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Abstract. Motivated by weblogs and discussion forums, epidemic opin-

ion propagation on affiliation networks is investigated. An affiliation

network is a bi-partite graph describing the connections between in-

dividuals and their affiliations. In contrast to epidemics on complex

networks, the epidemic spreading process in the current setting is not

the consequence of pairwise interactions among individuals but of a

group dynamic. We derive a Markov model for the epidemic process

and its fluid limit obtained by sending the population size to infinity

while keeping the number of affiliations constant. This results in a set

of modified SIR-like ordinary differential equations. Different types of

group dynamics are studied numerically and the accuracy of the fluid

limit is verified by simulation.

1 Introduction

With the emergence of social network services (SNS), the speed and outreach of

information diffusion has reached unprecedented heights. In just over a decade,

SNS’s have attracted millions of users, many of them using these services on a

daily basis [1]. A typical SNS allows users to create a profile and make connec-

tions to other users in the social network. A profile is a unique page where one

can “type oneself into being” [2] and can be public or semi-public. SNS users can

send private messages to their connections, inform their connections when their

profile is updated, or pass on messages received from their connections, etc. Such

functionality greatly facilitates quick dissemination of information.

This paper studies epidemic-like opinion propagation on social networks.While

initial epidemiological models assumed well-mixed populations, it has been in-
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creasingly recognised that topological properties of the network of members of

the population and their connections greatly affect the epidemic spreading pro-

cess [3]. The interplay between topology and dynamics is one of the most pressing

challenges in the development of network science [4] and runs in parallel with

the increased research effort on complex networks [5]. Indeed, the large amount

of scientific effort devoted to this subject [6, 7] has made it evident that dynam-

ical processes (like epidemics) taking place on top of a complex network can be

strongly influenced by the topological features of the network, especially in the

case of scale-free networks, in which the degree distribution (the degree of a node

is the number of nodes it is connected to) follows a power law [8].

In contrast to previous studies on epidemic processes on complex networks,

we adopt the affiliation network (AN) paradigm [9], which was studied for SNSs

in [10] and [11]. An AN describes the connections between individuals and their

affiliations. An affiliation can be a shared interest or personal affinity, a common

collective activity, etc. [12]. The AN is a bi-partite graph of individuals and affil-

iations. Such a graph consists of affiliations and individuals and only intercon-

nections between individuals and affiliations are allowed. As opposed to standard

complex networks, ANs allow for a considerably richer and a more intricate inter-

action between individuals. Whereas interaction between individuals is explicitly

pairwise in complex networks, multiple individuals can interact jointly by sharing

an affiliation in an AN.

The effects of such non-pairwise interaction is the subject of the present study.

Borrowing from epidemiological terminology, it is assumed that the state of any

individual is either susceptible (S), infected (I) or recovered (R). Such epidemi-

ological models are usually referred to as SIR-type models. The SIR model as-

sumes that an individual’s state goes from susceptible to infected to recovered,

an infection being the consequence from contact with infected individuals. This

process can be directly reformulated in terms of the propagation of opinions on

a particular topic: a susceptible individual has yet to form an opinion on a certain

topic, whereas infected or opinionated individuals do have such an opinion and

spread their opinion to other individuals. Finally, individuals loose their interest

in the topic after some time and stop spreading their opinion, which corresponds

to recovery in the epidemiological context [13]. While we retain the classical as-

sumption of Markovian SIRmodels that individuals recover after an exponentially



distributed amount of time, we modify the infection process as to reflect “group

dynamics” associated with affiliations. We adopt the term “group dynamics” as in-

troduced by Lewin [14] as the spreading process is not simply the result of the sum

of individual interactions [15]. In particular, we assume that affiliations infect their

members with a rate which is a generic function of the states of the affiliation’s

members. That is, if an affiliation has xS susceptible and xI infectedmembers, the

affiliation’s susceptible members get infected with rate α(xS , xI), α being a generic

function. Obviously, an individual can havemultiple affiliations, and it is assumed

that infection by the different affiliations are independent processes, such that the

infection rate of an individual is the sum of the infection rates of this individual’s

affiliations.

The remainder of this paper is organised as follows. The epidemicMarkovmodel

and the notational conventions of the paper are introduced in the next section. The

fluid limit of the Markov model, which is obtained by increasing the population

size while keeping the number of affiliations constant, is discussed in section 3

and numerically investigated in section 4. Finally, conclusions are drawn in sec-

tion 5.

2 Markovian epidemic model

We consider epidemic opinion propagation on ANs. An AN is a bipartite graph,

whose vertices are divided into affiliations and individuals and whose edges con-

nect affiliations with individuals.

Let A be the set of all affiliations and let Ĝ = P(A) be the power set of A, that

is Ĝ is the set of all subsets of A. Further, let X be the set of individuals. Each

individual can havemultiple affiliations, for an individual i ∈ X , let g(i) : X → Ĝ be

the set of this individual’s affiliations. The mapping g induces a partition of X , all

individuals having the same affiliations in each subset of the partition. For G ∈ Ĝ,

let XG = {x ∈ X , g(x) = G} be the corresponding subset of X and let NG = |XG| be

the number of individuals in this subset. For any setX, |X| denotes its cardinality.

We may exclude subsets G with NG = 0 from further analysis. Therefore, let G =

{G ∈ Ĝ : NG > 0}.

With a slight abuse of notation, for any affiliation a ∈ A, let Xa be the set of

individuals having affiliation a, Xa = {x ∈ X : a ∈ g(x)}, and let Na = |Xa| be the



number of individuals in this set. Note that for a1 ̸= a2 the intersection of Xa1 and

Xa2 may be non-empty as individuals may have affiliations a1 and a2.

We adopt a Markovian SIR-type epidemic process. At any time, an individual

is in one out of three possible states: susceptible, infected or recovered. Hence,

the individuals can also be partitioned into susceptible, infected and recovered

individuals. Let S(t), I(t) andR(t) be the sets of susceptible, infected and recovered

individuals at time t, and let

SG(t) = |S(t) ∪ XG| , IG(t) = |I(t) ∪ XG| , RG(t) = |R(t) ∪ XG| .

Individuals in the same partition G ∈ G are indiscernible. Moreover, affilia-

tions inherit their state from the state of their members. Therefore, the state of

the epidemic process is completely described by the number of susceptible and

infected individuals in the different subsets G ∈ G. Let S(t) = [SG(t)]G∈G and

I(t) = [IG(t)]G∈G be the vectors whose elements represent the number of suscep-

tible and infected individuals in the different partitions at time t. Here and in the

remainder, we index vectors by the elements of G for ease of presentation. More-

over, let π(s, i; t) = Pr[S(t) = s, I(t) = i], for s = [sG]G∈G and i = [iG]G∈G , such that

(s, i) ∈ N . Here N denotes the state space of the Markov chain,

N = {([sG]G∈G , [iG]G∈G) : sG, iG ∈ N, sG + iG ≤ NG} .

For a ∈ A and given state vectors s and i, let sa(s) and ia(i) be the fraction of

susceptible and infected individuals that have affiliation a,

ia(i) =
1

Na

∑
G∈G,a∈G

iG , sa(s) =
1

Na

∑
G∈G,a∈G

sG .

Affiliation a ∈ A infects its susceptible members with a rate αa(sa(s), ia(i)), αa be-

ing a generic function. The infection rate experienced by individuals in the subset

G ∈ G therefore equals,

βG(s, i) =
∑
a∈G

αa(sa(s), ia(i)) .

Let γ be the recovery rate of the individuals, the Chapman-Kolmogorov equations

are then given by,

d

dt
π(s, i; t) =

∑
G∈G

π(s+ eG, i− eG; t)βG(s+ eG, i− eG)(sG + 1)

+
∑
G∈G

π(s, i+ eG; t)γ(iG + 1)− π(s, i; t)
∑
G∈G

(γiG + βG(s, i)sG) ,



where we set π(s, i; t) = 0 for (s, i) /∈ N to simplify notation.Moreover eG is a vector

of zeros apart from the Gth element which equals 1. The first term on the right-

hand side of the former expression corresponds to an infection of an individual in

one of the sets G ∈ G. The second term corresponds to having a recovery in these

different sets.

3 Fluid limit

Due to the considerable size of the state space N , even for modest population

sizes and a modest number of affiliations, direct computation of either transient

or stationary distributions is quite forbidding. As we are mainly interested in the

dynamics when the population is large, we focus on the fluid limit of the process.

The present study scales the size of the population, while keeping the number of

affiliations constant. Let F be the infinitesimal generator of the Markov process

above, we then have,

Fh(s, i) =
∑
G∈G

[h(s−eG, i+eG)− h(s, i)]βG(s, i)sG + [h(s, i−eG)− h(s, i)]γiG .

We now consider a sequence of Markov chains with generators FN such that the

number of individuals is N for the N th Markov chain, thereby equally scaling NG

for the different sets G; set νG = limN→∞NGN
−1. We track the fractions of popu-

lations, such that components of the state space NN of the N th Markov chain live

on a lattice with step size 1/N , the unit vectors having size 1/N as well. In con-

trast, the transition rates increase by N as we translate from population fractions

to population sizes. Setting ϵ .
= 1/N , we get the following generator:

Fϵ−1h(s, i) = ϵ−1
∑
G∈G

[h(s− ϵeG, i+ ϵeG)− h(s, i)]βG(ϵ−1s, ϵ−1i)sG

+ ϵ−1
∑
G∈G

[h(s, i− ϵeG)− h(s, i)]γiGn .

We can deduce the (candidate) fluid limit by Taylor expansion of this generator

around ϵ = 0. We find a limiting generator of the form F̂h = f(x, y) · ∇h, for a

certain 2|G|-dimensional vector function f = [f1, f2]. Note that a generator of this

form corresponds to a deterministic process satisfying the system of differential

equations ẋ(t) = f1(x(t), y(t)), ẏ(t) = f2(x(t), y(t)).

In order to prove this limit rigorously, it needs to be checked that both the pre-

limit processes and the limit process are Feller processes [16], which corresponds



to checking theHille-Yosida conditions.We believe that a careful proof falls outside

the scope of this paper, but remark that due to the compactness of the state space

the proof is not as involved as is sometimes the case. Below we detail the set of

differential equations, where we have dropped the dependence on t for notational

convenience. For all G ∈ G, we have,

s′G = −β̂G(i, s)sG , i′G = β̂G(i, s)sG − γiG , r′G = γiG ,

where sG, iG and rG are the fraction of susceptible, infected and recovered in-

dividuals that have affiliation set G, respectively. Here β̂ couples the differential

equations for the different affiliation sets as follows,

β̂G(i, s) =
∑
a∈G

αa

 1

νa

∑
H∈G,a∈H

iH ,
1

νa

∑
H∈G,a∈H

sH

 ,

with νa = limN→∞NaN
−1.

4 Numerical examples

We adopt the topology of Fig. 1 for the numerical examples. The affiliations and

individuals live on circles, and an individual connects to its κ closest affiliations,

the distance being measured in terms of difference in angle between individual

and affiliation. In addition, we assume the same group dynamic in each affiliation

and the infection rate of the affiliations only depends on the fraction of infected in

the affiliation.

We focus on regular dynamics, in which case the infection rate is an increasing

function of the number of infected, as well as on early adopter dynamics in which

case the infection rate decreases if more members of the affiliation are infected.

Figure 2 assesses the accuracy of the fluid approximation by means of simu-

lation. All plots depict the time-evolution of the percentage of susceptible (S), in-

fected (I) and recovered (R) individuals in the population. The lines correspond to

the fluid limit, whereas the markers correspond to a single trajectory of the epi-

demics, obtained by simulating theMarkov chain. The population size isN = 1000

in figures 2(a) and 2(b),N = 10000 in 2(c) and 2(d), andN = 100000 in 2(e) and 2(f).

All individuals have 3 affiliations, thereby assuming the topology of figure 1. The

initial infection consists of 1% of infected individuals that share the same affilia-

tions. All other individuals are susceptible. The infection rate function is regular



(a) individual connections (b) group connections

Fig. 1. Circular structure for a network with 60 individuals (outer circle) and 6 af-

filiations (inner circle), each individual having two affiliations. Figure (a) shows

the individual connections, figure (b) groups the individuals with the same affili-

ations.

and superlinear in Figs. 2(a), 2(c) and 2(e), α1(i) = 1.4i − 1{i>1/2}0.8(i − 1/2), and

regular and sublinear in Figs. 2(b), 2(d) and 2(f), α2(i) = 0.6i+1{i>1/2}0.8(i− 1/2).

Finally the recovery rate is γ = 1 for all plots. There is clear discrepancy between

the plots with super- and sublinear dynamics, the infection for the superlinear case

being considerablymore extensive. In either case, the fraction of infected is always

less than 50% such that the slope of the infection rate function for i < 1/2 entirely

determines the dynamics of the epidemic. Simulation confirms the accuracy of

the fluid limit for N = 105.

We now compare regular and early adopter dynamics. Figure 3 depicts the time-

evolution of the percentage of susceptible, infected and recovered individuals for

regular (α3(i) = 2iν + 1{i>1/2}2(1 − 2ν)(i − 1/2)) dynamics and for early adopter

dynamics (α4(i) = 1− 2i(1− ν) +1{i>1/2}2(1− 2ν)(i− 1/2)). Here, ν is the value of

α for i = 0.5; different values of ν are assumed as indicated. A comparison of the

curves of regular dynamics and early adopter dynamics reveals that the speed and

the maximal size of the infection for early adopter dynamics is faster and larger

than regular dynamics. This is not unexpected as the infection rate is larger at the

onset of the infection for early adopter dynamics.

5 Conclusion

We proposed an epidemic process on an affiliation network for modelling group

dynamics for opinion propagation on social networks. Opinions are spread from
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(a) N = 1000, α1
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(b) N = 1000, α2
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(c) N = 10000, α1
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(d) N = 10000, α2
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(e) N = 100000, α1
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(f) N = 100000, α2

Fig. 2.Accuracy of the fluid limit for a sub- and super-linear infection rate function.



0 2 4 6 8 10
time

0

20

40

60

80

100

pe
rc

en
ta

ge
su

sc
ep

ti
bl

e

ν = 0.3

ν = 0.4

ν = 0.5

ν = 0.6

ν = 0.7

(a) regular, α3, susceptible
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(b) early adopters, α4, susceptible
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(c) regular, α3, infected
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(d) early adopters, α4, infected
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(f) early adopters, α4, recovered

Fig. 3. Regular dynamics versus early adopter dynamics for different values of ν.



one individual to another via shared affiliations: the opinions of the members of

an affiliation determine the spread of the opinions to the (non-infected) mem-

bers of the affiliation. We provided a continuous-time Markov process for SIR-like

propagation, and studied its fluid limit. That is, we scaled the Markov process by

sending number of individuals to infinity while keeping the number of affiliations

constant. By numerical examples, we showed that the fluid limit is accurate when

the number of individuals is sufficiently large, while the nature of the group dy-

namic can seriously affect spreading in the network.

Apart from the SIR epidemic, other epidemic models may apply to rumour

spreading as well. For example, if the SIS model is adopted, individuals alternate

between being susceptible and infected, i.e. between spreading and not spreading

their opinion. In the SEIRmodel, individuals are exposed before they are infected,

which introduces some time during which in individual has adopted the opinion,

but does not yet spread. We aim at developing similar mathematical tools for these

alternative epidemic processes on affiliation networks in the near future.
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