DIANNE: a modular framework for designing, training
and deploying deep neural networks on heterogeneous
distributed infrastructure.

Elias De Coninck®*, Steven Bohez?, Sam Leroux®, Tim Verbelen®, Bert
Vankeirsbilck?, Pieter Simoens?®, Bart Dhoedt®

*Ghent University - imec, IDLab, Department of Information Technology,
Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium

Abstract

Deep learning has shown tremendous results on various machine learning
tasks, but the nature of the problems being tackled and the size of state-
of-the-art deep neural networks often require training and deploying models
on distributed infrastructure. DIANNE is a modular framework designed for
dynamic (re)distribution of deep learning models and procedures. Besides
providing elementary network building blocks as well as various training and
evaluation routines, DIANNE focuses on dynamic deployment on hetero-
geneous distributed infrastructure, abstraction of [Internet of Things (IoT)|
sensors, integration with external systems and graphical user interfaces to
build and deploy networks, while retaining the performance of similar deep
learning frameworks.

In this paper the DIANNE framework is proposed as an all-in-one solution
for deep learning, enabling data and model parallelism though a modular
design, offloading to local compute power, and the ability to abstract between
simulation and real environment.

Keywords: Artificial Neural Networks, Distributed Applications, Machine
Learning, Internet of Things

*Corresponding author
Email addresses: elias.deconinck@ugent.be (Elias De Coninck),
steven.bohez@ugent .be (Steven Bohez), sam.leroux@ugent.be (Sam Leroux),
tim.verbelen@ugent.be (Tim Verbelen), bert.vankeirsbilck@ugent.be (Bert
Vankeirsbilck), pieter.simoens@ugent .be (Pieter Simoens), bart .dhoedt@ugent .be
(Bart Dhoedt)

Preprint submitted to Journal of Systems and Software February 1, 2018

1. Introduction

In recent years, deep learning [I], 2] has revolutionized many areas of com-
puter science, from computer vision and natural language processing to con-
trol systems. As state-of-the-art neural networks generally have millions of
parameters, training such models requires an equally large amount of training
data and computation time. Distributing the training procedure on a cluster
of compute nodes has become a necessity to achieve feasible training times.
Recent work has studied the trade-offs of various algorithms for distributed
training [3, 4, B5]. Most deep learning frameworks, however, do not provide
distributed training out-of-the-box, or do not do so in a user-friendly and
intuitive way, requiring additional development. This is especially the case
for distributing custom training routines.

In practical applications of deep learning such as in robotics, often high-
dimensional sensor data from multiple sources needs to be combined and
processed, making it impossible to avoid a distributed setting. In the
lof Things| (ToT)) world there exist a plethora of networked devices, sensors
or actuators, with or without compute capabilities which could be used in
deep learning as inputs (sensors), outputs (actuators), training capacity or
training performance. In such cases, combining deep learning with principles
from edge computing to provide on-demand acceleration becomes appealing.

In this paper we present DIANNE (DIstributed Artificial Neural NEt-
works), a modular deep learning framework implemented in Java, built from
the ground up with a clear focus on dynamic distributed training and deploy-
ment of deep neural networks on a multitude of heterogeneous devices. The
targeted devices range from small embedded devices, like the Raspberry Pi,
up to cloud infrastructure with specialized learning hardware. While most
frameworks focus on batch learning speed, DIANNE is optimized for ease-
of use during application development and interaction with robots and [[oT]
environments through input/output abstraction.

A getting-started guide and documentation are available on the DIANNE
webpage [[] Source code is hosted on GitHub] under a GPLv3 License. Ad-
ditionally, automatically tested and compiled binaries for various platforms

'http://dianne.intec.ugent.be
Zhttp://github.com/ibcn-cloudlet/dianne

http://dianne.intec.ugent.be
http://github.com/ibcn-cloudlet/dianne

are available on the download page of the DIANNE website, as well as a
number of pre-trained models.

The remainder of this paper is structured as follows. In the next section
we discuss the related work in scope of scaling and managing deep neural net-
work learning, and other comparable frameworks. Section |3| gives more de-
tail on the requirements of the framework by introducing common use cases,
which are later expanded upon in the experiments in Section [6] Section []
describes the design details of the architecture mapping the components to
the requirements, while Section |5 gives the implementation details required
to understand how we conducted our experiments in Section [6]

2. Related work

Many deep learning frameworks exist, but are mainly targeted to data sci-
entists, who prefer quick prototyping in scripting languages such as Python or
Lua. Google’s Tensorflow [6] is perhaps the best known framework available.
It has a substantial community, several programming interfaces amongst
which Python, C++ and Java, although the Python interface is mostly used.
Tensorflow also supports distribution on multiple devices through their Borg
cluster management system [7]. However, this requires all operations to be
defined in the so called Tensorflow graph, which becomes tedious for non-
trivial use cases.

Other frameworks like Caffe [8] and Theano [9] offer a Python interface
and focus on single device deployments with highly optimized CPU and GPU
code. Similarly, Torch7 [10] was developed in Luascript, but recently evolved
into PyTorch, again written in Python, with a focus on creating neural net-
works in a dynamic and modular way. [Deeplearning4j (DL4J)| [LT] is a Java
based framework, which can use Apache Spark for distributed processing.

DIANNE follows more the Torch7/PyTorch model, where a neural net-
work is composed of modules that are deployed on the fly at runtime. Also,
each module can be easily deployed on any device in the network, providing
a fine grained distribution mechanism.

With the ever increasing depth and size of neural networks there is a
definite need for alternative ways to distribute training and evaluation of
neural networks. Krizhevsky et al. [12] presented work on model parallelism
splitting up a large neural network across two GPUs with shared memory,
limiting the communication overhead. In [13], they further enhanced this
work spreading the network across 8 GPUs leading to a factor 6.16 boost in

learning speed. Dean et al. [14] presented the DistBelief framework which
focuses on model parallelism on CPU hardware. They introduced new large
scale training algorithms using Downpour SGD, a highly asynchronous vari-
ant of SGD, which was able to train modestly sized networks significantly
faster on 2000 CPU cores than on a single GPU, removing the GPUs’ upper
limit of the network size.

In Alsheikh et al. [I5] the focus shifts to [Mobile Big Data (MBD)| from
smartphones and [[0T] gadgets. They propose a scalable learning framework
that leverages Apache Spark, where each Spark worker is responsible for
learning, through an iterative MapReduce process, a partial deep model on
a portion of the overall MBD] The entire deep model is later reconstructed
by averaging the parameters of all trained partial models.

In order to support such advanced flavors of both model and data paral-
lelism, DIANNE is designed as loosely coupled components that can each be
deployed on a variety of heterogeneous devices and can be scaled at will. In
addition, DIANNE also offers components for the increasingly important field
of reinforcement learning, integrates well with external systems and provides
web-based user interfaces for both creating and monitoring neural networks.

3. Requirements

The goal of the proposed framework is to facilitate the integration of deep
learning algorithms into external systems, deploy them on a wide variety
of devices and to support a broad range of applications. In order to define
requirements of our framework, we first discuss three main scenarios in which
deep learning can be applied, and list the specific set of requirements for each
case.

3.1. Supervised learning

The first scenario is the most common one for a deep learning framework:
train a neural network model for a classification or regression task. The
input of a neural network can be anything, such as raw image data, text,
sensor input, etc. In the case of classification, the output of the neural
network resembles the class, often encoded as a one-hot vector. In the case
of regression, the output can again be any type.

In supervised learning, the model is fitted to learn input-output behavior
from a labeled dataset. The model is trained by forwarding a batch of data
from the dataset through the neural network, evaluate a certain loss function

4

on the output, and updating the model weights by calculating the gradients of
the weights to decrease the loss, so called stochastic gradient descent (SGD).

Such a dataset typically contains a large number of input samples with
corresponding labels, and is fixed in size. When training a model, the dataset
is often split into three parts: a large train set, on which the model is trained,
a small validation set that is used to evaluate the model performance during
training, and a small test set that is only used to evaluate the performance
of the final, fully trained model. The accuracy on the validation set during
training can for example be interpreted to avoid overfitting to the training
data, i.e. when the accuracy on the validation set starts to diminish. Hence
our framework should at least be able to import data from a dataset, feed it
into a neural network and update the neural network weights according to
a certain loss function. The framework also has to allow for various splits
of the datasets, and evaluate the model on both the validation set (during
training) and the test set.

A widely used dataset is ImageNet [16], which is a manually annotated
dataset containing more than ten million images labelled into 1000 categories.
This dataset is used in the annual research contest, the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [17], which is a well known bench-
mark for object detection and recognition. In order to achieve state of the
art performance on such a task, one needs to design a model that is suffi-
ciently deep (Inception-v4 [18]) often more than 100 layers and has millions
of parameters to train. Although the calculations can be sped up by bene-
fiting from highly optimized operation implementations on GPU hardware,
one is still pushing the limits of the capabilities of current GPU hardware,
both in time and memory. By enabling training across multiple nodes we
can further reduce this required training time. ‘Data parallelism’ and ‘model
parallelism’ are two methods of distributing an algorithm on multiple nodes.
Data parallelism is realized by sending batches of samples to different nodes
and aggregating the results into an overall estimation over all batches [19].
Model parallelism is achieved by cutting the neural network into multiple sub-
networks which each can be distributed across multiple nodes (AlexNet [12]).

Also, the accuracy of the model is determined by a huge number of hy-
perparameters, both in terms of the neural network architecture (how many
layers, their size, ...) as the training algorithm (learning rate, batch size,
...). In order to find the best model, often a hyperparameter search is done
by training and evaluating many models in parallel. Therefore, a key re-
quirement is to support running many experiments in parallel on a cluster

infrastructure.
In summary the framework must meet the following requirements to sup-
port supervised learning experiments:

1.1 Fetch samples from a labelled dataset

1.2 Model evaluation on validation and test set

1.3 Scaling out using model and data parallelism

1.4 Manage experiments: jobs, resources and results
1.5 Save, update and restore trained parameters

1.6 Custom definition of supervised learning routines

3.2. Distributed reinforcement learning

An increasingly important application of neural networks is in reinforce-
ment learning (RL) [20]. Unlike supervised learning, in reinforcement learn-
ing the goal is to design an agent that interacts with a certain environment.
Based on the agent interactions, it receives rewards, which it has to maximize.
In this case, deep neural networks can be used as function approximators,
which can either represent a policy 7 to map observations to actions directly,
or learn an action-value function @ (s, a), which represents the expected dis-
counted return or -value for taking a specific action a in the current state
s and following policy 7 afterwards. Recently reinforcement learning has
gained popularity for training robotic tasks from raw sensor input such as lo-
comotion [21], grasping [22], manipulation [23], autonomous driving [24] 25],
ete.

A reinforcement learning problem consists of an agent and an environ-
ment. The agent interacts with the environment through actions and can
receive a partial or full state observation s; from the environment. For each
action a; taken by the agent it receives a reward r;, and results in the environ-
ment transitioning to state s;;1. The goal of the agent is to take a sequence
of actions that maximizes the future reward over time. An important class
of reinforcement learning algorithms store each (s;, ay, r4, s;41) tuple in a so
called experience pool, which is used to train a neural network to optimize
the policy. When the experience pool is full, it usually replaces the oldest
samples from the pool such as a FIFO queue.

An environment can represent many different systems, both physical or
simulated. Training directly on a physical environment can lead to problems,
e.g. servos can brake down, safety concerns, uncontrolled /unwanted external
inputs. To address these issues, one often starts training in simulation, and

6

later transfers the learned model to the physical system [26]. Therefore,
the framework should enable to easily switch between both simulated and
physical environments.

Also, simulating a complex environment is often very resource-intensive,
for example learning robotics tasks requires realistic physics simulation. This
limits the rate at which experience samples can be generated. Hence, we need
to be able to easily scale up the number of environments and agents that can
act in parallel. Supporting this scenario adds the following requirements to
the framework:

2.1 Easy integration of environments

2.2 Scaling agents/environments

2.3 Collect, store and sample from experience

2.4 Custom definition for agent interactions

2.5 Custom definition of reinforcement learning routine

3.3. Neural networks in IoT applications

The number of devices is predicted to sky rocket in the coming years
with estimations of 50 billion devices by 2020 (not including smartphones).
Also here deep neural networks can be exploited to process the data coming
from these devices, such as high-dimensional anomaly detection [27], human
activity recognition through wearables [28,[29], home automation [30],etc. An
abstraction of these heterogeneous devices (e.g. camera, lidar, temperature
sensor, etc.) is required to create a bridge between neural networks and
things.

The major problem these devices bring is that they have limited resource
capabilities to handle large neural networks, e.g. Raspberry Pi, Nvidia
Jetson, Intel Edison, smartphone or other embedded devices with limited
memory, constrained compute power and/or battery operated. The available
RAM in a CPU or GPU also limits the number of weights that can be de-
ployed on a single device. The solution is using sequential model splitting,
splitting a neural network into smaller subnetworks, and distributing these
subnetworks across multiple devices. Moreover, offloading certain parts of a
network to a more suited device can increase the overall performance.

Other use case examples are: (1) The input comes from multiple devices
already preprocessing their inputs to later combine on an edge device with
specialized hardware. The inputs processing is therefore done in parallel and
should increase the performance. (2) Dynamically offload neural networks

7

(partially or completely) when specialized hardware comes available in the
environment to increase performance or reduce battery consumption with
wireless devices (e.g. smartphones). This adds the last requirements of the
framework:

3.1 Deploy on resource restrictive hardware for inference
3.2 Distribute part of neural network to optimize performance
3.3 Inputs and outputs abstraction to connect to IoT sensors

4. DIANNE, modular framework for distributed deep learning

This section elaborates on the design choices, made for the DIANNE
modular framework for distributed deep learning, that constitute the flexible
architecture that enables developers to create a broad range of applications
while ensuring the requirements derived from the use cases described in Sec-
tion [3|are fully met. An overview is given in Table[T]at the end of Section [4.1]

4.1. System component model

The DIANNE framework adopts a microservice architecture, consisting
of a number of loosely coupled components that communicate through well
defined services. Depending on the concrete scenario, a different set of com-
ponents can be deployed based on the requirements. Also, multiple instances
of each component can be deployed in a system in order to offer various ways
of parallelism. Sections [4.1.1|to [4.1.10fintroduce each component in relation
to the requirements presented in Section

4.1.1. Neural network modules
In DIANNE, a neural network layer is treated as a directed graph of
neural network modules. Each Module provides a forward method which

PREVIOUS NEXT
MODULE(S) Ve ~N MODULE(S)

FORWARD o O— _Ig ,,,,,,,,,, .
n Module

BACKWARD <+)— _O<
n (. Y, m

Figure 1: A DIANNE Module has references to its predecessors and successors in the graph
for forwarding input and backpropagating gradient information.

@OIANNE e ey = o @OIANNE

Figure 2: A small convolutional neural network build using the drag-and-drop web inter-
face. The Module’s dimensions, strides, padding, etc. are configured through a pop-up
dialog.

represents an operation transforming the input into an output. Each Module
also provides a backward method which enables to back propagate gradients
in the network during training. Hence a Module has references to its pre-
decessors and successors in the graph for the forward and backward pass as
shown in Figure Besides a functional unit, a neural network module in
DIANNE is also a unit of deployment enabling model distribution (Require-
ment [1.3) on multiple DIANNE Runtimes (Section [1.1.2). The framework
supports a wide range of Modules, such as fully-connected layer, convolu-
tional layer, activation functions, batch normalization, input pre-processing
units, etc. A special Module is the memory Module, which stores its input
for one timestep, allowing to create recurrent neural networks. One can also
add his own Modules, or define aggregate Modules by combining the low level
ones.

A neural network can be defined programmatically using a builder pattern
API, and using a visual drag-and-drop web user interface as shown on Fig-
ure [2) which are both serialized to a JSON format. Each Module is uniquely
identified by an id, and can have one or more next and previous Module ids
listed, to which data has to be forwarded or back propagated. Dedicated
Input and Output modules provide the entry and exit points of the network,
through which input data resp. output gradients can be passed through the
model.

4.1.2. Runtime

The DIANNE Runtime is responsible for actually deploying the neural
network modules on a device, allocating memory for the weights and provides

LEARNER/AGENT/
H LEARNER/AGENT
EVALUATOR/ n Repository m (WEIGHT UPDATES)

COORDINATOR

Figure 3: The Repository handles persistence of neural network descriptions and Module
weights. Learners and Agents can also get callbacks whenever weights are updated.

implementations for the operations. To this end, the Runtime defines a single
native interface that should be implemented in order for all current modules
to be deployed. By providing implementations of this interface for various
native platforms, we can run DIANNE on a wide variety of heterogeneous
devices (Requirement and 3.2).

The Runtime also binds each Module to its specified next and previous
Modules, and asynchronously propagate activations and gradients between
Inputs and Outputs. For each neural network it also provides a separate
NeuralNetwork service, which offers a nice, asynchronous API that can be
used by external applications to feed data into the model (Requirement .

4.1.3. Repository

The Repository handles the persistence of neural network descriptions
and their weights. Every neural network description specified is stored in the
JSON format, and for each Module weights can be stored by their unique id.
Weights can also be tagged with user defined tags, which enables to store and
retrieve multiple versions of weights for the same neural network. For ex-
ample, the Learners (Section can tag the weights during training time
with the number of epochs passed, or tag the network weights that achieve
the best accuracy on a validation set. These features satisfy Requirement [I.5]

During training, learners publish a delta on the weights to the Repository,
which adds up this delta. When sharing a single Repository between multiple
learners, this can introduce data parallelism by merging weight updates from
multiple learners (Requirement . For scalability, one could also deploy
multiple Repositories, where each is responsible for gathering weight updates
for different Modules.

By saving the weights by Module id instead of the complete neural net-
work, we can also easily share Modules and their weights between multiple
neural networks. This is an important feature for weight sharing between
networks [31] or transfer learning [26].

10

LEARNER/
EVALUATOR Dataset

Figure 4: A Dataset provides access to samples and their corresponding labels (if appli-
cable) to the Learners and Fvaluators.

Learners, Agents, Fuvaluators and the Coordinator access the Repository
to fetch neural network definitions and their weights as shown in Figure [3
Learners and Agents can also get callbacks whenever weights got updated in
the Repository.

4.1.4. Datasets

Data is provided by the Dataset component, which provides methods for
querying samples and their corresponding labels (if any) to the Learners and
FEvaluators (Figure {)). DIANNE supports various popular image datasets
out of the box, such as ImageNet [12], MNIST [32], CIFAR-~10/100 [33], etc.,
and adding new datasets is as trivial as implementing a single method to
fetch a new sample.

Requirement and Requirement are accomplished by this compo-
nent and the Learner (Section component. During training learners
query the Dataset to fetch new samples, stored in memory or on disk, and
forward the sample through the deployed network. In the end the sample’s
label can be compared with the output of the network.

Datasets can also be decorated by so called dataset adapters, which for
example can split the dataset into a train, validation and test set. . The
adapters can also adapt the samples on the fly as they are queried from the
dataset. This mechanism can for example be used for online data augmenta-
tion, where random crops and rotations are provided from the original data
sample.

In case the underlying data has a time dimension, the samples are stored
in a SequenceDataset, which extends the Dataset to keep the order of the
samples. In this case, a complete sequence of samples can be fetched from
the dataset.

There are three ways to access samples from datasets, each with different
memory requirements and access times. (1) Completely loading in all data
from a dataset into memory, making access as fast as possible with a high

11

LEARNER/ H
(EARNERT - Experience Pool _mQ AGENT

Figure 5: Like a Dataset, an Ezxperience pool provides access to experience samples to
Learners and Evaluators, and provides an additional interface towards Agents to add new
experience samples.

memory demand. (2) Read in the data into a memory mapped file, slow-
ing down random access but allowing for loading in larger datasets without
increasing the memory requirement. (3) Managing the dataset in a folder
with a certain file structure allowing to load in samples as needed directly
from file. This slows down learning significantly but the dataset’s size limit
is increased to the available disk space. Pre-fetching samples asynchronously
can help lower the impact of file access time.

4.1.5. Ezperience pool

In case of reinforcement learning, a fixed dataset does not suffice, as new
experience will be generated over time (Requirement . The FExperience
pool component extends the SequenceDataset with extra information per
sample. Each sample, uploaded by the Agent, has a state s;, action a;, next
state sy, 1, reward r and a terminal indicator 7. Also, agents in the system can
add additional samples to the Ezperience pool (Figure [5)). Each Ezperience
pool has a configurable maximum size, and by default the pool uses a First-In
First-Out (FIFO) sample replacement strategy.

4.1.6. Learner

The learning routines (Requirement and are performed by the
Learner components, which take one (or more) neural network(s) and a
Dataset or Fxperience pool, and start updating the weights of the neural
network as shown in Figure [6] The learning is initiated by the coordinator,
which provides a configuration dictionary with parameters like the learning
rate, batch size, noise, etc., and a LearningStrategy object that defines the
actual learning procedure to use. While a learner will take care of tasks
such as synchronizing with the repository and monitoring the stop criteria,
the LearningStrategy evaluates the loss function and calculates the weight
updates. The default LearningStrategy supports supervised learning, but

12

DATASET/
EXPERIENCE POOL

\[{
REPOSITORY
i N

1 PUSH WEIGHT
Learner —C DELTA'S
COORDINATOR 1
Learning 1
Strategy GET WEIGHT
) UPDATES

L.

NEURAL NETWORK

Figure 6: The Learner is triggered by the Coordinator and trains a neural network using
data from a Dataset or an Ezxperience pool. The delta’s of the weight updates are pushed
to the Repository, and the learner is notified of other weight updates (i.e. in case multiple
Learners are training the same network in parallel).

out of the box we also provide LearningStrategies for training more complex
models such as Variational Autoencoders [34] (VAE), Generative Adverserial
models [35] (GAN) and various reinforcement learning procedures.

The Learner component can easily be scaled up in order to achieve (Re-
quirement and data parallelism, which can speed up the training
process. Multiple Learners can work in parallel asynchronously, and sync
their weights at a configurable interval with the central repository by send-
ing their gradient update and fetching the latest weights. A higher sync
interval reduces the communication overhead at the risk of multiple learners
diverging.

4.1.7. Evaluator

Evaluating the performance of a network is done using a separate Fval-
uator component and an FEwvaluationStrategy, which e.g. report the mean
error, confusion matrix and the evaluation time of a neural network on a
certain dataset (Figure (7). The Evaluator is most often used after training
to evaluate the model performance on a test set, or during training to asses
the model performance on a validation set to counter overfitting.

4.1.8. Agent

In the reinforcement learning setting, a neural network is used by an
Agent in order to interact with an Environment according to a certain policy
(Figure . The internals of the policy is implemented in the ActionStrategy.

13

DATASET/
EXPERIENCE POOL

Evaluator

1
COORDINATOR Evaluation
Strategy

1.n
NEURAL NETWORK

Figure 7: The FEwvaluator evaluates a neural network performance on a certain Dataset
according to the provided FvaluationStrategy.

The Agent follows a strict interaction loop with the Environment: (1) reset
to initial or random state sq, (2) periodically update the policy 7, (3) fetch
observation s; from the Environment, (4) execute action a; based on policy
7 (Requirement [2.4), (5) receive reward ry, next state s, and terminal
indicator 7, (6) collect samples (s, as, 7, 141, 7) and send sequence of samples
to Experience pool.

This interaction loop of the Agent is sequential in nature and is the most
prominent bottleneck in a reinforcement learning problem. Such problems

EXPERIENCE POOL
&F‘/

Agent
1 1/

COORDINATOR ENVIRONMENT
Action k
Strategy
X J
/J\ 1.n

NEURAL NETWORK

Figure 8: An Agent interacts with an Environment, taking actions based on the output of
a neural network according to a given ActionStrategy. The generated state-action samples
are uploaded to an Ezperience pool.

14

require lots of data to train the policy to realize a desired behavior. But
most realistic simulation models are slow and require high-end computers to
run. To overcome this problem the user is able to deploy multiple Agents
and Environments on multiple devices increasing the sample rate generation.

4.1.9. Environment

An Environment component runs a simulation of the environment or
functions as a proxy for an external environment (e.g. a physical robot).
The Environment provides two main methods, one to fetch the current state
of the environment, and one to execute a certain action on the environment,
which returns a scalar reward.

At the time of writing we support the following reinforcement learning
environments:

Arcade Learning Environment [36] (ALE) is collection of 2600 Atari
games where the score is extracted as the reward function of these
games. It is possible to train on pixel data, RAM data, or higher level
observations.

OpenAI-Gym [37], a collection of reinforcement learning environments
such as board games, classic control problems or physics based envi-
ronments based on the Mujoco or Box2D.

KuKa Youbot A custom environment to interact with a physical Kuka
Youbot robot or the simulated version in V-Rep simulator [38].

Erle Rover A custom environment to interact with a physical Erle Rover
robot or the simulated version in the Gazebo simulator [39)].

Environment
AGENT

Figure 9: The Environment provides access to the state of the system, and allows an agent
to interact with it.

15

P®OIANNZ

Figure 10: The DIANNE dashboard view (a) gives an overview of all queued, running and
finished jobs. One can monitor job progress and inspect results in the job view (b).

4.1.10. Coordinator

The DIANNE Coordinator component coordinates all Runtime compo-
nents deployed in the network. It manages and keeps track of all Learners,
Agents and FEvaluators, making it possible to add additional learning, eval-
uating and acting runtimes on the fly.

It also acts as a training job scheduler, assigning incoming jobs to the
different Learners, Fvaluators and Agents available. If all resources are in use
the job scheduler queues all incoming jobs until more resources are deployed
or a job of the same type finishes. The final returned weights and other
results are saved to disk for later reuse or inspection.

Using the Coordinator’s Java API the user is able to write an extra com-
ponent, which generates a number of jobs with custom parameters and a
stop criteria to perform a parameter sweep easing the search for optimized
hyperparameters (e.g. grid search, random search, Bayesian search, etc.).

Besides submitting jobs through the Java API or the Command-Line
Interface (CLI), a separate JSON-RPC interface is available, allowing sub-
mission from external systems. Additionally, a web UI, using the JSON-RPC
interface, is also available for submitting jobs and monitoring job progress,
as shown on Figure Custom Strategy implementations can even be up-
loaded using the UI, and are dynamically loaded on the required runtimes.
This allows one to easily test out new routines without needing to take down
the DIANNE cluster.

Submitting a job though one of the supported APIs requires information
about this job: 1. A name for easy reference. 2. One of the supported job
types. 3. The name of the network, designed in the builder, that needs

16

to be deployed for the job. 4. The entire dataset (available as a service).
5. Key-value pair options which are different for each job type. At the time
of writing the Coordinator supports three job types:

Learn Used for training models. This requires at least one idle Learner
service (Section |4.1.6) to be available in the cluster.

Evaluate Used for evaluating trained models. This requires at least one
idle Fvaluator service(Section . A Learn job can be configured in
combination with an Evaluate job to evaluate the model on a validation
set (range configuration on Learn job) to prevent overfitting to the
training data.

Act Used for reinforcement learning. This requires an idle Agent service
(Section to interact with an environment to generate experience.
While collecting new experience the deployed model can synchronize
the model’s weights at preconfigured intervals with the Repository.

Table 1: Requirements to components mapping.

3
- 2 5 5
s, o 5 _ ¢ 5 £ 3
3L B £ B & & & 5§ =
<l € & £ 8 £ =2 7 & T
|2 E 5 F 5 f g oz ¢
Requirements Ol=2 @ @ A A m< @ O
1.1[Labelled dataset samples v
1.2Model evaluation v
1.3Model and data Parallelism v v
ﬁManage experiments v
TE)Manage trained parameters v
rGSupervised learning routines v
ﬂ[ntegration of new environments v
ﬁScaling agents and environments v
TBManage experience samples v
ﬂAgent interactions v
2 5Reinforcement learning routines v
ﬁCross—platform v
ﬁSplit neural network deployment v
ﬁlnputs and outputs abstraction v

17

In general this component is responsible for managing every aspect of
an experiment starting from connecting resources, managing jobs, allocation
of correct resources and ending with the aggregation of results, therefore
satisfying Requirement [1.4]

4.2. Extensibility

DIANNE is a flexible framework which provides a Java API, CLI and a
JSON-RPC interface to manage the framework as well as the ability to add
new components which interact with the system. As an example we look at
hyperparameters tuning through cross validation and model selection. This
mechanism is used to find optimal parameters and select the best performing
model.

A popular and well known cross validation strategy is K-fold. The main
idea is to break the dataset up into k subsets with the same dimensions. On
the first iteration the network is trained on k — 1 subsets (training set) and
tested on the remaining subset (test set) to get that models accuracy. This
process is repeated until all subsets have been used as the test set and the
average of all test set accuracies is taken to measure the performance of the
current model with the configured hyperparameters.

The best model architecture and hyperparameters can then be selected
by comparing the model’s performance after repeating the K-fold cross vali-
dation with other hyperparameters (found through e.g. random search, grid
search, Bayesian search, etc.) and different model architectures.

Implementing this workflow in DIANNE can be accomplished by writing
a Dataset adapter splitting the entire dataset into equally sized folds and
an extra component (using the Java or JSON-RPC API) which manages
creating new Learn and Evaluate jobs. This component is then responsible
for changing hyperparameters, selecting model structures (can be pre-build),
selecting the correct cross validation folds, starting new jobs and stopping
jobs based on overfitting behaviour of the Evaluate job.

4.8. User interface

In order to facilitate the construction, configuration, deployment and
training of neural networks, the DIANNE runtime is equipped with a web-
based graphical user interface (GUI) as shown in Figures[2]and [10] Each tab
providing a different functionality to design or control a neural network.

The “Build’ tab provides a mechanism to drag and drop modules onto
the canvas to construct neural networks. The toolbox on the left of the

18

screen shows all available building blocks. Connecting these building blocks
creates layer connections. Before deploying the module it has to be configured
by opening the module’s configuration dialog (Figure and setting the
dimensions, strides, padding, etc.

In the “Deploy” tab, all devices running the DIANNE runtime are listed
and the user can manually select which device each module should be de-
ployed to. Selecting a device initiates the weight transfer to this particular
node. In the last tab the user can couple the input and output modules to
real devices. For example, a camera can serve as the network’s input, while
the output can be used to control a robot.

Lastly, a dashboard is provided, which gives the user the ability to learn
neural networks by starting a training procedure and manually search for
hyperparameters by testing different values and analyzing the graphs. This
interface is heavily connected with the Coordinator and this interface enables
the user to submit and configure (1) act jobs, generating new experience,
(2) learn jobs, updating the pre-build network’s weights, and (3) evaluate
jobs, visualising the performance of the network and stop the learn job before
overfitting.

5. Design and implementation

The DIANNE framework is implemented using the OSGi specification [40],
the de facto standard for modularization in Java. FEach DIANNE component
is implemented as an OSGi bundle, exposing the service interfaces as OSGi
services. To allow distributed deployment of the DIANNE components, we
built upon AIOLOS [41] platform which discovers, connects and binds remote
services.

The DIANNE Runtime is the base component of the DIANNE framework
and can be deployed on different computer architectures (currently supports
ARM, x86 and x86_64). We provide multiple implementations for the native
interface and the optimal available native library is automatically loaded.
The native implementation is built on the Torch7 tensor library, which pro-
vides a BLAS backend to support CPU only devices and a GPU accelerated
backend using cuDNN. Figure [11| shows an example deployment of a neural
network on two devices, each having a different native backend.

In order to integrate with external systems, DIANNE provides several
ways to interface. First of all, every component is available as a well de-
fined OSGi service in the Java runtime. Each deployed neural network can

19

Linear o Softmax

Input " | Convoluti
npu | onvolution P < - 1 ¢ - -

1
1
Ly
1

_____ Maxpool _ ReLu d___ ____] Output —» Forward
< i - — p Backward
DIANNE runtime (ARMvS8 CUDA) DIANNE runtime (x86_64 BLAS)
AIOLOS | | AIOLOS
OSGi | | OSGi

Figure 11: A neural network is constructed as a directed graph of modules that can be
deployed on different DIANNE Runtimes.

be called via its corresponding NeuralNetwork service. For example, DI-
ANNE can be used in combination with device abstraction layers that expose
[oT sensors as OSGi services, in order to process sensor information in real
time [42]. External programs can interface with DIANNE via the JSON-RPC
interface, which exposes the core functionality of the framework.

For the integration of the various reinforcement learning environments,
the Environment interface has to be implemented. We integrate with the
OpenAl Gym environments using Java Embedded Python (JEP) [43], which
embeds CPython in Java through JNI. For our robotics environments, we
communicate via the |[Robot Operating System (ROS)| [44], which also pro-
vides interfaces to simulators such as V-Rep and Gazebo.

In order to facilitate the deployment of a DIANNE setup, especially when
integrating with multiple external programs such as a simulator, the DI-
ANNE build system allows to compile and construct Docker [45] containers
for various configurations. This enables developers to create environment op-
timized Docker containers to deploy on any kind of infrastructure, including
cloud providers.

Table [2| gives an overview of deep learning framework features, compar-
ing DIANNE to other popular frameworks mentioned in the introduction.
DIANNE provides researcher the ability to test out models and training pa-
rameters without writing a single line of code.

20

Table 2: Deep learning framework comparison.

z

) = = €|

AR .

SlE 55 % 232
Features A 8 & OB A A
Built-in multi node support v v v v v
Multi GPU support v v v v v v v?
Train models without writing any code v v
Dynamic deployment v
Dynamic computation graphs v v Vv v v
Step-by-step debugging v v v v
Graphical neural network builder v
Connecting sensors and actuators (GUI) v
Built-in visualization dashboard v v v
Training job management dashboard v
Automatic differentiation v v Vv v v b

2 No programming required.
> Future work.

6. Experiments

To illustrate that the framework supports the cases described in Section
we conducted three experiments focusing on the features of each case indi-
vidually.

6.1. Overhead of DIANNE in image classification case

We compared the performance of DIANNE to a number of similar frame-
works: Deeplearning4j (DL4J) [11], Torch7 [46] and TensorFlow [6]. We mea-
sured 1000 forward passes of the OverFeat (fast) [47] model, using variable-
length batches of random data. Where applicable, we measured the per-
formance with and without cuDNN support enabled. Benchmarking was
performed on the iLab.t [48] hardware described in Table [3] The results are
shown in Figure (12| indicating the mean evaluation time of a single sample
in order to indicate how each framework scales with batch size.

Without cuDNN support, DIANNE performs almost identical to Torch?7,
showing that the service-level abstractions do not impose any significant over-
head. With cuDNN support enabled, the performance of DIANNE is on par

21

Table 3: Hardware specifications.

name | arch. | CPU | GPU | RAM | VRAM
Raspberry Pi 2 | ARMv7 | Cortex-A7 (900MHz) | NA 1IGB | NA
Jetson TX1 AArch64 | Cortex-A57 (1.9GHz) | Nvidia Tegra X1 T210 4GB
iLab.t [48] x86 E5-2620v3 (2.4GHz) | Nvidia Tesla K40c 32GB | 12GB

with TensorFlow. Torch7 performs even better, indicating some headroom
for improvements in the cuDNN implementation of DIANNE. Torch7 has its
own implementation for cuDNN written in Lua, making it impracticable for
DIANNE to include Torch7’s cuDNN implementation as a library, with an
extra benchmarking option to find the fastest convolution algorithm. This
benchmark option was enabled during this experiment. DL4J suffered from
a very high variance during benchmarking. While mean times were higher
than other frameworks, median values were on par.

To further compare the frameworks we investigated CPU and GPU mem-
ory consumption of forwarding samples through the OverFeat (fast) model.
We measured the average memory consumption when forwarding 1000 indi-
vidual random samples in order to remove the memory requirement of loading
in a large dataset. Loading in a dataset can be very memory consuming, de-
pending on the implementation. Table {4 shows the results indicating that
DIANNE uses the least amount of memory, comparable to Tensorflow, which

] | I DIANNE

] | B DL4Y

1 | I Torch7

| | X DIANNE (cudnn)
1 | EEEE DL4J (cudnn)

4 | B2 Torch7 (cudnn)
[TensorFlow

Sample time (ms)

Batch size

Figure 12: Performance results of the OverFeat (fast) model for different batch sizes.
Results show the mean evaluation time of a single sample. Lower values are better and
bars indicate standard error.

22

Table 4: Memory usage results of the OverFeat (fast) model. Results show the mean
memory usage while forwarding a single sample through the model. RAM values are
private and shared memory combined.

RAM By VRAM (MB)
CPU 728 NA
DIANNE CUDA 425 714
cuDNN 557 758
CPU 1655 NA
DL4J CUDA 2292 2436
cuDNN 2368 2590
CUDA 1307 1408
Torch7 — DNN 1575 3819
Tensorflow cuDNN 643 3826

is mostly the memory requirements of the OverFeat model (558MiB).

DIANNE manages to lower the memory requirements by allocating the
necessary data only in the specific native memory. A neural network model
is directly loaded into native memory (CPU or GPU) through a buffer. In
contrast, DL4J and Torch7 hold copies of the tensors in native memory and
on the GPU. DIANNE and DL4J are both programmed in Java with native
bindings to C++ code, but use a different native strategy.

DL4J uses JavaCPP to wrap the native code, which handles memory
management of native objects inside the Java heap space. DIANNE has
a custom written interface that allocates objects outside this heap space
allowing object allocations to extend beyond Java’s configured heap space
size. With DIANNE the maximum heap space size can be configured as
low as 16 M1 B, if no dataset loading is required, which allows all remaining
RAM to be used for other allocations. In our tests DL4J could not be started
with a configuration less than 1024 M+ B, while it only required 5MiB during
sample feed forward removing a big chunk of memory unused.

In the case of CUDA and cuDNN the CPU memory requirement is even
further lowered with a comparable memory usage on the GPU. Tensorflow
performs comparable to DIANNE, but uses a different default strategy for
VRAM allocation. DIANNE only allocates what the model and batch re-
quire, while Tensorflow pre-allocates all GPU memory for the current pro-
cess.

For restrictive devices it is important to lower the maximum heap space

23

size and the overall memory consumption of deep learning frameworks. From
Table [3l and Table @] we can conclude that Torch7 and DL4J are unable to
run on the Raspberry Pi. Even the Jetson would struggle as this memory is
shared between CPU and GPU.

6.2. Increase learning speed with multi agent deployments

As a experiment for reinforcement learning, we created an environment for
a search and pick task. Our setup is depicted in Figure [49]. The envi-
ronment is constructed as a rectangular search area in which a Kuka YouBot
is placed. The robot can move in any direction with its omni-directional
wheels and has a Hokuyo URG-04LX-UGO01 1D lidar sensor mounted on the
base. This sensor is configured with a 180 degree field of view. Both the
robot and sensor are controlled and monitored through ROS. For the search
target we selected soda cans, which makes a recognisable indent in the laser
input. For processing, we equipped the Kuka Youbot with an Nvidia Jetson
TX1 embedded GPU board. This board needs to handle the robot controller,
laser inputs and neural network processing at inference time on the shared
memory and limited processing power.

For training, this environment was replicated in simulation as shown in
Figure using the V-Rep simulator [38]. Within the simulator, the
robot and sensors expose exactly the same interface via ROS. This allows us
to control the simulated environment in the same way as the real world.

Figure 13: Experimental setup (a) with a Kuka YouBot in a rectangular arena, equipped
with a Hokuyo lidar. We replicated the same setup in the V-Rep simulator (b) for training.

24

For the pick can use case we will use|Deep Q-Network (DQN)|[50] approxi-
mate and maximize the action-value function () and derive the robot’s policy.
The network gets input from the mounted lidar sensor, and outputs Q
values for each of 7 discretized actions to control the robot: move left /right,
move forward/backward, rotate clockwise/counterclockwise and execute a
(hard-coded) grip. As reward function we provide the negative distance of
the robot’s target position to the can, normalized between -1 (farest) and 0
(succesful pickup location). When the robot collides the reward is set to -1
and a reward of 1 is provided for a succesful grip.

With this experiment we aim to assess the effect of scaling the number
of agents sending experience to the same experience pool. We compare the
success rate of picking up the object with increasing number of agents in
function of the number of epochs, where one epoch is 1000 batch weight
updates. Our results are shown in Figure concluding that adding
more agents benefits the learning speed significantly.

Training the network on a single agent fails to learn this task,

0.8

0.8
—— 1 actor
o7 L— 2 actors .,J""/.M‘”
: —— 4 actors . 0.7
—— 8 actors -
0.6 16 actors 06
0.5
Q ® 0.5
s &
12}
2 04 8 04
8 Q
[
> =]
« (7]
0.3 0.3
0.2 0.2
—— 8 actors
01 0.1 16 actors
’ 8 actors / 2 learners
/ —— 16 actors / 2 learners
0.0 / 0.0
0 200 400 600 800 1000 1200 1400 0 100 200 300 400 500 600
Epoch Epoch

(a) Training with increasing number of actors on a single (b) Comparing multiple configurations of variable number
Learner component. of actors and learners.

Figure 14: Learning to fetch a can with increasing number of agents. Plotting the success
rate in function of number of epochs with a window size of 200 epochs.

25

while 2 or more agents converge to the same success rate. With 16 actors
we do not get a big improvement any more because the new bottleneck is
the computational bottleneck of the learner. By adding extra learners (see
Figure or deploying the learner to a more powerful machine we could
benefit more from extra agents. Figure is a zoomed in view of the left
figure that shows adding learners does not directly decrease convergence time
and as for 8 agents the learning process is slowed down in the middle with 2
learners.

This phenomenon can be explained by the sync interval at which Learners
update the repository’s weights. Learners send their gradients to the repos-
itory and updates the weights by combining both Learners deltas, making
the gradient update bigger and move faster in the right direction. At some
point the training starts to diverge as the combined deltas overshoot the
corrections slowing down the learning time. In order to make these updates
meaningful we need enough samples to learn from. One could investigate
further to use an adaptive sync interval, e.g. using an annealing scheme,
but this is left as future work. With 16 agents and 2 learners we do see an
overall improvement as it starts to converge faster and keeps maintaining its
momentum. Specifically for this environment and hardware combination we
see that a 1:8 ratio between learners and agents is optimal. We also tested
with 4 learners (1:4 ratio) but than the Learners diverged.

Learning with multiple learners (distributed or local) is complex and adds
extra criteria to the learner’s configuration. Batch size, synchronous or asyn-
chronous weight updates, weight update interval and maximum and mini-
mum experience pool size are all parameters which can be tuned to enhance
training on multiple learners. The communication overhead should be taken
into account as a constraint for adding more learners [51].

6.3. Offload neural networks on IoT devices

In the last experiment we evaluate with offloading a part of the network,
using sequential model splitting during inference time, to specialized hard-
ware without the ability to completely fit the entire network on it. For this
experiment we used a Raspberry Pi 2 lacking GPU hardware and a Nvidia
Jetson TX1, which is a low budget embedded device with a specialized low
power GPU (see Table |3| for specifications). For each DIANNE runtime the
optimal native support is deployed, meaning a CUDA tensor library for the
Jetson and a BLAS implementation from Torch7 for the Raspberry Pi.

26

N data transfer [Jetson TX1 I Raspberry Pi 2

3000 2886.57
—~ 2500
[}
E
o 2000
a
§ 1500
2
£ 1000
= 639.43
500 _
0
Raspberry Pi 2 Offloading Jetson TX1

hardware

Figure 15: Comparing OverFeat [47] (Fast) network single machine network deployment
to a distributed deployment. On the left deployed on a single Raspberry Pi 2 and on the
right the network was partially deployed on the Pi and partially offloaded to the Jetson.
The part executed on the Jetson is too small to see (4.5ms).

In an IoT environment there are many devices with limited computing
power and they could benefit from adding specialized hardware. We compare
two deployments of the OverFeat (fast) neural network: (1) the complete
neural network deployed on the Raspberry Pi and (2) all the convolutional
layers, which are the first 5 of the 8 layers, offloaded to the Jetson TXI.

OverFeat is a large network and requires a lot of GPU or CPU memory.
Because the Jetson TX1 has only 4GB memory, which is shared between CPU
and GPU, we are unable to fit the entire network on this single device. In this
case we can offload only a part of the network running on the laptop to the
edge (with a high speed network connection). To compare both scenarios we
randomly generate samples with the same dimensions as ImageNet samples
and these samples were executed one by one on the neural network. The
average execution time per device including data transfer and communication
overhead can be seen in Figure

In order to achieve this speed increase we offloaded only the five con-
volutional layers of the OverFeat (fast) network. The two remaining fully
connected layers were still deployed on the Pi. By offloading the compute
intensive convolutional modules we get a 4.5 times faster execution time even
though the random sample (625KiB) needs to be transferred to the first con-
volutional layer and the last convolutional layer has to forward its output
(144KiB) over the network to the first fully connected layer. The total data

27

transfer per sample takes 117.5ms on average. Also note that the biggest
share of the time in the offloading scenario is due to the part that is still ex-
ecuted on the Raspberry Pi with an average of 521.9ms compared to 4.5ms
for the convolutional layers. Therefore, additional speedup can be achieved
when having multiple local GPU devices. Further improvements can be made
by splitting the network in places where there is less data transfer required,
lowering the transfer overhead.

7. Conclusion

We presented DIANNE, a modular framework for deep learning appli-
cations. By splitting a neural network into its elementary operations and
implementing these as services that can be linked on the fly, neural networks
can be distributed across multiple, heterogeneous devices. Moreover, by also
offering multiple learning and evaluation routines as services, it supports
various flavors of model and data parallelism out of the box. In addition,
components are available for supporting reinforcement learning use cases,
with integration points to various external systems.

In Section [6] we validated the operation of the framework in three distinct
cases: (1) Performance and memory comparison with other deep learning
frameworks on a supervised learning problem. (2) Data parallelism by de-
ploying multi agent reinforcement learning with abstraction for simulated
and real environment. (3) Model splitting by distributing computation in-
tensive tasks to edge GPU devices. Each experiment showcases the specific
features of the framework mentioned in the case studies (See Section [3).

Acknowledgements

This work was supported by the iMinds [oT Research Program. Steven
Bohez is funded by Ph.D. grant of the Agency for Innovation by Science and
Technology in Flanders (IWT). We gratefully acknowledge the support of
NVIDIA Corporation with the donation of GPUs used for this research.

References

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553)
(2015) 436-444.

28

2]

3]

[10]

[11]

I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016,
http://www.deeplearningbook.org.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ran-
zato, A. Senior, P. Tucker, K. Yang, Q. V. Le, A. Y. Ng, Large scale
distributed deep networks, in: Advances in Neural Information Process-
ing Systems 25, 2012, pp. 1232-1240.

D. Povey, X. Zhang, S. Khudanpur, Parallel training of DNNs with
Natural Gradient and Parameter AveragingarXiv:1410.7455.
URL http://arxiv.org/abs/1410.7455

N. Strom, Scalable distributed dnn training using commodity gpu cloud
computing, in: Sixteenth Annual Conference of the International Speech
Communication Association, 2015.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al.,
TensorFlow: Large-scale machine learning on heterogeneous systems,
software available from tensorflow.org (2015).

URL http://tensorflow.org/

D. Oppenheimer, E. Tune, J. Wilkes, Large-scale cluster management
at google with borg, in: Proceedings of the Tenth European Conference
on Computer Systems, 2015.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
Others, Caffe: Convolutional architecture for fast feature embedding,
arXiv preprint arXiv:1408.5093.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and
GPU math expression compiler, in: Proceedings of the Python for Sci-
entific Computing Conference (SciPy), 2010, oral Presentation.

R. Collobert, K. Kavukcuoglu, C. Farabet, Torch7: A matlab-like envi-
ronment for machine learning, in: Biglearn, NIPS Workshop, 2011.

Deeplearning4j Development Team, Deeplearning4j: Open-source dis-
tributed deep learning for the JVM, Apache Software Foundation Li-
cense 2.0.

URL http://deeplearning4j.org

29

http://www.deeplearningbook.org
http://arxiv.org/abs/1410.7455
http://arxiv.org/abs/1410.7455
http://arxiv.org/abs/1410.7455
http://arxiv.org/abs/1410.7455
http://tensorflow.org/
http://tensorflow.org/
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with
deep convolutional neural networks, in: Advances in neural information
processing systems, 2012, pp. 1097-1105.

A. Krizhevsky, One weird trick for parallelizing convolutional neural
networks, arXiv preprint arXiv:1404.5997.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, et al.,
Large scale distributed deep networks, in: Advances in Neural Informa-
tion Processing Systems, 2012, pp. 1223-1231.

M. A. Alsheikh, D. Niyato, S. Lin, H. p. Tan, Z. Han, Mobile big data
analytics using deep learning and apache spark, IEEE Network 30 (3)
(2016) 22-29. doi:10.1109/MNET.2016.7474340.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: A
Large-Scale Hierarchical Image Database, in: CVPR09, 2009.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Others,
ImageNet large scale visual recognition challenge, International Journal
of Computer Vision (2015) 1-42doi:10.1007/s11263-015-0816-y.
URL http://dx.doi.org/10.1007/s11263-015-0816-y

C. Szegedy, S. loffe, V. Vanhoucke, Inception-v4, inception-resnet and
the impact of residual connections on learning, CoRR abs/1602.07261.
URL http://arxiv.org/abs/1602.07261

P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, K. He, Accurate, large minibatch sgd: Training
imagenet in 1 hour, arXiv preprint arXiv:1706.02677.

R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction,
Vol. 1, MIT press Cambridge, 1998.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, Trust Region
Policy Optimization, in: Proceedings of the 32nd International Confer-
ence on Machine Learning (ICML), 2015, pp. 1889-1897.

I. Lenz, H. Lee, A. Saxena, Deep Learning for Detecting Robotic Grasps,
International Journal of Robotics Research 34 (4-5) (2015) 705-724.
URL http://dx.doi.org/10.1177/0278364914549607

30

http://dx.doi.org/10.1109/MNET.2016.7474340
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
http://dx.doi.org/10.1177/0278364914549607
http://dx.doi.org/10.1177/0278364914549607

23]

[24]

[25]

[26]

S. Gu, E. Holly, T. P. Lillicrap, S. Levine, Deep Reinforcement Learning
for Robotic Manipulation, CoRR abs/1610.00633.
URL http://arxiv.org/abs/1610.00633

R. Hadsell, A. Erkan, P. Sermanet, M. Scoffier, U. Muller, Y. LeCun,
Deep belief net learning in a long-range vision system for autonomous
off-road driving, in: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2008, pp. 628-633. doi:10.1109/IR0S.
2008.4651217.

S. Thrun, Making cars drive themselves, in: Hot Chips 20 Symposium
(HCS), 2008 IEEE, IEEE, 2008, pp. 1-86.

R. Raina, A. Battle, H. Lee, B. Packer, A. Y. Ng, Self-taught learn-
ing: transfer learning from unlabeled data, in: Proceedings of the 24th
international conference on Machine learning, ACM, 2007, pp. 759-766.

S. M. Erfani, S. Rajasegarar, S. Karunasekera, C. Leckie, High-
dimensional and large-scale anomaly detection using a linear one-class
svm with deep learning, Pattern Recognition 58 (2016) 121-134.

N. Y. Hammerla, S. Halloran, T. Ploetz, Deep, convolutional, and re-
current models for human activity recognition using wearables, arXiv
preprint arXiv:1604.08880.

Y. Guan, T. Ploetz, Ensembles of deep Istm learners for activity recog-
nition using wearables, arXiv preprint arXiv:1703.09370.

V. Gokul, P. Kannan, S. Kumar, S. G. Jacob, Deep g-learning for home
automation, International Journal of Computer Applications 152 (6).

S. J. Nowlan, G. E. Hinton, Simplifying neural networks by soft weight-
sharing, Neural computation 4 (4) (1992) 473-493.

Y. LeCun, C. Cortes, C. J. Burges, The MNIST database of handwritten
digits (1998).

A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny
images, Computer Science Department, University of Toronto, Tech.
Rep.

31

http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1610.00633
http://dx.doi.org/10.1109/IROS.2008.4651217
http://dx.doi.org/10.1109/IROS.2008.4651217

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

D. P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv
preprint arXiv:1312.6114.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Ad-
vances in neural information processing systems, 2014, pp. 2672-2680.

M. G. Bellemare, Y. Naddaf, J. Veness, M. Bowling, The arcade learn-
ing environment: An evaluation platform for general agents, Journal of
Artificial Intelligence Research 47 (2013) 253-279.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, W. Zaremba, Openai gym (2016). arXiv:arXiv:1606.01540.

M. F. E. Rohmer, S. P. N. Singh, V-REP: a Versatile and Scalable
Robot Simulation Framework, in: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2013.

N. Koenig, A. Howard, Design and use paradigms for gazebo, an
open-source multi-robot simulator, in: Intelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Confer-
ence on, Vol. 3, IEEE, pp. 2149-2154.

OSGi Alliance, Osgi service platform, release 3, IOS Press, Inc., 2003.

T. Verbelen, P. Simoens, F. D. Turck, B. Dhoedt, Aiolos: Middleware
for improving mobile application performance through cyber foraging,
Journal of Systems and Software 85 (11) (2012) 2629 — 2639. doi:
10.1016/5.jss.2012.06.011!

E. De Coninck, T. Verbelen, B. Vankeirsbilck, S. Bohez, S. Leroux,
P. Simoens, Dianne: Distributed artificial neural networks for the inter-
net of things, in: Proceedings of the 2Nd Workshop on Middleware for
Context-Aware Applications in the IoT, M4IoT 2015, 2015, pp. 19-24.
doi:10.1145/2836127.2836130.

URL http://doi.acm.org/10.1145/2836127.2836130

Jep: Java embedded python, https://github.com/ninia/jep, accessed:
2017-09-26.

32

http://arxiv.org/abs/arXiv:1606.01540
http://dx.doi.org/10.1016/j.jss.2012.06.011
http://dx.doi.org/10.1016/j.jss.2012.06.011
http://doi.acm.org/10.1145/2836127.2836130
http://doi.acm.org/10.1145/2836127.2836130
http://dx.doi.org/10.1145/2836127.2836130
http://doi.acm.org/10.1145/2836127.2836130

[44]

[45]

[46]

[47]

[48]

[51]

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, ROS: an open-source Robot Operating System,
in: ICRA Workshop on Open Source Software, 2009.

D. Merkel, Docker: Lightweight linux containers for consistent develop-
ment and deployment, Linux J. 2014 (239).
URL http://dl.acm.org/citation.cfm?id=2600239.2600241

R. Collobert, K. Kavukcuoglu, C. Farabet, Torch7: A matlab-like envi-
ronment for machine learning, in: BigLearn, NIPS Workshop, 2011.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun,
OverFeat: Integrated recognition, localization and detection using con-
volutional networks, arXiv preprint arXiv:1312.6229.

S. Bouckaert, P. Becue, B. Vermeulen, B. Jooris, I. Moerman, P. De-
meester, Federating wired and wireless test facilities through Emulab
and OMF': the iLab.t use case, in: 8th International ICST Conference
on Testbeds and Research Infrastructures for the Development of Net-
works and Communities, Proceedings, Ghent University, Department of
Information technology, 2012, pp. 1-16.

S. Bohez, T. Verbelen, E. De Coninck, B. Vankeirsbilck, P. Simoens,
B. Dhoedt, Sensor fusion for robot control through deep reinforcement
learning, arXiv preprint arXiv:1703.04550.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., Human-level control through deep reinforcement learning, Nature
518 (7540) (2015) 529-533.

J. Keuper, F.-J. Preundt, Distributed training of deep neural networks:
Theoretical and practical limits of parallel scalability, in: Proceedings
of the Workshop on Machine Learning in High Performance Computing
Environments, MLHPC ’16, IEEE Press, Piscataway, NJ, USA, 2016,
pp. 19-26. |doi:10.1109/MLHPC.2016.6.

URL https://doi.org/10.1109/MLHPC.2016.6

33

http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://doi.org/10.1109/MLHPC.2016.6
https://doi.org/10.1109/MLHPC.2016.6
http://dx.doi.org/10.1109/MLHPC.2016.6
https://doi.org/10.1109/MLHPC.2016.6

	Introduction
	Related work
	Requirements
	Supervised learning
	Distributed reinforcement learning
	Neural networks in IoT applications

	DIANNE, modular framework for distributed deep learning
	System component model
	Neural network modules
	Runtime
	Repository
	Datasets
	Experience pool
	Learner
	Evaluator
	Agent
	Environment
	Coordinator

	Extensibility
	User interface

	Design and implementation
	Experiments
	Overhead of DIANNE in image classification case
	Increase learning speed with multi agent deployments
	Offload neural networks on IoT devices

	Conclusion

