), (c, 0.4)} is an answer set of P5. In accordance
with Theorem 1, for each of a, b and c, we can take r1 = a ⊕ b ← 1, r2 = c ←
b ⊗ 0.7 as the support of these atoms in P5 w.r.t. I . Furthermore, any J > I

obtained by increasing the truth value of a, b or c will not have a support for that
atom. On the other hand, the non-SRCF program P6 = {a ⊕ b ← 1, a ← b, b ←
a, a ← a ⊕ a} has only one answer set, namely I = {(a, 1), (b, 1)}. One can
check that there is no support for each of a and b in P6 w.r.t. I , since in this case,
I(a) + I(b) > 1.

The following lemma holds in both classical and fuzzy ASP.

Lemma 3.5.2 (Locality). Let P ′ be any subset of a program P . If I is an answer
set of P ′ and it satisfies all the rules in P − P ′, then I is also an answer set of P .

Proof. Since I is an answer set of P ′ and I satisfies every rule of P − P ′, I also
satisfies every rule in P . Then clearly, I satisfies PI as well. Suppose that I is
not the minimal model of PI , i.e., that there is another model J < I of PI . Since
P ′ ⊆ P (and hence P ′I ⊆ PI ), it must also be the case that J satisfies P ′I . But
this means that I is not the minimal model of P ′I , contradicting the assumption
that I is an answer set of P ′.

We now present the main result for this section.

Theorem 3.5.3. Let P1 = P ∪ {a⊕ b← c} be any SRCF program w.r.t. a, b and
c. Then, an interpretation I is an answer set of P1 iff it is also an answer set of
P2 = P ∪ {a← c⊗ not b, b← c⊗ not a}.
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Proof. (a) “If”-part: Let I be an answer set of P2. Then I is a minimal model
of PI ∪ {a ← c ⊗ (1− I(b)), b ← c ⊗ (1− I(a))}. Clearly, we have
I(a) + I(b) ≥ I(c). We consider two cases:

(i) I(a) + I(b) = I(c). Let p ∈ {x | I(x) > 0}. By Theorem 1,
there is a support Rp of p in P2 w.r.t I . If {a ← c ⊗ (1− I(b)), b ←
c⊗ (1− I(a))} ∩ Rp = ∅, then we must have Rp ⊆ PI . This means
that Rp is a support for p in P w.r.t I . On the other hand, if any (or
both) of {a← c⊗ (1− I(b)), b← c⊗ (1− I(a))} occurs in Rp, we
can replace it (them) with the rule a⊕b← c, to obtain the setR′p which
can serve as a support for p in P1 w.r.t. I . In any case, each support
Rp in P2 can be replaced with a support for p in P1. By Theorem 1,
this means that every answer set of P2 is also an answer set of P1.

(ii) I(a)+I(b) > I(c). In this case, we have that {a← c⊗(1− I(b)), b←
c⊗ (1− I(a))} 6⊆ Rp for any support Rp of any p ∈ {x | I(x) > 0},
since it does not satisfy the first condition in the definition of support.
Therefore, we have that Rp ⊆ P for any p, which, by Theorem 1
means that I is also an answer set of P . Since I definitely satisfies
a⊕ b← c, by Lemma 1, I is also an answer set of P1.

(b) “Only if”-part: Similar to the previous part, let I be an answer set of P1.
Then I is a minimal model ofPI∪{a⊕b← c}, and also I(a)+I(b) ≥ I(c).
As before, we consider two cases:

(i) I(a) + I(b) = I(c). Let p ∈ {x | I(x) > 0}. By Theorem 1, there
is a support Rp of p in P2 w.r.t I . If a ⊕ b ← c 6∈ Rp, then we must
have Rp ⊆ PI , which means that Rp is a support for p w.r.t. P . On
the other hand, if a⊕ b← c ∈ Rp, we can replace it with the two rules
{a← c⊗ 1− I(b), b← c⊗ 1− I(a)} to obtain the set R′p which can
serve as a support for p in P2 w.r.t I . In any case, each support Rp
in P1 w.r.t. I can be replaced with a support for p in P2 w.r.t I . By
Theorem 1, this means that every answer set of P1 is also an answer
set of P2.

(ii) I(a) + I(b) > I(c). Similar to case (a)(ii), here we have that a⊕ b←
c 6∈ Rp for any support Rp of any p ∈ {x | I(x) > 0}. Again, using
Theorem 1, we get that every answer set of P1 is also an answer set of
P2.

This result allows us to reduce an SRCF disjunctive FASP program to an equivalent
normal program by performing the shifting operations, thus allowing the use of
evaluation methods geared towards normal programs.
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Example 5. The program P5 with the following rules:

{a⊕ b← 1, c← b, c← d⊕ e}

is SRCF, since we can assign the stratification function f(a) = f(b) = f(d) =

f(e) = 1 and f(c) = 2. Hence, by Theorem 2, it is equivalent to the normal
program:

{a← not b, b← not a, c← b, c← d⊕ e}

However, program P5 ∪ {d ← c} is not SRCF, and the shifting method does not
work.

As a corollary of Theorem 2, any strict disjunctive FASP program can be re-
duced to a normal FASP program by shifting.

Example 6. Consider program P2 from Example 2. It is a strict disjunctive FASP
program, and hence it can be reduced to the equivalent normal program {a ←
not b, b← not a, a← b, b← a}.

3.5.2 Non-SRCF programs

For non-SRCF programs, finding an answer set in L∞ requires finding an answer
set I in Lk for some k ≥ 1, and checking whether I is also an answer set for L∞.
We show in this section how the last step can be implemented using Mixed Integer
Programming (MIP). For some background on MIP, one can consult, e.g., [27]
and [28].

In [29], a representation of infinitely-valued Łukasiewicz logic using MIP was
proposed by defining a translation of each of the Łukasiewicz expressions x ⊕ y,
x ⊗ y and ¬x into a set of MIP inequality constraints characterizing the value of
each of the expressions. Given a FASP program P and an interpretation I , we
can use the MIP representation of P (denoted as MIP (P)) based on the repre-
sentations proposed by [29] to check whether I is the minimal model of PI , as
follows:

1. For each atom a in PI , we use a MIP variable va ∈ [0, 1] in MIP (P) to
express the truth value that a can take.

2. For any expression e ∈ {a ⊕ b, a ⊗ b, a Y b, a Z b} in any rule of PI , we
create the appropriate set of constraints in MIP to represent the value of
the expression, as suggested in [29]. For example, for a ⊕ b, we have the
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following MIP constraints:

va + vb + za⊕b ≥ va⊕b

va + vb − za⊕b ≤ va⊕b

va + vb − za⊕b ≥ 0

va + vb − za⊕b ≤ 1

va⊕b ≥ za⊕b

In each case, ze is a 0-1 variable and ve is a variable representing the value
of the expression e.

3. For each rule α ← β ∈ PI , we add the constraint vα ≥ vβ , where vα and
vβ are the variables corresponding to the values of the atoms/expressions α
and β, respectively.

4. For each atom a, we add the constraint va ≤ I(a).

5. We set the objective function of the MIP program to minimise the value∑
a∈BP

va.

Theorem 3.5.4. The interpretation I is the minimal model of PI iff the solution
returned in MIP (P) is equal to I .

3.5.3 Incorporating program decomposition

While in practical applications FASP programs will not always be SRCF, often it
will be possible to decompose programs such that many of the resulting compo-
nents are SRCF. In this section, we show how we can apply the reduction from
Section 3.1 to these individual components, and thus efficiently solve the overall
program.

Program modularity and decomposition using dependency analysis have been
extensively studied and implemented in classical ASP. In [30], the concept of split-
ting sets for decomposing an ASP program was introduced. Dependency analysis
and program decomposition using strongly connected components (SCC) was de-
scribed in [31] and [32], and has been used as a framework for efficient evaluation
of logic programs, such as in [33, 34] and [35]. In this section, we build on this idea
to develop a more efficient evaluation framework for FASP programs by exploiting
the program’s modularity/decomposability.

For a (ground) FASP program P , consider a directed graph GP = 〈V,E〉,
called the dependency graph of P , defined as follows: (i) V = BP and (ii) (a, b) ∈
E iff there exists a rule r ∈ P s.t. a ∈ Lit(Body(r)) and b ∈ Lit(Head(r)). By
SCC analysis, we can decompose GP into SCCs C1, . . . , Cn. With each SCC
Ci, we associate a program component PCi ⊆ P , defined as the maximal set of
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rules such that for every r ∈ PCi, the literals in PCi are contained in Ci. The
set of all program components of P is denoted as PC(P). We define dependency
between program components PCi and PCj as follows: PCi depends on PCj iff
there is an atom a in PCi and atom b in PCj such that a depends on b in GP .
The program component graph C = 〈PC(P), EC〉 is defined according to the
dependency relation between the program components.

Similar to the case in classical ASP, the program component graph of a FASP
program allows us to decompose the program into “modular components” that can
be separately evaluated. For non-disjunctive components, the evaluation method
described in [8] can be directly used. For SRCF disjunctive components, we can
perform the shifting method as described in Section 3.1 to reduce the component
into a normal program, and again use the evaluation method for normal programs.
For non-SRCF disjunctive components, an extra minimality check as defined in
Section 3.2 is needed after finding a k-answer set. Evaluation proceeds along the
program components according to the topological sorting of the components in the
program component graph, feeding the “partial answer sets” obtained from one
component into the next. If a “complete answer set” is found, we stop. Otherwise,
we backtrack to the previous component(s), obtaining k-answer sets for the next
values of k until the stopping criterion is met.

Proposition 7. Label an edge in GP with the symbol ⊕ if the edge corresponds to
a rule containing a disjunction in the body. A component is non-SRCF w.r.t. the
atoms in that component iff there is a cycle in the component containing a labelled
edge.

Example 7. Consider the program P6 containing the rules:

{a← b⊕ c, b← a⊗ 0.5, c← 0.7, d⊕ e← a}

Program P6 is not SRCF, hence we cannot directly use Theorem 2 to perform shift-
ing. However, using SCC program decomposition, we obtain three components
PC1 = {a← b⊕ c, b← a⊗ 0.5}, PC2 = {c← 0.7} and PC3 = {d⊕ e← a}.
PC1 only depends on PC2, PC2 has no dependencies, while PC3 depends only
on PC1. Proceeding according to the topological order of the program compo-
nents, we start by evaluating PC2 and obtain the partial answer set {(c, 0.7)}. We
feed this partial answer set into the next component PC1. This program is normal
and hence requires no minimality check associated to disjunctive programs. We
obtain the partial answer set {(a, 1), (b, 0.5), (c, 0.7)}. The last component PC3

is disjunctive, but it is also SRCF w.r.t. its atoms, and hence we can perform shift-
ing to obtain the normal program {d ← a ⊗ not e, e ← a ⊗ not d}, which again
can be evaluated without using minimality checks.
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3.6 Experimental benchmark
In this section, we experimentally evaluate the effectiveness of the proposed method.
We used clingo from the Potassco project [10] as the underlying ASP solver for
finding k-answer sets, and the Coin-OR Cbc1 solver as the MIP program solver
for minimality checking. The implementation is available online on [8]2.

For this benchmark, we used two problems: (1) the fuzzy graph colorability
as given in the introduction, and (2) the fuzzy set covering problem, which is a
generalization of the classical set covering problem, defined as follows: A fuzzy
set F is defined as a function F : U → [0, 1], where U is the universe of discourse,
and F (u) for u ∈ U is the degree of membership of u in F . A fuzzy subset S of
F is a fuzzy set such that S(u) ≤ F (u),∀u ∈ U . Given a fuzzy set F and
a collection of subsets C = {S1, . . . , Sn} of F , the problem asks whether we
can find a fuzzy sub-collection of C, such that every member of F is covered
sufficiently by the subsets selected from C, and that the degree to which a subset
Si is selected is below a given threshold. We encode the problem in FASP as
follows: the fuzzy set F is given by a set of facts of the form f(x) ← a, the
subsets Si given by facts of the form subset(si) and their membership degrees by
member(si, x) ← b. The maximum degree to which a subset Si can be selected
is denoted by a constraint c ← in(si). The following FASP program encodes the
problem goal and constraints:

in(S)⊕ out(S)← subset(S)

covered(X)← (in(s1)⊗member(s1, X))⊕ . . .⊕ (in(sn)⊗member(sn, X))

0← f(X)⊗ not covered(X)

For both benchmark problems, instances are generated randomly with no attempt
to produce “hard” instances. Constant truth values for fuzzy facts (e.g., for edge
weights) are drawn randomly from the set Q10. Two types of instances are con-
sidered: (1) where no saturation rules are present, which means that the program
is an SRCF program, and (2) where the saturation rules are added randomly with
a 0.1 probability for each b(x) and w(x) atoms (in the graph coloring problem
instances) and each in(x) atoms (in the set covering problem instances). Since
fuzzy answer set evaluation using finite-valued translation such as the one used
in [8] cannot, in principle, be used to prove inconsistency, we opted to generate
only instances that are known to be satisfiable.

To be able to see the advantage of applying our approach, we run the solver
on all instances both with and without employing SRCF detection and shifting to
reduce to normal programs. When SRCF detection is not employed, a minimality
check has to be performed to verify that the answer sets obtained in any disjunctive

1https://projects.coin-or.org/Cbc
2https://github.com/mushthofa/ffasp
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Table 3.1 Values in the cells indicate average execution times (over ten instances)
in seconds for the non-timed-out executions. Cells labeled with ’(TO)’ indicates
that all executions of corresponding instances exceeded time/memory limit

problem fuzzy graph coloring fuzzy set cover
saturation no yes no yes
method δ σ δ σ δ σ δ σ

1 n = 20 2.9 1.7 2.7 1.8 n = 10 7.9 5.2 8.2 7.9
2 n = 30 6.6 3.8 6.1 3.8 n = 15 13.4 6.5 17.3 17.1
3 n = 40 10.6 5.7 10.7 6.1 n = 20 18.2 9.6 17.4 17.3
4 n = 50 19.8 11.5 23.0 11.0 n = 25 29.8 13.4 30.1 29.9
5 n = 60 34.8 17.7 36.0 20.4 n = 30 71.4 17.6 71.4 70.6
6 n = 70 53.4 25.4 55.3 28.2 n = 35 (TO) 22.3 (TO) (TO)
7 n = 80 74.8 33.9 76.1 41.1 n = 40 (TO) 27.8 (TO) (TO)
δ = no shifting, σ = with shifting applied

component of the program are indeed minimal. Thus, our experiment will be
useful to see the effectiveness of the proposed reduction over the baseline method
of computing answer sets and checking for minimality.

The experiment was conducted on a Macbook with OS X version 10.8.5 run-
ning on Intel Core i5 2.4 GHz with 4 GB of memory. Execution time for each
instance is limited to 2 minutes, while memory usage is limited to 1 GB. Table 3.1
presents the results of the experiment. Each value is an average over ten repeats.

From the result, we can see that when SRCF detection and shifting are used,
execution times are generally lower than when only minimality checks are used,
even when saturation rules are present. This is especially true for the instances of
the fuzzy graph coloring problem. The use of program decomposition/modularity
analysis to separate program components that are SRCF from those that are non-
SRCF can be beneficial since this means we can isolate the need for minimality
checks to only those non-SRCF components, while the rest can be evaluated as
normal programs after performing the shifting operation. For the set covering
problem, we see no significant improvement in the running time when using the
shifting operator for instances with saturation, one of the reasons being that the
instances are such that minimality checks are needed regardless of what method is
used (due to the fact that most components are non-SRCF). However, for the non-
saturated instances, again we still see a clear advantage of using SRCF detection
and shifting.
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4
Modelling multi-valued networks

using FASP

4.1 Introduction

In biological systems, genes are known to interact with each other in a complex
and dynamic way. Briefly, each gene’s activation state can influence the activa-
tion states of other genes, either positively or negatively. These interactions can
be modelled using a graph structure, which is usually called a Gene Regulatory
Network (GRN). It determines the patterns of activation states of the genes, which
in turn affects the phenotypic behavior of the system.

As explained in Chapter 2, one of the most important concepts in modelling
the dynamics of GRNs are the so-called attractors, which are the sets of states
to which the system converges. An attractor usually corresponds to the observed
characteristics/phenotypes of the biological system [1]. For example, the attractors
of a GRN usually correspond to the expression patterns of the genes in the network
for specific types of cells [2, 3]. In studying the dynamics of such networks it is
therefore of importance to be able to identify their attractors.

In systems biology, one of the most popular approaches to formalise a GRN
is to use a so-called Boolean Network (BN) [4–6]. Boolean networks represent
genes as nodes that can take on Boolean values (intuitively representing the acti-
vation levels of the genes), while interactions between the genes are represented
as Boolean functions that determine the value of each node at a certain time, de-
pending on the current values of the other genes. The state transitions of a GRN
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and their attractors can be readily represented using such a formalism.
There have been numerous works about computational tools to simulate the

dynamics of Boolean networks and to compute their attractors, mostly using logic-
based techniques such as Binary Decision Diagrams (BDDs) or Boolean SAT
solvers [7–12]. More recently, Answer Set Programming (ASP) has become a
particularly interesting framework for modelling GRNs and Boolean networks
[13–16].

ASP is a popular declarative programming paradigm which allows for an easy
and intuitive encoding of many combinatorial search and optimisation problems
[17, 18]. The availability of fast and efficient solvers for ASP, such as clasp [19]
and DLV [20], allows for the application of ASP in various fields [21, 22]. Despite
its flexibility and expressive power, however, ASP lacks the ability to directly en-
code problems in continuous domains.

Having only two levels of activation is sometimes not always enough to fully
understand the dynamics of real biological systems. For example, in [3, 23–26],
examples of systems are given whose dynamics can only be modelled by con-
sidering more than two activation levels. One classic example is the lac operon
regulatory system, which is a set of genes that controls the production of the
proteins needed to metabolise lactose in enteric bacterias, such as Escherichia
coli (see e.g., [27]). In this case, it has been shown that one of the key attrac-
tors cannot be characterized using a Boolean encoding (because of the so-called
“leaky-expression”). Despite the importance of multi-valued activation levels for
modelling gene regulatory networks, only limited progress has been made on de-
veloping simulation tools that can support them. To the best of our knowledge,
only one tool has been developed that supports multi-valued activation levels [24].

In this chapter, we describe our proposed method on the use of Fuzzy Answer
Set Programming (FASP) [28] as a computational framework to simulate the dy-
namics of multi-valued regulatory networks. As explained in Chapter 3, FASP is a
form of declarative programming that extends ASP by allowing graded truth values
in atomic propositions and using fuzzy logic connectives to aggregate these truth
values. Recent work on the implementation of a FASP solver, such as [29–33],
has opened the door to the application of FASP for solving real-world applica-
tions. Other frameworks dealing with the extension of ASP, or more generally,
logic programming into the fuzzy domains have been proposed in the literature,
e.g., [34–39]. While we have specifically chosen to use the FASP framework and
the corresponding solver from [32], other multi-valued extensions of ASP might
also be suitable for the purpose of modelling the dynamics of multi-valued regula-
tory networks.

Here, we propose an encoding of the dynamics of multi-valued biological in-
teraction networks that can be executed/solved using the FASP solver proposed
in [32], and we prove the correctness of this encoding. We then perform an exten-
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sive benchmark test using synthetic networks as well as real biological networks
found in the literature to show the efficiency and applicability of this method. The
results indicate that the method is efficient for the size of the networks typically
used in the Boolean/discrete modelling of regulatory networks (up to around a few
dozen genes in the network).

The remainder of this chapter is structured as follows: We first give a brief
overview of related works in Section 4.2. We then formally define the multi-
valued networks and present our FASP-based encoding in Section 4.3. In Sub-
section 4.3.1, we describe a general fuzzy logic framework for encoding general
aspects of multi-valued networks. Subsequently, we describe the specific encoding
needed to represent the dynamics and to compute the steady states and attractors
of the network in Subsection 4.3.2 and 4.3.3. Section 4.4 describes the FASPG
tool that implements the proposed method, as well as providing an automatic en-
coding for the network. Section 4.5 contains the experiments we conducted to test
the feasibility and efficiency of the proposed method, while Section 4.6 provides a
conclusion.

4.2 Related Work

Since they were introduced by Kauffman [4], Boolean networks have gained con-
siderable popularity as a simple but powerful modelling technique in systems bi-
ology. Boolean networks have been used to describe the dynamics of regulatory
networks in cases where we have reasonably good knowledge about the regulatory
relationship between the genes, and where the activation levels of genes can be
simply represented as “on” and “off”. In such cases, the dynamics of the network,
and especially the attractors, usually correspond to some biologically relevant phe-
notype, e.g. a cell type. For instance, in [40, 41] and more recently, [3] and [42],
the flower development in Arabidopsis thaliana was modeled using a Boolean
network, in which the network attractors corresponded to stable gene expression
levels during the different stages of flower development. In [43], Li et al. used a
Boolean network model and its steady states to describe the different stages of the
yeast cell cycle, where the stages of the cycle correspond to the strong attractors of
the network. Kaufman et al. [5] explained the various states of the immune system
with Boolean network models. Similarly, the regulatory networks involved in the
various parts of the development of Drosophila melanogaster were studied using
Boolean networks in [44], [45] and [46].

Although Boolean networks provide a useful simplification to study the dy-
namics of gene regulatory networks, using only two values to represent the ac-
tivation may cause one to miss important characterizations of GRNs that have
attractors containing “intermediate” levels of expressions of the genes (see e.g.,
[3, 23–25, 47]). In [24], an extension of Boolean networks into multi-valued net-
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works in which each node is allowed to have k levels of activation (where k ≥ 2)
is considered. Using the so-called 1-hot encoding, these multi-valued networks
are reduced into a representation which allows techniques already used in Boolean
networks, such as Binary Decision Diagrams (BDD), to be applied. However, the
use of an encoding scheme such as 1-hot encoding can make the representation
quite cumbersome, especially for large values of k, since it requires us to explic-
itly encode the logical operators for all combinations of truth values. As we will
show, the use of FASP can overcome this problem by using fuzzy logic connec-
tives.

Several computational tools have been developed to compute attractors in Boo-
lean network models. In [7], Garg et al. developed genYsis, which uses techniques
involving BDDs to compute attractors. Ay et al. [10] used state-space pruning
and randomized state-space traversal methods to improve the scalability of the
attractor computation. Dubrova et al. [11] used a Boolean Satisfiability (SAT)
solver, which was shown to be more efficient, both in terms of computation time
and space requirements, compared to the BDD-based approach. Zheng et al. [12]
developed geneFatt based on the Reduced Order BDD (ROBDD) data structure,
which further improves the efficiency of the attractor computation. Berntenis et
al. [9] considered the enumeration of attractors of larger networks by restricting
the enumeration of possible states to only the relevant subsets. More recently,
[14] used Answer Set Programming (ASP) to model the computation of attractors
in a Boolean network. However, these methods were designed to compute the
dynamics of Boolean networks, i.e., where the nodes can take only two possible
values. In this Section, we describe our extension to our previous work in [14],
by using Fuzzy Answer Set Programming (FASP) to allow the computation of the
dynamics of multi-valued networks.

4.3 Multi-valued Networks

4.3.1 Modelling multi-valued networks using FASP

Models of multi-valued biological interaction networks are typically specified through
a set of input-output relationships for each node, detailing the values each node
takes, given the combinations of the values of the regulators, i.e. nodes that affect
it. We formalize this idea, using the concept of a multi-valued network defined as
follows.

Definition 2 (Multi-valued network, network state). A multi-valued network is a
tuple G = 〈X,F, k〉 where X = 〈x1, . . . , xn〉 is a tuple of multi-valued variables
denoting the nodes of the network, F = 〈f1, . . . , fn〉 is a tuple of update functions,
and k ≥ 1 is a parameter describing the number of activation levels for all the
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nodes. Specifically, for each node x ∈ X1, we allow k + 1 activation levels, i.e.,
the value for each x is taken from the set Qk = {0, 1k , . . . ,

k−1
k , 1}. A network

state is then defined as an assignment V : X → Qk. Furthermore, each function
fi ∈ F satisfies fi : Qnk → Qk and is defined using the Łukasiewicz connectives
⊗,⊕,Y,Z, and ¬, instead of the Boolean connectives.

From this, we naturally extend the definitions of state transition, update scheme
as well as attractor. Note that the definition of the Hamming distance function ∆

in (1) can also be applied to the multi-valued network states.

Definition 3 (State transition). The tuple F of functions defines the state mapping
function f : S → S as follows: the state f(v) for a state v is the state w ≡
〈f1(v), . . . , fn(v)〉. The state transition of a multi-valued network is a relation
↪→: S → S whose definition is determined by the type of the update scheme that
the network has. The notion of synchronous and asynchronous update scheme in
multi-valued networks is defined similarly to the one in Boolean networks.

In the literature (e.g., [3, 48]), the values each node can take are usually given
as integers, ranging from 0, 1, . . . , k. Due to the fact that our model is expressed
in fuzzy logic, we need to map these values into the [0, 1] range, which can simply
be done by mapping each value v to v

k . Furthermore, the ranges of possible values
often differ from node to node (e.g., the network in [48] has one node with two
levels, and one node with three levels). For such cases, we choose k based on
the node with the largest range of values, and we map the values of any node
having l < k possible values into the values of an l-sized subset of Qk (while
preserving order), as illustrated in Example 5. This does not affect the behaviour
of the modeled system. In fact, in real biological networks encountered in the
literature, we mostly see the situation where some nodes have exactly k levels,
whereas the rest have only two possible values. In such a case, we can map the
values of the two-valued nodes to the set {0, 1}.

Example 8. As a running example, we take the network describing the produc-
tion of mucus in Pseudomonas aeruginosa described in [48]. There are two nodes
in the network, namely x and y, with x having three possible values: 0, 1 or 2,
and y having only two values: 0 or 1. Therefore, to model the network in our
fuzzy logical representation, we set k = 2, and map the values of x into {0, 12 , 1},
while keeping the values of y as they are. The node x is negatively-regulated by
node y and positively by itself, while y is positively-regulated by x. The network
structure is shown in Figure 4.1. The input-output relationships between the two
nodes, as given in [48], are shown in Table 4.1. Based on the regulatory relation-
ships between the nodes, the state transition graph of this network is as shown in
Figure 4.2. From the state transition graph, we can clearly see that the network

1When it is more convenient, we will abuse the notation for X and treat it as a set.
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Figure 4.1 Diagram for the network of P. aeruginosa

.

Table 4.1 Regulatory relationship in the P. aeruginosa mucus development net-
work

.

No. x(t) y(t) x(t+1) y(t+1)

1 0 0 1
2 0

2 0 1 0 0
3 1

2 0 1
2 1

4 1
2 1 0 1

5 1 0 1 1
6 1 1 1 1

Figure 4.2 State transition graph for the network of P. aeruginosa using the syn-
chronous update

has two attractors: one is a steady state, namely 〈1, 1〉, and the other is a cyclic
attractor of size 4.

Below, we extend the idea of using ASP to model the dynamics of biological
networks as used in [49] and [14] by allowing a multi-valued activation level in
each node. However, instead of using ASP in a meta-level approach to describe
the dynamics of the network, as in [14, 15], we propose to directly encode the
interaction between nodes using FASP rules, which allows for a simpler and more
efficient implementation. As shown in [16], a direct encoding of the interaction
between nodes in a Boolean network is enough to characterize fixed-size attractors.
The same holds for multi-valued networks with FASP under an appropriate many-
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valued logic semantics.

4.3.2 Finding steady states

We first tackle the problem of finding the single state attractors – also called steady
states – of a multi-valued network. Recall that the steady states are identical for
the synchronous and asynchronous update schemes.

Let G = 〈X,F, k〉 be a multi-valued network. First, for every node x ∈ X in
the network, we consider two fuzzy propositional atoms px and nx, and write the
following FASP rules:

px ⊕ nx ← 1

0← px ⊗ nx

Intuitively, these two rules generate “guesses” for the values of px and nx such
that px +nx = 1. Define GS(G) as the set of all such rules. If x is a node that only
takes Boolean values, we can add the following rule (usually called the saturation
rule):

px ← px ⊕ px

This rule forces the atom px to take only Boolean values in any answer set of the
program.

We then encode the interaction between nodes by creating a rule for every node
xi, where the head of the rule is a propositional atom p′xi

associated with the node,
while the body corresponds to the direct translation of the fuzzy logic function for
the update rule of xi, replacing the occurrences of the negation symbol ¬ with
FASP’s default negation not . Formally, let fi be the update function of a node xi
of the network. The corresponding FASP node update rule of that node, denoted
by NU(fi) is a FASP rule defined as follows:

p′xi
← BU(fi)

where BU(fi) is the body of the node update rule, which is a FASP expression
defined recursively as follows:

• BU(fi) = val if fi ≡ val and val ∈ [0, 1]

• BU(fi) = pxi
if fi ≡ xi for a node xi

• BU(fi) = BU(exp1)◦BU(exp2) if fi ≡ exp1◦exp2 for some expressions
exp1, exp2 and ◦ ∈ {⊕,⊗,Y,Z}

• BU(fi) = not px if fi ≡ ¬x
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Define NU(G) as the set of rules created in this step, i.e., NU(G) = {NU(fi) |
1 ≤ i ≤ n}. Intuitively, the atom p′xi

holds the activation value of the node xi
after the update function has been applied. To drive the FASP program to find a
steady-state, we enforce the condition that the activation level of each node is the
same after the update. This can be done by using the following rules CS(i) for
each node xi

0← pxi
⊗ not p′xi

0← p′xi
⊗ not pxi

Define CS(G) as the set of all constraining rules, i.e. CS(G) = {CS(i) | 1 ≤ i ≤
n}. The example below illustrates the construction process of the FASP program
P (G) = GU(G) ∪NU(G) ∪ CS(G) for the multi-valued network introduced in
Example 8.

Example 9. Consider the network of P. aeruginosa given in Example 8. Since the
network consists of two nodes, x and y, the initial guessing rules for the nodes’
values can be written as

x⊕ n x← 1

0← x⊗ n x
x⊕ n y ← 1

0← y ⊗ n y

Since we need y to be Boolean, we add the following rule:

y ← y ⊕ y

The regulatory relationships between the nodes x and y in the network (as given
by Table 4.1) can be captured by the following update functions expressed in
Łukasiewicz formulas:

f1(x, y) = ((x Y 1
2 )⊗ ¬y)⊕ z

z = (x⊗ 1
2 )⊕ (x⊗ 1

2 )

f2(x, y) = x⊕ x

where z is an auxiliary variable.2 We thus construct the following FASP rules to
represent the update on each node.

x′ ← ((x Y 1
2 )⊗ not y)⊕ z

z ← (x⊗ 1
2 )⊕ (x⊗ 1

2 )

y′ ← x⊕ x
2The variable z is an auxiliary variable only intended to allow us to present a more concise expres-

sion here.
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Finally, we add the following constraints to find only steady-states:

0← x′ ⊗ not x
0← x⊗ not x′

0← y′ ⊗ not y
0← y ⊗ not y′

It can be verified that the resulting program has exactly one 2-answer set, which
contains {(x, 1), (y, 1)}, corresponding to the only steady state 〈1, 1〉 of the net-
work.

The previous example also illustrates the fact that we need to translate the reg-
ulatory relationships between multi-valued activation levels into FASP rules. In
practice, it may not always be easy to perform this translation manually. As we
will explain in Section 4.4, in practice this step can be performed automatically
using the tool we wrote.

Next we show that the correspondence between steady states of the multi-
valued network G and k-answer sets of the FASP program P (G) = GU(G) ∪
NU(G) ∪ CS(G) holds in general.

Proposition 1. The program P (G) = GU(G) ∪ NU(G) ∪ CS(G) captures all
the steady states of the multi-valued network G, i.e., for every k-answer set I of
P (G), the state S s.t. S(x) = I(px) for every x ∈ X is a steady state of G, and
for every steady state S of G, there is a corresponding k-answer set I of G s.t.
S(x) = I(px) for every x ∈ X .

Proof. First, it can be easily seen that in any answer set I of P (G), we have
that I(p′x) = I(px), due the rules in CS(G). Suppose that S is a steady-state
of the multi-valued network G. By definition, we have that fi(X) = S(xi) for
every xi ∈ X . We will show that the interpretation I s.t. I(px) = S(x) and
I(nx) = 1 − S(x) for every x ∈ X is a k-answer set of the program P (G).
First, by the definition of GU(G), it is clear that I is a model of GU(G). For
every rule r in NU(G) corresponding to the update function fi, from the fact that
I(px) = I(p′x) = S(x) for every x ∈ X , it can be shown that the recursive
definition of BU(fi) entails that I(Body(r)) = fi(X). Since we have fi(X) =

S(xi), we also have that I(Body(r)) = S(xi). This means that I(Head(r)) =

I(p′xi
) = S(xi) = I(Body(r)), which means that I is also a model of the rule

r. Consequently, I is a model of NU(G), and thus also of P (G) = GU(G) ∪
NU(G). It is easy to see that I is a minimal k-model of GU(G), since any k-
model J < I will violate at least one rule in GU(G).

Conversely, if we have a k-answer set I of P (G), we can show that the state
S s.t. S(x) = I(px) for every x ∈ X is a steady state of the network. It is
sufficient to show that fi(X) = S(xi) = I(px) = I(p′x) for every xi ∈ X . Since
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I is a model of the rule NU(fi), we have that I(p′xi
) ≥ I(Body(NU(fi)) =

I(BU(fi)). From the definition of BU(fi) it can be shown that I(BU(fi)) =

fi(X). Hence we have that I(p′xi
) ≥ fi(X). Suppose that I(p′xi

) > fi(X), for
some xi ∈ X . Consider the k-interpretation J such that J(p′a) = I(p′a) for every
a ∈ X s.t. a 6= xi, and J(p′xi

) = fi(X). We have that J < I , and it can be
seen that J is also a k-model of P (G) (since it satisfies all the rules in P (G)),
contradicting the minimality of I . Hence, we must have that I(p′xi

) = fi(X) for
every xi ∈ X .

4.3.3 Finding fixed-size cyclic attractors

It is clear that the approach from Section 4.3.2 is not suitable for finding cyclic
attractors, since the proposed encoding does not represent different values of each
node at different update times. Recall that we can have either the synchronous or
the asynchronous update schemes for our networks, and that using different update
schemes on the same network can result in different sets of attractors. We need to
explicitly take into account the time dimension to distinguish between different
update schemes, and thus compute the appropriate sets of attractors.

Taking into account the time dimension can be achieved by adding a parameter
t, representing time, to each of the fuzzy propositional atoms px and nx. This time
parameter can be limited up to a certain maximum value, say s, if we are interested
in only finding cyclic attractors of size up to s. This can be done simply by adding
facts that assert the truth of a predicate called time(t) for t = 0, 1, . . . , s.

The initial guessing rules GU0(G) are now written as

px(0)⊕ nx(0)← 1

0← px(0)⊗ nx(0)

where the parameter 0 encodes the fact that we are guessing at the initial time
point t = 0. We then define a new encoding of the node update rule that incor-
porates a time parameter t. In order to do this, we first introduce the so called
time-dependent body of a node update rule, defined as follows:

• TBU(fi, t) = val if fi(xi) ≡ val and val ∈ [0, 1]

• TBU(fi, t) = px(t) if fi(xi) ≡ x for a node x

• TBU(fi, t) = TBU(exp1, t) ◦ TBU(exp2, t) if fi(xi) ≡ exp1 ◦ exp2 for
some expressions exp1, exp2 and ◦ ∈ {⊕,⊗,Y,Z}

• TBU(fi, t) = not px(t) if fi(xi) ≡ ¬x

We then define the time-dependent node update rules TNU, that perform the
update to the values in each node, as follows:

pxi(t+ 1)← time(t)⊗ TBU(fi, t)



MODELLING MULTI-VALUED NETWORKS USING FASP 4-11

For the synchronous case, this is enough to encode the fact that at each time step
t, each node’s value is updated using the update function defined for the node.

For the asynchronous update scheme, recall that even though a state can have
multiple successor states (due to the non-deterministic choice of which node is up-
dated), only states that have a single possible successor can be part of an attractor.
Thus, at any time step, we need to ensure that there is only one possible successor
state of the current state. This can be done by checking that there is exactly one
node that gets a new value during the updates, since if no nodes get a new value,
then the state would be a steady state, while if more than one node gets updated,
then there will be multiple successors to the current state.

This can be done by first adding the following set of rules for each node x ∈ X:

dx ← px(t+ 1)⊗ not px(t)

dx ← px(t)⊗ not px(t+ 1)

dx ← dx ⊕ dx

which intuitively derives the atom dx if the node x gets a new value during the
update. We then add a constraint

0← dx ⊗ dy

for every pair of nodes x and y. This forces that there is at most one node having
a new value during the update. Finally, using

at least one← (dxi
Y . . . Y dxn

)

0← not at least one

ensures that there is exactly one node that receives a new value during the update.
We can now define the required condition to find cyclic attractors, independent

of the update scheme. The following set of rules and constraints can be used to
find cyclic attractors up to size s. First, add the following rules for all k, 1 ≤ k ≤ s
and all xi ∈ X:

ak ← pxi(0)⊗ not pxi(k)

ak ← pxi
(k)⊗ not pxi

(0)

These rules ensure that ak is false iff the value of px(0) equals to px(k) for all
x ∈ X , which means that there is a cyclic attractor of size k (or of size an integer
divisor of k). Then add the following constraint:

0← a1 Z a2 . . . Z as

which forces at least one of the ak’s to be false, say al, which means that there is a
cyclic attractor of size l (or a divisor of l). The example below illustrates the FASP
program construction process for the network from Example 8.
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Example 10. Consider again the network in Example 8, and consider the task of
finding the cyclic attractors of size 4 under the synchronous update. Denote this
network as G. The initial guessing rules GU0(G) are:

x(0)⊕ n x(0)← 1

y(0)⊕ n y(0)← 1

0← x(0)⊗ n x(0)

0← y(0)⊗ n y(0)

Furthermore, since we need to allow node y to be 0 or 1 only, we add a constraint:

y(T )← y(T )⊕ y(T )

The node updates TNU(G) can be represented using the following rules

x(T + 1)← time(T )⊗ ((x(T ) Y 1
2 )⊗ not y(T ))⊕ z(T ))

z(T )← (x(T )⊗ 1
2 )⊕ (x(T )⊗ 1

2 )

y(T + 1)← time(T )⊗ (x(T )⊕ x(T ))

To find synchronous cyclic attractors up to size 4, we add the following for all
i = 1, . . . , 4:

ai ← x(0)⊗ not x(i)

ai ← x(i)⊗ not x(0)

ai ← y(0)⊗ not y(i)

ai ← y(i)⊗ not y(0)

0← a1 Z a2 Z a3 Z a4

One can check that the resulting program has exactly five 2-answer sets. One of
these answer sets encodes the static transitions of the steady-state 〈1, 1〉, by having
the same values for x(0), . . . x(4) and y(0), . . . y(4). The other four answer sets
encode the cyclic attractor 〈0, 0〉 ↪→ 〈 12 , 0〉 ↪→ 〈

1
2 , 1〉 ↪→ 〈0, 1〉 ↪→ 〈0, 0〉, with

each answer set encoding the different initial conditions.

Recall that the example network does not have any cyclic attractor of size > 1

(as explained in Figure 3) for the asynchronous update. In this case, we need to
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add the following rules and constraints:

dx ← px(t+ 1)⊗ not px(t)

dx ← px(t)⊗ not px(t+ 1)

dx ← dx ⊕ dx
dy ← py(t+ 1)⊗ not py(t)

dy ← py(t)⊗ not py(t+ 1)

dy ← dy ⊕ dy
0← dx ⊗ dy

at least one← dx Y dy

0← not at least one

We can see that the states 〈0, 0〉, 〈0, 1〉, and 〈1, 0〉 will be eliminated from the
search immediately, since they have multiple successor states, as shown in Fig-
ure 3.

4.4 Automatic encoding of network descriptions
Biological networks with multiple activation levels are often specified in terms of
the regulatory relationships between their nodes (e.g., in [3, 48]). Such relation-
ships are basically a set of input-output specification for every node, consisting of
every possible combination of values of every node regulating it. To generate the
required FASP program for computing the attractors, we need to represent these
relationships in the form of fuzzy logic formulas under Łukasiewicz semantics,
such as the ones given in Example 9. It is not always straightforward for a hu-
man expert to find a suitable formula that fits a certain input-output relationship
specification. We therefore provide a tool, called FASPG3, that performs this task
automatically, and then invokes a FASP solver to compute the attractors of the
GRN. Figure 4.3 shows the work flow of FASPG.

The input for FASPG is the description of a network, consisting of:

• The number of nodes, n

• The number of activation levels each node has, k

• An input-output specification for every node (described below)

An input-output specification of a node is a set of assignments for that node, given
all possible combinations of the nodes regulating it. For example, consider a node
x regulated by m nodes, y1, . . . , ym. Then, the input-output specification for x is

3FASPG is available at http://github.com/mushthofa/faspg
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Figure 4.3 FASPG work flow

a table of km rows, each row consisting of a possible combination of the values of
the yi’s and a corresponding value for x.

Given such an input-output specification for a node, FASPG automatically
constructs a correct set of Łukasiewicz logic formulas that evaluates to the required
value for the node, following the construction process outlined in Proposition 2.

Proposition 2. Suppose we are given that x has value v whenever each yi has the
value vi, i = 1, . . . ,m. Consider the program F (x, v) consisting, for each i, of
the following rules:

pi ← yi ⊗ 1− vi
pi ← pi ⊕ pi
qi ← not yi ⊗ vi
qi ← qi ⊕ qi
ci ← not pi ⊗ not qi

and the single rule
x← c1 ⊗ . . .⊗ cm ⊗ v

It holds that in any answer set I of F (x, v), I(x) = v whenever I(yi) = vi for
every i = 1, . . . ,m.
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Proof. Intuitively, the atoms pi and qi are Boolean atoms signifying the condition
of whether the value of yi is > vi and < vi, respectively. Therefore, the atom ci,
which is only true when both pi and qi are false, encodes the condition when the
value of yi is exactly vi. The last rule of F (x, v) then assigns the value of v to x,
given that all ci’s are true.

Such an encoding is applied to every row in the input-output relationship table,
and then used in the program encoding for the computation of the attractor. Note
that this encoding is not the only possible one we can come up with, nor is it
necessarily the most efficient one, but as the experiments below will show, it is
efficient enough for real-world networks.

After obtaining the encoding for the regulatory relationships, FASPG writes
the remaining program encoding for the appropriate problem, and then submits
it to the FASP solver FFASP4 [31, 32], which in turn performs the translation to
ASP and calls the ASP solver CLINGO [19]. The attractors are then deduced from
the resulting answer sets by FASPG.

4.5 Benchmark and Experiments

In the literature, little work has been done so far on computing attractors of multi-
valued networks obtained from biological knowledge, due to the lack of appro-
priate tools to perform analysis on multi-valued networks. Our work is aimed to
address this issue. In order to show the applicability of our approach, we collected
several multi-valued networks obtained from the known biological networks in the
literature. We run our approach on these networks and verify the expected results.
Furthermore, to test the scalability of our approach, we also applied it to randomly
generated synthetic networks and measure the time and memory requirements. All
experiments were run on a machine with an 2.5GHz Intel Xeon CPU and a maxi-
mum of 15 GB of allowed memory consumption.

4.5.1 Experiments on real networks

To evaluate the correctness and efficiency of our method, we have tested it on a
number of biological network models obtained from the literature. Table 4.2 rep-
resents the summary of the data collected. In each of these networks, each node
is either Boolean-valued, or three-valued (represented as either the values 0, 1 and
2 or ‘low’, ‘medium’ and ‘high’ in the papers originally describing these multi-
valued networks), except for the D. melanogaster segmentation network which
uses a four-valued logical model. In encoding the regulatory relationships be-
tween the nodes in the network, we assign values from Qk to any k-valued nodes.

4FFASP is available at http://github.com/mushthofa/ffasp
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Consequently, in these network models, we only consider attractors reached from
the set of states where the Boolean-valued nodes are assigned either 0 or 1, and
3-valued and 4-valued nodes are assigned values from Q3 and Q4, respectively.
To generate all the possible relevant states, we add a saturation rule as described
in Section 4.3 to each Boolean node x. For each of these models, the steady-states
are computed, and compared to the ones reported in their respective reference(s).

For the A. thaliana flowering network, the network update functions are listed
in [3] as name-values pairs indicating the input-output pairs of the update func-
tion on each node. For the Th cell regulatory network, [51] proposed different
versions of the network. For our purpose, we use the logical rules presented in
the Equation 2 in that paper, and evaluate them as 3-valued Łukasiewicz functions
(i.e., treating ∨ and ∧ as ⊕ and ⊗, respectively), which is equivalent to the 1-hot
encoding used in [2]. For the D. melanogaster segmentation network, the network
update functions are represented using the notation used in [47]. By ignoring the
time-delay parameter of this representation and using the assumption of the basal-
expression levels of the genes to be 0 (as also done in [25]), we can faithfully
represent each of the update functions given using Łukasiewicz logic formulas.

Table 4.2 shows, for each network, the number of nodes (n) , the number of
Boolean nodes, the number of possible activation levels (k), the number of steady-
states found, and the computation time using our method. We can see that for
the largest network (n = 23), the computation time is still very manageable (< 5

seconds). Except for the A. thaliana flowering network, we have taken advantage
of the fact that the source literature already represented the update function as a
logical function that can be directly translated into Łukasiewicz logic formulas.
This might not always be the case, as shown in the A. thaliana network, where
the interaction network was given just in the form of input-output pairs between
the regulating nodes and the regulated node. In such cases, FASPG relies on
the construction process from Proposition 2 to automatically generate the update
function. These automatically-generated formulas, despite being correct, might
cause the computations to take more time compared to manually crafted ones. The
following subsection details an experiment on applying our method to synthetic
networks to gain a more realistic picture of the computational requirements when
we use FASPG to assist in the encoding of the interaction network.

4.5.2 Experiments on synthetic networks

Due to the limited availability of results about them in the literature, experiments
on real biological networks can only paint a small picture on the efficiency of
the application of the proposed method. Furthermore, the benchmark test on real
networks that we presented in the previous subsection was limited to only the
computation of steady states, due to the non-availability of cyclic attractor data
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for any of the networks. Additionally, we would like to see the effects of using
FASPG’s automatic encoding of the interaction network. Below we therefore
apply the method on randomly generated networks. These additional experiments
are intended to asses the computational resources (in terms of time and space)
needed to run the method, given increasing values of n and k. To this end, we
generated 5 random networks for each combination of n and k, ranging from n = 5

to n = 50 with a step of 5, and k = 1 to k = 6. To generate realistic network
topologies, we follow the procedure for generating random scale-free networks as
given in [52]. Briefly, during the random network generation, each node is added
one by one. At each step, the probability that an existing node is connected to a new
node is proportional to its current degree. The directionality of the interactions are
then chosen randomly. Furthermore, to limit the computational burden, we restrict
the number of incoming regulatory interactions for a node to be within the range
of 1 to 5. In each of these regulatory relationships, a set of random input-output
relationships are generated (which covers every possible combination of values for
the regulators).

For each of these random networks, we solve the following tasks using FASPG:

• Find all steady states of the network.

• Find at least one cyclic attractor with size < 5 using either synchronous or
asynchronous updates (or report that there are none).

In each of our runs, we record the running time and the maximum memory usage.
We set a time-out of 20 minutes per computation. For every combination of n and
k, we run the method on 5 different randomly-generated networks, and we report
the average of the running times and memory usages on the 5 networks, unless we
observe a time-out or a memory-out in any of the 5 networks, in which case we
report it as a failure.

Figure 4.4 and Figure 4.5 show the computation time and memory usage of
the algorithm in finding all steady states, respectively. Overall, we notice that
the method performs quite well in computing steady states for lower values of k,
with the largest instance (n = 50) requiring less than 5 minutes, on average, to
complete. However, we can clearly see that the bottleneck is in k, and for k ≥ 5,
computation time as well as memory usage increase drastically with larger values
of n.

Figure 4.6 and Figure 4.7 show the computation time and memory usage for
finding cyclic attractors using synchronous updates. Overall, we see that finding
cyclic attractors generally takes more time and memory than finding steady states.
The overall trend that k seems to be the bottleneck can still be observed, with
even more time-outs. For k = 1, no time-outs are observed for the network sizes
considered. For larger k, we start to observe more and more time-outs, with k = 4

having time-outs for n > 5.
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Figure 4.4 Running time for computing steady states. Missing nodes indicate
failure due to time-outs/memory-outs.

Figure 4.5 Memory usage for computing steady states. Missing nodes indicate
failure due to time-outs/memory-outs.
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Figure 4.6 Running time for computing synchronous cyclic attractors. Missing
nodes indicate failure due to time-outs/memory-outs. The singleton node repre-
sents k = 4. All instances with k > 4 failed due to time-outs/memory-out.

Figure 4.7 Memory usage for computing synchronous cyclic attractors. Missing
nodes indicate failure due to time-outs/memory-outs.The singleton node represents
k = 4. All instances with k > 4 failed due to time-outs/memory-outs.
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Figure 4.8 Running time for computing asynchronous cyclic attractors. Missing
nodes indicate failure due to time-outs/memory-outs.

Figure 4.8 and Figure 4.9 show the computation time and memory usage for
finding cyclic attractors using asynchronous updates. Here, we notice that the time
requirement for finding asynchronous cyclic attractors is, in general, lower than in
the synchronous case. This is probably due to the more stringent criteria applied to
the dynamics (in which only one possible successor state is allowed) which can be
exploited by the solver. No time-outs are observed for the network sizes consid-
ered. However, we see a larger memory-usage than for either the steady-states and
synchronous cyclic attractors, with larger instances having memory outs. In con-
clusion, we observe, as expected, that time and memory requirements generally
increase exponentially w.r.t the size of the network (n), while the number of pos-
sible values in the activation level of the genes (k) serves as an exponential factor.
In addition, we observe that computing steady states generally has a lower com-
putational requirements than computing synchronous and asynchronous attractors.
Synchronous attractor computation generally requires more computation time than
the other two, while memory consumption is generally the biggest bottleneck in
asynchronous attractor computation.
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Figure 4.9 Memory usage for computing asynchronous cyclic attractors. Missing
nodes indicate failure due to time-outs/memory-outs.

4.6 Conclusion

ASP has been successfully applied to model the dynamics of gene regulatory net-
works in the Boolean setting; see e.g. [14, 15]. In these works, the encoding of the
update function is restricted to two specific types (denoted as r∗ and r+ in [14]),
due to the particular way that the encoding of the dynamics is written (i.e., encod-
ing the update function at a meta-level). In [16], it was suggested that each of the
node’s update functions of a Boolean network can be directly encoded as a rule
in ASP. This allows for a more generic encoding of the network update function.
Furthermore, it was shown that the steady states of the network are directly ob-
tainable using the semantics of ASP. To obtain the cyclic attractors, [16] proposes
an extension of the ASP semantics which allows to capture cyclic attractors “nat-
urally” as answer sets of the program. Such an extension is not obvious nor easy
to develop and implement, however, since it requires the redefinition of the basics
of ASP, as well as the reimplementation of currently available solvers. In addition,
this method is only geared towards Boolean networks, instead of multi-valued net-
works.

In this chapter, we have describe our proposal for the method to use FASP, an
extension of ASP in the continuous domain, as a convenient language for encod-
ing the dynamics of multi-valued networks. To the best of our knowledge, this is
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the first real-world application of FASP that goes beyond small toy examples. We
showed the correctness of our encoding, and we evaluated its efficiency for com-
puting the steady-states of real biological networks found in the literature. The
experimental results show that the proposed method works quite efficiently, espe-
cially for finding the most biologically-relevant type of attractors, which are the
steady-states and small-sized attractors. The method incorporates two distinguish-
ing characteristics:

• It allows graded activation levels in the nodes of the networks instead of
only “on” and “off”, and

• It allows a more flexible definition of the network update function by encod-
ing the dynamics of the network using a time argument. In contrast to the
approach used in [14, 49], the use of the time argument and the direct encod-
ing of the network update function allows for a more general relationships
between interacting nodes. Additionally, this alleviates the requirement to
extend/redefine the theoretical notion of answer sets in logic programming,
as is required by the approach used in [16] for encoding the computation of
cyclic attractors.
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Table 4.2 Benchmark results.
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5
Network-based predictive modelling

for cancer drug response

5.1 Introduction

Over the last few years international efforts have resulted in the profiling of 1000
of cancer genomes of different cancer types (ICGC). Based on these results, hun-
dreds of cancer drivers have been identified. These drivers serve as novel drug
targets or as bio markers for prognosis and/or personalized therapy prediction. In
current medical practice, panels of actionable drivers have been proposed that are
screened for by targeted sequencing in order to decide on a per mutation basis
whether or not a patient would benefit from a certain therapy. For a clonal disease
such as cancer such single mutation-based decision making has drawbacks. This
is because most of the current actionable drivers have been identified by search-
ing in panels of tumor genomes for recurrently occurring mutations that can be
associated with the disease. Actionable mutations in clinical screening panels thus
correspond to frequently occurring mutations. However, cancer is a clonal disease
and therefore not all tumors that have the same sub-type and that would possi-
bly benefit from a certain therapy will carry exactly the same mutation. Previous
cohort analyses has shown that molecular sub-types originate by hitting the same
driver pathway but that this can occur in many different and often mutually exclu-
sive ways. By screening for the most frequently occurring actionable mutations,
patients that carry rare mutations in the same driver pathway that is affected by the
frequent actionable mutation will be missed, resulting in a high false negative rate
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(patients that would potentially benefit from therapy would not receive therapy).
By screening for the most frequent mutations only around 11%-86% (depending
on cancer types and study) would receive a therapy [1–3].

In addition, cancer is a complex disease and primary sub-types but also other
clinically relevant phenotypes such as drug resistance depend on the aberration of
multiple pathways. Clinical practice has indeed shown that many of the patients
that carry a so-called positive actionable mutation do not respond to therapy as
predicted (false positives). This is mainly because panels of mutations that are
screened for in clinical practice only focus on the actionable mutations, but have
not been designed to also take into account the genetic context in which the ac-
tionable mutation occurs. As a result, for each therapy (e.g. drug) designing a
proper screening panel would ideally require designing sets of mutations, rather
than single mutations that characterize the full actionable driver pathway and ge-
netic context in which a driver pathway appears actionable. Such a biomarker
design thus requires a protocol that pools information from large patient cohorts
with well-defined clinical properties to identify recurrently affected pathways or
networks.

Network-based approaches, which use a molecular interaction network to steer
the driver identification problem are ideally suited for the detection of recurrently
mutated pathways and have already been successfully applied to analyze patient
cohorts in TCGA/ICGC. However, as clinical information is relatively sparse in
TCGA/ICGC and TCGA/ICGC contains mainly primary tumors, these methods
have mainly been used for unsupervised driver identification and/or sub-typing.
This will result in molecular sub-types that can explain the origin of a disease,
but that do not necessarily have clinical implications. In addition, cancer cells
have a fast evolving mutational landscape and accumulate mutations that confer
resistance to first line therapies and/or result in metastases which might be much
more relevant towards predicting optimal therapies than the mutations that explain
the molecular origin or tissue type of a cancer. Incorporating quantitative informa-
tion on clinically relevant phenotypes is thus essential to identify pathways/genetic
aberrations that associate with clinically relevant phenotypes but that might be less
prominently present than the aberrations determining the molecular origin of the
disease.

In this chapter, we described our proposed method of integrating biological
network information for feature selection and data transformation for phenotypic
prediction, in particular, for the context of cancer drug response prediction. To
steer the search for causal genetic aberrations towards those that associate with
a phenotype of interest, we modified a diffusion-based network approach to in-
tegrate phenotypic information with molecular profiling data in order to identify
sub-networks that can explain quantitative differences in phenotypic behavior. As
a proof-of-concept, we tested the methodology on recently described panels of cell
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lines for which the quantitative response to different drugs was available. For well
described drugs, the known drug targets and/or resistance conferring mutations
were among the highly prioritized features, irrespective of the cell line and/or tis-
sue type in which they occurred. As an additional validation of the biological rel-
evance or our selected features we demonstrated that the identified features could
be used to build a classifier that was able to distinguish between drug responsive
and resistant cell lines. These results showed that the network based approach was
able to accurately extract from molecular profiling data of tumor panels (patients
or their preclinical models) the features that can be used as biomarkers to predict
a clinical phenotype, such as drug response.

5.2 Results

5.2.1 Network-based strategy molecular to identify sub-networks
driving a clinical phenotype

Our method aims at identifying molecular sub-networks that are recurrently af-
fected across a cohort of tumor samples and that associate with a phenotype of
interest. The overview of the method is given in Figure 5.1. and builds upon a
previously published integrative network based method [4]. The input consists of
a set of genotyped samples (tumor samples, cell lines) that are both clinically and
molecularly phenotyped (e.g. by transcriptome profiling).

Based on their phenotype, samples are subdivided in two groups containing
respectively samples with a positive and samples with a negative phenotype. Per
group we build a dedicated network model in which both samples and genetic en-
tities are represented by nodes. Genetic entity nodes can be connected to other
genetic entity nodes if information on an interaction between the entities is avail-
able a priori e.g. from public databases such as KEGG [5], Reactome [6] & The
Atlas of Cancer Signaling Network (ACSN) [7]. Genetic entity nodes are also con-
nected to status nodes provided a genetic entity was found in an aberrant state in
at least one sample. Different types of status nodes exist depending on the type of
aberration i.e. reflecting whether a gene contains a copy number variation (CNV),
a somatic mutation (MUT), or whether it is differentially expressed. The status of
a gene is indicated in a binary way (1 is aberrant status and 0 is normal status). Sta-
tus nodes are connected to the respective sample nodes in which the aberrant status
was observed. To incorporate phenotypic information, connections between sam-
ple and status nodes are weighed using the phenotypic strength (i.e., how strongly
they respond to the drug) displayed by the sample.

Subsequently the network model is used to assess the similarities between the
sample and respectively the status and entity nodes. Similarity scores are based
computed based on kernel diffusion as outlined in Verbeke et. al [4]. The respon-
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Figure 5.1 Overview of method. 1) A pair of thresholds is chosen to define the
resistant and responsive cell lines for a certain drug, 2) molecular data from the
set of cell lines on each set are combined and integrated on top of the biological
network, 3) kernel scores are computed and averaged for all cell lines within each
set, 4) rankings of features are determined by the largest differential scores be-
tween the two sets, 5) Train a classifier, and then test using new data with/without
diffusion.
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ders and non-responders sets are analyzed separately, hereby assuming that within
one set i.e. respectively responders or non-responders the same pathways will be
triggered. Molecular aberrations or genes in an individual sample relevant to the
phenotype of the sample will through the network based diffusion be reinforced by
aberrations occurring in other samples of same set that are located in the same en-
tities or at least in the same local network neighborhood of the affected entity. The
similarity scores between sample-entity or between sample-status nodes reflect
the importance of respectively an entity or status node in driving the phenotype
of the sample. Entity or status nodes that are highly relevant for the responders
(i.e. with a high average similarity score for the samples in the responder set) and
non-relevant for the non-responders (i.e. with a low average similarity score for
the samples in the non-responder set) or vice versa intuitively represent the gene
sets (entity nodes) and their genomic/transcriptomic features (status nodes) that
are most discriminative for both phenotypes. Therefore, based on the difference in
score a node obtained in respectively the responder and non-responder set, a node
rank is assigned. Nodes are assigned a positive rank if they were relatively more
relevant for the responsive phenotype than for the non-responsive one and a nega-
tive rank if the opposite was true (i.e. the sign of the rank is based on the sign of the
difference between the average scores of the node-sample similarities obtained in
either set, the rank itself is based on the absolute difference in these nodes scores).
Status nodes are scored per status type (MUT or NET, see the section on Methods
and Data) separately to assess the marginal effect of each aberration type in prior-
itizing the corresponding genetic entity (to which the status node is connected).

Using these selected nodes, we then train a random forest classifier to clas-
sify the two classes: responders and non-responders. We compare the perfor-
mance of the resulting classifier with a baseline random forest classifier trained
using statistically-selected features. As an additional step in our method, we also
propose a data transformation approach using a PageRank-like [8] diffusion on
the selected sub-networks, and trained another random forest classifier using the
transformed data (see Methods and Data for details). The resulting random forest
classifiers trained using the network-selected features and the transformed data are
then compared with the baseline random forest classifier in terms of classification
performance in a cross-validated setting.

5.2.2 Application of the method to drug response prediction

To test our method, we applied it to recently published drug related cell-lines from
the Genomics of Drug Sensitivity in Cancer (GDSC) [9]. This study profiled for
a large set representative tumor cell-lines, transcriptomic and genetic data as well
as the quantitative response to a large number of drugs. Cell-lines were stratified
according to their drug response. To avoid disturbing the identification of pathway
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Figure 5.2 Genes associated to the top ranking nodes selected for the MEK in-
hibitor PD-0325901, mapped on the gene-gene interaction network. Blue nodes
indicate the genes that were selected as top ranking using the network based data
integration based on their status nodes, while yellow nodes indicates the nodes as-
sociated to top predictive features. Red nodes were not selected by our method,
but are displayed to show the connectivity between the selected nodes.

based features with noisy signals per drug, only the cell lines that show a clear
(non) response signal were retained (details in Methods and Data). Applying our
network-based integrative strategy on the data allowed prioritizing for each drug
the entity and status nodes (MUT, CNV, NET) that associate with a difference in
clinical phenotype to the drug. The degree to which each selected node associates
to drug response is represented by its network similarity score, computed from
the difference in the average normalized score of the nodes between the set of
responsive and non-responsive samples. Analyzing quantitative drug response to-
gether with the genotype and expression profiling of the individual cell-lines will
result, per drug, in pathway features that determine whether or not a cell-line is
drug responsive. The major added value of network-based features as compared
to features derived by a statistical method (e.g. random forest, ANOVA) is their
biological interpretability. Mapping the top-ranking nodes to the corresponding
genes in the gene-gene interaction network results per drug in a tightly connected
sub-network, confirming that the method indeed enforces the selection of features
that consistently trigger the same sub-network. This drug specific sub-network
represents the molecular mode of action that results in the observed drug response.
Figure 5.2 shows as a representative example the gene sub-network containing the
19 nodes associated with the features selected for PD-0325901, a known MEK-
inhibitor. As shown here, the genes associated to these features are closely con-
nected to the known (upstream) members of the MAP kinase pathway, suggesting
their role in determining response to the MEK inhibitor.
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5.2.3 Validation of the pathway-based features by assessing pre-
dictive power

To illustrate the relevance of the pathway-based features extracted by our network-
based integration method, we assessed their added value in predicting drug re-
sponse in a cross validation setting. To this end we trained a random forest fed with
the best 30 network-based features and tested its accuracy in correctly predicting
drug response of the left out samples (see Materials and Methods). We choose
for a classifier that can make use of 30 features as this mimics a currently realis-
tic clinical setting in which targeted screening of a medium-sized small biomarker
panel would be used to stratify patients. We compared the performance of this
network-feature-based classifier with a baseline i.e. a random forest trained with
30 statistically derived features (details in Methods and Data).

For ease of interpretation, the data set is subdivided into two sets: 1) the data
set (156 out of the 214 drugs) in which a clear statistical signal is present that
allows a feature extraction and classification performance that is larger than what
can be expected at random, and 2) the data set in which such statistical signal
is not obviously present (58 out of the 214 drugs). The presence of statistical
signal (i.e., correlation between genomic features of the cell lines and the their
drug response) was assessed by comparing the predictive performance of a random
forest trained on all features with the performance of a random forest trained on
the same features derived from a randomized data set (features remain the same
but had been randomly-permuted to break the correlation with the drug response,
see Methods and Data for details).

For data sets with a clear statistical signal, the random forests trained with
network-based features performed better than the random forest fed with statisti-
cally derived features in 112 out of the 156 cases, indicating that in those cases,
the network-based method does not only allow extracting the correct significant
features in most cases but that it tends to also select less spurious features than the
baseline random forest. Figure 5.3,5.4 & 5.5 show the comparison of the accuracy
results for these 156 drugs, where we split the plots based on whether the random
forest classifier trained using our network-based feature selection could perform
better than random (Figure 5.3 & 5.4) or not (Figure 5.5. In Figure 5.3 & 5.4 (total
131 drugs), we can see that the random forest trained using the network-selected
features almost always outperformed the baseline random forest (105/131), and
in many cases by significantly large margins. In Figure 5.5 (total 25 drugs), the
improvement we gained from using the network-selected features are no longer as
significant as the previous case, but we can see that there are still some improve-
ments over the baseline method.

For the second subset of data (i.e., where there was no obvious signal cor-
relating the genomic features to the drug response, consisting of 58 drugs), we
consider only the case where our network-based feature selection method could
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still perform statistically better than random (Figure 5.6, total 16 drugs). Here, we
see that despite the fact that the signal in the data is not very strong, the network-
based feature selection managed to improve slightly compared to the baseline. We
do not consider the complimentary case (i.e., where our network-based feature
selection method also could not perform statistically better than random), since
this means that both our proposed method and the baseline method obtained poor
performances, which probably indicates the low quality of the data and/or a very
weak presence of signal in the data.

The previous results show that our network-feature selection is able to select
relevant features and generally reduce the number of selected spuriously-correlated
features. Although random forests are generally robust against the selection of
spuriously-correlated features, the relative higher number of initial features in
combination with the small sample size is likely to result in selecting at least
some spurious features when performing a mere statistical selection. Imposing
that informative features should belong to the same network neighborhood results
is an extra biological constraint that reduces the number of spurious features. This
higher robustness towards selecting spurious features is thus an inherent property
of using the network prior during feature selection. However, in some cases, we
also see that using the network-based selected features, classification performance
decreased. The lower performance of the network-feature based classification as
compared to the baseline in at least a subset of the cases is to be expected as the
network-based method depends on the completeness of the interaction network.
Features not connected in the network are harder to identify by the network method
than with the random forest based feature extraction.

Comparing the network-feature based classifier with baseline already illus-
trated that using a network prior allows extracting relevant features. However,
given the fact that a random forest is limited in the maximal number of features
it can select, combining a network-feature selection with a random forest classi-
fier does not yet extract the full potential of the identified drug specific network.
As explained above network-based features by nature also include aberrations that
occur infrequently in a cohort and therefore only have marginal explanatory or
predictive power for the phenotype of interest (here, drug response). To maxi-
mally exploit these less predictive features that occur in an insignificant number of
samples, we also tested an alternative strategy in which we performed a data trans-
formation, prior to feeding the data into the network-feature-based classifier (i.e.
the random forest that was trained with the network-based features on the non-
transformed data). To this end, the read-out of all 30 network features (mutations,
CNVs, expression signals) were separately diffused for each test data through the
selected drug-specific sub-network selected by our method. This transformation of
the original data will allow signals in the selected sub-network that were observed
in few samples to be extrapolated to neighboring nodes in the sub-network that
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tend to be more frequently mutated and thus carry a more pronounced statistical
signal. This transformation allows a frequency driven approach such as a network-
feature based random forest to more easily recover these samples too. Comparing
the results of this diffusion-based classification strategy with baseline and with the
network-feature based random forest classifier applied to the non-transformed left
out data shows the added value of exploiting the information contained in the full
drug specific sub-network.

For the random forest classifier that uses network-based data transformation
(using network-based diffusion, see Methods and Data), classification performances
are generally higher than the baseline method and the method using the network-
selected features. For the first subset of the data, network-based data transfor-
mation resulted a better classification performance than the baseline method on
126 out of 156 drugs, and better than the method using the network-selected fea-
tures on 103 of 156 drugs (although the improvement in this case is generally
quite small, Figure 5.3 and Figure 5.4). For the second subset of the data (58
drugs), network-based data transformation quite often gives a classification per-
formance that is at least as high as using network-based feature selection (42 out
of 58 drugs), although, similarly as in the previous case, any improvements over
using the network-based feature selection are very marginal. This general obser-
vation that the improvement obtained using the network-based data transformation
method is marginal compared to just using the the network-based feature selection
method is probably due to the fact that the number of samples with rare mutations
is too small compared to the bulk of the sample set, giving only advantages on
very rare cases. However, in practice, such an approach could still be useful for
potentially being able to suggest alternative treatment for cancer patients that have
rare mutations.

5.2.4 Biological Relevance of the pathway-based features

To assess per drug the biological relevance of the top-ranked genes and their cor-
responding features, we assessed to what extent known drug-feature associations
could be recovered by our method. Table 1 shows for 18 drugs that are either
clinically approved or under a clinical trial, the features, known to be predictive
for response (+) or non-response (-) of the cell lines carrying them. We compared
to what extent the top scoring features selected by our network-based feature se-
lection method and the most predictive features obtained after training the ran-
dom forest with the network-based features used as input corresponded with those
known drug response features. As is shown in Table 1, all known features were
ranked highly by our network-based feature selection method and/or selected as
the most prominent features after training the classifier. This shows that from the
thousands of features used as input, our network based feature extraction method
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Figure 5.7 List of known drug-feature associations, and the rankings of the fea-
tures obtained using our network-based feature ranking method

is able to prioritize the biologically relevant ones.

To assess how our selected features compare to those that were obtained by
respectively ANOVA and LOBICO (a logical predictive model described in [10])
on the same data set, we compared the top selected features after random forest
training to the features obtained using ANOVA or LOBICO. ANOVA finds on
average 2.9 responses associated features per drug of which on average 0.8 fea-
tures per drug were also retrieved by our method whereas LOBICO detected on
average 3.7 predictive features per drug of which on average 0.8 features over-
lapped with those found by our method. In the comparison mentioned above we
focused on features that were prioritized because of (1) their univariate association
to response, as the network score ranking selects the most differentially scored
nodes between the resistant and responsive set, (2) because of its predictive power,
because the features were ranked and selected using their predictive importance
in the random forest model. As these criteria are reminiscent of what univariate
methods or predictive methods do, an overlap in features selected by respectively
our method and ANOVO/LOBICO is to be expected. However part of the feature
score of our network-based features is derived from its degree of connectedness
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with other selected features, because the network scores calculation tends to give
higher scores to connected nodes. Thus, our method represents a compromise
between individual importance of features and their relationships within the bio-
logical network. Because of the latter network-component of the score, our net-
work based method is able to also prioritize features that by themselves are only
weakly-associated to response and/or have low predictive power (as is illustrated
by the low predictive value), but that are relevant to the response because they
trigger together with other features the same causal molecular network. In addi-
tion, rather than associating every single aberration separately to the phenotype
as is done with classical regression methods, aberrations are collapsed on genes
which are then associated to the phenotype through the network. Using the net-
work thus provides an intuitive way to integrate different data sources: if different
types of aberrations occur in the same gene that on their own occur too rarely to
have any predictive power collapsing them on genes increases their association
signal. This is an additional factor that contributes to the complementarity be-
tween our network-based method and the more classical association techniques.
An example is for instance the PTEN mutation & deletion which were by our net-
work feature selection method both found to be associated to TGX 221 response
(PTEN-MUT is third in the mutation ranking, and PTEN-CNV is second in the
CNV ranking ) but for which in the original publication only the mutation was
prioritized (by the ANOVA model). As PTEN is a known tumor suppressor gene
that negatively regulates the PI3K-Akt pathway, mutations in PTEN have a well-
known association with response to PI3K inhibitors, including TGX 221 [11–13].
The association between TGX 221 response and the loss of PTEN was recently
confirmed [14].

As mentioned above, the main advantage of our integrative network-based fea-
ture extraction methods is that it also allows identifying features that are infrequent
in the sample cohort but that associate with the phenotype through their connec-
tivity with other more prominently present features. Such features are harder to
identify with methods that rely on mutational recurrence such as LOBICO [10] or
standard ANOVA or a mere random forest. We illustrate the biological relevance
of some of these novel features with a few representative examples. We focused
mainly on drugs for 1) which the identified features were not identified in the orig-
inal publication by ANOVA or LOBICO, 2) for which our network-feature based
classifier outperformed baseline. These are typically drugs for which predictive
network-based features could be detected that do not occur frequent in the cohort
(sometimes in a few samples only). A first example if Olaparib, an FDA-approved
PARP inhibitor. Figure 5.8 shows the selected features extracted for Olaparib. Fea-
tures were ranked according to their predictive power in the random forest trained
with network-based features. Based on our analysis of the GDSC data we prior-
itized as one of the most predictive positive predictors for Olaparib response the
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Figure 5.8 Top-ranking features selected using our method for OLAPARIB. Rows
represent the selected features, whereas column represent cell lines, sorted from
the most non-responsive to most responsive. Mutations and amplifications are
shown as 1s, while deletions as -1s.

EWSR1-FLI1 fusion, which was also recovered by previous studies using ANOVA
and LOBICO and which is a well-known biomarker for positive response to Ola-
parib [15].

However, next to EWSR1-FLI1 fusion we detected several features that oc-
cur much less abundantly in the sample set than the EWSR1-FLI1 fusions. For
instance mutations in STAG2 and PIK3CA were both prioritized as features pre-
dictive for positive Olaparib response [16]. STAG2 involved in chromatid cohe-
sion could, in analogy to other genes that cause sensitivity to PARP inhibition
affect replication fork integrity and therefore homologous recombination repair.
The involvement of STAG2 mutation cells in driving sensitivity to Olaparib was
confirmed by a recent study in Glioblastoma [17]. Related to PIK3CA it has pre-
viously been shown that PI3K inhibition can lead to DNA damage, downregula-
tion of BRCA1/2, gain in poly-ADP-ribosylation, and subsequent sensitization to
PARP inhibition [18]. As predictors of a negative response to Olaparib, we prior-
itized APC deletions and mutations. We did not find any direct link in literature
between Olaparib and APC mutations. However, APC plays a role in DNA repair,
particularly in base excision repair (BER) pathway. In normal cells that have DNA
damage above the threshold limit, the APC level increases and blocks BER leading
to apoptosis. It is thus tempting to assume that in the absence of APC, cells can es-
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cape apoptosis despite having a high load of DNA damage and subsequently might
have a higher chance to become tumorigenic. Interestingly, APC was also prior-
itized as a negative response predictor for Camptothecin another drug interfering
with DNA damage pathways. Camptothecin is an inhibitor of topoisomerase 1 in-
ducing irreversible double-strand breaks which normally should induce apoptosis,
unless APC mediated apoptosis is impaired.

5.3 Discussion

In this study we presented a network-based method to select molecular features
associated with drug response in the context of cancer treatment. The method is
motivated by the assumption that because of the evolutionary characteristics of
cancer, two different cell lines with different molecular aberrations can exhibit a
similar phenotype (e.g., drug response to the same drug) if their mutations affect
the same pathway. By exploiting prior information in the form of molecular net-
works, this information on pathways that are recurrently affected across samples
and associate with the phenotype of interest (i.e. drug response) is taken into ac-
count. This use of network-based prior information allows recovering rarely mu-
tated features that have a low association signal/and or predictive power on their
own. In addition using a network as a scaffold to perform the analysis provides a
straightforward and intuitive way to cope with multiple data sets in an integrative
way. By considering these aberrations in the context of a network (network neigh-
borhood) relevant associations between infrequently occurring molecular features
and drug response will be up-weighted because of their location in the network
neighborhood of more prominently associating features. As a result our method
can recover novel drug associated features on the GDSC [9] data set that were not
yet described in the original study. The relevance and added value of network-
based features was proven by assessing their predictive power in a cross validation
setting. Using a network-based feature selection prior to training a random forest
classifier increased the performance as compared to a classifier that used all fea-
tures as input, especially for drugs in which the overall classification performance
was low. In those setting no obvious frequent features are present as is testified
by the low performance of the random forest trained on all features, and the added
value of using a network to “up-weight” the rare features when they occur in each
other’s network neighborhood becomes more pronounced. An additional added
value of the network-based features is their interpretability. Whereas a random
forest classifier often also results in a good predictive model, the extracted fea-
tures only have a statistical interpretation. The network-based features in contrast
provide insight into the molecular mechanisms that drive a drug response. This
interpretability is, for instance, clearly illustrated by the fact that the same type of
features were selected for drugs with similar modes of action e.g. the selection for
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APC as a negative predictor for both Olaparib and Camptothecin.

Another example is the association of APC mutation to response to YM155,
a BIRC5 (survivin) inhibitor. Previous studies have shown the regulatory role of
APC to survivin, and the role of APC mutation in the development of cancer [14,
19]. Another study has confirmed relevance of APC mutation to YM155 response
[20]. Yet another interesting example is the association between the response to
MK 2206, and AKT inhibitor with PIK3CA mutations. PIK3CA and AKT are
important actors involved in the PI3K-Akt pathway and recent studies have shown
a clear association between the response to MK 2206 and PIK3CA mutations [21].

Yet another advantage of using our network-based approach is that ability to
prioritize gene(s) among several genes co-amplified/deleted in a certain region. In
the GDSC data set, for example, amplification and deletion are measured for re-
gions that may span several different genes. Due to the fact that the genes in a sin-
gle region are represented by one measurement, any association between the region
and the drug response cannot distinguish between which genes in the region are
actually more likely to be biologically-relevant in the association. Accordingly, all
associations between copy number variations presented in [9] using either ANOVA
or LOBICO are always at the region-level, and cannot select which of them are
likely to have the causative association. Our network-based approach solves the
problem of selecting the biologically relevant genes in the region by integrating
the underlying biological network, which implicitly models our knowledge about
biological processes/pathways that involve these genes, and that might be relevant
in determining drug response. The network-derived scores that are computed per
gene will then reflect the degree to which the genes are associated to the response,
taking into account the network structure.

An example of this is our result in the feature prioritization for response to
PD-0322991, a cyclin D kinase 4/6 inhibitor (Figure 5.9). It has been known that
CDKN2A deletion and RB1 mutational status are correlated with response to PD-
0322991 in several types of cancer, e.g., luminal ER+ breast cancer cells [32]. De-
spite the fact that CDKN2A deletion in the GDSC data set is always co-measured
with BNC2, JAK2 and PSIP1, CDKN2A deletion were ranked first in both our
network score ranking (CNVP) as well as predictor ranking, while none of these
other 3 genes were selected, indicating that our method correctly prioritizes the
biologically relevant feature among the genes in the same region. We can partially
explain this result by examining the underlying sub-network structure connecting
the top scoring genes, as depicted in Figure 5.9. From this network structure, we
can conclude that CDKN2A receives a high score (1st in NET ranking) not only
because it correlates to response, but also because it is closely connected to other
high scoring nodes. In fact, we can see that it is also closely-connected to the nodes
representing the other 4 features that are also highly-ranked, both by the network
scores as well as by the random forest predictor importance measure: RB1 dele-
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Figure 5.9 The sub-network selected by our feature selection method for cyclin-
inibitor drug PD-0332991. Yellow nodes are the nodes which are also with high
predictive values according to the random forest classifier, while red nodes are the
drug’s targets.

tion, RB1 mutation, IL7R deletion and TP53 mutation. Coincidentally, all of these
nodes are closely-connected as well to the drug targets: CDK4 and CDK6.

5.4 Methods and Data

5.4.1 Cell lines and data processing

Data were collected from the repository of the Genomics of Drug Sensitivity in
Cancer (GDSC) [9]. Molecular data from the GDSC project was obtained from the
binary Cancer Functional Events (CFEs) matrix for the Pan-Cancer analysis (file
PANCAN simple MOBEM.rdata.txt), while gene expression was derived from
the RMA-normalized expression matrix (file Cell line RMA proc basalExp.txt).
Drug screening profiles were obtained from the AUC column of the fitted dose
response (v17). Based on the molecular profiling data obtained from GDSC, we
first calculate, for each tissue type, the average gene expression values. Then,
per gene and per drug data set, a discrete value representing the level of differ-
ential expression of the gene in each of the cell lines w.r.t. the calculated tissue
average were then derived. Cell lines are assigned to tissues as defined in the
TISSUE2 field of the GDSC Cells table. Values of 1, 0 or -1 represent whether
a gene is respectively highly-expressed, averagely-expressed or lowly-expressed,
as compared to the tissue average. Assigning 1 (or -1) to a gene is based on the
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following criteria: (1) the gene’s expression is higher (or lower) than 90% of that
of the other cell lines of the same tissue, (2) the tissue average of the gene’s ex-
pression is at least 5 and (3) the tissue standard deviation of the gene’s expression
is at least 2. These discrete differential gene expression levels are used instead of
the continuously-valued RMA-normalized gene expressions, for both the network
score computation and the random forest training. Per drug, we determined a pair
of thresholds (th1 < th2) to distinguish between cell lines with a clear response
signal (cell lines for which the Activity Area AA > th2) and cell lines that clearly
did not respond (cell lines for which AA < th1). The thresholds per drug was
determined as follows:

• The lower threshold th1 is defined as the minimum between 0.1 and the 15%
quantile of the whole response range for the drug.

• The upper threshold th2 is defined as the maximum between 0.1 and the
85% quantile of the whole response range for the drug.

• If there are less than 30 samples for either the negative (AA < th1) or the
positive (AA > th2), then the drug is discarded (no further analysis will be
done).

Cell lines with an AA between th1 and th2 were not retained for network-
based analysis and for training random forests, in order to avoid disturbing the
training data with noisy signals. The molecular interaction network was obtained
by combining interactions retrieved from 299 KEGG human pathways [5], from
the Atlas of Cancer Signaling Network (ACSN) [7], and from the CCSB Human
Interactome project (HI-II-14) [22]. Protein complexes and protein fusions (e.g.,
BCR-ABL), mostly occurring in KEGG pathways and in the ACSN components,
are represented as a separate node connected to their constituent protein nodes.
After some pre-filtering and removal of non-connected nodes, the resulting net-
work after combining the three data set consists of around 4800 nodes and 35000
interactions. Dummy nodes where created to represent gene/protein fusions, (e.g.,
BCR-ABL) which are then connected to nodes representing the fused genes (e.g.,
BCR and ABL).

5.4.2 Network model

An overview of the network model is given in Figure 5.1. We describe how the
network model is constructed below. Given a set of samples with molecular data
(MUT, CNV, EXP), and a prior interaction network given by the adjacency matrix
A, we perform the following steps:

• Create a node for every sample (called the sample node)
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• Create a node representing every mutation, copy number variation and ev-
ery (non-zero valued) differential gene expression (called the status node)
on each gene node in the interaction network, and connect them to their cor-
responding gene in the interaction network. If an event (say, mutation) for
a certain gene is never observed in any sample, then the corresponding the
status node is not needed.

• Connect each sample node to their corresponding status nodes representing
the occurrences of each feature in the cell lines. Each connection from a
sample node i to any data type node is weighted with the value of

Wi =
AAi −minj∈S(AAj)

maxj∈S(AAj)−minj∈S(AAj)

where AAi is the Activity Area of the cell line in the sample node i if S is
the responsive set, and AAi = 1−AA if S is the non-responsive set.

5.4.3 Calculating the similarity scores

Subsequently, for each set (resistant and responsive), we perform the following:
Similarity scores were based on a Laplacian Exponential Diffusion kernel [23, 24],
which has shown to be useful in some context of network based cancer driver
identification:

K = exp−αL
L = D −A

D(i, i) =

n∑
j=1

A(i, j)

where A is the adjacency matrix of the global network, D is the associated
diagonal degree matrix for A, and L is called the Laplacian matrix of the network.
The free parameter α was chosen to be equal to 0.001 by trials. The resulting K is
a matrix of scores with the same dimensions as A. Kernel normalization was per-
formed as described in [4]. From the kernel score matrix K obtained for a set S,
we derive 3 types of scores: mutation scores (Ms), copy number variation scores
(Cs) and network entity scores (Es) each corresponding to a specific node type:
status nodes (Ms, Cs) or network entity nodes (Es). MS is computed by calculat-
ing the average of kernel scores between the sample nodes and the mutation nodes
over all sample nodes in set S (i.e., Msis a vector of length k, where k is the num-
ber of mutation node in the set S). Similarly, Cs scores are calculated using the
average scores between the sample nodes to their corresponding data type nodes.
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5.4.4 Assigning node ranks

For each node type the scores (respectively Ms, Cs and Es) obtained in respec-
tively the responsive and the non-responsive set will be compared to identify dif-
ferentially scoring nodes. However scores cannot directly be compared between
both two sets as the score distributions might differ per set. This is because the
values of the kernel scores are affected by the number of available sample nodes in
each set. Therefore, scores obtained from either set were quantile-normalized prior
to the comparison [25]. Nodes were per node type ranked based on their quantile-
normalized scores (respectively Ms, Cs, and Es). From the mutation scores MP
and MN corresponding to respectively the responsive and non-responsive sets, the
vector is computed. We then select 10 top-ranking positive and negative features
based on the scores in M , C and E. Expression scores, copy number variation
and entity scores were analyzed similarly. In total, this resulted in 3 different rank-
ing/selections: mutations (MUT), copy number variations (CNV), and the network
ranking scores (NET), for a total of 30 features selected. For the MUT and CNV
rankings, selected features are immediately used in the next steps (training and
classification), whereas the rankings from the entity nodes (NET) is interpreted to
mean that both the mutation and the copy number variation features of those nodes
(if available) are relevant and selected.

5.4.5 Training and testing the classification model

Using the selected features (i.e., we then train a 50-tree random forest model
trained using the AdaBoost bagging method [26]. Each tree was limited to a maxi-
mum 5 node splits and a minimum of 10 samples in each leaf node. Before testing
the trained random forest model on a new data, we can either perform (or not) a
data normalization step using a network diffusion method. In this case, we use
a PageRank-like [8] network diffusion over the interaction network on each data
type (MUT, CNV) on the features selected by our previously-described network-
based feature selection method. Such an approach has been used before in the
context of cancer data analysis, e.g., in [27, 28]. In short, we map the molecular
profile on the selected features of a sample onto the network, and then diffuse it
using the following iterative equation until it converges:

Ft+1 = αFtAn + (1− α)F0

where F0 is the original profile, An is the degree-normalized adjacency matrix,
and α is a free-parameter. The value for the parameter α were determined by using
a cross-validation parameter tuning independently in each drug (i.e., the optimal
values may differ between drugs).

For presentation purposes, we split the cross-validation results into two sub-
sets: 1) the subset (156 out of the 214 drugs) in which a clear statistical signal is
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present that allows a feature extraction and classification performance that is larger
than what can be expected at random and 2) the data set in which such statistical
signal is not obviously present (58 out of the 214 drugs). The criteria by which we
determined these two classes is by assessing whether the a random forest classifier
trained using the original data performed statistically better than a random forest
trained using randomly shuffled data( at p-value < 0.05).

This process is illustrated in Figure 5.10. First, we generate the random back-
ground distribution of classification performances by randomly shuffling the fea-
tures and then train a random forest classifier on the shuffled data, and repeat the
process 100 times. We then compute the classification performances of random
forest classifiers trained using all data (red dashed line), using top 30 statistically
significant features (blue dashed line), using network-based feature selection, ei-
ther with the network-based data transformation (yellow dashed line) or without
(green dashed line). A drug falls into the first subset if the right-tailed p-value of
the classification performance of the random forest using all features is less than
0.05. Otherwise, the drug falls into the second subset of the data. We then com-
pare the performances of the other three random forest classifiers to produce the
bar plots in Figure 5.3, 5.4 and 5.6.

5.4.6 Implementation of the method

Implementation of the method and as well as the cross-validation procedure are
available online at http://github.com/mushthofa/ in Matlab for easy
reproduction. All genomic, transcriptomic and drug response data can be obtained
from the GDSC project [9] webpage https://www.cancerrxgene.org/.
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6
Conclusion

This thesis is the culmination of 4 years of research within the context of the ap-
plication of computer science to computational biology. The work in first part of
the thesis answers the first problem statement as described in Chapter 1. First, we
started by considering one of the commonly used logical/discrete modelling frame-
works for understanding the behaviour of gene regulatory networks, the so-called
Boolean network. In Chapter 2, we investigated the use of Answer Set Program-
ming (ASP) as the framework used for implementing the simulation of Boolean
networks in a flexible and generic way. In this context, we developed ASP-G, a
framework in ASP to simulate the trajectory of the states of the network, as well as
compute its attractors. We tested the correctness of the tool implemented, and also
assessed its computational resource requirements and limitations, one of which is
the limitation of having only a binary level of activations (“on” or “off”).

We therefore set out to lift this limitation by investigating the use of Fuzzy
ASP as the underlying framework. Since FASP is not yet as mature as ASP w.r.t.
in terms of solver implementation, we investigated ways to develop a full-fledged
solver for FASP that is capable of executing the encoding needed to represent the
simulation of multi-valued networks. In Chapter 3, we described our proposal for
the method to evaluate FASP programs by using a translation scheme into ASP, as
well as our implementation for this method. We performed a benchmark assess-
ment for our FASP solver and noted its limitations. The solver works correctly
and with reasonable improvements in performance compared to an existing solver,
while also managing to solve a larger class of programs.

We then proceeded to describe our encoding of multi-valued networks in FASP,
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allowing the simulation of GRNs with multi-level activation values and the com-
putation of their attractors in a declarative and generic way. We implemented
this method in a new tool called FASPG, and assessed its correctness and per-
formance, both on real biological networks as well as synthetic networks, with
the take-away message being that the method performs reasonably well for the
size of the networks generally considered for these types of problems (around 30-
50 genes), especially for the computation of steady-states attractors, but for other
types of problems, performance still needs to be improved.

The second part of the thesis proposes a solution to the second problem state-
ment described in Chapter 1. Here, we turned our attention to the problem of
incorporating biological network information in a predictive model that is aimed
at increasing the robustness of the model against noise, small sample size in the
data and also selecting relevant predictive features (“biomarkers”) associated to
the observed phenotype. In particular, we focused on the problem of determining
the features relevant for predicting cancer drug response. We built upon an ex-
isting network-based omics data integration method, adapted it to our particular
goal (feature selection and prediction), applied it to an existing public dataset of
cancer cell lines’ drug response. The resulting selected features often form a tight
sub-network that readily hints at the mode of action of the particular drug. We also
proposed a data transformation technique that takes advantage of this selected sub-
network in order to increase prediction performance, which was indeed observed
in many cases.

6.1 Future Perspective

In this section, we highlight some of the limitations and possible further improve-
ments that can pursued for further research, as well some outlook on the impor-
tance and role that the methods we proposed in this theses might hold in the future.
With regards to the discrete/logical modelling of gene regulatory network tools we
developed, some aspects can still be improved. For example, w.r.t. the computa-
tional performance, FASPG does not yet perform very well for computing cyclic
attractors in the synchronized update scheme. This might be due to the nature
of synchronize updates, which exerts stronger constraints on the model, which in
turn typically means that a combinatorial search on the solutions can require more
steps than on problems with less strong constraints. This can be done by, e.g., in-
vestigating ways to prune the search space for special conditions, or using a more
compact and efficient representation for the encoding. Another aspect that might
be improved is the user-friendliness of the system. In particular, the input-output
might be made more user friendly by providing e.g., a graphical/web-based inter-
face that can cater to a wider user-base, and at the same time, graphical outputs on
the simulations of the network might provide better visualizations that can aid in
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finding insights about the behaviour of the biological system.

With respect to our feature selection method, we recognize that the model does
not currently take into account two types of information about the network: direc-
tion and weights. Directionality is a natural component in many biological net-
works: a gene may regulate another gene, but the other gene may not regulate the
former, indicating a one-directional flow of information/causality. A model that
includes such directionality information may be able to perform better than our
current method. Unfortunately, using the graph kernel diffusion method described
in our method, directionality information in the graph is discarded, and we could
not find yet an appropriate graph kernel diffusion method that can make use of
the directionality within the context of our method. We also have not used any
weighted connections between the gene nodes in the underlying interaction net-
work (except between the sample node to gene entity nodes to simulate the strength
of drug response), despite the fact that graph kernel methods can easily incorpo-
rate weights in the connections, and that many sources of biological information
can be used to derive such weights (e.g., confidence values of the interactions typ-
ically available in biological databasets). However, as of now, we could not find a
consistent weighting scheme across the whole network and different types of drug
that will result in an acceptable performance. We therefore settled on using a fixed
weight in all the nodes. Finally, since one of the goals of the feature selection
method is to improve prediction accuracy, a more tight integration with a classi-
fication/prediction model would be ideal. Presently, we simply used the feature
selection method to filter the top-ranking features, and which can then be fed into
a classification/regression model, e.g., random forests. As such, the training step
of the models can discard the important features due to the insignificant predictive
power of the features (which may be due to small sample size and/or noise). The
data transformation method using diffusion we performed is a step towards this di-
rection, however since it is still performed before the training step itself, important
features may still be discarded. A classification model that can natively take into
account the network information and the ranking of these features on its training
step may well perform better than a standard one such as the random forests we
used here.

In a longer term, it is worth investigating how we can combine the two ap-
proaches investigated in this theses. Logic-based formalisms have been considered
to be used for predictive modelling within the context of computational biology.
For example, methods such as LOBICO [1] attempt to formalize the associations
between biological predictors (e.g., mutations / CNVs) and phenotypic behavior
(e.g., drug response). The use of a logical representation can allow for a more flexi-
ble conditions of associations between predictors and the predicted behavior, com-
pared to classical classifier such as random forests. This can further be improved
by the use of FASP as an expressive fuzzy-logic-based computational framework
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that can increase the flexibility of model, e.g., by allowing multiple-levels of gene
expressions or copy number alterations, as well as multiple-levels of response,
into the model. Another advantage of using an expressive logic-based formalisms
to model associations between biological predictors and phenotypic behaviors is
that the extracted model can be more “transparent” and easily understandable (for
biologists/medical scientists), which could be an important characteristics of a pre-
dictive model within the context of biology. In the future, predictive models that
are not only perform well in terms of predictive accuracy, but also capable of work-
ing as a “white-box”, easily understandable by non-computer-scientists, may play
an important role in biology/biomedical sciences, since they can also facilitate an
easy “sanity-check” by biologists/medical scientists to see if the model can derive
already known associations.
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