Unraveling the crucial role of Cu(I) intermediates in selfreducing MOD inks for flexible electronics

<u>W. Marchal</u>,^a A. Longo,^b V. Briois,^c K. Van Hecke,^d F. Mattelaer,^e K. Elen,^a M.K. Van Bael,^a A. Hardy ^{a,*}
^a UHasselt - Hasselt University, Institute for Materials Research (IMO-IMOMEC), Inorganic and Physical chemistry, Agoralaan D, 3590 Diepenbeek, Belgium
^b ESRF – European Synchrotron Radiation Facility, Avenue des martyrs 71, 38043 Grenoble, Cedex 9, France
^c Synchrotron SOLEIL, L'orme des merisiers, Saint-Aubin, 91112 Gif-sur Yvette, France
^d Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281 S3, 9000 Gent, Belgium

^e Ghent University, Department of Solid State Sciences, Krijgslaan 281 S1, 9000 Gent, Belgium

*An.Hardy@uhasselt.be

The integration of electronic components in flexible materials such as paper, textiles and plastics is identified as a key challenge for the development of future smart applications including sensors, wireless communication and wearables. In this perspective, the fast and scalable low-temperature deposition of nanoscale metallic features is of utmost importance. Recently, a new class of copper inks, consisting out of self-reducing aminebased formato complexes was developed.^{1,2} These novel inks yield metallic depositions with an outstanding electrical conductivity ($\pm 10 \ \mu\Omega$ cm) at temperatures of 150 °C or less, well below the reduction temperature of neat copper formate (around 225 °C). However, a fundamental explanation for this reaction mechanism and the corresponding temperature shift upon coordination is currently missing. In this work, a wide variety of self-reducing copper complex inks were synthesized and analyzed in detail using single-crystal XRD, EXAFS, FTIR and Raman spectroscopy. In addition, the reduction mechanism was monitored using in-situ XRD and XANES, in combination with cutting-edge statistical data treatment methods such as principal component analysis (PCA), revealing the crucial role of the Cu(I) intermediate and its complex structure.³ Eventually, recommendations for the design of effective inks can be formulated, contributing to a future of flexible printed electronics.

The authors would like to acknowledge the SIM - Met@link project for financial support.

3 W.Marchal, PhD thesis, **2018**.

¹ A.Yabuki, S. Tanaka, Materials Research Bulletin, 2012, 47, 4107.

² Y. Farraj, M. Grouchko, S. Magdassi, Chemical Communications, 2015, 51, 1578.