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Adaptive Convex Loss Mappings for Enhanced
Loss Assessment in Asynchronous Drives

Arne De Keyser , Hendrik Vansompel , and Guillaume Crevecoeur

Abstract— Control topologies in electric drive applications
commonly aim at minimizing the dissipated power in the system
to guarantee energy-efficient operation. Especially in vehicle
electrification, loss minimization is the main objective in the
supervisory control loops as this is directly related to the range
of the vehicle. Advanced drive systems are characterized by an
elevated complexity but require nevertheless a real-time control
strategy to be implemented. Appropriate model abstraction,
enabling real-time viability with a reliable system representation,
is found in convex mapping procedures of the dissipated power in
the drive components. These reduced-order models are generally
obtained based on model information solely. This paper proposes
a methodology to recursively enhance the reliability of the convex
loss approximations. An instantaneous power flow estimation
is assessed based on a unification of model expectations and
sensor data. Using this information, a proper adaptation to
the underlying convex loss coefficients is then determined. The
methodology is validated in simulation for an electric drive
on three different case studies. The algorithm is furthermore
applied on actual experimental data of an asynchronous drive
for validation purposes. Preliminary results demonstrate that
the error on the loss assessment is reduced by 55.7%–89.0%.
Adaptive convex loss mappings can, therefore, be consulted
in practical control structures to ameliorate the reliability of
loss minimization control schemes, while still maintaining a
computationally efficient format.

Index Terms— Adaptive models, convex mappings, electric
drives, loss minimization, recursive estimation, systems modeling.

I. INTRODUCTION

STATE-of-the-art control structures in electric drive tech-
nology often revolve around energy-efficient operation.

Particularly in the automotive domain, the optimal energy
management is a major concern, as the power losses are
directly linked to the battery usage, and consequently the oper-
ational range, of hybrid or all-electric vehicles [1], [2]. This
loss optimization is both tackled at the component level [3]

Manuscript received February 22, 2018; accepted May 23, 2018. Manuscript
received in final form May 30, 2018. This work was supported in part by
Flanders Make, the strategic research centre for the manufacturing industry,
through the Projects EVIT and EMODO, in part by BOF under Grant
01N02716, and in part by FWO under Research Project G.0D93.16N.
Recommended by Associate Editor A. Chiuso. (Corresponding author:
Arne De Keyser.)

The authors are with the Department of Electrical Energy, Metals,
Mechanical Constructions and Systems, Ghent University, 9000 Ghent,
Belgium, and also with EEDT-DC, Flanders Make, 3920 Lommel, Belgium
(e-mail: arndkeys.dekeyser@ugent.be; hendrik.vansompel@ugent.be;
guillaume.crevecoeur@ugent.be).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2018.2843331

and the level of supervisory control loops [4]. Nevertheless,
contemporary drive systems impose ever increasing demands
with respect to complexity of the decision-making agents [5]
and real-time viability [6].

High-fidelity control strategies, such as model predictive
control [5] and dynamic programming [7], provide a means
to tackle dynamic problems and regulate the energy flow
in the system in an optimal fashion. These methods are
nevertheless time consuming, and therefore, less favorable
for implementation in a real-time context, especially when
facing high-dimensional problems. Dedicated and reduced-
order heuristics need to be consulted to render these com-
plex problems tractable [8], [9]. As the occurring losses
constitute the focal point of the intended strategies, a more
efficient representation is found in convex loss mappings [10].
The physical system is casted into a convex representation
solely based on the power flows in the system. The detailed
dynamic behavior is hereby abstracted. A convex loss formu-
lation allows the control algorithm to rely on time-efficient
convex optimization, significantly reducing the burden on
the computational platform while maintaining a sufficient
accuracy [11], [12].

A basic assumption in this approach is the availability of
reliable model information, as the convex reformulations are
constructed in advance based on the system model solely.
The accessible model characteristics are nevertheless prone to
imperfections. Moreover, reliable control should be guaranteed
in uncertain and highly dynamic operating conditions [13].
Several filtering techniques coexist to unify model expecta-
tions with sensor interpretation [14], [15], focusing on the state
variables. Although indirect information concerning the instan-
taneous power flows in the drive can be extracted, no thorough
research has been conducted on the impact of combining
measurement and model information in dynamically adaptable
convex loss mappings. Changing characteristics are conse-
quently compensated for in an automated fashion, inherently
leading to an improved control in terms of energy dissipation.

In this paper, an adaptive approach to the convex reformu-
lation of underlying loss mechanisms is proposed, combining
the time-efficient model abstraction with the possibility to
be equipped in flexible environments. A recursive scheme is
derived based on an estimation of the instantaneous power
flows in the system and the level of confidence in the cur-
rent convex approximation. The introduced methodology is
evaluated on the case study of a simplified asynchronous
drive, represented in Fig. 1, subject to distinct imposed
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Fig. 1. Graphical overview of the studied asynchronous drive with controlled
speed load.

speed profiles. The system encompasses a dc voltage source,
a power electronic inverter, and a single induction motor.

Prior to possible hardware implementations, the viability of
the introduced framework is numerically analyzed for distinct
dynamic loads. The capability of the approach to predict the
occurring system losses by an adaptable convex model is,
therefore, determined in both a simulation and an experimental
environment. In the future applications, the convex loss models
can provide a tool for supervisory control loops to enhance the
system operation in terms of loss minimization, and hence,
contribute to further advancements in contemporary control
technology. Actuation of the complete system is then executed
based on a decision-making agent relying on the available loss
mapping information.

In Section II, a brief discussion of the dynamic system
model is provided to describe the governing equations. The
transition from the state estimation, using a slightly adapted
Kalman filter, toward recursive power estimation is further-
more clarified. In Section III, the convex loss mappings are
introduced and linked to the previously defined power flow
estimations in order to obtain an adaptive formulation of
the abstracted mappings. As the convex approximations are
only constructed at discrete speeds, a heuristic approach to
implement the methodology in a continuous environment is
proposed in Section IV. The complete numerical procedure
is then finally validated in simulation and based on collected
experimental data in Section V.

II. ESTIMATION OF THE INSTANTANEOUS

POWER VARIABLES

The system under study is constructed by a series connec-
tion of a constant dc voltage source V dc providing power to the
input of a voltage source inverter, which is assumed to be an
ideal component without losses or internal delays. In the future
research, empirical models could nevertheless be introduced
to capture the dissipation in the power electronic elements.
The corresponding three-phase output system constitutes the
supply for an induction motor. The equivalent electric circuit
is provided in Fig. 2.

The dynamic behavior of the system is modeled, together
with a simplified measurement equation in which the current in
the system is assumed to be directly sensed by, possibly non-
ideal, external equipment. An appropriate recursive estimation
procedure is then carried out so as to provide the foundations
for a reliable assessment of the instantaneous power flow
variables in the considered system. In the remainder of this
paper, the vector of state variables is consistently denoted

Fig. 2. Equivalent electric circuit of the considered drivetrain.

by x , whereas the characteristic parameter set of the system
is represented by the notation w. The system parameters are
furthermore prone to uncertainty.

A. Dynamic Evolution of the Drivetrain

In order to estimate the power dissipation, the dynamic
evolution of the system needs to be assessed first. A continuous
representation of the studied electric drive as a function of the
rotational speed �, the dynamically evolving state vector x(t),
and the input u(t), is given as

ẋ(t) = A(�, t)x(t)+ B(t)u(t). (1)

The speed dependence of the system matrix necessitates
a linearization around the operating point, where the elec-
tric transients occur with a faster time constant than the
evolution of the rotational speed. The dynamic behavior is
expressed as a 4-D state-space system [16], with the state
vector composed of the components of current and flux in the
complex plane (i sx, i sy, ψsx , and ψsy). The time evolution is
furthermore governed by the stator resistance Rs , rotor resis-
tance Rr , stator inductance Ls , rotor inductance Lr , the mutual
inductance Lm , and the number of pole pairs N p of the asyn-
chronous machine. The discrete state of the inverter switch-
ing elements is represented by the vector xb(t) ∈ {0, 1}3x1,
whereas the vector u encompasses the real and imaginary
parts of the stator voltage vector in the stationary stator frame,
vsx and vsy , respectively. The rotor phases are hereby assumed
to be short-circuited (2), as shown at the top of the next page.
The symbol N is hereby engaged to shorten the notation

N = Lm2 − Lr Ls . (3)

Based on the actual switching state and the dc voltage V dc,
the input vector is defined as

u(t) =

⎡
⎢⎢⎣
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⎤
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xb(t) V dc

� T xyT nxb(t) V dc. (4)

The matrix T xy transforms the voltage signals to the sta-
tionary frame, whereas T n expresses the output voltage levels
of the inverter as line-to-neutral voltages. Discretizing the
system and introducing the discrete time index k by employing
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A(�, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Lr Rs + Ls Rr

N
−N p�(t) − Rr

N
− Lr N p

N
�(t)

N p�(t)
Lr Rs + Ls Rr

N

Lr N p

N
�(t) − Rr

N
−Rs 0 0 0

0 −Rs 0 0

⎤
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B(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− Lr

N
0

0 − Lr

N
1 0

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2)

a forward finite differencing method results in an equivalent
system in discrete time; if the time step �t is not too coarse

xk+1 = �
I +�t Ac(tk)+�t A�k (tk)�k

	
xk +�t B(tk)uk(tk)

� Ak xk + Bkuk . (5)

The definitions of the distinct matrices in this expression
can be readily deduced based on a comparison with (2). The
matrix A(�, t) is hereby written as the sum of a constant and
a speed-dependent term containing the matrix entries in �(t),
Ac, and A�, respectively,

A(�, t) = Ac(t)+ A�(�, t)�(t). (6)

Note that the matrix Ac only relies on the electrical parame-
ters of the machine, which may nevertheless change over time.
In order to complete the system representation, a measurement
equation needs to be added, denoting the relation between
state variables xk and measured data yk at time instant tk .
It is assumed that sensor information is available for the
stator current components, disturbed by a Gaussian white noise
signal vk with covariance Vk . This nevertheless implies an
estimation of the flux based on the model solely. Therefore,

yk = Ck xk + vk . (7)

As the stator phase currents are directly measured instead
of the projections in the xy-frame, the measurement matrix Ck

is given as

Ck =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

−1

2

√
3

2
0 0

−1

2
−

√
3

2
0 0

⎤
⎥⎥⎥⎥⎥⎦
. (8)

B. Estimation of the State Variables

The previously incorporated models rely on the actual
values of both state variables xk and decisive model para-
meters wk . However, these data are in practical applications
that are not available and control of the drive is to be carried
out based on expected values for the system characteristics.

Errors in the model expectations thus mainly stem from uncer-
tainty on and resulting deviations of the underlying physical
parameters. As no measurement information about the stator
flux components is available, a Kalman filter is implemented
to recursively estimate the state variables using the proposed
dynamical model [17]. Throughout this paper, estimations are
consistently denoted by a hat on the corresponding symbol,
whereas the respective error variable is denoted by the notation
ξ (ξ•

k = •k − •̂k).
Due to the inherent stochastic nature of the electric para-

meters, only known up to a prescribed tolerance, the system
matrices Ac

k , A�k , and Bk are assumed to be stochastic as
well. As discussed in [16], the elements of both matrices are
incorporated in a single parameter set wk

wk =


Ac(1,1)

k−1 . . . A�(1,1)k−1 . . . B(1,1)k−1 . . . B(4,2)k−1

�T
.

(9)

The given parameter set is furthermore characterized by
the constant associated covariance matrix Xw , whereas the
uncertainty on the state variables over time is denoted by
the matrix X x

k . If input deviations are neglected, the dynamic
equation of the system (5) can thus be written in a linearized
representation with a quadratic error term O(ξ2)

xk+1 = �
Âk + ξ A

k

	�
x̂k + ξ x

k

	 + �
B̂k + ξ B

k

	
uk

= Âk x̂k + B̂kuk + ξ A
k x̂k + ξ B

k uk + O(ξ2)

� Âk x̂k + B̂kuk + Gx,w
k+1ξ

w
k + O(ξ2). (10)

The output relation (7) is assumed to be exactly known. The
corresponding filtering scheme is then formulated, taking the
influence of modeling errors into account but not altering the
underlying dynamical model [16]. The optimal Kalman gain
matrix K x

k is defined to minimize the expected uncertainty on
the state estimates. In the prediction step, an uncorrected esti-
mate is provided based on the available modeling information
and prior estimates. Afterward, the states are updated using
the latest sensor data, significantly improving the estimation
accuracy

Prediction x̂−
k = Âk−1 x̂k−1 + B̂k−1uk−1

X x−
k = Âk−1 X x

k−1 ÂT
k−1 + Gx,w

k−1Wk−1Gx,wT

k−1
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Update Rx
k = Ck X x−

k CT
k + Vk

K x
k = X x−

k CT
k Rx−1

k

x̂k = x̂−
k + K x

k

�
yk − Ck x̂−

k

	

X x
k = �

I − K x
k Ck

	
X x−

k . (11)

Herein, the matrix Gx,w
k represents the linear gain from the

error variable ξwk to the state estimation x̂k . Its actual definition
is assessed by the following equality constraint, which is a
vectorized representation of the dynamic system equation:

Gx,w
k ξwk−1 = ξ A

k−1 x̂k−1 + ξ B
k−1uk−1. (12)

Based on the introduced prediction and update algorithm,
a reliable approximation of the governing state variables is
determined, together with the corresponding uncertainty. This
provides the foundation for a thorough study of the dynamical
power assessment.

C. Power Flow Estimation

The convex mappings transform the dynamic model of the
motor into an equivalent power flow-based representation,
as the steady-state dissipation in the drive is approximated by a
convex function of the output power flow. The instantaneous
power flows in the system thus need to be assessed based
on the obtained state estimates at each time instant. The input
power of the drive is defined by the constant input voltage V dc

and the current drawn by the inverter i in
k at time instant tk

P in
k = V dci in

k . (13)

Denoting the actual estimation error on V dc and i in
k as

ξV and ξ i
k , one can rewrite this as a function of the estimates

and the corresponding errors

P in
k = �

V̂ dc + ξV 	�
î in
k + ξ i

k

	
. (14)

Grouping products of error variables in a single quadratic
term consequently leads to

P in
k = V̂ dcî in

k + ξV î in
k + V̂ dcξ i

k + O(ξ2). (15)

The inverter current i in
k is related to the state variables via

the Clarke transform [18] and the state of the discrete switches
in the inverter xb

k

i in
k = xb

k
T

⎡
⎢⎢⎢⎣

1 0 0 0

−1

2

√
3

2
0 0

−1

2
−

√
3

2
0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

i sx
k

i sy
k
ψsx

k
ψ

sy
k

⎤
⎥⎥⎦

� Mi,x
k xk . (16)

The matrix Mi,x
k is thus inherently defined as the trans-

formation matrix from the state variables xk to the inverter
current i in

k . In this formulation, the homopolar component of
the current is assumed to be absent. Based on these consider-
ations, (15) is reformulated into a notation containing only a
dependence on quantities concerning the system variables V dc

and xk . A recursive estimation is available for these variables

P in
k = V̂ dcMi,x

k x̂k + ξV Mi,x
k x̂k + V̂ dcMi,x

k ξ x
k + O(ξ2). (17)

On the other hand, the provided mechanical output power
is expressed as a function of the torque and speed predictions,
together with the corresponding instantaneous errors. The
speed is assumed to be externally imposed by the driven load

Pout
k = �

T̂k + ξT
k

	�
�̂k + ξ�k

	
. (18)

The mechanical torque at time instant tk is expressed as

Tk = 3

2
Np

�
i sy
k ψ

sx
k − i sx

k ψ
sy
k

	
. (19)

A linearized equation in a confined neighborhood around
the estimated variables is then determined

Tk = 3

2
Np

�
î sy
k ψ̂

sx
k + î sy

k ξ
ψsx

k + ξ isy

k ψ̂sx
k − î sx

k ψ̂
sy
k

− î sx
k ξ

ψsy

k − ξ isx

k ψ̂
sy
k

	 + O(ξ2). (20)

One can introduce the estimated torque T̂k , defined as

T̂k = 3

2
Np

�
î sy
k ψ̂

sx
k − î sx

k ψ̂
sy
k

	
. (21)

Equation (21) is then reformulated into an equivalent vector
representation

Tk = T̂k + 3

2
Np

�−ψ̂sy
k ψ̂sx

k î sy
k −î sx

k



ξ x

k

� T̂k + MT ,x
k ξ x

k . (22)

Substituting this in (18) leads to a tractable expression for
the actual output power

Pout
k = T̂k�̂k + T̂kξ

�
k + MT ,xξ x

k �̂k + O(ξ2). (23)

The dissipated power flow Pd
k is given by the difference

between input and output powers, independent of the direction
of the power flow. The corresponding power loss is conse-
quently written in a first-order approximation as

Pd
k = V̂ dcMi,x

k x̂k + ξV Mi,x
k x̂k + V̂ dcMi,x

k ξ x
k

−T̂k�̂k − T̂kξ
�
k − MT ,xξ x

k �̂k + O(ξ2). (24)

The evolution of the dissipated power is, hence, directly cor-
related with the state estimations and the corresponding error
variables. To alleviate the notation, the previous expression is
symbolically rewritten into an equivalent formulation

Pd
k � P̂ in

k + ξ Pin
k − P̂out

k − ξ Pout
k + O(ξ2). (25)

The variables P in
k and Pout

k denote the input and output
power flows, respectively, and are thus defined as

P in
k = V dci in

k (26)

and

Pout
k = Tk�k . (27)

An appropriate power flow estimation is thus assessed
based on the instantaneous state variables, determined using
a modified Kalman filter on model expectations and sensor
data. Nevertheless, the recursive convex mappings provide
information with respect to steady-state dissipation at an
averaged time scale, which can be evaluated based on the
provided time evolution of the power flows. Averaged power
quantities need to be consulted in an intelligent fashion to
optimally update the motor loss mappings. The algorithmic
procedure is schematically visualized in Fig. 3.
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Fig. 3. General overview of the algorithmic structure.

III. RECURSIVE CONVEX LOSS MAPPING FORMULATION

Energy-efficient operation is commonly a primordial objec-
tive in control systems concerning electric drives. The studied
power losses do, therefore, constitute main decision criteria in
the optimization of the system. In order to facilitate real-time
execution of the control structures, the dissipated power in
regime conditions can be approximated by a convex regres-
sion model in the provided output power, as power losses
increase when deviating from optimal operation. A parabolic
regression model with coefficients set θ = [θ(1) θ (2) θ (3)]T

proves to be sufficiently accurate from a control engineering
perspective [12]. The elements of the vector θ represent the
optimal quadratic approximation and are unknown variables
that need to be estimated. A possible time dependence of the
convex approximation is furthermore added in the framework.
The corresponding time scale is nevertheless related to steady-
state operation and is, therefore, denoted by the notation k �.
A disturbance dk� with variance Dk� represents the deviations
from the expected quadratic trend and is assumed to be
described as a Gaussian white noise

Pd
k� = �

Pout2

k� Pout
k� 1



θk� + dk� . (28)

Introducing the appropriate error variable for the output
power in the previous formulation leads to a first-order series
in the estimation error, obtained by linearizing (28) around the
expected operating point P̂out

k�

Pd
k� = θ

(1)
k�

�
P̂out2

k� + 2P̂out
k� ξ Pout

k�
	 + θ

(2)
k�

�
P̂out

k� + ξ Pout

k�
	

+θ(3)k� + dk� + O(ξ2). (29)

In which, the actual unknown mechanical power at the time
scale k � was written as

Pout
k� = P̂out

k� + ξ Pout

k� . (30)

The quantities P̂out
k� and ξ Pout

k� can herein be interpreted
as an averaged representation of their respective counterparts
in (25). In practical applications, the only available information
concerning the power loss is incorporated in the regime
dissipation estimate P̂d

k� , which is defined as

P̂d
k� = P̂ in

k� − P̂out
k� . (31)

Recalling (25), the estimate is reformed into a function of
the actual dissipation and the error variables at the steady-state
time scale

P̂d
k� = Pd

k� − ξ Pin
k� + ξ Pout

k� + O(ξ2). (32)

Substituting (29) in this relation results in an expression
linking the regression coefficients θk� to the available loss
information source P̂d

k�

P̂d
k� = θ

(1)
k�

�
P̂out2

k� + 2P̂out
k� ξ Pout

k�
	 + θ

(2)
k�

�
P̂out

k� + ξ Pout

k�
	

+ θ(3)k� + dk� − ξ
Pin
k� + ξ Pout

k� + O(ξ2) (33)

and therefore,

P̂d
k� = �

P̂out2
k� P̂out

k� 1


θk� + �

1 + �
2P̂out

k� 1 0
	
θ̂k�

	
ξ Pout

k�

− ξ P in

k� + dk� + O(ξ2). (34)

A more structured notation can be engaged by introducing
the corresponding linear gain factors

P̂d
k� � Gθ

k�θk� + Gθ,Pout

k� ξ Pout
k� + Gθ,P in

k� ξ Pin
k� + dk� + O(ξ2).

(35)

All error variables are directly correlated with the state
and input deviations through expressions (17) and (23). The
corresponding Kalman update procedure can then be initial-
ized. The characteristic covariances of the distinct variables
are symbolically represented by X . In the prediction step,
the previous estimate is considered as the best guess for the
innovated coefficients, as no significant dynamics are related
to the regression model

Prediction θ̂−
k� = θ̂k�−1

Xθ
−

k� = Xθk�−1

Update Rθk� = Gθ
k� Xθ

−
k� GθT

k� + Gθ,Pout

k� X Pout

k� Gθ,PoutT

k�

+ Gθ,P in

k� X P in

k� Gθ,P inT

k� + Dk�

K θ
k� = Xθ

−
k� GθT

k� Rθ
−1

k�

θ̂k� = θ̂−
k� + K θ

k�
�
P̂d

k� − Gθ
k� θ̂−

k�
	

Xθk� = �
I − K θ

k� Gθ
k�
	
Xθ

−
k� . (36)

In the practical implementation, the triple products in the
different summations are calculated at each time instant tk
and averaged over a time interval �t � = tk� − tk�−1 to
obtain a reliable approximation of the steady-state operation.
Procedure (36) is then initiated. A Kalman recursive update is
elected as to facilitate the incorporation of stochastic variables,
reflecting the reliability of the distinct information sources.
The standard recursive least-squares algorithm [19] is, there-
fore, discarded.

IV. DISCRETE INFORMATION EXTRACTION

The characteristic loss behavior of the drive system is
strongly correlated with the rotational speed of the motor
axis, incorporated in the dependence on the output power.
Consequently, this relation needs to be reflected in the convex
loss mappings and the quadratic regression models are, there-
fore, parametrized in the rotational speed [10]. Due to finite
memory resources, convex approximations are only stored
for an arbitrary set of discrete rotational speeds [10], [12].
Realistic applications are nevertheless characterized by a
continuous variation in speed, as all possible values within
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Fig. 4. Assessment of the characteristic parameters at the measured speed.

the operating area can be achieved. Therefore, a heuristic
needs to be constructed to extract valuable information from
the continuously varying physical quantities and translate it
to the discrete references. In the remainder of this paper,
the rotational speed is assumed to be exactly known and
consequently ξ�k equals zero at each time instant tk . This
corresponds to the situation, where a reliable measurement
tool is equipped in the application resulting in only a minor
uncertainty level on this variable.

A power estimation at a speed �m is available at time
instant tk� , while the coefficient estimates and covariance
estimations are stored for both neighboring speeds�L and�R .
The reference speed �L can, hereby, be interpreted as the
nearest lower speed at which a mapping is stored. Similarly,
�R represents the closest higher neighboring speed with an
associated regression model. The actual speed value �m is
thus contained in the interval [�L,�R]. In a first stage,
an a priori prediction of the coefficient characteristics needs
to be assessed at the intermediate speed, based on avail-
able information. The corresponding situation is schematically
visualized in one dimension in Fig. 4.

As no knowledge of the behavior in between two dis-
crete speeds is provided, the best a priori estimate consists
of a linear interpolation between the neighboring vectors
θ̂ L

k�−1 and θ̂ R
k�−1

θ̂m−
k� = m R

mL + m R θ̂
L
k�−1 + mL

mL + m R θ̂
R
k�−1. (37)

Deviations from the expected linear trend between two sub-
sequent values of the speed are assumed to be reliably modeled
as a white noise signal with variance �. The possibility of
observing a considerable deviation is less pronounced close
to �R and �L , as the original data are available in a close
neighborhood of the considered point. Therefore, a parabolic
uncertainty Ek� is proposed

Ek� =
�

− 4

(mL + m R)2
mL2 + 4

mL + m R
mL

�
�. (38)

Based on the previous considerations, the covariance on the
quadratic regression model at �m is expressed as

Xθ
m−

k� =
�

m R

mL +m R

�2

Xθ
L

k�−1+
�

mL

mL +m R

�2

Xθ
R

k�−1+Ek� . (39)

With the definition of these variables, the filter (36) can be
executed. The estimate θ̂−

k� and the corresponding uncertainty
measure Xθ

−
k� are hereby replaced by the previous expressions.

The recursive scheme then provides an innovated estimate
of the coefficients and the covariance matrix. The resulting

Fig. 5. Extrapolation of the obtained knowledge toward the stored data
points.

knowledge needs to be translated into an enhanced approxi-
mation at the outer bounds of the considered region, where
the data are stored. Two primary estimates, θ̂ L−

k� and θ̂ R−
k� , are

computed, based on extrapolation of the previous parameters
and the renewed information at the intermediary speed as
demonstrated in Fig. 5.

The respective definitions of these predictions are, hence,
given as

θ̂ L−
k� = mL + m R

m R
θ̂m

k� − mL

m R
θ̂ R

k�−1 (40)

and

θ̂ R−
k� = mL + m R

mL
θ̂m

k� − m R

mL
θ̂ L

k�−1. (41)

Possible deviations from the proposed linear behavior,
denoted by E L

k� and E R
k� , are taken into account by recon-

sidering the proposed parabolic behavior of the uncertainty.
A quadratic evolution is imposed in the interpolated areas,
instead of the complete interval. In order to prevent the corre-
sponding matrix to become negative, it is necessary to take the
magnitude of the scaling factor. The additional extrapolation
margin is then introduced as

E L
k� =

����−
4

m R2 mL2 + 4

m R
mL

����� (42)

for the characteristic parameters at �L and

E R
k� =

����−
4

mL2 m R2 + 4

mL
m R

����� (43)

in the other case. The total uncertainty on the extrapolated
predictions is then readily determined by summing the differ-
ent contributions. For the lower bound in the speed region,�L ,
this leads to

Xθ
L−

k� =
�

mL + m R

m R

�2

Xθ
m

k� +
�

mL

m R

�2

X R
k�−1 + E L

k� (44)

while the upper limit is characterized by

Xθ
R−

k� =
�

mL + m R

mL

�2

Xθ
m

k� +
�

m R

mL

�2

X L
k�−1 + E R

k� . (45)

The a posteriori estimate is chosen to be a weighted average
of the prediction at the previous time instant tk�−1 and the
extrapolated prediction at tk . In order to facilitate an analytical
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solution, these variables are assumed to be uncorrelated. This
does, however, not deteriorate the overall performance, as will
be demonstrated in Section V.

θ̂ L
k� = θ̂ L

k�−1 + K L
k�
�
θ̂ L−

k� − θ̂ L
k�−1

	

θ̂ R
k� = θ̂ R

k�−1 + K R
k�

�
θ̂ R−

k� − θ̂ R
k�−1

	
. (46)

For the first case, and given the assumption of being uncor-
related, the corresponding covariance matrix is formulated as

Xθ
L

k� = �
I − K L

k�
	
Xθ

L

k�−1

�
I − K L

k�
	T + K L

k� Xθ
L−

k� K LT

k� (47)

and consequently

Xθ
L

k� = K L
k�
�
Xθ

L

k�−1+Xθ
L−

k�
�

K LT

k� −K L
k� Xθ

L

k�−1−Xθ
L

k�−1 K LT

k� +Xθ
L

k�−1.

(48)

This quadratic matrix equation is minimized if the following
condition is fulfilled:

K L
k� = Xθ

L

k�−1

�
Xθ

L

k�−1+Xθ
L−

k�
�−1

. (49)

The obtained outcome is intuitively interpreted as the matrix
extension of a 1-D weighted average. If the initial uncertainty
is large with respect to the extrapolated covariance, a sig-
nificant importance is contributed to the updated data point
stemming from the intermediate speed �m . If the previous
uncertainty is already at a relatively low level, no major
adaptations are executed.

The methodology for the other component in (46) is com-
pletely analogous. The appropriate gain matrix K R

k� is given as

K R
k� = Xθ

R

k�−1

�
Xθ

R

k�−1+Xθ
R−

k�
�−1

. (50)

The introduced definitions lead to a minimal covariance
under the provided circumstances. The introduced heuristic
should, therefore, provide reliable recursive modifications to
the underlying power loss mapping, gradually improving the
quadratic regression model up to the highest accuracy feasible
in the considered system. This upper limit is imposed by
distinct factors, e.g., sensor accuracy, number of stored data
points, and so on.

V. RESULTS AND DISCUSSION

The computational implementation of the previously intro-
duced concepts is carried out in the MATLAB R2015b sim-
ulation environment. The underlying structure is highlighted
in Fig. 6, in which a clear distinction is made between the
simulation time scale �t and the averaging horizon for the
steady-state calculations �t �. The simulation step �t is fixed
at 125 μs, whereas a single averaging horizon �t � has a
duration of 0.5 s or equivalently 4000 time samples. The total
time span of the simulation depends on the applied case study,
as will be highlighted in an upcoming paragraph.

A certain speed profile is applied to the axis using an
external drive, providing the necessary information concerning
�m over time. Reference values for the torque, T set

k , are
independently defined following a predefined load profile.
Furthermore, three main decision criteria are visualized in
the recursive procedure of Fig. 6. Startup of the machine is

Fig. 6. Schematic overview of the adaptive convex mapping procedure in a
simulation environment.

TABLE I

NOMINAL VALUES AND STANDARD DEVIATIONS FOR THE
STOCHASTIC PARAMETERS IN THE DRIVETRAIN

arbitrarily chosen to be finished after 0.25 s, whereas electric
regime operation is assumed to be attained after 0.1 s following
a sudden change in the demanded power. A step in the imposed
torque is defined as

��T set
k − T set

k−1

�� > 0.001 Nm. (51)

This constraint is, however, highly application dependent
and constitutes a rigid boundary between disturbed and nondis-
turbed steady-state operation due to load changes. If the torque
ramp would become too steep, regime operation is no longer a
valid approximation and the associated mapping update would
contain unreliable information.

A. Overview of the General Problem Characteristics

The considered case study is characterized by a constant
deterministic dc source with a magnitude of 300 V (ξV = 0).
The control signals to the inverter gate drivers are provided
by a direct torque control algorithm, relying on predefined
look-up tables [20], with a constant flux reference �set equal
to 0.75 Wb. Furthermore, an asynchronous machine with one
pole pair is elected, for which the rated electric parameters are
provided in the first column of Table I. These values are in
realistic scenarios not exactly known and prone to uncertainty.
The tolerance on the characteristics is assumed to be normally
distributed around the nominal values with respective standard
deviation σ . The fifth parameter Lm is hereby replaced by the
dimensionless coupling factor κ , defined as

κ = Lm2

Ls Lr
. (52)

The actual values for the distinct electric parameters, which
are unknown, are randomly chosen from the resulting sto-
chastic distributions. All numerical information concerning the
induction motor is summarized in Table I.
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Fig. 7. Convex models of the initial power loss estimate Pd,0 as a function
of the demanded output power Pout and the speed �.

Similar to [16], the initial covariance on the matrix elements
is evaluated by taking an extensive amount of samples M
in the distributions of the provided electrical parameters. The
associated matrix models are then determined and translated
into an equivalent vector representation wi

0 for each sample.
The initial uncertainty on the model W0 is thus defined as

W0 = 1

M

M�
i=1

�
wi

0 − w̄0
	�
wi

0 − w̄0
	T
. (53)

In this notation, the variable w̄0 is introduced to represent
the average composition of the model parameter vector w0.

In order to complete the overview of the general quantities
in the simulated asynchronous drive, a concise review of the
measurement (7) is still necessary. Sensor data are emulated
by simulating the correct system, which are in practical appli-
cations not known, and consequently superposing a random
error variable vk . The error is supposed to be characterized
by a normal distribution with covariance matrix Vk . In the
numerical implementation, the measurement uncertainty is
assumed to be fixed and characterized by

Vk =
⎡
⎣

0.012 0 0
0 0.012 0
0 0 0.012

⎤
⎦ ∀k. (54)

The given numerical values are inspired by available infor-
mation regarding the used sensor equipment. Stability of the
proposed methodology under these conditions is not rigorously
demonstrated but is verified based on numerous simulations.
If the provided definition of W0 is a reliable measure of the
uncertainty on the different regression coefficients and their
mutual dependence, the algorithm is observed to converge
toward reliable estimates.

B. Initialization of the Convex Loss Mappings
Offline determination of the optimal quadratic coefficients

for the different reference speeds relies on the dynamical
model (5) and the given expected parameter values and asso-
ciated standard deviations in Table I. No further information
concerning the drive is initially known. A loss mapping is
defined for all rotational speeds ranging from −1 to 149 rad/s,

Fig. 8. Comparison of the regression model and the governing simulation
data for an arbitrary selection of speeds. Wider parabolic curves correspond
to higher rotational speeds.

with a constant step of 2 rad/s. The optimal quadratic approx-
imation is assessed by a standard least-squares algorithm,
in which the quadratic error between the convex model and
the reference data is minimized. These reference data are
provided by short-term simulations of the system (5) at con-
stant speed �, lasting 1 s with a simulation step of 125 μs.
The simulation horizon is chosen long enough to guarantee
that regime conditions are, in all scenarios, certainly achieved
after half of the total time. The subsequent simulation data
of the second half thus provide a trustworthy reflection of
steady-state operation, as both stator and rotor time constants
are significantly smaller than the considered time horizon.
A list of 81 dynamic simulations is executed, for a uniform
distribution of torque setpoints T set in [−17.5, 17.5 Nm]. The
associated surface for the rated parameter values is visualized
in Fig. 7. A smooth transition in the �-direction is observed,
the associated regression model becomes broader for higher
values of the rotational speed. At higher speeds, similar output
power demands are associated with lower torques and thus
lower dissipative losses.

The accuracy of the quadratic approximation is estab-
lished in Fig. 8, in which the underlying simulation data
used to construct the model is compared to the associated
parabolic function. A close resemblance is observed, justi-
fying the use of the proposed regression model for control
purposes.

The proposed regression procedure is repeated 100× for
each discrete speed value with random combinations of para-
meter values selected from the corresponding normal distribu-
tions. This allows to evaluate the initial uncertainty on the
coefficient set of the quadratic model Xθ0 in an empirical
fashion. For a total of M1 (M1 = 100) samples, the respective
definition of the covariance matrix is empirically given as

Xθ0 = 1

M1 − 1

M1�
i=1

(θi − θ̄ )(θi − θ̄ )T . (55)

With θ̄ denoting the mean values for the quadratic coeffi-
cients over all conducted samples in the sample space. The
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Fig. 9. Speed and torque evolution for the three reference scenarios. (a) Speed profile–random. (b) Speed profile–periodic. (c) Speed profile–drive cycle.
(d) Torque profile–random. (e) Torque profile–periodic. (f) Torque profile–drive cycle.

characteristic covariances have to be assessed for each speed
in the considered region of operating speeds.

Furthermore, an interpolation uncertainty �l at the
speed �l , corresponding to the lth mapped speed, needs to be
defined to quantify the introduced error due to linear interpo-
lation for intermediate speeds. Suggesting the notation θ�

l

i for
the regression coefficients at �l of the i th conducted sample,
facilitates expressing the associated interpolation covariance.
The respective deviation δl

i is formulated as

δi = θi − �l+1 −�l

�l+1 −�l−1 θ
�l−1

i − �l −�l−1

�l+1 −�l−1 θ
�l+1

i (56)

and therefore,

�l = 1

M1 − 1

M1�
i=1

δl
i δ

lT

i . (57)

These definitions are valid for the interpolation covariance at
all intermediate reference speeds�l . Recalling the information
extraction at continuously variable speeds of Section IV,
the general uncertainty matrix � [see (38)], can actually be
defined as

� = m R

mL + m R
�L + mL

mL + m R
�R . (58)

With identical notations as introduced in Section IV. If one
of the enclosing bounds of the instantaneous speed consists
of the lower or upper limit on the mapped rotational speeds,
the appropriate formulation is, respectively, given as

� = �R (59)

or

� = �L . (60)

The covariance matrix Dk� is finally assumed to be identi-
cally equal to zero, corresponding to an ideal underlying model
exactly matching the parabolic dependence. Relation (28) is
consequently fulfilled at each time instant tk� for a neg-
ligibly small disturbance dk� . All necessary information to
complete the representation of the system and enable the
recursive update procedure (36) to be started, is hereby pro-
vided. Executing a single dynamic simulation of the system
until regime conditions requires approximately 240 ms on
a standard CPU. Initialization of the convex mappings thus
requires preprocessing efforts for generating the various data
points, resulting in a considerable relative time consumption.
The associated mappings and uncertainty representation are
nevertheless inherently coupled to the specific drive under
study and the procedure has to be carried out only once before
taking the considered component in operation.

C. Validation on Representative Trajectories

The performance of the introduced methodology involving
adaptive convex loss mappings is numerically evaluated on
multiple representative trajectories with their associated par-
ticularities in MATLAB R2015b. A certain speed profile is
imposed to the axis of the drive and the resulting accuracy
in loss assessment is determined. The first trajectory consists
of a random behavior in speed and corresponding torque
demands [Fig. 9(a) and (d)]. The randomized evolution allows
to cover a large part of the operating region and validates
the performance of the algorithm with respect to irregular
behavior. Furthermore, a smooth sinusoidal speed evolution
is imposed. The full range in operational speed is hereby
analyzed, but the speed transitions are well defined, leading
to smoothened power demands [Fig. 9(b) and (e)]. Finally,
an automotive drive cycle-inspired trajectory is investigated,
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Fig. 10. Comparison of the loss prediction provided by a constant convex mapping and a recursively adaptable regression model for the three reference
cases. (a) Random. (b) Periodic. (c) Drive cycle.

with significant sections at a constant speed. The associ-
ated profiles in rotational speed and torque are visualized
in Fig. 9(c) and (f), respectively. Investigating the responses
associated with the varying load cycles allows to validate
the effectiveness of the numerical methodology in distinct
operating environments, as the algorithm is ought to provide
reliable estimates under all conditions.

The capability of the convex approximation to assess the
losses in the drive is validated by rigorously comparing the
difference in expected dissipated power at the considered

speed proposed by the mapping Pd,ad
k� and the actual power

loss Pd
k� . This value is then compared to the performance

of the initial convex regression models Pd,0
k� in completely

similar conditions. The real power loss Pd
k� , which functions

as the reference scenario, is, hereby, calculated by employing
the correct system parameters of Table I. The mathematical
definition of the respective performance measures ηad and η0

leads to

ηad = 1

N �
N ��

k�=1

�
Pd,ad

k� − Pd
k�
�2

(61)

and

η0 = 1

N �
N ��

k�=1

�
Pd,0

k� − Pd
k�
�2
. (62)

At specified time instants, uniformly distributed with a shift
of 250 ms, the prediction error is evaluated, leading to a total
of N � evaluations over the course of the total trajectory. The
outcomes for the simulated responses and performance criteria
in the three reference cases are summarized in Table II. It is
important to note that the adaptive prediction corresponds
to the situation, where the latest power flow estimation has
not yet been accounted for. Hence, it can be considered as
a reliable criterion in rigorously evaluating the generalized
dissipated power prediction of the adapted mappings.

The corresponding evolution in time is depicted in Fig. 10.
Based on the provided numeric results, it is observed that
major increments in the loss assessment are obtained. The
dynamic reconfiguration of the quadratic loss models enables
to reduce the error on the loss prediction by a margin rang-
ing from 55.7% to 89.0%, significantly outperforming the
initial models. Slight deviations in performance are revealed

TABLE II

NUMERICAL RESULTS FOR THE THREE SIMULATED SCENARIOS

in the data of Table II, depending on the imposed speed
and torque trajectories. Sudden transitions in the load induce
swift variations in the power variables, slightly degrading the
performance during these limited time intervals. Furthermore,
regime conditions are regularly disturbed in this environment.
Sinusoidal cycles are characterized by a smooth transition,
without sudden steps in the load, and are, therefore, particu-
larly suited for the iterative procedure. Moreover, all speeds in
the operational range are obtained during only a brief period,
allowing for significant initial adaptations. If a similar speed is
maintained during extended time horizons, the uncertainty on
the corresponding mappings is gradually decreased, resulting
in only minor improvements. This phenomenon is observed
in Fig. 10(c), in which several sections at a constant speed
are incorporated in the trajectory. In each of the considered
situations swift modifications are observed in the initial stages
of the algorithm or for unseen speed regions. This is caused
by the high initial uncertainty on the convex approximations,
as the underlying electrical parameters are prone to significant
deviations. Nevertheless, a noticeable improvement in loss
assessing capabilities is still revealed and both the number
and magnitude of the estimation peaks are diminished over
time.

D. Experimental Validation

Previous results have been obtained based on virtual mea-
surement data, solely relying on models and simulation
data. Magnetic saturation, iron losses, and other undesired
phenomena in electric machinery are, hereby, neglected,
assuming a perfect analytical model and constant electrical
parameters. In realistic scenarios, drift in parameter values
may be observed due to temperature or saturation effects.
Therefore, the proposed algorithm is validated on offline
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Fig. 11. Available lab equipment for collecting measurement data.
(1) Industrial drive controls (2) Load motor in order to track the imposed
reference speed of the drive. The rotational speed is measured by (5) incre-
mental rotary encoder, while (3) torque transducer logs the exerted torque on
the axis. (4) Controlled induction motor receives an arbitrary torque reference
over time.

measurement data, in which these secondary phenomena are
inherently present. The measurement data are collected using
the experimental setup depicted in Fig. 11, for which the
controlled motor has the same rated parameters as defined
in Table I.

Supply to the controlled motor is provided by a dc voltage
source at 300 V and an inverter, for which the corresponding
voltage at the inverter side is monitored. Furthermore, the line
current in the three phases î s is measured. The stator voltage
vector is denoted by v̂s . Control actions are executed using
a dSpace DS1104 controller board. As the main objective is
data collection, namely, currents, voltages, torque, and rota-
tional speed, a flux estimator is implemented. To increase the
robustness to deviations in the stator resistance, the standard
integrator of the flux vector ψ̂s is replaced with a discrete filter.
A standard integrator would accumulate possible measurement
offsets and an inaccurate knowledge of the stator resistance
would furthermore lead to significant deviations at low-speed
current or high load current. The flux vector is, therefore,
estimated using a discretized low-pass filter, which is in fact
the product of a regular integrator and an appropriate high-pass
filter

ψ̂s
k = 1

1 + ωc�t
ψ̂s

k−1 + �t

1 + ωc�t

�
v̂s

k − R̂s î s
k

	
. (63)

The cutoff frequency ωc is empirically set at 2 rad/s
and the time step �t corresponds to the previously defined
simulation step of 125 μs. This combination of values pro-
vides a satisfactory outcome in the experimental environ-
ment. The data are logged using dSpace ControlDesk and
is then analyzed in an offline fashion. Hence, the secondary
phenomena are inherently taken into account without having

Fig. 12. Imposed speed profile and measured rotational speed.

Fig. 13. Imposed torque reference profile and the measured total torque on
the shaft.

the need of a real-time implementation. Offline validation
of the methodology is desired as an online execution would
require a dedicated implementation on specialized platforms,
e.g., field-programmable gate array units. As this is a challeng-
ing task on its own, the real-time execution and parallelization
are the scope of future research. The primary goal of this paper
is, therefore, restricted to demonstrating the applicability of the
procedure on realistic scenarios.

The imposed speed and torque reference profiles are anal-
ogous to the periodic example provided in Section V-C and
are depicted in Figs. 12 and 13 for enhanced clarity, together
with the associated measurements.

No negative torque can be allowed for extended time
intervals as the power flow is unidirectional. This explains
the irregular shape of the periodic signals.

Torque and flux estimations, (21) and (63), respectively,
are performed on the basis of the measured phase currents.
The phase currents, together with the dc bus level, switching
state, measured torque, and rotational speed are in a further
stage analyzed to assess the performance of the adaptive
mapping methodology. Based on the exported measurement
data, a similar outcome is obtained with respect to the pre-
viously discussed simulation. The time evolution of the loss
estimation is provided in Fig. 14. The associated numerical
data are further specified in Table III. A total quadratic error
reduction of 88.6% is observed with respect to the initially



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 14. Comparison of the loss prediction provided by a constant convex
mapping and a recursively adaptable regression model for the measurement
data.

TABLE III

NUMERICAL RESULTS FOR THE EXPERIMENTAL DATA

Fig. 15. Overview of a loss minimization procedure based on adaptive convex
mappings in control applications.

generated convex mappings. Therefore, one can conclude that
the performance of the algorithm is not significantly altered
when exposed to realistic side effects as saturation and time
dependencies. If additional sensing equipment is added to log
the power flows at the inverter level, semiconductor losses
could be experimentally introduced in the loss mappings,
hereby further enhancing the accuracy of the dissipation
models. This is, however, out of the scope of this paper and
is the subject of future research.

The reliability of control decisions stemming from this
information is, hence notably enhanced, possibly contributing
to a more energy-efficient operation during runtime. Online
adaptations furthermore permit applications in flexible envi-
ronments as measurement information can be engaged to

gradually adjust the current regression coefficients θk� . The
proposed methodology restricts the loss approximation to
a quadratic model, hence maintaining the required convexity at
each time instant. Supervisory control loops can thus still rely
on time-efficient convex optimization procedures, in which
the underlying quadratic models are recursively adapted to
enhance the loss assessment when a dynamic load is exerted.
No further modifications to the decision-making structure itself
are, therefore, necessary. The adaptive coefficient estimation
requires nevertheless a dedicated hardware implementation,
but no additional sensing equipment needs to be added for
this aim. A possible implementation of the introduced frame-
work in a practical loss minimization scheme is carried out
as schematically demonstrated in Fig. 15. The convex loss
mapping supplies the control loop with information concerning
the cost, i.e., dissipated energy of the associated control action.

VI. CONCLUSION

Optimal operation of practical electric drives is commonly
characterized by the associated performance with respect to
energy efficiency. Loss minimizing control algorithms at the
system level provide the necessary control signals to guarantee
an efficient operation in an online adaptive environment, as the
governing operating conditions may be prone to temporal
changes. Furthermore, due to the elevated complexity of
contemporary drive systems, dedicated modeling formalisms
are necessary to reduce the computational and algorithmic
requirements. An adaptive convex loss mapping approach is
introduced with the aim of combining flexibility and a reduced
complexity in the supervisory control structures. Available
model information, which is influenced by parameter uncer-
tainty, and online measurement data are engaged to provide
an optimal estimation of the power flows in the system. Accu-
rate knowledge of the dissipated power and a corresponding
uncertainty measure enable to dynamically reassess the most
likely regression parameters of the convex loss model. As the
corresponding mappings are stored at discrete speed values,
an appropriate heuristic is deduced to facilitate the information
extraction at arbitrary continues speed references. The viability
of the introduced methodology is in this paper evaluated in
a simulation environment and on experimental measurement
data. Numerical results unveil the promising prospects of the
considered approach, as the recursive loss assessment error
is reduced by up to 89.0%, depending on the environmental
conditions. Adaptive convex loss mappings can thus find a
place in state-of-the-art control systems technology due to its
appealing combination of a time-efficient format, enhanced
loss assessment and flexibility to changing operating condi-
tions. Nevertheless, future research should focus on efficient
implementation of the proposed algorithmic approach, requir-
ing more advanced and specialized computational platforms.
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