
An HTTP/2 Push-Based Framework for Low-Latency
Adaptive Streaming Through User Profiling

Jeroen van der Hooft, Cedric De Boom, Stefano Petrangeli, Tim Wauters and Filip De Turck
Department of Information Technology, IDLab, Ghent University - imec

jeroen.vanderhooft@ugent.be

Abstract—Web portals, such as the one hosted by news
providers, have recently started to provide significant amounts of
multimedia content. To deliver this content over the best-effort
Internet, HTTP Adaptive Streaming (HAS) is generally used,
allowing smoother playback and a better Quality of Experience
(QoE). To stimulate user engagement with the provided content,
reducing the video’s startup time has become more and more
important: while the current median video load time is in the
order of seconds, research has shown that user waiting times
must remain below two seconds to achieve an acceptable QoE.
In this work, we present a framework for low-latency delivery
of news-related video content, integrating four optimizations
either at server-side, client-side, or at the application layer. Most
importantly, we propose to identify relevant content through
user profiling, using proactive delivery and client-side caching to
reduce the video startup time. By means of a large data set from
a Belgian news provider, we show that the proposed framework
can reduce the startup time from 4.6 s to 1.5 s (-74.6%) in a 3G
scenario, at the cost of limited network overhead and additional
complexity at server- and client-side.

I. INTRODUCTION

In the last decade, web portals, such as the ones hosted
by news providers, started to provide significant amounts of
multimedia content. As an example, deredactie.be, an impor-
tant Belgian news provider, now offers a large number of
video-based news articles, containing individual topics or full
news broadcasts [1]. To stimulate user engagement with the
provided content, reducing the video’s startup time has become
more and more important: while the current median video
load time is in the order of seconds, research has shown that
user waiting times must remain below two seconds to achieve
acceptable Quality of Experience (QoE) [2].

To improve the user’s QoE, HTTP Adaptive Streaming
(HAS) is generally used to deliver the content over the best-
effort Internet. In HAS, video content is encoded at different
quality levels and temporally divided into multiple segments
with a typical length of 2 to 30 seconds [3]. An HAS client
requests these video segments in a dynamic way, changing
the preferred quality level whenever required. To this end, the
client is equipped with a rate adaptation heuristic that selects
the best quality level based on criteria such as the perceived
bandwidth and the current buffer filling. The client stores the
incoming segments in a buffer, before decoding the sequence
in linear order and playing out the video on the user’s device.

Recently, further improvements to HAS have been made
(e.g., SAND and WebSockets [4], [5]), and new technologies
have been introduced (e.g., WebRTC [6]). In this work, we
present a framework for low-latency delivery of news-related

HAS video. It integrates four complimentary optimizations in
the content delivery chain: (i) server-side encoding to provide
shorter video segments during the video’s startup phase, (ii)
the use of HTTP/2’s server push at the application layer,
(iii) server-side user profiling to identify relevant content for
each user and (iv) client-side storage to hold proactively
delivered content. Through a relevant use case, we show that
the proposed framework can reduce the startup delay of video
streaming sessions, at the cost of limited network overhead
and additional complexity at server- and client-side.

The remainder of this paper is structured as follows. The
proposed framework is presented in Section II, along with
related work regarding every optimization. The experimental
setup is discussed in Section III, followed by a parameter anal-
ysis and a discussion of the most relevant results. In Section
IV, conclusions are drawn and future work is discussed.

II. PROPOSED FRAMEWORK

The proposed framework integrates four complimentary
optimizations in the content delivery chain, as illustrated in
Figure 1. First, we consider video encoding at server-side,
using a shorter video segment duration to improve playout
delay. Second, we focus on the applied application layer
protocol, discussing the possibilities of HTTP/2’s server push
feature. Third, we consider user profiling as a way to predict
user interest and interaction. Fourth, client-side storage is
considered to hold content which is proactively delivered to the
user, once it is deemed of interest by the profiling algorithm.

A. Server-Side Encoding

The first part of the proposed framework consists of server-
side encoding, and more specifically on the segment duration
of the provided content. While traditional streaming solutions
use a fixed segment duration in the order of 2 to 30 seconds,
we will use different segment durations for the startup and
steady-state phase of the video streaming session. As found in
previous work, reducing the duration of video segments comes
with a number of advantages [7]. Most importantly, the short
segments require a lower download time, resulting in a reduced
playout delay. However, since every segment has to start with
an Instantaneous Decoder Refresh (IDR) frame, a higher bit
rate is required to achieve the same visual quality compared
to segments of higher length. This encoding overhead was
analyzed in previous work, showing that a segment duration
of at least 500 ms should be used [7]. Moreover, since a unique
request is required to retrieve each single video segment,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/159326873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: The proposed HAS delivery framework for media-rich content from news providers.

solutions with low segment duration are susceptible to high
round-trip times (RTT). This problem mainly arises in mobile
networks, where the RTT is in the order of 100 ms, depending
on the network carrier and the type of connection.

In the proposed framework, shorter segment durations are
only used in the startup phase of the video streaming session:
once the first part of video content is retrieved and the
buffer is sufficiently filled, the client switches back to a
default segment duration of e.g. 10 seconds. This is achieved
through appropriate generation of the media presentation de-
scription (MPD) file, which contains relevant information on
the available content (e.g., the video’s duration and available
quality representations). Using the MPEG-DASH standard, it
is possible to split the video in multiple parts, and define
unique characteristics for each of them [8]. As such, the
encoding overhead and susceptibility to high RTTs only apply
to the startup phase of the video. The former is addressed by
using an acceptable minimal segment duration, while the latter
is resolved by applying HTTP/2’s server push feature at the
application layer, as explained below.

B. Application Layer Optimizations

At the start of an HAS video streaming session, a large
number of files need to be downloaded. In a stand-alone client,
a request is first sent for the video’s MPD file. Based on
the contents of this file, the client proceeds to download the
initialization segment (if any) and from then on, requests video
segments one by one. In a web-based context, the HTML page
and its required resources need to be fetched as well, including
the HAS player, JavaScript sources, CSS files, images, etc.
All these resources are requested over HTTP, which among
others, allows to traverse firewall and NAT devices, and reuse
the existing delivery infrastructure.

In February 2015, the HTTP/2 standard was published as
an IETF RFC. Its main purpose is to reduce the latency
in web delivery, using request/response multiplexing, stream
prioritization and server push. In previous work, we suggested
to use the latter in order to push video content from server
to client [7]. Pushing video segments back-to-back allows
to eliminate idle RTT cycles, reducing buffering time and
improving bandwidth utilization. As such, it has the potential
to significantly reduce the startup time of video streaming
sessions. In related work, Wei et al. explored how HTTP/2’s
features can be used to improve HAS [9]. By reducing the
segment duration from five seconds to one second, they

manage to accelerate startup and reduce the camera-to-display
delay with about ten seconds.

In the proposed framework, HTTP/2 server push is used to
deliver the following sources back-to-back: the HTML source
code, the DASH.js reference player, the MPD, the initialization
segment and the first k video segments, corresponding to
the first ten seconds of the the video stream. Although not
applicable in the evaluation setup in Section III, it is worth
noting that additional sources, such as images, scripts and
CSS, can be retrieved separately.

C. Server-Side User Profiling

A third optimization consists of server-side user profil-
ing. Its purpose is to build a profile for all platform users,
determining their preferences towards certain news content.
Traditionally, user profiling is about representing the users
of a system in such a way that similar users share similar
representations. In a recommender systems setting based on
collaborative filtering, users and their consumed items are
projected in a low-dimensional vector space [10]. The problem
with this approach is that the user vectors are often static,
which is not always ideal in dynamic scenarios in which many
items are consumed one after the other, such as songs, videos
and news content. It has recently been shown in literature,
and real-life scenarios at Netflix and Spotify, that it is often
beneficial to explicitly consider the time aspect by modeling
users in a dynamic fashion, for example by updating the user
vector with every consumed item [11], [12], [13].

In the proposed framework we will determine whether or not
a given (video) article will likely be consumed by a given user.
For this purpose we will, as traditionally done in recommender
systems, represent each user and article by a low-dimensional
vector. The preference of a user ~u for a certain article ~a can
then be determined based on the cosine similarity:

cos(~u,~a) =
~u ·~a

‖~u‖2‖~a‖2
. (1)

The higher the similarity, the higher the user’s preference
towards an article. We will assume that every video has
associated textual metadata, and therefore, to represent arti-
cles, we will investigate three state-of-the-art natural language
processing (NLP) models: Latent Dirichlet Allocation (LDA),
word2vec and paragraph2vec [14], [15], [16]. Both LDA and
paragraph2vec model documents explicitly, while word2vec
operates on word-level. So, for word2vec, we will represent



each article by the sum of word vectors it contains. To
represent the users of our system, we will also associate a
vector with each of them. This vector is initially an all-zeros
vector. Every time a new article is requested by a user, his
vector is immediately updated by summation of the user and
article vector. To predict then whether a user will read a certain
article, the cosine similarity of the article vector and the user
vector is determined. If a certain threshold θ is exceeded, we
deem the article relevant for the user. The impact of the applied
model and the parameter θ is evaluated in Section III.

D. Client-Side Storage

A fourth and final component of the proposed framework
consists of client-side storage, which is used to enable proac-
tive delivery of relevant video content. If the right content is
sent, using such approach allows to significantly reduce the
video session’s startup time [17]. Depending on the use case
scenario, multiple options for content delivery and storage are
possible. In a stand-alone application, dedicated storage on the
local device can be used. Based on server recommendations,
the application can retrieve content in the background. In
web-based applications, control over client-side storage is less
evident. Recent versions of browsers such as Google Chrome
allow to prefetch web pages which are referred to in the current
page. Pages are prerendered in a hidden tab, and moved to
the foreground upon request. Most browsers now also support
HTTP/2, storing pushed resources in the browser’s cache.

In the proposed framework, HTTP/2’s server push is used to
push relevant content in the background upon connection to
the server. To avoid impeding the QoE in video streaming
sessions, content will be pushed only if non-video news
articles are requested, and once the page is completely loaded.
If the client requests a video article which was deemed of
interest by the server, content is directly retrieved from the
browser’s cache, thus reducing startup latency. It is worth
noting that proactive delivery of non-relevant content results
in network overhead, since bandwidth is wasted on content
which may never be consumed. In Section III, both results for
the startup time and the network overhead will be discussed.

III. EVALUATION AND DISCUSSION

Deredactie.be is one of the major news websites in Belgium,
hosted by the Flemish Radio and Television Broadcasting
Organization (VRT). In recent years, its focus has shifted
largely from simple text-based articles towards multimedia-
rich news reports. Because of this, the website is an excellent
use case for the proposed delivery framework. In collaboration
with VRT, Van Canneyt et al. were able to collect a data set
containing approximately 300 million website requests, issued
between April 2015 and January 2016 [18]. For every request
to the website, among others the requested URL, the referrer
URL, the server’s and client’s local time, and the client’s
hashed IP and cookie ID were logged. These data allow to
gain interesting insights, as illustrated in previous work [17].

In a first step, we select the most appropriate NLP model
for this use case. To this end, all requested Dutch articles in

Figure 2: Precision and recall curves for word2vec (W2V),
LDA and paragraph2vec (P2V), with varying cosine similarity
threshold θ ∈ [0,1]. The right axis shows the relative amount
of recommended articles.

the data set are retrieved and parsed, in order to extract the
title, summary and content of each article. Dutch stopwords
are eliminated and the resulting lower-case text is used as
input to train the three models. In our setup, all vectors in the
system are 100-dimensional. It is worth noting that articles
containing video, include at least a title and a brief summary;
therefore, user profiling can be applied both on text- and video-
based news content. To evaluate the prediction accuracy of
the resulting models, we replay all article publications and
requests issued by a given set of users within the considered
ten-month period. Similar to articles, each user is represented
by a 100-dimensional vector, which is updated every time an
article is requested. When a new article is published, the cosine
similarity of the article vector and the considered user vectors
is determined. If a certain threshold θ is exceeded, the article
is deemed relevant to the user, which is confirmed or dismissed
by analyzing future requests: when a published article is re-
quested, a hit occurs when this article was previously deemed
of interest, and a miss otherwise.

We selected all requests issued by the top 30 video con-
sumers, consisting of 26,539 text-based and 28,060 video-
based article requests. Figure 2 shows the obtained precision
and recall values for these users, for the three different models
and for all cosine similarity threshold values θ = k/40,k ∈
{0, . . . ,40}. No content is recommended for a value of θ = 0
(a user and article vector should be exactly aligned), while all
content is recommended for θ = 1. Interpolating the results,
the highest precision and recall curve is obtained for word2vec,
followed by LDA and paragraph2vec. From the graph, it
also follows that less content needs to be recommended to
improve the recall: for θ = 0.6, for instance, 48.8% of content
is recommended, resulting in a recall of 67.4%. When we
compare this to LDA and paragraph2vec, a similar recall
requires us to respectively recommend 55.4% and 66.3% of
content. From these results, we conclude that word2vec is the
most appropriate model for our use case.

In a second step, we evaluate the proposed framework under
realistic network conditions. To this end, a 3G network setup



HTTP/1.1 HTTP/2 HTTP/2
θ= 0. 5

HTTP/2
θ= 0. 6

HTTP/2
θ= 1

HTTP/2
Perfect

0

2

4

6

8

10

12
St

ar
tu

p 
tim

e 
[s

]
GOP length 250
GOP length 25

HTTP/1.1 HTTP/2 HTTP/2
θ= 0. 5

HTTP/2
θ= 0. 6

HTTP/2
θ= 1

HTTP/2
Perfect

0.0

0.5

1.0

1.5

2.0

2.5

3.0

O
ve

rh
ea

d 
pe

r v
id

eo
se

ss
io

n 
[M

B
]

GOP length 250
GOP length 25

Figure 3: Resulting startup time (left) and network overhead per video session (right), for HTTP/1.1, HTTP/2 with server push,
and HTTP/2 with user profiling and 16 MB of storage size (with word2vec and threshold θ , or with perfect prediction).

is emulated using MiniNet, where 30 clients are connected
to an HTTP/1.1- and HTTP/2-enabled Jetty server. Traffic
control is applied to set the network latency to 100 ms and
shape the available bandwidth of each client according to 3G
traces provided by Riiser et al. [19]. Clients use the Google
Chrome browser in headless mode to start a video streaming
session, using the reference DASH.js player. The open-source
code of the Jetty server was slightly modified, allowing it to
push the first ten seconds of a given video upon request. To
allow seamless connection over HTTP/2, a Node.js proxy is
provided for each client. This proxy can store pushed content
locally, adopting a FIFO logic so that content which was
published least recently, is removed first. Because of the time
complexity, it is not feasible to replay all 28,060 streaming
sessions under a large number of different configurations.
Therefore, 30 sessions were selected at random for each user,
resulting in 900 measurements for the video’s startup time.

Deredactie.be provides its video content at a frame rate of
25 FPS, a resolution of 640×360 and a segment duration of
10 s. For all 9,559 video articles published within the time
of logging, the first ten seconds of the embedded video were
retrieved at lowest quality. This content was re-encoded using
AVC/H.264 with the same frame rate and resolution, but with
a segment duration of both 1 and 10 s. To allow each segment
to be decoded independently, every segment starts with an IDR
frame, and the Group of Pictures (GOP) length is set to 25
and 250 respectively. To realize the same visual quality and
target bitrate as the original content, the Constant Rate Factor
(CRF) rate control in the x264 encoder is enabled, with a CRF
value of 25. This results in an average video bit rate of 361
and 307 kb/s for a segment duration of 1 and 10 s respectively.

Figure 3 shows the boxplots of the average startup time and
resulting network overhead for the 30 considered users. The
current setup of deredactie.be is depicted on the left, using
HTTP/1.1 with a GOP length of 250, i.e. a segment duration
of 10 s. For this configuration, the median startup time equals
4.6 s, with outliers as high as 11.9 s. Using a GOP length of 25
allows to reduce the median startup time to 3.3 s, a reduction
of 27.8% compared to this configuration. Applying HTTP/2
with server push allows to further reduce the median startup
time to 2.8 s (−37.7%) for a GOP length of 25. Since both
approaches are reactive, no bandwidth overhead is introduced

for these configurations.
Applying all optimizations, considering user profiling and

client-side storage with a GOP length of 25 and requests over
HTTP/2 in case of missing content, further reductions are
possible. Using word2vec with 16 MB of storage size, the
median startup time can be reduced to 1.8 s (−60.9%) for
θ = 0.5, to 1.2 s (−74.6%) for θ = 0.6 and 0.5 s (−88.7%)
for θ = 1. This however comes at the cost of a bandwidth
overhead: for θ = 0.5, θ = 0.6 and θ = 1, a median overhead
of respectively 0.36, 0.77 and 1.62 MB is observed per video
session. Given an average encoding bit rate of 361 kb/s, this
translates to roughly 8, 17 and 36 s of wasted content per video
session. In general, there is a trade-off between precision and
recall: given suitable storage, pushing more content results in
more available content and thus a lower startup time, but also
results in higher consumption of network bandwidth.

As a reference, results are also shown for theoretically
perfect user profiling and prediction. In this case, all content
can be retrieved locally, reducing the median startup time to
0.3 s (−92.8%) for a GOP length of 25. Since predictions
are perfect, no bandwidth is wasted for this configuration. It
is worth noting that all discussed reductions are statistically
significant (Wilcoxon signed rank test, p < 0.01).

IV. CONCLUSIONS

In this work, we presented a framework for low-latency
delivery of news-related video content. Its main components
include server-side encoding, HTTP/2’s server push and user
profiling for proactive content delivery and storage. Through
a relevant use case, we showed that the proposed framework
allows us to significantly reduce the startup delay of video
streaming sessions, at the cost of limited network overhead
and additional complexity at server- and client-side. As an
example, applying word2vec-based user profiling with 16 MB
of storage size and a GOP length of 25, the median startup
time is reduced from 4.6 s to 1.5 s (−74.6%) in a 3G scenario,
while the bandwidth overhead per video session is limited to
0.77 MB. In the future, we will focus on use cases where
content is plainly indexed, making user profiling inherently
suitable (e.g., video portals).



ACKNOWLEDGMENTS

Jeroen van der Hooft is funded by grant of the Agency for
Innovation by Science and Technology in Flanders (VLAIO).
Cedric De Boom is funded by grant of the Research Founda-
tion - Flanders (FWO). This research was performed partially
within the imec PRO-FLOW project (150223).

REFERENCES

[1] VRT. (2018) DeRedactie.be. [Online]. Available: http://deredactie.be/
cm/vrtnieuws/

[2] S. Egger, T. Hoßfeld, R. Schatz, and M. Fiedler, “Waiting Times
in Quality of Experience for Web-Based Services,” in International
Workshop on Quality of Multimedia Experience, 2012.

[3] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-
Gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,”
Communications Surveys Tutorials, IEEE, vol. 17, no. 1, pp. 469–492,
2015.

[4] ISO/ICE, “Dynamic Sdaptive Streaming over HTTP (DASH) - Part 5:
Server and Network Assisted DASH (SAND),” 2017.

[5] ——, “Dynamic Sdaptive Streaming over HTTP (DASH) - Part 6:
DASH with Server Push and WebSockets,” 2017.

[6] W3C/IETF, “Web Real-Time Communication (WebRTC),”
https://webrtc.org, online; accessed 12 January 2018.

[7] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, T. Bostoen,
and F. De Turck, “An HTTP/2 Push-Based Approach for Low-Latency
Live Streaming with Super-Short Segments,” Journal of Network and
Systems Management, 2017.

[8] I. Sodagar, “The MPEG-DASH Standard for Multimedia Streaming Over
the Internet,” IEEE Multimedia, vol. 18, no. 4, 2011.

[9] S. Wei and V. Swaminathan, “Low Latency Live Video Streaming
over HTTP 2.0,” in Proceedings of the Network and Operating System
Support on Digital Audio and Video Workshop. ACM, 2014, pp. 37:37–
37:42.

[10] Y. Koren, R. Bell, and C. Volonsky, “Matrix Factorization Techniques
for Recommender Systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[11] C. De Boom, R. Agrawal, S. Hansen, E. Kumar, R. Yon, C. Chen,
T. Demeester, and B. Dhoedt, “Large-Scale User Modeling with Recur-
rent Neural Networks for Music Discovery on Multiple Time Scales,”
Multimedia Tools and Applications, 2017.

[12] J. Basilico and Y. Raimond, “DéJà Vu: The Importance of Time and
Causality in Recommender Systems,” in Proceedings of the Conference
on Recommender Systems. ACM, 2017, pp. 342–342.

[13] T. Donkers, B. Loepp, and J. Ziegler, “Sequential User-based Recurrent
Neural Network Recommendations,” in Proceedings of the Conference
on Recommender Systems. ACM, 2017, pp. 152–160.

[14] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,”
Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[15] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of
Word Representations in Vector Space,” vol. 2013, 2013.

[16] Q. Le and T. Mikolov, “Distributed Representations of Sentences and
Documents,” 2014, pp. 1188–1196.

[17] J. van der Hooft, S. Petrangeli, T. Wauters, R. Rahman, N. Verzijp,
R. Huysegems, T. Bostoen, and F. De Turck, “Analysis of a Large
Multimeda-Rich Web Portal for the Validation of Personal Delivery
Networks,” in Proceedings of the Sysposium on Integrated Network and
Service Management, 2017, pp. 714–719.

[18] S. Van Canneyt, B. Dhoedt, S. Schockaert, and T. Demeester, “Knowl-
edge Extraction and Popularity Modeling Using Social Media,” 2016.

[19] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen,
“Video Streaming Using a Location-Based Bandwidth-Lookup Service
for Bitrate Planning,” ACM Transactions on Multimedia Computing,
Communications and Applications, vol. 8, no. 3, pp. 24:1–24:19, 2012.


