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Abstract. Learning-based approaches for robotic grasping using visual
sensors typically require collecting a large size dataset, either manually
labeled or by many trial and errors of a robotic manipulator in the real
or simulated world. We propose a simpler learning-from-demonstration
approach that is able to detect the object to grasp from merely a single
demonstration using a convolutional neural network we call GraspNet.
In order to increase robustness and decrease the training time even fur-
ther, we leverage data from previous demonstrations to quickly fine-tune
a GrapNet for each new demonstration. We present some preliminary
results on a grasping experiment with the Franka Panda cobot for which
we can train a GraspNet with only hundreds of train iterations.
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1 Introduction

In the advent of Industry 4.0, more and more small and medium enterprises are
looking into the adoption of robots to improve their production processes. In-
creasingly popular are the so-called collaborative robots or cobots. These robots
are often lightweight and equipped with force torque sensors, enabling these
robots to naturally stop in case of collisions, ensuring safety in human-robot col-
laboration scenarios [9]. Example cobots that are currently available off-the-shelf
are the Kuka LBR series [2], the Universal Robots UR series [3] and the Franka
Panda [1], which can be used in a variety of applications such as production line
loading and unloading, product assembly, and machine tending [4].

One way to program these collaborative robots is by kinesthetic demonstra-
tions, in which the human operator takes the robot arm and moves it to the
desired positions. This reduces the burden of programming the robot, as it is
a much more intuitive approach and requires no expert knowledge on robot
kinematics or programming code. Although in industry this approach is coined
as “learning from demonstration”, it is merely a record and replay feature as
opposed to the learning from demonstration research in which generalized poli-
cies are trained using machine learning techniques [20]. However, this limits the
applicability of currently available systems to cases where positions are fixed
relative to the robot. For example, when grasping an object, this object has to
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be at the same position for each repetition. Even a small perturbation of the
object’s position could harm the system.

In order to mitigate these limitations, one could attach a vision sensor to
the robot and use this information to recognize objects, estimate their pose and
calculate the best grasp [5]. However, these techniques require lots of supervi-
sion, grasp examples and/or training time. In this paper, we propose a grasping
approach using neural networks that seamlessly fits in the current established
workflow of programming a cobot, and requires only a single demonstration in
order to allow perturbations in the grasping position of the target object, up to
some extent.

The remainder of this paper is structured as follows. In the next section we
give an overview of related work in robotic grasping and learning from demon-
stration. Next, we propose our approach, which we call GraspNet, in Section
3. We present some preliminary experimental results in Section 4. Finally we
discuss our results and conclude with pointers for future work.

2 Related work

Grasping objects with a robotic manipulator is a long standing challenge in
research [13]. We focus on data-driven grasping, in which grasping is learned from
vision data, either RGB images or depth scans. In particular, we distinguish three
types of data-driven grasping: (i) using labeled training data, (ii) using human
demonstrations and (iii) using trial and error. For a more in depth survey on
data-driven grasping we refer to [5].

The first type assumes a dataset is available with example objects and the
corresponding grasp positions, either in the form of 3D meshes [7] or 2D images
[19]. Next, a machine learning model such as a neural network can be trained to
predict the correct grasp position [18]. In practice this involves carefully collect-
ing and labeling a dataset, on which training can be performed.

A second approach uses human demonstrations [21]. In order to generalize
well to situations that are different than the human demonstrations, this is often
combined with reinforcement learning techniques [15], or guided policy search
[11]. However, for this approach to work, quite a number of demonstrations is
usually required in order to generalize well.

Reinforcement learning can also be used in the third type, in which grasping
is learned purely from trial and error [16,8]. Another trial and error approach
was presented by Levine et al., in which 14 robots collect data over 800,000
grasp attempts [12]. Using this data, a convolutional neural network is trained
to predict grasp success, and is then used to implement a controller. A similar
approach was presented by Pinto et al. [17]. These trials can also be executed
in simulation, after which the learned policies are transferred to the real world
[22]. Although these approaches require the least amount of supervision, they
are often impractical as they require a lot of trials before the first success.

In this paper we combine elements from the discussed approaches. Similar
to [12], we also train a neural network to predict grasp success, which we use
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to implement a grasp controller. However, instead of creating a large dataset
using trial and error, we collect a single data point per demonstrated grasp. We
show that it is possible to train a neural network that predicts the correct grasp
position from this single data point through the use of various data augmentation
techniques.

3 Learning from a single demonstration

Current collaborative manipulators have a so-called “program by demonstra-
tion” feature, with which the operator can easily program a sequence of actions
for the cobot to execute, by guiding the end effector to the desired positions.
This can, for example, be used to program simple pick-and-place tasks. However,
at execution time, the robot will merely revisit the programmed positions, with-
out any feedback or closed-loop control about whether the programmed task is
actually succeeding. For example, when the object to grasp is not on the exact
same position as during the demonstration, this will likely fail.

Our goal is to incorporate visual feedback, by mounting a camera on the
end effector of the robot, training a neural network that identifies the object to
grasp, and using a closed-loop control algorithm to execute the grasp. In order
to mitigate the need of a large-scale dataset for training the neural network, we
consider the following assumptions:

– The robot operates in the same workspace as during the demonstrations.
– The object to grasp is the same as during the demonstration.
– The object to grasp can be grasped perpendicular to the workspace plane.
– The object to grasp has a positional offset of at most 8cm, with respect to

the original position during demonstration.

Although these assumptions seem limiting, they still cover most use cases in an
industrial environment, where objects need to be picked from and placed in well

(a) (b) (c) (d)

Fig. 1. First, the operator guides the robot to the correct grasp pose (a). Next, the
robot moves up (b) and the top-down camera captures a single frame used for training
(c). We consider 10 types of blocks to grasp (d).
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(a) (b) (c)

Fig. 2. From the demonstration camera frame, we generate random positive (a) and
negative (b) samples by cropping, rotating and adapting brightness and contrast. By
including the demonstrations for the other blocks, we can generate additional negative
samples (c).

defined bin areas, but are not necessarily nicely aligned on fixed positions within
these bins.

3.1 Setup

Our setup is shown in Figure 1 and consists of the Franka EMIKA Panda cobot,
with a camera mounted on its end effector. To record a demonstration, the
operator simply guides the gripper to the preferred grasp pose (a). Next, the
robot will hover this position on a fixed height (b), and one camera frame is
recorded (c). On this camera frame, the object to grasp will be positioned in the
center of the image. As target objects, we currently use toy blocks of different
shapes and colors. We gather demonstrations for the 10 types of blocks shown
in (d).
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Fig. 3. GraspNet architecture: an 128×128 image crop is processed by 4 convolutional
layers with 8, 8, 16 and 16 filters of size 5×5 and stride 2, followed by an average pooling
layer and two fully connected layer with 16 hidden units. The fully connected layers
are implemented as 1 × 1 convolutions and the output is a sigmoid neuron estimating
grasp success.
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3.2 GraspNet

We train a convolutional neural network, dubbed GraspNet, to detect the cor-
rect grasp pose for a target object based on a camera frame, requiring but a
single human demonstration. A well-known technique for extending a dataset
and improving neural network training is data augmentation [6], where images
are perturbed to generate additional examples from the same underlying class.
In this work, we rely on extreme data augmentation in order to create a “very
large” dataset, starting from the single demonstration camera frame.

From the demonstration camera frame, with a resolution of 640× 480 pixels,
we generate a train set by taking random crops of 128×128 pixels. Positive sam-
ples are generated by taking center crops with a small random rotation (sampled
uniformly between -3 and 3 degrees), while any other crop and rotation is used
as negative sample. All samples are further randomized by applying random
perturbations on brightness and contrast, both sampled uniformly between 0.5
and 1.5. Examples of positive and negative samples are shown in Figure 2.

Our neural network architecture is depicted in Figure 3. It consists of four
convolutional layers, of which the final layer is pooled using average pooling. We
include two fully connected layers at the end of the network, implemented as
1× 1 convolutions. All hidden layers have rectified linear units (ReLU), and the
network ends with a single sigmoid neuron to classify each crop as positive or
negative.

3.3 Grasp controller

By implementing the fully connected layers as 1 × 1 convolution kernels, we
can easily apply this to an image with arbitrary size. The output is then a two-
dimensional feature plane, which we interpret as an activation map that indicates
the presence and position of the target grasp object, as seen in Figure 4.

We implement a Cartesian velocity controller for the robot arm, that calcu-
lates the direction vector v from the center of the image to the point of highest
activation, and maps this to movement in the workspace plane. Once the highest

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. Examples of camera images with activation map overlays, generated by running
the images through GraspNet, and upscaling the output feature planes to match the
input dimensions. Darker regions correspond to higher activations. The direction vector
v is represented by the magenta arrow. The big red block is always the target object.
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activation is in the center of the image, the arm moves straight down and closes
the gripper.

In order to also incorporate rotational information, we generate a batch of
rotations of the camera image (e.g. ranging from -50 degrees to 50 degrees, with
a step size of 10), and forward this batch through GraspNet, resulting in a batch
of activation maps. Next, we rotate in the direction of the rotation with the
highest maximum activation. This process is repeated until the unrotated image
has the highest maximum activation.

By constantly streaming the camera images through GraspNet and acting
accordingly we get a closed-loop controller that can successfully grasp the object
once it is in the field of view of the camera.

3.4 Grasping n objects

We can easily extend our approach when learning to grasp multiple object types,
by providing a demonstration and training a separate GraspNet for each object
type. However, when two objects look similar (for example the two red or blue
blocks in our experiments), these might be difficult to distinguish, as we only
train GraspNet from a single demonstration sample. In order to make GraspNet
more robust, we combine all demonstration frames: when training for a certain
target object, we extend our train set by regarding positive samples for other
objects as negative samples for the target object. Examples of such negative
samples are shown in Figure 2(c).

The main drawback of our approach is that we have to train a neural net-
work from scratch for each demonstration. In order to mitigate this, we further
improve our methodology by also learning a set of initialization parameters that
can be fine-tuned quickly for a new demonstration. We apply the Reptile algo-
rithm [14], a recently proposed approach for meta-learning for few-shot classifi-
cation. Suppose we already have a set of n demonstrations, we can train a set
of initialization parameters φ by iteratively sampling one of the demonstrations,
training GraspNet weights W for this demonstration by applying k gradient de-
scent steps, and then updating φ← φ+ ε(W −φ), where ε is the outer step size.
This means we push φ to an optimum in which for all n tasks we can get a high
performing set of weights W after k additional gradient descent steps.

4 Experiments

We apply the dataset generation schemes described in Section 3 to generate a
basic train set (using the single demonstration frame) and an extended train set
(using all demonstration frames) for each of the 10 target blocks. Using these
train sets, we train two GraspNet configurations for each block: “single”, in which
the basic train set for the target block is used, and “multi”, where the extended
train set is used. Each GraspNet is trained for 512 iterations, with batches of 64
random samples. Parameter updates are done using the Adam algorithm [10],
with a step size of 0.001. We also implement the Reptile algorithm, for which
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Fig. 5. Training performance for each configuration on an easy task (block 1) and a
more difficult task (block 10). Averages over 5 random seeds are shown.

we first train initialization parameters on nine of the demonstrations, and then
evaluate for the remaining block. In this case, we first train a GraspNet for 250
outer iterations, with an initial outer step size of 0.6, which is linearly annealed to
0. We use meta-batches, where we train separately on four tasks, and average the
update directions. Each task is trained for 10 iterations with a batch size of 10.
Parameters are updated using the Adam algorithm, with a step size of 0.001, and
β1 = 0, to disable momentum, as done by [14]. Next, we train for 200 iterations
of batch size 64 on the target task. All training is executed on an Nvidia Titan X
GPU. The classification accuracy on a hold-out validation set (comprised of 200
random positive and 200 random negative samples, generated using the extended
dataset generation scheme) for two blocks is plotted in Figure 5.

The results show that training using data of all demonstrations (multi) yields
indeed better results, especially for the blocks that are more difficult to distin-
guish. We also see that training with Reptile indeed converges much faster, and
in some cases even yields the best results.

We report the final classification accuracies for each of the configurations
in Table 1. For each target block, we use a test set of 5,000 random positive
and 5,000 random negative samples, again, generated using the extend dataset
generation scheme. We see again that multi performs better or equal compared
to single, but also that Reptile performs on par (or better), although this only
requires a fraction of the training iterations for fine-tuning.

5 Discussion

We also conduct some initial experiments using the real robot controlled by an
Intel NUC equipped with an Intel i5-5250U CPU. When we do not take rotation
into account, the robot is able to robustly pick up the block using GraspNet.
When applying random rotations, we generate a batch of nine planes where we
rotate the camera frame in steps of 10 degrees, and feed it through GraspNet.
In this case, our robot successfully detects the correct grasp orientation, but the



8 P. Van Molle et al.

Table 1. Test set accuracies per configuration, for each target block, averaged over 5
random seeds.

Block Single Multi Reptile

1 0.989 ± 0.004 0.999± 0.001 0.997 ± 0.001

2 0.985 ± 0.009 0.991± 0.015 0.989 ± 0.007

3 1.000± 0.000 0.995 ± 0.010 0.958 ± 0.007

4 0.976 ± 0.015 0.993 ± 0.009 0.999± 0.000

5 0.969 ± 0.021 0.999± 0.001 0.983 ± 0.003

6 0.995 ± 0.008 0.959± 0.072 0.954 ± 0.046

7 0.910 ± 0.055 0.994± 0.007 0.938 ± 0.077

8 0.957 ± 0.007 0.997± 0.002 0.974 ± 0.024

9 0.887 ± 0.035 0.960± 0.021 0.925 ± 0.068

10 0.927 ± 0.018 0.974 ± 0.022 0.993± 0.002

closed-loop controller fails to move the gripper to the exact grasp location. This
is due to the fact that processing the batched input takes up to 700ms to process
which is too high for accurate control. We are now looking into extending our
setup using a separate, GPU-enabled machine for processing the camera frames.

Besides these promising results, we are aware of the current limitations of
our approach. For example, as we only use a few data examples, this reduces the
applicability to new and unseen situations. Of course this can be mitigated by
adding additional data samples, or by using available grasp datasets [19]. This
would be especially appealing for usage of the algorithm, in which we can train
once on a large dataset to obtain suitable initialization parameters to quickly
fine-tune a GraspNet for each new demonstration.

One of the biggest advantages of our approach is that we can integrate it
seamlessly with the currently common programming-by-demonstration work-
flow. A non-technical operator can still easily program the robot, while alleviat-
ing the need of supplying objects to grasp on the exact same position.

6 Conclusion

In this paper, we have proposed a technique for learning to grasp an object from
a single demonstration from a vision sensor. For each demonstration, we trained
a GraspNet, a convolutional neural network that predicts grasp success based
on an image patch. Using such a GraspNet, we developed a closed-loop robot
controller to grasp the object whenever it is in view of the camera. We show that
we can in fact train a GraspNet from a single image, and that we can increase
robustness by also including data from a few other demonstrations. Moreover,
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using the Reptile meta-learning algorithm, we show that we can quickly fine-tune
a GraspNet for a new demonstration.

In future work, we plan to extend our approach to grasp more common
objects instead of merely toy blocks, and integrate GraspNet in a programming-
by-demonstration platform for a real collaborative industrial workspace. This
will allow to test our approach on production-grade hardware platforms.
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