View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by Ghent University Academic Bibliography

Information feedback loop for improved pedestrian
detection in an autonomous perception system

Martin Dimitrievski

Peter Veelaert

Wilfried Philips

IMEC-IPI-Ghent University
Sint-Pietersnieuwstraat 41
B-9000 Gent, Belgium

Abstract—Environmental perception systems for autonomous
vehicles are often built using heterogeneous technologies that
operate in a sequential manner. In the task of object tracking
in particular, where the classical detector-tracker interaction
is a serial process, it is viable to break the design rule by
introducing information loops. This is especially feasible in a
tracker that operates in a prediction-update cycle. Tracking
predictions can steer object detection towards regions where
an object is anticipated and, in turn, tracking updates can
be improved by incorporating reinforced detections. In this
paper we propose a novel detector-tracker feedback loop for
information exchange based on the spatio-temporal similarity
of detections and tracklets. We reinforce pedestrian detections
that have weak confidence scores by matching their bounding
boxes to estimated tracklets with high tracking confidence. The
proposed system has several compelling advantages: based on
a positive feedback principle it extracts the maximum detection
and tracking information, while operating transparently and
with minimal computational load. In a controlled ablation study
we evaluate our feedback mechanism using the KITTI object
tracking dataset. We show that our system gains significant
performance increase over the baseline in both frame-by-frame
detection and tracking quality.

Index Terms—pedestrian detection, object detection, deep
learning, tracking, multi-object tracking, feedback loop, au-
tonomous vehicles, environmental perception

I. INTRODUCTION

Environmental perception systems in autonomous vehicles
are tasked with the challenging problem of traffic situational
awareness. Understanding the environment is necessary so
that the vehicle can reliably identify objects and make
informed predictions and actions. Contemporary autonomous
research platforms consist of heterogeneous sensor arrays, all
of which operate in different modalities, at different sensitiv-
ity levels while covering only parts of vehicle surrounding.
In this context, different computer vision algorithms have
to be designed to co-operate using available data and also
achieve temporal synchronization. On the downside, sensors
are less than perfect and computer algorithms often have
practical limitations. For example, cameras don’t work well
at nighttime, or in dazzling sunlight. LiDAR has trouble
with rain, fog, and dust, because the laser bounces off the
particles in the atmosphere. Radar can be confused by small
but highly reflective metal objects, like a soda can in the

street. Ultrasound sensors operate with a very limited range
and resolution. Even systems that combine data from all
sensors can struggle with images of humans on billboards,
reflections off shop windows or photo realistic advertisements
printed on other vehicles.

Standard perception systems rely on spatio-tempral object
tracking and most often employ the principle of tracking by
detection. First, an object detector trained off-line detects
candidate targets in the image or LiDAR/Radar data. Tra-
jectories are then estimated by connecting detected objects
within a temporal window through a certain optimization
algorithm. Due to the aforementioned sensor imperfections,
object detection is usually not temporally consistent, so
employing a tracker can correct for these temporal arti-
facts. Tracking-by-detection methods build upon detection
and tracking as two distinct processes, which can sometimes
lead to unsatisfactory perception results. Moreover, due to
the diversity and complex occlusions of objects, the ability
to detect all relevant traffic users (recall) often requires setting
a very low detection threshold. Achieving high recall rates
usually has the negative consequence of creating more false
positives and decreases the efficiency of the later tracking
algorithm.

To mitigate the effects of limited object detection perfor-
mance we propose a novel information sharing technique by
utilizing a feedback mechanism between the object detector
and tracker. To this end, our method adds a loop in the
perception system by reinforcing detections using tracking
estimates. More specifically, our system consists of an object
detector that operates in the image plane, which then feeds
regions of interest to a 2D/3D object tracker. The object
detector operates at a near 100% recall rate producing up
to 103 candidate objects with reduced precision. However,
our method feeds back the spatio-temporal information from
the tracker to increase the precision of candidate objects
that closely match tracked objects. The reinforced detection
scores are then fed back into the tracker. Our proposed infor-
mation feedback mechanism is designed to be agnostic of the
design of object detector or tracker. The only requirement is
that the object detector operates at a high recall rate and that
the tracker works in an standard estimation-update cycle.
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Figure 1. A pedestrian detection (green) and tracking (red) system where
the position, size and velocity of a person is sequentially tracked. In the
current frame, an estimate of the state is given (dashed line). We use the
discrepancy between the estimated and detected position of a pedestrian to
adjust the detection score of the candidate ROI.

In the following section we give a brief overview of several
information feedback mechanisms from the literature. Then,
in section §III we discuss the design of a generic multi-object
detection and tracking pipeline where we formulate our novel
feedback loop mechanism. Next, in section §IV we perform
rigorous ablation experiments which single out the perfor-
mance gains coming from our feedback loop mechanism over
the baseline, and finally in section §V we conclude with some
remarks on the fail cases of the system and how they can be
remedied.

II. RELATED WORK

Various tracking by detection and detection by tracking
feedback methods have already been considered in the lit-
erature. Tian et al. [1] perform multi-category multi-object
tracking in traffic surveillance videos. They define two dis-
tinct situations where an image region is considered as a
detection result. At initialization the region is detected when
it is predicted from a tracklet and estimated as a foreground
region at the same time even if it is not classified into object
by the detector. During sequential tracking, the probability of
detection is a product of both former terms and also the object
detector. The downside of this approach is in the simplistic
binary mathematical apparatus as well as that it relies heavily
on background subtraction and is thus only applicable in
static scenes. Furthermore, the paper is focused on measuring
absolute tracking performance and lacks an ablation study to
quantify the relative gain from the feedback loop.

Another approach by Li et al. [2] proposes a detection and
tracker mutual feedback where detection is done by a Gaus-
sian mixture model (GMM) of principal component analysis
(PCA) features. Tracking is performed by computing the
Bhattacharyya distance of the detected object and the tracklet
which predicts the position of the tracking object based on
expectation maximization (EM) Kalman filter. The feedback

loop consists of detection of future candidate objects based
on estimated tracklet positions and computed differences in
the PDFs of the target and candidate regions. These authors
claim that their scheme decreases the accumulation error
and improves object detection and tracking performance.
One drawback of this approach is the estimation of object
motion by simple intensity difference between consecutive
frames which can easily fail in presence of occlusions.
This paper also lacks an extensive evaluation in order to
accurate pinpoint the gains obtained by using a detector-
tracker feedback loop.

Balntas et al. [3] propose a novel single object tracking
method by online learning. Their model considers all detec-
tions, including false positives, provided by a classifier. The
input detector is a high recall fern based classifier that returns
a large set of candidate regions using the sliding window
approach. Candidates, which the authors call pointers, are
fused to form an estimated object position using a voting
scheme in the Hough space. Voting is performed both in the
spatial and in the temporal domain by using Euclidean and
Hamming distance metrics of stored pointers. The maximum
in the voting space is detected and target detections that over-
lap with this maximum are considered as valid. Experimental
evaluation concludes a significant increase in precision and
recall rates over the baseline detector and tracker, however
this approach is limited in a sense that it is only applicable
in single object tracking problems. Additionally, the method
requires memory to store pointers from previous frames
which hinders performance.

Ingersoll et al. [4] also investigate the tracker sensor feed-
back in stationary object detection from an UAV platform.
Tracking information is sent back through a loop to inform
the detector, which is a GMM for ROI estimation. They
do so by a so called conservative scheme for updating the
background model where they set an adaptive threshold for
the minimum blob area, i.e. the extent of their target. At each
step, a Kalman filter is updated with every ROI (blob) and
keeps track of the object position and size. The feedback loop
consists of setting the minimum blob area threshold in the
GMM detector equal to three variances below the mean. By
exploiting the feedback loop these authors report a significant
improvement over their baseline which is measured by higher
MOTA and MOTP tracking scores and lower false positive
rate in detection. One serious limitation of this approach
is that it assumes a static camera and heavily relies on
the GMM foreground background detector for generating
candidate objects.

An approach that adapts the appearance model for each
particular object using on-line learning techniques is pro-
posed in [5]. Authors demonstrate the effectiveness of the
approach in a state-of-the-art object detector based on de-
formable template models, the parameters of which are
adapted on-line using a structured SVM. They further im-
prove the performance of the model-based tracker by on-
line learning a prior distribution over the size of objects.
Parameter updates are performed only if the base detector
and the updated detector agree on the particular bounding



box for which the Intersection over Union (IoU) of 50% is
used. Evaluation on the ETH pedestrian database [6] shows
that the adapted detector outperform the baseline on some of
the tested sequences. The biggest issue with this technique
is that it tightly couples the design of the detector with
the information propagated back from the tracker. The same
concept is therefore difficult to re-implement in a different
system environment.

Lastly, a method that exploits the sequential nature of
videos to improve the quality of proposals based on the
available information on previous frames determined by
detector outputs is proposed in [7]. This method is actually
independent of tracking as it re-ranks object proposals based
on the overlap with detections and detector scores obtained
by a state-of-the-art CNN approach, [8], in the previous
frame. The authors propose a score re-weighting scheme
based on the IoU measurement between ROIs in the current
and the previous frame. Newly computed detection scores are
a linear combination of the current score and the IoU times
a normalization constant. This paper contains an ablation
study where the performance of the proposed feedback loop
is evaluated against detection of objects in the YouTube
Objects dataset [9]. The downside of this method is the
rather simplistic model of the feedback loop which doesn’t
exploit motion information of objects. Additionally, it lacks
performance analysis for the class pedestrian.

In this paper we propose a detection-tracking feedback
loop which improves the object perception by exploiting
spatio-temporal correlation of pedestrian positions in au-
tonomous driving settings. Our system operates on a con-
tinuous depth and video stream for detection and prediction
of positions of other road users. We optimally exploit the
estimated object positions from the tracker and achieve better
frame by frame object detection. This improved detection
rate, in turn, increases the tracking performance in a closed
loop. The novelty of our proposed method lies in the principle
of confidence boosting of ROIs that happen to lie near
locations where we expect to track an object, figure 1.
Additionally, we propose a design that is agnostic of both
object detector type and object tracker in a way that it
only relies on generic bounding box positions and estimated
motion vectors. Finally, to the best of our knowledge, this is
the first application and evaluation of such a feedback loop
in a highly challenging autonomous driving environment.
Thus, our method is able to reinforce heterogeneous sensing
technologies without inferring any significant complexities or
lag on the system.

III. PROPOSED METHOD
A. General considerations

Multi-object tracking (MOT) is an umbrella term for
methods covering multitude of applications. A large part of
the research is done for the field of video surveillance where
cameras are mostly static. Having this assumption, objects of
interest can be easily detected as foreground (FG) blobs using
a background (BG) model of the environment. Tracking of
such blobs is usually done using a standard kinematic model

Algorithm 1 Proposed tracking by detection with feedback
loop
At each time step ¢:

1) Apply an object detector to the frame I;:
f) =8y Ayitici
yi = (u, v, width, height, label, s), ;
2) Apply gating according to equation (1)
3) Estimate the state of old tracklets
a) Kalman filter, Particle filter
b) Optical flow vectors
4) Boost weak detections
foreach detection y; € {y1,y2,...,¥n}:
if s; <7 : //weak detection
foreach tracklet k; € {ki,ko, ...
if x; >09AJ(kj,y;) > 038
$i=s8;+(1—s;)exp (—[‘](k’g#)
endif
endfor
endif
endfor
5) Apply gating, ROI §; > 7
6) Perform matching of reinforced ROIs and tracklets

ki b

a) Hungarian algorithm
7) Update the state with matched data

of the object category on hand. As discussed in the overview,
there are several techniques of how the FG/BG segmentation
can be guided by the tracking process. Information can thus
easily leak back from the tracker into the detector. However,
these feedback techniques are intrinsically coupled to the
system design and are difficult to port to newer detection
and tracking technologies.

In autonomous driving, tracking objects from a moving
camera is much more difficult since the static background
assumption becomes invalid. Object detection must be per-
formed by scanning every image position for possible object
occurrences (objectness). A recent and highly efficient object
detector is the Aggregated Channel Features detector (ACF)
by Dollar et. al [10] which uses multi-resolution feature pyra-
mids and a cascaded classifier to quickly scan the image plane
for pedestrians. The design of the ACF cascaded classifier
allows the detector to focus more attention on pedestrian-
looking regions whilst quickly rejecting areas with clutter.
Detected pedestrians are represented as regions within rectan-
gular bounding boxes, each with a corresponding confidence
value. However, as can be seen in the leader board of the
KITTI object detection dataset, [11], the performance of ACF
and similar approaches in autonomous driving scenarios is
somewhat limited. Sliding window approaches in general are
not able to recall 100% of the pedestrians due to performance
limitations. Additionally, object detection on a frame-by-
frame basis is not able to detect 100% of the objects in the
presence of occlusions. A typical multi-object tracker such
as the MDP [12], which utilizes ACF object detector as input
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Figure 2. System diagram of our proposed feedback mechanism (in red). We separate initial ROIs based on the detection confidence. ROIs with weak
detection confidence are matched against expected pedestrian positions from the tracker. Any matching ROIs get their detection confidence boosted

accordingly while the rest are later discarded by a second gate.

must then try to estimate the position of missed pedestrians
using various temporal consistency mechanisms.

More recently, the proliferation of high performance GPU
computing paved the way for Convolutional Neural Network
(CNN) based detectors by utilizing simple, yet efficient deep
learning algorithms for training. These detectors can be
trained to achieve 100% recall rates with varying degrees
of precision. However, even using powerful GPU devices
these CNNs tend to have slow execution times, which
makes tracking infeasible. The advent of Region Proposal
Networks (RPNs), [8], solves this problem by designing a
pre-processing CNN that produces region proposals which
are later classified as objects. In a typical camera frame there
are around 103 ~ 10* region proposals which usually cover
close to 100% of all objects in the scene.

The task of the object tracker then is to select how, and
which of these regions to track. In order not to overwhelm
the tracker, MOT methods customarily employ gating to
accept only highly confident ROIs. A kinematic and appear-
ance based model then deals with any missed detections
by exploiting their spatio-temporal and appearance based
correlation from previous frames.

Measuring the performance of MOT methods reveals the
differences of how each one handles missed detections,
unpredictable motion, background motion, occlusions, etc.
Most importantly, the better the input object detections are,
the better tracking becomes. It thus becomes imperative to
design an object detector with 100% recall rate and as high as
possible precision. In the following sub-section we introduce
our feedback loop mechanism, exemplified by the items 3
and 4 in algorithm 1.

B. Detection by feedback from tracking

Contemporary object detectors based on region proposal
CNNs such as Regionlets [13], Faster R-CNN [8], SubCNN
[14], YOLO9000 [15], etc. already perform at close to 100%
recall on standard pedestrian detection benchmarks. One
issue is that this is done at a great cost of precision where
more than 103 object proposals can classified as pedestrians

with low detection scores. It is therefore difficult to set the
optimal gating threshold balancing between precision and
recall. Given an image region X, a typical detector output y
is an object proposal defined by a bounding box with image
plane parameters:

f(x) =yi: {u,v,width, height,label, s},

where the score s is a classifier metric that represents
certainty that the ROI belongs to a specific class (label).
Conversely, a typical tracker output k is a tracked object rep-
resented by a bounding box, vectors of motion, appearance
model and metrics for the tracking certainty:

k : {u, v, width, height,u, 0, appearance, label, x} .

The tracker usually cycles between an estimation and an
update step, the former computes the most probable state
of each object given the past states and measurements, while
the later integrates the new data into the estimate to create
an update of the estimate.

Our method interfaces with the detector-tracker system at
the point where object detection and a tracking estimation
is already performed and before the final update of track-
ing states is made. We use the set of tracking estimates
Sk {kj};_; _,, to adjust confidence scores sy, (or s;),
i.e. we force the detector to look closer into regions where
we expect to find tracked objects. Since we use an off-the-
shelf object detection algorithm, we are not motivated to fine
tune the inner workings of the detection and classification.
Thus we focus on adjusting the confidence scores of some of
the detection candidates. On figure 2 we present a schematic
depiction of the proposed feedback loop (in red). Formally, at
time ¢ we employ gating ¢ (y;) to the set of initial object de-
tections Sy, : {y;} such that S, = {Sstrong V Sweak }:

1=1...n
g (y) - Sstrang 2Y¥i, Si>T1 (1)
’ Sweak 2Yi, Si < T1

where 7; is the gating threshold manually adjusted so that
it splits approximately 20% of the detections into the set
Sstrong and the rest in Syeqr. Weak detections are then



Pedestrian detection (IOU > 0.5)

Precision

Regionlets, easy:0.660 med:0.661 hard:0.630

01 r Proposed, easy:0.726 med:0.713 hard:0.676

0 . | | | |
0 0.2 0.4 0.6 0.8 1

Recall

Figure 3. Evaluation of detection precision of the baseline (blue) against the

Regionlets [13] and right: SubCNN [14].

matched against tracklet estimates k; using the Jaccard index,
i.e. Intersection over Union:
|k inN y7;|

J(kj,yi) = 221 2

( jay’L) |k_]Uy1|’ ( )

where the intersection and union operations are computed

over the image bounding boxes of both detections and track-

lets. We exploit this “closeness” information for detections

that happen to fall close to expected pedestrian positions,

J > 0.8, in a way that we adjust weak detection confidence
values s; |y; € Sweak in the following manner:

si+ (1 —s;)exp (—7“(“”3;)‘”2) ix; > 09

8 ;x5 <09
3)
where o controls the spread of the effect of the “closeness”
between object and tracklet, while x allows confidence
boosting based only on accurately tracked objects. When
the IoU is close to 1 and tracking confidence x is above
0.9, the boosting of detection scores is maximal and as
the IoU decreases the effect of the boosting diminishes.
The motivation behind this mechanism lies in the temporal
stability of observing pedestrians in video sequences. Once
we are certain that we are tracking a pedestrian, x > 0.9,
then we can be sure that it will be detected at or near the
expected location by the tracker. If for some reason (camera
noise, jitter, occlusion, shadows, etc.) the object detector
is not very certain anymore, we can reinforce the score
by factoring in how close it is to an expected pedestrian.
Finally, our method concatenates the boosted and originally
confident object detections into a list that is passed to the
standard detection-tracking architecture. A second gating is
then applied which removes any remaining false positives and

the update step of the tracking is performed transparently.
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same method using our proposed feedback loop (red) at ToU > 0.5. Left:

IV. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the proposed
feedback loop mechanism we performed a series of ex-
periments using prerecorded video sequences in real traffic
environments, namely the object tracking benchmark of the
KITTT [16] dataset. This benchmark includes 21 sequences
with annotated ground truth of tracked objects and additional
29 sequences without available ground truth which are used
for independent evaluation. For brevity, in our experiments
we focus on the sequences {13, 15,16,17,19} of the training
set since they contain most of the pedestrians while the rest
are mainly sequences containing cars and other motorized
vehicles. There are a total of 10312 instances from 143
unique pedestrians within the 2129 frames with a duration
of the set of 3.5 minutes. The chosen sequences represent
scenarios where the ego vehicle is driving through urban and
campus environments with adequate amount of pedestrians.
They provide traffic situations with a spectrum of difficulty
such as moving camera, occlusions, difficult lighting, object
interaction, etc. Using this dataset we can test for object
detection precision and recall, various tracking performance
metrics, but also evaluate the robustness of our feedback
mechanism. To this end, we optimize the proposed solution
using a single set of hyper-parameters which are applied
while processing each and every frame of the selected dataset.

Average Precision
Method ] Easy | Medium | Hard | Improvement
Regionlets 0.660 0.661 0.630
Regionlets* 0.726 0.713 0.676 8.40%
SubCNN 0.736 0.737 0.721
SubCNN* 0.794 0.786 0.764 6.83%
Table T

AVERAGE PRECISION MEASURED AT 40 UNIFORMLY SPACED RECALL
VALUES FOR THE BASELINE AND PROPOSED* METHOD.
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Figure 4. Evaluation of recall rates at a fixed detection threshold, baseline (blue) against our proposed feedback loop (red) at JoU > 0.7. Left: Regionlets

[13] and right: SubCNN [14]..

We evaluate on a state-of-the-art pedestrian detection and
tracking system built from the Regionlets [13] and SubCNN
[14] object detectors and our own 2D-3D multi-object tracker
based on the MDP [12] method. The input frame is processed
with a CNN to detect ROIs with labels and detection scores
which are then gated and passed to the tracker which tracks
pedestrians based on position, appearance and motion. In
all experiments, the baseline method uses a sequential pro-
cessing pipeline, whereas the proposed method additionally
incorporates our feedback loop mechanism to adjust the
detection scores. Up to 103 candidate bounding boxes are
generated by the detector which are then subject to our
proposed confidence boosting algorithm, equation (3), and
later passed to the object tracker.

The effectiveness of the proposed method is done by eval-
uation of both object detection and object tracking through
ablation experiments where we measure precision, recall and
Multiple Object Tracking Accuracy (MOTA). Precision and
recall are detection specific metrics of how many detections
are relevant and how many of the relevant detections are se-
lected. MOTA combines false positives (FP), False Negatives
(FN) and tracking identity switches IDS to indicate overall
performance of the tracker. Formally MOTA is the ratio:

3, (FNi+ FP, + IDSy)

MOTA=1 4
Zt GTt ) ( )
Recall
Method || Easy [ Medium | Hard [ Improvement
Regionlets 0.32 0.40 0.35
Regionlets* 0.45 0.45 0.40 20.93%
SubCNN 0.37 0.35 0.32
SubCNN* 0.57 0.50 0.45 45.23%
Table 1T

RECALL RATES OF BOTH BASELINES AND PROPOSED* METHODS USING
A FIXED DETECTION THRESHOLD AT 65% FOR [13] AND 80% PRECISION
FOR [14].

where ¢ is the time step (frame index) and G1' is number
of Ground Truth objects. Value of MOTA can also be
negative if the number of errors exceeds the number of actual
objects. Most trackers in the literature are compared primarily
using this metric since it represents a good balance between
tracking precision, recall and temporal stability.

Firstly, we test the raw pedestrian detection performance
of our two baseline detectors against the performance of the
same methods with our proposed feedback loop. On figure 3
we report results for two experiments, one using Regionlets
as a baseline (left plot) and the other using SubCNN as a
baseline (right plot). Pedestrians are split into three categories
{easy, medium, hard} depending on their occlusion level
and distance to the camera. We show that, in all three cases,
pedestrian detection is significantly improved when using our
proposed feedback loop. The precision rates, summarized in
table I, of the Regionlets detector are improved by 8.4% on
average while the SubCNN, which is originally the better
performing detector, is further improved by 6.8%.

Next, we evaluated the impact on sensitivity that our feed-
back loop has on pedestrian detection. For this experiment we
measured the recall rate at a fixed detection threshold. We
used a threshold that coincides with 65% and 80% preci-
sion for the Regionlets and SubCNN detectors respectively.
This choice was made by finding the critical point in the
precision/recall curve where detection performance starts to
deteriorate, as seen on the vertical axis in figure 3. In order
to demonstrate the sensitivity more clearly, we also increased
the bounding box matching threshold to IoU > 0.7. A
higher matching threshold provides a more strict test that
measures the absolute accuracy of the position of proposed
object positions. Therefore, it stresses the quality of the
tracking information which is fed back into the detection
score. We measured that, on average, our feedback loop
boosts the performance of both detectors by increases recall
rates by 20.9% and 45.2% respectively. The results are



Tracking performance metrics
Method MOTA [ MOTP [ MODA [ MODP | FI [ FAR [ MT | PT | ML | IDS | FRAG
Regionlets (@65% prec.) 0.501 0.786 0.503 0.609 0.693 0.076 0.132 0.650 0.216 13 307
Regionlets* (@65% prec.) 0.521 0.785 0.523 0.616 0.676 0.078 0.167 0.622 0.209 19 266
SubCNN (@80% prec.) 0.512 0.828 0.514 0.655 0.682 0.034 0.202 0.580 0.216 16 325
SubCNN* (@80% prec.) 0.531 0.827 0.533 0.658 0.699 0.034 0.216 0.566 0.216 27 291
Table IIT

TRACKING PERFORMANCE EVALUATION, BOLD INDICATES BETTER RESULTS.

summarized in table II and shown on figure 4, where the
left plot shows the output of the Regionlets detector and on
the right is the output for the SubCNN detector. The cutoff
points in the plots indicate where detections are below the
chosen thresholds, however, there is clearly visible increase
in the recall rates. This result shows that by using the same
detection threshold, our boosted detector can detect more
of the pedestrians present in the scene without producing
additional false positives.

Lastly, we compare the tracking performance gains when
turning on our feedback loop in the system. First, we
performed tracking using the raw pedestrian detections of
Regionlets and SubCNN while setting all tracker hyper-
parameters the same value for each run of the system.
Then, in both object detectors, we turned on our proposed
feedback loop and fed the boosted object detections back
into the tracker. We compare the measured MOTA scores
of both baseline detector-tracker pairs to the MOTA of the
trackers that use our feedback loop. On average, MOTA
scores improved by 3.9% when applying the feedback loop
on the Regionlets object detections, and 3.5% when applying
to the SubCNN detections. These results are summarized in
table III.

V. CONCLUSION

In this paper we show that tracking by detection in an
autonomous vehicle environment can greatly benefit from
adding an information feedback loop between the tracker
and detector. By exploiting tracking estimates of pedestrian
positions we showed that frame-by-frame detection can be
greatly improved. Our pedestrian tracker estimates contain
a non-trivial amount of information that we are able to leak
back into the system and steer the object detector into regions
of high probability of containing a pedestrian. We proposed
a simple, yet effective mechanism for re-weighting object
detection confidence scores that lie at or near positions of
expected pedestrians. Using the IoU, as a basis for measuring
closeness between detections and tracklet estimates, we are
able to proportionally increase weak detections in areas
of high likelihood for detecting a pedestrian. Experiments
show that our detector-tracker system is more precise and
at the same time has a greater pedestrian recall rate. Thus,
pedestrians can be detected with more confidence at a fixed
recall rate, or more pedestrians can be detected at the same
precision level.

On the tracker side, adding the feedback loop shows that
tracking performance also improves by a non-trivial amount.
We observed an increase in overall tracking accuracy, ex-

plained by higher MOTA scores, but also higher tracking
quality, i.e. longer tracked trajectories and less track fragmen-
tations. All of these improvements upon the baseline system
come at a minimal computational penalty. The computational
burden of the added feedback loop block using our Quasar
[17] GPU implementation is around 785us per KITTI frame
processed with Regionlets object detector and 729us for the
SubCNN detector.

We note that one of the most important assumptions is
that our object detector operates at close to 100% recall rate.
This way, it is theoretically possible to reinforce the weakly
detected objects. In cases when perfect recall is not possible,
our feedback loop will provide less than optimal results in
a sense that completely missed objects cannot directly be
recovered using the feedback information. Such cases indeed
exist in reality and we suspect that they are later handled,
to some degree, by the temporal mechanisms of the object
tracker. Nonetheless, these effects shouldn’t be ignored and
will be the subject of our further study. One possible solution
is to interface with the chosen object detector by steering
it’s model parameters using the feedback loop information,
however, in doing so we will violate the transparency of the
method and make it less general.
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