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A B S T R A C T

In this paper, we consider a mixed mechanism of a n-site phosphorylation system in which the mechanism of
phosphorylation is distributive and that of dephosphorylation is processive. It is assumed that the concentrations
of the substrates are much higher than those of the enzymes and their intermediate complexes. This assumption
enables us to reduce the system using the steady-state approach to a Michaelis–Menten approximation of the
system. It is proved that the resulting system of nonlinear ordinary differential equations admits a unique po-
sitive equilibrium in every positive stoichiometric compatibility class using the theory of quadratic equations.
We then consider two special cases. In the first case, we assume that the Michaelis constants associated with the
different substrates in the phosphorylation reactions are equal and construct a Lyapunov function to prove
asymptotic stability of the system. In the second case, we assume that there are just two sites of phosphorylation
and dephoshorylation and prove that the resulting system is asymptotically stable using Poincaré Bendixson
theorem.

1. Introduction

Multisite phosphorylation systems are intracellular futile cycles in
which one enzyme catalyzes the attachment of phosphate groups onto a
protein at multiple sites and another enzyme detaches the phosphate
groups from the protein. Such futile cycles play a vital role in biological
processes like cellular signalling and cell cycle control and consequently
their dynamical properties are of great interest. For a detailed exposi-
tion on phosphorylation systems, the reader is referred to [1].

There are primarily two mechanisms of multisite phosphorylation,
namely, distributive and processive mechanisms. We illustrate these two
mechanisms for a 2-site phosphorylation system. Given below is the
schematic for distributive mechanism of a 2-site phosphorylation
system with S0 denoting the protein substrate, S1 and S2, the phos-
phorylated proteins, E and F the enzymes catalyzing the phosphoryla-
tion and dephosphorylation respectively, and C1, C2, D1 and D2 de-
noting the enzyme complex intermediates.

+ ⇌ → + ⇌ → +
+ ⇌ → + ⇌ → +

S E C S E C S E
S F D S F D S F

0 1 1 2 2

2 1 1 2 0

Likewise the schematic for processive mechanism of a 2-site phos-
phorylation system is given below.

+ ⇌ → → +
+ ⇌ → → +

S E C C S E
S F D D S F

0 1 2 2

2 1 2 0

Recently there has been some research on the dynamical properties of
the two mechanisms of phosphorylation systems. It has been shown
[2,3] that a distributive multisite phoshorylation mechanism can ex-
hibit the property of multistationarity if there are at least two sites of
phosphorylation, meaning that there can be more than one equilibrium
corresponding to any given set of initial conditions of the system. Dis-
tributive mechanisms are also found to exhibit bistability [4–6]. For
processive mechanisms, it has been shown [7] that there is a unique
equilibrium corresponding to a given set of initial conditions and this
equilibrium is globally asymptotically stable. This result has recently
been generalized [8,9] for the case of processive mechanisms where the
protein substrate is modified by more than two enzymes.

In this paper, we consider a mixed mechanism of a n-site phos-
phorylation system where the mechanism of phosphorylation is dis-
tributive and that of dephosphorylation is processive. The dynamics of
such mechanisms have been studied recently in [10]. The authors of
[10] have shown that such a mechanism admits a unique equilibrium
corresponding to any given set of initial conditions. Furthermore, they
have shown that such a mechanism exhibits sustained oscillations
under certain conditions.

In this paper, we consider a Michaelis Menten approximation of a
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mixed mechanism of a n-site phosphorylation system and show using
analytical methods that such a mechanism admits a unique equilibrium
corresponding to a given set of initial conditions. In order to derive the
Michaelis Menten approximation of a mixed mechanism of n-site
phosphorylation system, we make use of the steady state approach
[11]. The Michaelis–Menten approximation of the mechanism is de-
rived under the assumption that the concentrations of the substrate and
phosphorylated proteins are much higher than those of the enzymes
and their intermediate complexes and therefore the results obtained in
this paper are valid under those assumptions.

We then consider two special cases of the mechanism and prove
asymptotic stability in both the cases. In the first case, we assume that
the Michaelis constants associated with the different substrates in the
phosphorylation reactions in the mechanism are equal and then con-
struct a Lyapunov function in order to prove the asymptotic stability of
such a system. In the second case, we assume that there are just two
sites of phosphorylation and dephosphorylation and prove that the re-
sulting system is asymptotically stable using Poincaré Bendixson the-
orem.

2. Preliminaries

In this section, we provide some preliminaries that are required to
understand the results presented in this paper. We begin with the law of
mass action kinetics for chemical reactions.

2.1. Law of mass action kinetics

The law of mass action kinetics is the most common rate governing
law of chemical reactions. According to this law, the rate of a reaction is
proportional to the concentrations of the different species on the sub-
strate side of the reaction. We now describe this law with the help of an
example of a reversible reaction. Consider the reaction

+ ⇌X X X
k

k
1 2 3

r

f

(1)

In the reaction above, kf and kr are positive constants known as the
forward and the reverse rate constants. Let xi denote the concentration
of Xi for =i 1, 2, 3. The mass action reaction rate of the forward reac-
tion is kfx1x2, and the rate of the reverse reaction is krx3. Therefore the
overall reaction rate in the forward direction of the reversible reaction
(1) is = −r k x x k xf r1 2 3. In this case, the rates of change of concentra-
tions of the different species of the reaction are given by

= = − = −x x x r˙ ˙ ˙1 2 3

where =ẋ : dx
dt .

2.2. Michaelis–Menten approximation and the steady state approach

Consider the following simple reaction mechanism in which an
enzyme E catalyzes the formation of a product P from a substrate S by
involving an intermediate complex C.

+ ⥫⥬ → +
−

S E C P E
k

k k

1

1 2

(2)

Let e, s, c, p respectively denote the concentrations of E, S, C, P at any
instant of time. Applying the law of mass action kinetics, we have

= − = − +
= − +
=

−

−

c e k es k k c
s k es k c
p k c

˙ ˙ ( )
˙
˙

1 1 2

1 1

2

Since + =e c( ) 0,d
dt we have

+ =e c et (3)

where et is a constant. The Michaelis–Menten approximation for the dy-
namics of the above reaction mechanism is obtained by assuming that

after an initial short transient, the system reaches a steady state at
which the rate of formation of the intermediate complex C is equal to
the rate at which it is consumed. Therefore at steady state, we have

= − + =−c k es k k c˙ ( ) 01 1 2 (4)

This assumption is called the steady state assumption. Substituting for e
from (3) in Eq. (4), we get

=
+

c e s
s K

t

m

where = +−K :m
k k

k
1 2

1
is called the Michaelis constant associated with the

substrate S and

= =
+

p k c V s
s K

˙ m

m
2 (5)

where Vm≔ k2et is the maximum possible value of ṗ (at infinite s). Eq.
(5) is called the Michaelis–Menten approximation for the dynamics of
the reaction mechanism (2) and the approach described above for de-
riving the equation is called the steady state approach.

Let e0, c0 and s0 denote the initial concentrations of E, S and C in the
reaction mechanism (2). It can be shown using singular perturbation
analysis (see e.g. [12]) that the Michaelis–Menten approximation (5) is
valid when the initial concentration of the substrate is much higher
than those of the enzyme E and the intermediate complex C, i.e., when

≪ ≪e
s

c
s

1 and 1.0

0

0

0 (6)

However, Lee Segel [13] proved that this is not a necessary condition
for the validity of Eq. (5). In [13], Lee Segel proved that if =c 0,0 then
(5) is valid whenever

+
≪e

K s
1.

m

0

0 (7)

The above condition for the validity of Eq. (5) was derived using the
reactant stationary approximation (RSA), where it is assumed that during
the initial short transient before the steady state, there is a negligible
depletion of the substrate concentration s. For the case when c0> 0,
using RSA, the authors of [14] proved that Eq. (5) is valid whenever

− +

+
≪

−e

K s
1.

k c
k s

m

0

0

1 0
1 0

(8)

Notice that while (6) implies (7) and (8), the converse is not true. For
the mixed mechanism phosphorylation network considered in this
paper, we will not use RSA to derive the exact condition for the validity
of the Michaelis Menten approximation of the system. We will instead
assume that the concentrations of the substrates are much higher than
those of the enzymes and their complexes. It can be easily proved using
the singular perturbation method that the Michaelis Menten approx-
imation is always valid under this condition.

2.3. Some mathematical preliminaries

In proving the results presented in this paper, we make use of the
following well known results.

Lemma 1 (Jensen’s inequality). Given a real strictly convex function ϕ, xi in
the domain of ϕ and σi>0 for = …i n1, , , the following inequality holds.

∑
∑

≥ ⎛

⎝
⎜
∑
∑

⎞

⎠
⎟

=

=

=

=

σ ϕ x
σ

ϕ
σ x
σ

( )i
n

i i

i
n

i

i
n

i i

i
n

i

1

1

1

1

Equality holds in the above only if = = …=x x xn1 2 .

Theorem 2 (Bendixson’s criterion). If on a simply connected region
⊂D ,2 the expression +∂

∂
∂
∂

f
x

g
y is not identically equal to zero and does

not change sign, then the system
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=
=

x f x y
y g x y
˙ ( , )
˙ ( , )

has no periodic orbits lying entirely in D.

Theorem 3 (Poincaré Bendixson Theorem). Given a system of ordinary
differential equations = F x( ),d

dt
x where x is two dimensional, let tx( )

represent a solution trajectory of the system which is bounded. Then either
tx( ) converges as ⟶∞t to an equilibrium point of the system, or it

converges to a single periodic cycle.

The next result is a property of convex functions which is frequently
used in chemical reaction network theory (see for e.g., [15, p. 334],
[16, p. 2410]).

Lemma 4. Given a real strictly convex function ϕ, define
= ′ =x ϕ x ϕ xΦ( ): ( ) ( )d

dx . Then for two numbers γi and γj in the domain of ϕ,

− ≤ −γ γ γ ϕ γ ϕ γ( )Φ( ) ( ) ( )i j j i j (9)

with equality holding only if =γ γi j.

Proof. If =γ γ ,i j then (9) holds with an equality sign. Assume that
γi≠ γj. We consider two cases.

Case 1: γi> γj. By mean value theorem and strict convexity of ϕ,
there exists a number c∈ (γj, γi) such that

=
−
−

>c
ϕ γ ϕ γ

γ γ
γΦ( )

( ) ( )
Φ( )i j

i j
j

Hence

− < −γ γ γ ϕ γ ϕ γ( )Φ( ) ( ) ( ).i j j i j

Case 2: γi< γj. By mean value theorem and strict convexity of ϕ,
there exists a number c∈ (γi, γj) such that

=
−
−

<c
ϕ γ ϕ γ

γ γ
γΦ( )

( ) ( )
Φ( )j i

j i
j

Hence

− < −γ γ γ ϕ γ ϕ γ( )Φ( ) ( ) ( ).i j j i j

□

3. Mixed mechanism of a n-site phosphorylation system

We now consider a mixed mechanism of a n-site phosphorylation
system as described in the introduction. We start with the assumption
that each reaction in the mechanism is governed by the law of mass
action kinetics. Consider a mixed mechanism of a n-site phosphoryla-
tion system with rate constants as given below.

+ ⥫⥬ ⎯→⎯ + ⥫⥬ ⎯→⎯ + ⥫⥬ ⋯ ⎯→⎯ +

+ ⥫⥬ ⟶ ⟶ ⋯ ⎯ →⎯⎯⎯⎯ +

− − −

−

+

S E C S E C S E C S E

S F D D D S F

k

k m

k

k m

k

k
n

mn
n

n
l

l l l
n

ln

0
1

1
1

1
1

2

2
2

2
2

3

3

1

1
1

2
2

3 1
0

(10)

We assume that all the rate constants in the above scheme are strictly
positive. For = …i n1, , , let ci, di and si denote the concentrations of Ci,
Di and Si respectively and let e and f denote the concentrations of the
enzymes E and F respectively. Let s0 denote the concentration of S0.
Define for = …i n1, , ,

= − =− −p k es k c r m c: ; :i i i i i i i i1 (11)

Then using the law of mass action kinetics, we have

= −+s l d p˙ n n0 1 1 (12)

= − − −s r l s f l d˙ ( )n n n1 1 1 (13)

= − +−d l s f l l d˙ ( ) .n1 1 1 2 1 (14)

For = … −i n1, , 1, we have

= − +s r p˙ ;i i i 1 (15)

for = …i n1, , , we have

= −c p r˙i i i (16)

and for = …i n2, , , we have

= −− +d l d l d˙ .i i i i i1 1 (17)

The last two rate equations for the reaction network (10) are

∑ ∑= − + = −
= =

e p r c˙ ( ) ˙
i

n

i i
i

n

i
1 1

and

∑= − + + = −− +
=

f l s f l d l d d˙ ˙n n n
i

n

i1 1 1 1
1

from which we have the conservation relations

∑+ =
=

e c e
i

n

i t
1 (18)

∑+ =
=

f d f
i

n

i t
1 (19)

where et and ft are constants.
We now assume that the concentrations of the substrate and the

phosphorylated proteins are much higher than those of the enzymes
and their intermediate complexes and derive a Michaelis–Menten ap-
proximation for the network (10). Note that this can be done using
singular perturbation theory as was done for the case of a pure dis-
tributive 2-site phosphorylation system known as a dual futile cycle in
[5,17]. In this paper, instead we make use of the steady-state approach
[11] as described in Section 2.2. In this approach, it is assumed that
after an initial transient, the network reaches a steady state at which the
overall rates of change of concentrations of all intermediate complexes
Ci and Di equate to zero.

Define

=
+−

a k
k m

:i i

i i

When the steady state is reached, from Eq. (16), we have

= − =c p r˙ 0i i i

and therefore,

= −c a s ei i i 1

for = …i n1, , . Using the conservation relation (18), we have

∑⎛

⎝
⎜ +

⎞

⎠
⎟ =

=
−e a s e1

j

n

j j t
1

1

Therefore

=
+ ∑

=
+ ∑

= …
= −

−

= −
e e

a s
c e a s

a s
i n

1
;

1
1, , .t

j
n

j j
i

t i i

j
n

j j1 1

1

1 1

The above equations are expressions for the steady concentrations of
the enzyme E and enzyme complexes Ci attained as a result of rapid
equilibriation. It follows from (11) that

=
+ ∑

−

= −
r v a s

a s1i
i i i

j
n

j j

1

1 1 (20)

where vi≔miet.
Since =ḋ 0i for = …i n1, , at steady state, from Eqs. (14) and (17), it

follows that
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= = ⋯= = − =+ −l d l d l d l s f l d r: (say).n n n2 1 3 2 1 1 1 1 0 (21)

This implies that

=
+

d r
li
i

0

1 (22)

for = …i n1, , . From the last of the equations in (21), we get

⎜ ⎟= + = ⎛
⎝
+ ⎞

⎠
−

−l s f l d r r l
l

1 .n1 1 1 0 0
1

2

This implies that

=
+−

r
l l s f
l l

.n
0

1 2

1 2 (23)

Substituting (22) in the conservation relation (19), we get

⎜ ⎟= + ⎛
⎝

+ +⋯+ ⎞
⎠+

f f r
l l l
1 1 1

t
n

0
2 3 1 (24)

Defining

∑=
+− = +

a l l
l l l

: 1

i

n

i
0

1 2

1 2 1 1 (25)

and substituting Eq. (23) in (24), we get

= +f f a s(1 ).t n0 (26)

It follows from Eqs. (23), (25) and (26) that

=
+

r v a s
a s1

,n

n
0

0 0

0 (27)

where

=
∑= +

v
f

: .t

i
n

l

0
1

1
i 1

In order to obtain the Michaelis–Menten approximation of (10), we
need to substitute the steady state expressions that we have obtained for

= …r i n( 0, , )i in Eqs. (12), (13) and (15).
Since =r pi i for = …i n1, , due to rapid equilibriation, it follows

from Eqs. (12), (13), (15) and (21) that

= −
= −
⋮
= −
= −

− −

s r r
s r r

s r r
s r r

˙
˙

˙
˙

n n n

n n

0 0 1

1 1 2

1 1

0

with ri defined by Eqs. (27) and (20) for = …i n0, 1, , . This set of
equations may be written in matrix form as follows using the expres-
sions for = …r i n( 0, 1, , )i in Eqs. (27) and (20).

⎡

⎣

⎢
⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

− ⋯
⋯

⋮ ⋮ ⋱ ⋮ ⋮
⋯ −

− ⋯

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

+

+ ∑

+ ∑
⋮

+ ∑

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−

= −

= −

−

= −

d
dt

s
s

s
s

v a s
a s

v a s
a s

v a s
a s

v a s
a s

1 1 0 0
0 1 0 0

0 0 1 1
1 0 0 1

1

1

1

1

n
n

n

n

j
n

j j

j
n

j j

n n n

j
n

j j

0
1

1

0 0

0
1 1 0

1 1

2 2 1

1 1

1

1 1 (28)

Define

=

⎡

⎣

⎢
⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

− ⋯
⋯

⋮ ⋮ ⋱ ⋮ ⋮
⋯ −

− ⋯

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥
⎥

− −

s

s
s

s
s

N ρ

r
r

r
r

: ; :

1 1 0 0
0 1 0 0

0 0 1 1
1 0 0 1

; :
n

n
n

n

0
1

1

0
1

1

(29)

Then Eq. (28) may be rewritten as

=d
dt

s Nρ.
(30)

This equation corresponds to the scheme of reactions shown below

⟶ ⟶ ⋯⋯⋯ ⟶ ⟶−S S S S S Sn
n

n0
1

1
2

2 1
0

0 (31)

With regards to the above scheme ri denotes the rate of the reaction i for
= …i n0, , and N denotes the stoichiometric matrix of the reaction

scheme. Note that a0 is the reciprocal of the Michaelis constant asso-
ciated with the substrate Sn in the dephosphorylation reaction ⟶S Sn 0
and for = …i n1, , , ai is the reciprocal of the Michaelis constant asso-
ciated with −Si 1 in the phosphorylation reactions (reactions 1 to n).
Note also that vi is the maximum possible rate of reaction i (at infinite
substrate concentrations) in scheme (31).

Let +
n denote the set of n-dimensional vectors with positive real

elements. Let sin denote the vector of initial substrate concentrations,
i.e., =s s (0)in . Assume that each component of sin is nonnegative. Then
it is easy to see from Eq. (30) that

− ∈s s NIm( )in

The space of concentrations

S = ∈ − ∈+
+s s s N: { Im( )}s

n 1
inin

is the positive stoichiometric compatibility class corresponding to sin as
defined in [15,18,19].Ssin is the space of substrate concentration vector
s with positive components that can be reached if the initial con-
centration vector is equal to sin.

It is easy to see that ker =⊤N( ) Im  +( ),n 1 where  +n 1 denotes a vector
of dimension +n 1, each of whose entries is equal to 1. We therefore
have  =+

⊤ ( ) 0,n
ds
dt1 i.e.,

∑ =
=

d
dt

s 0
i

n

i
0

due to which we have the only conservation relation corresponding to
(30) given by

∑ =
=

s s
i

n

i t
0 (32)

where st is a constant, i.e., the total substrate concentration is con-
served. Notice that the vector s stays in Ssin as long as ∈ +

+s n 1 and
 =+
⊤ s sn t1 .

It can be proved that the nonnegative orthant is forward invariant
with respect to the system of equations (28), i.e., if the initial values of

…s s s, , , n0 1 are nonnegative, then they remain nonnegative at all future
times. This property commonly referred to as nonnegativity is well
known for chemical reaction networks including the one considered in
this paper. The reader is referred to [20, pp. 613–615] for a simple
proof of nonnegativity for chemical reaction networks in which (a) the
reaction rate vector ρ has nonnegative elements for nonnegative species
concentrations, (b) each element of ρ is a continuously differentiable
function of the species concentrations and (c) the reaction rate of any
given reaction is equal to zero whenever a species in the substrate of the
reaction has zero concentration. A similar proof of nonnegativity may
be found in [21, p. 1042], where it is assumed that in addition to
conditions (a) and (c), each element of ρ is locally Lipschitz in the
species concentrations. In the following lemma, we provide a formal
statement of nonnegativity of the system of equations (28).

Lemma 5. Consider the dynamical system described by equations (28) with
ai, vi>0 for = …i n0, , . If the initial values of …s s s, , , n0 1 are nonnegative,
then they remain nonnegative at all future times.

Using the above lemma, it can be proved that the trajectories of the
system are bounded.

Corollary 6. Consider the system of equations (28) with ai, vi>0 for
= …i n0, , . Define s as in (29) and st as in (32). If the components of s(0)
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are all nonnegative, then the solution trajectories of (28) are bounded with
0≤ si(t)≤ st for ∈ …i n{0, 1, , } and t≥ 0.

Proof. The statement follows from Lemma 5 and the conservation
relation (32). □

4. Uniqueness of equilibrium

In this section, we prove that system (28) admits a unique positive
equilibrium for a given total substrate concentration.

Theorem 7. With regards to the system (28), let st be defined by equation
(32). Assume that ai, vi>0 for = …i n0, , . Then corresponding to a given
positive value of st, the system (28) has a unique positive equilibrium.

Proof. With regards to Eq. (30), an equilibrium occurs when ρ lies in
the right kernel of N, i.e., when

= = ⋯=r r r .n0 1

Let = … ⊤s s s s[ ]n0 1 denote an equilibrium point. From Eqs. (20), we
get

=−s β si i1 0 (33)

where

=β v a
v a

:i
i i

1 1

for = …i n1, , . Since at equilibrium, =r r ,0 1 we get

+ ∑
=

+= −

v a s
a s

v a s
a s1 1j

n
j j

n

n

1 1 0

1 1

0 0

0 (34)

Using the conservation relation (32), we get

∑ ∑= − = −
=

−
=

s s s s β sn t
j

n

j t
j

n

j
1

1
1

0

Define =∑ =γ β: j
n

j1 . Then

= −s s γs .n t 0 (35)

Define = ∑ =δ v a: j
n

v1 1 1
1
j
and =α: v a

v a
0 0
1 1

. Substituting Eqs. (33) and (35) in
Eq. (34), we get

+
=

−
+ −

s
δs

α s γs
a s γs1
( )

1 ( )
t

t

0

0

0

0 0

This leads to a quadratic equation in s0 given by

− + + − − − =δα a γs γα δα a s s s α( ) [(1 ) ( ) ] 0.t t0 0
2

0 0 (36)

Let us now construct a quadratic equation in sn similar to (36). From Eq.
(35), we have

= −s s s
γ

t n
0

(37)

Substituting Eqs. (37) and (33) in Eq. (34), we get

−
+ −

=
+

s s
γ δ s s

αs
a s

( )
( ) 1

t n

t n

n

n0

This leads to the following quadratic equation in sn.

− − + + − + =δα a s γα δα a s s s( ) [(1 ) ( ) ] 0n t n t0
2

0 (38)

We now consider 3 cases and in each one of the three cases, we
prove the existence of a unique positive equilibrium corresponding to a
given positive value of st.

Case 1: − >δα a 00 .
In this case, since α, a0, γ, δ, st are all positive, it follows that the

discriminant Δ1 of the quadratic Eq. (36) is positive, and hence there
are two real roots, of which one is positive and the other is negative. Let
s01< 0 and s02> 0 denote these roots.

The discriminant Δ2 of Eq. (38) is given by

= + + − − −

= + − − + − >

γα δα a s s δα a

γα δα a s γα δα a s

Δ [(1 ) ( ) ] 4 ( )

[(1 ) ( ) ] 4 ( ) 0
t t

t t

2 0
2

0

0
2

0

Therefore Eq. (38) has two real roots, which are both positive. Let sn1
and sn2 denote these roots with sn2> sn1. From Eq. (35), it is easy to see
that the roots s01 and sn2 correspond to one equilibrium and the roots
s02 and sn1 correspond to the other equilibrium, which is a positive
equilibrium. Thus we have

+ =γs s sn t02 1

and = ⋯ ⊤s s β s β s β s s[ ]n n02 2 02 3 02 02 1 is a unique positive equili-
brium of (28).

Case 2: − =δα a 00 .
In this case Eqs. (36) and (38) can be simplified as follows:

+ − =s γα s α[1 ] 0.t0

− + + =γα s s(1 ) 0n t

It is easy to see that the roots of the above equations, s0 and sn are both
positive, which implies that >s 0i for = … −i n1, , 1. This implies that s
is unique and has positive components.

Case 3: − <δα a 00 .
In this case, the discriminant Δ1 of Eq. (36) is given by

= + + − − −

= + − − + − >

γα a δα s a δα γαs

γα a δα s a δα s

Δ [(1 ) ( ) ] 4( )

[(1 ) ( ) ] 4( ) 0
t t

t t

1 0
2

0

0
2

0

Therefore Eq. (36) has two real roots, which are both positive. Let s01
and s02 denote these roots with s02> s01. Now consider Eq. (38). It is
easy to see that the discriminant Δ2 of this equation is positive. Con-
sequently the roots of this equation are real, with one of them being
positive and the other negative. Let sn1< 0 and sn2> 0 denote the two
roots of (38). From Eq. (35), it can be inferred that the roots s01 and sn2
correspond to one equilibrium, which is positive and the roots s02 and
sn1 correspond to the other equilibrium. Thus we have

+ =γs s sn t01 2

and = ⋯ ⊤s s β s β s β s s[ ]n n01 2 01 3 01 01 2 is a unique positive equili-
brium of (28). □

From Theorem 7, it follows that there is a unique equilibrium in
every positive stoichiometric compatibility classSsin corresponding to a
nonnegative, nonzero initial substrate concentration vector sin.

5. Asymptotic stability of two special cases

We now consider two special cases as mentioned in the introduction
section and prove asymptotic stability of the unique positive equili-
brium of the system (28). In the first case, we assume that the Michaelis
constant associated with the different substrates involved in the phos-
phorylation reactions are equal. In the second case, we assume that
there are just two sites of phosphorylation and dephosphorylation.

5.1. The case of equal Michaelis constants

With reference to the system (28), we assume that = = ⋯=a a an1 2 .
With this assumption, we construct a Lyapunov function in order to
prove asymptotic stability of the corresponding unique equilibrium.

Theorem 8. Consider the system of equations (28) with vi>0 for
= …i n0, , and = = ⋯= >a a a 0n1 2 . Define s as in (29) and st as in

(32). If the components of s(0) are all nonnegative and s(0)≠ 0, then the
solution trajectories of (28) converge to the unique positive equilibrium
corresponding to the value of st.

Proof. Define =a a1. Then for = …i n1, , , the rate ri of reaction i in
scheme (31) is given by
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=
+ ∑

−

=
−r v as

a s1
.i

i i

j
n

j

1

0
1

(39)

Let = ⋯ ⊤s s s s[ ]n0 1 denote the unique positive equilibrium substrate
concentration vector corresponding to the total substrate concentration
st. With reference to Eq. (30), ρ lies in the right kernel of N at
equilibrium.

Thus

= = ⋯= =r r r r: (say)n0 1

when =s s , i.e., at the positive equilibrium corresponding to st. Define

∑

⎜ ⎟

= + − − ⎛

⎝
⎜

+ ∑

+ ∑
⎞

⎠
⎟

− ⎛
⎝

+
+

⎞
⎠

=
−

=
−

=
−G s r s r s r

a
a s

a s

a
a s
a s

: ln ln ln 1 ln
1

1

1 ln 1
1

i

n

i i n t
i
n

i

i
n

i

n

n

1
1 0

0
1

0
1

0

0

0 (40)

where it is assumed that =−s rln 0i i1 if =−s 0i 1 for some ∈ …i n{1, , }
and =s rln 0n 0 if =s 0n . Note that this assumption is reasonable since
for ∈ … −i n{0, , 1}

=
⎛

⎝
⎜ + ∑

⎞

⎠
⎟ =→

+
→

+

=
−+ +

s r s v as
a s

lim ln lim ln
1

0
s

i i
s

i
i i

j
n

j0
1

0

1

0
1

i i

We now prove that G is a Lyapunov function for the system (28), by
proving the following

1. G≥ 0 with equality holding only if =s s ;

2. ≤dG
dt

0 with equality holding only if =s s .

We first prove that G≥ 0 with equality holding only if =s s . From
Eq. (40), we have

∑

∑ ∑

⎜ ⎟

⎜ ⎟

⎜ ⎟

= ⎛
⎝
⎞
⎠
+ ⎛

⎝
⎞
⎠
− ⎛

⎝
⎜

+ ∑

+ ∑
⎞

⎠
⎟

− ⎛
⎝

+
+

⎞
⎠

= ⎛
⎝
⎞
⎠
− ⎛

⎝
⎜ + ⎞

⎠
⎟

⎛

⎝
⎜
∑ +

∑ +

⎞

⎠
⎟

− ⎛
⎝

+ ⎞
⎠

⎛

⎝
⎜

+

+

⎞

⎠
⎟

=
−

=
−

=
−

= =

−
=
−

=
−

G s r
r

s r
r a

a s

a s

a
a s
a s

s s
s

s
a

s

s

s
a

s

s

ln ln 1 ln
1

1

1 ln 1
1

ln 1 ln

1 ln

i

n

i
i

n
i
n

i

i
n

i

n

n

i

n

i
i

i i

n

i
j
n

j a

j
n

j a

n
n a

n a

1
1

0 0
1

0
1

0

0

0

0 0

1
0
1 1

0
1 1

0

1

1
0

0 (41)

We now prove the following inequalities:

∑ ∑⎜ ⎟
⎛
⎝
⎞
⎠
≥ ⎛

⎝
⎜ + ⎞

⎠
⎟

⎛

⎝
⎜
∑ +

∑ +

⎞

⎠
⎟

=

−

=

−
=
−

=
−s s

s
s

a

s

s
ln 1 ln

i

n

i
i

i i

n

i
j
n

j a

j
n

j a0

1

0

1
0
1 1

0
1 1

(42)

with equality holding only if =s si i for = …i n0, , and

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠
≥ ⎛
⎝

+ ⎞
⎠

⎛

⎝
⎜

+

+

⎞

⎠
⎟s s

s
s

a

s

s
ln 1 lnn

n

n
n

n a

n a0

1

1
0

0 (43)

with equality holding only if =s sn n. In order to prove inequalities (42)
and (43), we make use of the following lemma which can be proved
using Jensen’s inequality.

Lemma 9. Define

=
⎧
⎨
⎩

>

=
( )H s s s s

s
( , ): ln if 0

0 if 0

s
s

Then

∑ ∑ ∑≥ ⎛

⎝
⎜ + + ⎞

⎠
⎟

= = =

H s s H s b s b( , ) ,
i

n

i i
i

n

i
i

n

i
1 1 1 (44)

where b>0 and for = …i n1, , , si≥ 0 and >s 0i . The equality in (44)
holds only if =s si i for = …i n1, , .

Proof. We first prove that for any s1, s2≥ 0 and >s s, 0,1 2

+ ≥ + +H s s H s s H s s s s( , ) ( , ) ( , )1 1 2 2 1 2 1 2 (45)

with equality holding only if =s
s

s
s

1
1

2
2
.

If =s 01 and s2> 0, then the left hand side of (45) is equal to

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠
> ⎛

⎝ +
⎞
⎠

s s
s

s s
s s

ln ln2
2

2
2

2

1 2

If = =s s 0,1 2 then (45) reduces to an equality and =s
s

s
s

1
1

2
2
holds. Now

assume that s1> 0, s2> 0. Define

= ⎛
⎝
⎞
⎠

ϕ x
x

( ): ln 1

and note that ϕ is a real strictly convex function. Applying Jensen’s
inequality (Lemma 1) on ϕ with =n 2, σi≔ si and =x :i

s
s
i
i
gives

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠
+ ⎛

⎝
⎞
⎠
≥ + ⎛

⎝

+
+

⎞
⎠

s s
s

s s
s

s s s s
s s

ln ln ( )ln1
1

1
2

2

2
1 2

1 2

1 2

with equality holding only if =s
s

s
s

1
1

2
2
.

It is easy to verify by induction that

∑ ∑ ∑≥ ⎛

⎝
⎜

⎞

⎠
⎟

= = =

H s s H s s( , ) ,
i

n

i i
i

n

i
i

n

i
1 1 1 (46)

with equality holding only if

= = …=s
s

s
s

s
s

n

n

1

1

2

2

Now observe that =H b b( , ) 0. Adding H(b, b) to both sides of in-
equality (46), we get

∑ ∑ ∑ ∑ ∑≥ ⎛

⎝
⎜

⎞

⎠
⎟ + ≥ ⎛

⎝
⎜ + + ⎞

⎠
⎟

= = = = =

H s s H s s H b b H s b s b( , ) , ( , ) ,
i

n

i i
i

n

i
i

n

i
i

n

i
i

n

i
1 1 1 1 1

with equality holding only if

= = …= = =s
s

s
s

s
s

b
b

1,n

n

1

1

2

2

i.e., if =s si i for = …i n1, , . □

Observe that inequalities (42) and (43) directly follow from
Lemma 9. From Eq. (41), it follows that G≥ 0 with equality holding
only if =s s , i.e. at equilibrium.

We now prove that ≤ 0dG
dt with equality holding only if =s s .

Define

∑= − ⎛

⎝
⎜ + ⎞

⎠
⎟ − +

=

−

G s r
a

a s
a

a s: ln 1 ln 1 1 ln(1 )t
i

n

i n
0

1

0
0

From Eqs. (40) and (39), it follows that

∑ ∑ ∑

⎜ ⎟

= − ⎛

⎝
⎜ + ⎞

⎠
⎟

⎛

⎝
⎜ +

⎞

⎠
⎟ +

− ⎛
⎝

+ ⎞
⎠

+ −

=
− −

=
−

=

−

G s v as s
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s
a

a s G

ln( ) 1 ln 1 ln( )

1 ln(1 )

i

n

i i i
i

n

i
j

n

j n n

n n

1
1 1

1
1

0

1

0 0

0
0

Define γi≔ ln ri for = …i n0, 1, , . For some ∈ … −k n{0, , 1},
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Thus for ∈ … −k n{0, , 1},

∂
∂

= +
G
s

γ .
k

k 1

Taking partial derivative of G with respect to sn, we similarly have

∂
∂

=G
s

γ
n

0

Define

=

⎡

⎣

⎢
⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
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⎥

γ
γ

γ
γ

Γ: .
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0

Now

∑= ∂
∂

= =
=

⊤ ⊤dG
dt

G
s

ds
dt

ds
dt

Nρ· Γ Γ
i

n

i

i

0 (47)

From Eq. (47), we get

= − + − + ⋯+ − + −− −
dG
dt

γ γ e γ γ e γ γ e γ γ e( ) ( ) ( ) ( )γ γ
n n

γ
n

γ
1 0 2 1 1 0n n0 1 1

Since the exponential function is strictly convex, we can apply Lemma 4
with ϕ(x)≔ ex to obtain

− ≤ −γ γ e e e( )i j
γ γ γj i j

for any ∈γ γ,i j with equality holding only if =γ γi j. Hence

≤ − + − + ⋯+ − + − =−
dG
dt

e e e e e e e e 0γ γ γ γ γ γ γ γn n n1 0 2 1 1 0

From the above, it follows that = 0,dG
dt only when = = ⋯=γ γ γn0 1 . i.e.,

when = = ⋯=r r r ,n0 1 which corresponds with the unique positive
equilibrium =s s associated with the total substrate concentration st in
our case. This implies that G is a Lyapunov function for the system (28).
Therefore, all solution trajectories of (28) converge to the unique po-
sitive equilibrium corresponding to st. □

5.2. The case of two sites of phosphorylation and dephosphorylation

In this section, we consider the system (28) with =n 2, and prove
asymptotic stability of the unique equilibrium corresponding to a given
total substrate concentration. The proof proceeds by reduction of the 3-
state Michaelis–Menten approximation of the system given by (28) with
=n 2 into a system of nonlinear ordinary differential equations com-

prising of two states using the conservation law (32). This reduction
enables us to make use of the Bendixson’s criterion in order to prove the
non existence of periodic orbits in the system. Finally we make use of
the Poincaré Bendixson theorem to conclude that the unique equili-
brium is a global attractor. This method has been used in order to prove
a similar result for the case of the Michaelis Menten approximation of
the dual phosphorylation futile cycle in [22], in which the mechanisms of
both phosphorylation and dephosphorylation are distributive.

Theorem 10. Consider the system of equations (28) with =n 2 and ai,
vi>0 for =i 0, 1, 2. Define s as in (29) and st as in (32). If the components
of s(0) are all nonnegative and s(0)≠ 0, then the solution trajectories of
(28) converge to the unique positive equilibrium corresponding to the value
of st.

Proof. From the conservation relation (32), we have

= − −s s s st2 0 1 (48)

Substituting for s2 in the first two equations of (28), we get

= −
+ +

+ − −
+ − −

=

=
+ +

−
+ +

=

s v a s
a s a s

v a s s s
a s s s

f s s

s v a s
a s a s

v a s
a s a s

g s s

˙
1

( )
1 ( )

: ( , )

˙
1 1

: ( , )

t

t
0

1 1 0

1 0 2 1

0 0 0 1

0 0 1
0 1

1
1 1 0

1 0 2 1

2 2 1

1 0 2 1
0 1

(49)

Replace the third equation in (28) with Eq. (48). Observe that the
system (49) has only two states and therefore we can make use of the
celebrated Bendixson’s criterion (Theorem 2) in order to investigate the
existence of periodic orbits. We have

∂
∂

+
∂
∂

= −
+ − −

− + + + +
+ +

f
s

g
s

v a
a s s s

v a a s s v a a s
a s a s

(1 ( ))
[ (1 ( )) (1 )]

(1 )

t0 1

0 0

0 0 1
2

1 1 2 0 1 2 2 1 0

1 0 2 1
2 (50)

Since each component of s(0) is nonnegative, from Lemma 5, it follows
that they remain nonnegative at all future times, and therefore from Eq.
(50), it follows that + <∂

∂
∂
∂ 0f

s
g
s0 1

at all times t≥ 0. From Bendixson’s
criterion, it follows that the system (49) does not admit any sustained
oscillations because of the non existence of periodic orbits in the
nonnegative quadrant. We now make use of the Poincare–Bendixson
Theorem (Theorem 3) in order to prove that the unique equilibrium of
the system is a global attractor.

From Corollary 6, it follows that every solution trajectory of the
system (49) is bounded. From the assumptions made in the statement of
the Theorem and from Theorem 7, it follows that the system (28) and
hence (49) admit a unique positive equilibrium. Since (49) does not
have any periodic orbit, it follows from Poincaré Bendixson Theorem
that every solution trajectory of (49) and hence of (28) converges to the
corresponding unique positive equilibrium. □

6. Conclusion

In this paper, we have proved that the Michaelis Menten approx-
imation of a mixed mechanism of a phosphorylation system admits a
unique equilibrium in every positive stoichiometric compatibility class
using the theory of quadratic equations. Further, we have proved that if
the Michaelis constants associated with the different substrates in the
phosphorylation reactions are equal, then the equilibrium is asympto-
tically stable. We have proved this by making use of the convexity of
the exponential function in a way similar to the proof of asymptotic
stability of complex balanced networks as presented in [16]. In the case
of the number of sites of phosphorylation and dephosphorylation being
equal to two, we have proved that the resulting unique equilibrium is
asymptotically stable irrespective of the values of the parameters of the
system. Here, we have made use of Bendixson’s criterion and Poincare
Bendixson theorem, as has been already done for the case of the Mi-
chaelis Menten approximation of the dual futile cycle in [22].

The results obtained in this paper are valid under the assumption that
the concentrations of the substrate and the phosphorylated proteins are
much higher than those of the enzymes catalyzing the phosphorylation
and dephosphorylation processes and their intermediate complexes. In the
case where this assumption does not hold, it is possible that the system
admits sustained oscillations as shown numerically in [10].

The results about uniqueness and asymptotic stability of a positive
equilibrium obtained in the paper hold also if the mechanisms of phos-
phorylation and dephosphorylation are swapped, i.e., if the phosphorylation
occurs in a processive way and the dephosphorylation in a distributive way.
Currently, research is being carried out to prove asymptotic stability of the
unique positive equilibrium of the Michaelis Menten approximation of a
mixed mechanism of phosphorylation corresponding to a given total sub-
strate concentration with no condition on the parameters of the system,
since numerical simulations have shown to support this conjecture.
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