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Outline and aims of this thesis 

Non-covalent interactions between molecules, also known as supramolecular interactions, widely 

exist in nature, such as the formation of the DNA double helix and the folding of proteins. Such non-

covalent interactions play a crucial role in chemistry, physics and particularly in biodisciplines, and 

provide the flexibility, specificity and dynamics required in biological processes and advanced 

material science. As a result, the area of supramolecular chemistry not only attracts chemists and 

biochemists but also a wide variety of researchers in other disciplines, such as physics, mathematics 

and engineering. Polymer chemists have employed supramolecular interactions to build complex 

dynamic polymer architectures and supramolecular polymeric materials in recent years. Such 

supramolecular polymers and materials exhibit outstanding dynamic properties compared to their 

analogues that are constructed by covalent interaction. More specifically, the dynamic nature of the 

supramolecular interactions provides the ability of responding to external stimuli. Non-covalent 

interactions provide a platform for designing various next generation polymeric materials with 

adaptive behavior, reshapability (recycling), self-healing and low temperature processing. Apart 

from polymeric materials, non-covalent interactions have also been widely used in nanoscience, 

particularly for developing molecular machines. 

In order to extent the application of non-covalent interactions as driving forces in the construction 

of supramolecular polymeric materials and molecular machines, this thesis focused on the 

development of dynamic polymer architectures, polymeric hydrogels and mechanically interlocked 

molecules. Within this thesis novel concepts of supramolecular star-polymers, switchable 

supramolecular hydrogels and straightforward synthesis of rotaxanes have been explored. 

To achieve these research aims, this thesis is divided into 5 chapters. 

The rationale for these three research topics will be given below while a broader introduction into 

the different areas will be provided in the introductory Chapter 1. 

The properties of polymeric materials mainly depend on the chemical components and the 

topological structure. Branched polymers which are gaining interest due to their remarkable 

characteristics and properties arising from their condensed non-linear structure, and multiple chain 

ends. Branched polymers have widely been used in various fields, such as nanocontainers or drug 

delivery. The advent of supramolecular chemistry provides a novel approach to prepare branched 

polymers driven by non-covalent interactions that offer dynamic and potentially stimuli-responsive 

reversible formation of the branched polymer structure from the individual polymer precursors. Up 

to now, different non-covalent interactions, e. g. hydrogen bonding, metal-ligand coordination, and 

host-guest interactions were utilized for the preparation of supramolecular branched polymer. Star 

polymers respresent a kind of rather defined branched polymers where all chains come together in 
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a core structure. Such star polymers were selected in this thesis as basis for the construction of 

dynamic branched polymeric architecture in which the association state of the arms to the core is 

controlled by the supramolecular interactions. In Chapter 2, the zinc porphyrin/pyridine (ZnTPP/Py) 

complexation based metal-ligand interaction was chosen to construct supramolecular miktoarm 

star polymers based on the complexation of a four-arm covalent star polymer having zinc porphyrin 

as core and a second linear polymer with a pyridine end-group. The synthesis of these building 

blocks and their supramolecular assembly into supramolecular mikto-arm star polymers, which are 

star-polymers that have different polymeric arms attached to the same core, in water is discussed 

in Chapter 2. 

Hydrogels are (polymeric) networks extensively swollen with water and they have been widely 

employed in industrial and biological areas. Hydrogels can be sub-divided into chemical hydrogels 

(covalently crosslinked) and supramolecular hydrogels (physically crosslinked). Chemical hydrogels 

exhibit excellent mechanical properties and they have been widely employed for applications where 

tough and stable hydrogels are required, such as contact lenses. However, because of the nature of 

the covalent crosslinks, chemical hydrogels tend to be brittle, cannot be reshaped and do not 

provide possibilities for self-healing. In contrast, supramolecular hydrogels overcome these 

limitations of chemical hydrogels, and could undergo sol-gel transition depending on the 

environmental conditions. However, these improved dynamics come at the cost of being 

mechanically weaker systems. Polymer chemists have combined both covalent and non-covalent 

crosslinking in one system attempting to improve the properties of hydrogels and to combine the 

best of both worlds. Despite the beauty of this approach, some irreversible bond breaking will be 

unavoidable during damage. Inspired by this idea, we designed a novel hydrogel which can undergo 

a complete transition between physical crosslinking and chemical crosslinking, thereby taking 

advantage of the strong points of both chemical and physical hydrogels, namely excellent 

mechanical properties and reshapability, self-healing and low temperature processing abilities. 

Anthracene side-functionalized poly(N-acryloylmorpholine) were developed to form such 

switchable hydrogels. The polymers were physically crosslinked by the addition of a large 

macrocyclic host (γ-CD or CB[8]) that form ternary inclusion complexes with two anthracene 

molecules via host-guest interaction acting as physical crosslinks. The photodimerization of 

anthracene inside host cavity convert the hydrogel to chemical crosslinking, thereby locking in the 

system and switching off the dynamic supramolecular interactions. Conversely, the cycloreversion 

of the anthracene dimers leads to the transition of the covalently crosslinked hydrogel back to a 

physically crosslinked hydrogel as will be discussed in Chapter 3. 

Rotaxanes are a subset of the family of mechanically interlocked molecules (MIMs), which have 

attracted increasing attention for over 50 years owing to their wide range of potential application 

in molecular devices such as molecular machines, muscles and elevators. Rotaxanes as rather simple 

MIMs constitute important building blocks for the preparation of functional artificial nanomachines. 

Therefore, more efficient synthetic strategies for the construction of rotaxanes is important as basis 
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for the future development of nanomachines. In chapter 4, we introduced a novel reactive stopper 

to straightforwardly construct [2]rotaxanes by strain-promoted azide–alkyne cycloaddition, in 

which the pseudorotaxane is consisted of cyclobis(paraquat-p-phenylene) and 1,5-

dialkoxynaphthalene assembled via donor-acceptor host-guest interactions. The developed 

straightforward synthetic strategy provides the opportunity to prepare mechanically interlocked 

molecules efficiently. 

Finally, the general conclusions and outlook of the thesis will be discussed in Chapter 5 
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Chapter 1 Introduction 

 

 

 

 

 

 

 

As stated in the motivation and overview section, the present thesis focuses on non-covalent 

interactions, which are also called supramolecular interactions. Such interactions were employed in 

various research areas after its first application in the modern sense by Jean-Marie Lehn in 1978. 

Chemists have attained an astonishing degree of control over the non-covalent interactions and 

have used these techniques to construct a plethora of beautiful and functional structures. A feature 

of particular interest is the dynamic property of non-covalent interactions, which has been 

facilitating molecular chemistry and has led to the emergence of various adaptive materials, such as 

supramolecular polymer materials, or molecular devices. In this thesis, three different non-covalent 

interactions, metal-ligand interactions, host-guest interactions and charge transfer interactions, 

were employed to explore their applications in polymer materials and nanotechnology. More 

specifically, the complexation of metalloporphyrin and pyridine was used to construct a novel 

supramolecular star polymer; the host-guest interactions between anthracene with γ-cyclodextrin 

or cucurbit[8]urils act as cross-linkers for a switchable supramolecular hydrogel; and a 

pseudorotaxane based on charge transfer interactions between cyclobis(paraquat-p-phenylene) 

and 1,5-dialkoxynaphthalene, which was stoppered straightfowardly by strain-promoted azide-

alkyne cycloaddition. The fundamental concepts and theoretical background about these three 

research topics are described in the following sections as well as an overview of these topics that 

have been published in recent years.  
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1.1 Supramolecular Chemistry 

1.1.1 The overview of supramolecular chemistry 

Supramolecular chemistry is often defined as being chemistry beyond the molecule that focuses on 

the chemical systems made up of assembled molecular subunits or components. The early innovator 

in this field, Jean-Marie Lehn, received the Nobel Prize shared with Donald Cram and Charles 

Pedersen in 1987 for their contribution in host-guest interactions with crown-ethers referring to 

their development and use of molecules with structure-specific interactions of high selectivity. More 

recently in 2016, a second Nobel Prize was awarded to Jean-Pierre Sauvage, Sir J. Fraser Stoddart, 

and Bernard L. Feringa for their introduction and advance of molecular machines, which are mostly 

based on supramolecular interactions. Supramolecular chemistry is different from the traditional 

chemistry that focuses on the covalent bond, as it investigates the weaker and reversible 

noncovalent interactions between molecules. The relationship between molecular and 

supramolecular chemistry regarding to structure and function is depicted in Figure 1.1. 

 

Figure 1.1 Comparison between the scope of molecular and supramolecular chemistry according to Lehn.1 

Supramolecular chemistry, comparing to the traditional chemistry, is a young discipline that stems 

from the late 1960s and early 1970s. However, its concepts and roots maybe traced back to 1810s, 

and the chronology of the field is illustrated in Table 1.1. Supramolecular chemistry has attracted 

the chemist’s attention and gained rapidly growing interest based on the developments in 

macrocyclic chemistry in the 1960s, especially the development of macrocyclic ligands for alkali 

metal cation binding. After that, more and more chemists became interested in supramolecular 
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chemistry, often also inspired by the beauty of natural self-assembly processes. Nature employs a 

limited number of building blocks in combination with non-covalent interactions to construct 

complex functional assemblies. Some of the most well-known examples of supramolecular 

chemistry in nature include the assembly of double helical DNA, enzyme-substrate recognition, 

metal-ligand complexes, the folding and assembly of proteins and changes in protein assemblies 

such as focussing of the eye, healing processes and temperature regulation (Figure 1.2). Inspired by 

the impressive use of supramolecular assembly in nature, the supramolecular chemists aim to 

develop well-defined synthetic structures with controlled ordering and/or self assembly resulting in 

functional systems. Recently, the modern supramolecular chemistry was used in various fields, such 

as drug delivery,2-3 smart materials,4-12 catalysis,13 data storage and processing,14-16 and 

nanotechnology17-18. 

  

Figure 1.2 Some examples of natural assembly driven by non-covalent interactions (a): double helical DNA structure 
constructed by hydrogen bonding; (b) Hemoglobin molecule containing metal-ligand interaction; (c) the folding and 

assembly of protein reprinted from ref; (d) the recognition of enzyme-substrate.19  
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Table 1.1 Timeline of supramolecular chemistry adapted from ref.20 

1810- S. H. Davy: discovery of chlorine hydrate 

1841- C. Schafhäutl: study of graphite intercalates 

1849- F. Wöhler: β-quinol H2S clathrate 

1891- A. Villiers and C. R. Hebd: cyclodextrin inclusion compounds 

1893 A. Werner: coordination chemistry 

1894- E. Fischer: lock and key concept 

1906- P. Ehrlich: introduction of the concept of a receptor 

1937- K. L. Wolf: the term Ü bermoleküle is coined to describe organised entities arising from the association of 
coordinatively saturated species (e.g. the acetic acid dimer) 

1939- L. Pauling: hydrogen bonds are included in the groundbreaking book The Nature of the Chemical Bond 

1940- M. F. Bengen: urea channel inclusion compounds 

1945 H. M. Powell: X-ray crystal structures of β-quinol inclusion compounds; the term ‘clathrate’ is introduced 
to describe compounds where one component is enclosed within the framework of another 

1949- C. J. Brown and A. C. Farthing: synthesis of [2.2]paracyclophane 

1953- J. Watson and F. Crick: structure of DNA 

1956- D. C. Hodgkin: X-ray crystal structure of vitamin B12 

1959- D. Cram: attempted synthesis of cyclophane charge transfer complexes with (NC)2C=C(CN)2 

1961- N. F. Curtis: first Schiff’s base macrocycle from acetone and ethylene diamine 

1964- D. H. Busch and E. G. Jäger: Schiff’s base macrocycles 

1967- C. Pedersen: crown ethers 

1968- C. H. Park and H. E. Simmons: Katapinand anion hosts 

1969- J. M. Lehn: synthesis of the first cryptands 

1969- R. Breslow: catalysis by cyclodextrins 

1973- D. Cram: spherand hosts produced to test the importance of preorganisation 

1978- J. M. Lehn: introduction of the term ‘supramolecular chemistry’, defined as the ‘chemistry of molecular 
assemblies and of the intermolecular bond’ 

1979- G. W. Gokel and M. Okahara: development of the lariat ethers as a subclass of host 

1981- F. Vögtle and M. E. Weber: podand hosts and development of nomenclature 

1981- W. A. Freeman, W. L. Mock and N. Y. Shih: The structure of cucurbit[n]urils was first elucidated 

1986- A. P. de Silva: Fluorescent sensing of alkali metal ions by crown ether derivatives 

1987- Award of the Nobel prize for Chemistry to D. J. Cram, J. M. Lehn and C. J. Pedersen for their work in 
supramolecular chemistry 

1996- J. L. Atwood, E. Davies, D. MacNicol & F. Vögtle: publication of Comprehensive Supramolecular Chemistry 
containing contributions from many key groups and summarising the development and state of the art 

1996- J. K. M. Sander: the first example of a dynamic combinatorial chemistry system 

2003- Award of the Nobel prize for Chemistry to P. Agre and R. MacKinnon for their discovery of water 
channels and the characterisation of cation and anion channels, respectively. 

2004- J. F. Stoddart: the first discrete Borromean-linked molecule, a landmark in topological synthesis. 

2008- Pillar[5]arenes as macrocyclic host was first reported by T. Ogoshi 

2016 Award of the Nobel prize for Chemistry to J. P. Sauvage, J. F. Stoddart and B. L. Feringa for the design 
and synthesis of molecular machines. 

2017- J. Christian and R. Gwenael: the world’s first nanocar race on gold surface was taken place in the 
Centre for Materials Elaboration and Structural Studies in Toulouse.  
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Generally, supramolecular chemistry can be classified into two main categories: (i) the chemistry 

associated with a molecule recognizing a guest molecule (host-guest chemistry); (ii) the chemistry 

associated to molecules that assemble into larger structures by non-covalent interactions (self-

assembly). The difference between the host-guest chemistry and self-assembly is illustrated 

schematically in Figure 1.3, whereby it should be noted that host-guest chemistry is also included in 

the more general term self-assembly. The term host-guest chemistry was first defined by Donald 

Cram in 1977 to depict the chemistry of complexes formed by two or more molecules or ions that 

are held together in certain structures through noncovalent interactions.21 

  

Figure 1.3 Schematic illustrating the difference between host-guest chemistry and self-assembly. 

Supramolecular chemistry deals with weak and reversible non-covalent physical interactions 

between molecules. These weaker supramolecular interactions, include hydrogen bonding, metal-

ligand interaction, host-guest interaction, van der Waals forces, π-π interaction and electrostatic 

effects, form the basis for molecular recognition, self-assembly,22 host-guest chemistry,23 and 

mechanically interlocked molecular architectures3, 24-25. The term “supramolecular interaction” 

includes a wide range of association strengths, which are summarized in Figure 1.4. Among these 

supramolecular interactions, metal-ligand coordination, host-guest interaction and electrostatic 

effects were employed in this thesis and these interactions will be highlighted further on. 

 

Figure 1.4 Overview of the strength of different (non)covalent interactions. 
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1.1.2 Binding constant of non-covalent interaction 

1.1.2.1 Definition 

In this part of the thesis, we will define the two building blocks that associate via non-covalent 

interactions as host (H) and guest (G), but the discussion can also be used to describe self-assembly 

of two molecules in general. The thermodynamic stability of the non-covalent interaction in a 

specific solvent at a given temperature is described by the binding constant, Ka, also called 

association constant. The binding constant is the inverse of the dissociation constant, and associated 

with the thermodynamically stable supramolecular equilibrium of association and dissociation of 

the host and guest molecules, which is formalized as: 

𝑚H + 𝑛G ⇌ H𝑚𝐺𝑛    Equation (1) 

Where m, n represent the stoichiometry of the formation of complex. The binding constant is often 

calculated using concentrations of host, guest and host-guest complex and thus has units of M-1 or 

M-2 for a 1:1 or 1:2 complex, respectively. The binding constant is also characterized by the on-rate 

constant kon and off-rate constant koff. In equilibrium, the forward binding transition 𝑚H + 𝑛G →

H𝑚𝐺𝑛 should be balanced by the backward unbinding transition H𝑚G𝑛 → 𝑚H + 𝑛G. That is 

𝑘𝑜𝑛 ∗ [H]𝑚 ∗ [G]𝑛 = 𝑘𝑜𝑓𝑓 ∗ [H𝑚G𝑛]    Equation (2) 

Where [H], [G] and  [H𝑚G𝑛] represent the concentration of free host, the concentration of free 

guest and the concentration of complex. The binding constant Ka is defined by equation (3): 

K𝑎 =
k𝑜𝑛

k𝑜𝑓𝑓
 =

[𝐻𝑚𝐺𝑛]

[𝐻]𝑚[𝐺]𝑛     Equation (3) 

1.1.2.2 Measurement of binding constants 

An important aspect of the calculation of the binding constant is the use of the correct stoichiometry 

model. Even though in some cases the ratio of the host to guest is predictable, it must be determined 

and confirmed by experiment. A number of possible methods to determine the stoichiometry ratio 

of supramolecular association was listed by Connors in a  previous review. 26 Among these methods, 

Job’s method is the most popular method and was also applied in his work. In principle, the 

concentration of H𝑚G𝑛 ( [H𝑚G𝑛]) complex is at maximum when the ratio of host to guest is equal 

to m/n. To determine this, the mole fraction of the guest (fG) is varied while keeping the total 

concentration of the host and guest constant. The concentration of the host-guest complex is then 

plotted against the mole fraction yielding a curve with a maxima when fG = n/(m+n). Practically, the 

concentration of the host/guest complex has to be determined by a change in characteristics of the 

host and/or guest upon binding, such as the 1H NMR chemical shift or UV/Vis band, which have 

linear dependence on the concentration of complex, is utilized and plotted against fG. For a 1:1 
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complex, the Job plot should give a maximum when fG = 0.5 while a maximum at fG = 0.66 would 

correspond to a 1:2 stoichiometry (Figure 1.5). 

 

Figure 1.5 Two examples of Job plots for 1:1 (left) and 1:2 (right) host-guest complex. (from Chapters 2 and 3) 

In principle, the binding constants can be determined by any experimental technique that can yield 

information about the concentration of the formed complex, [H𝑚G𝑛] , and the changing 

concentration of the host or guest. Practically, the most common approach to measure the binding 

constant is the supramolecular titration method. Here, one component is gradually added to the 

solution of the other binding partner while monitoring a physical property change, e. g. specific 

chemical resonance (NMR), absorption of UV-Vis/fluorescence band, or the heat formed or 

absorbed (isothermal titration calorimetry-ITC).  

We take the UV-Vis spectrophotometric titration, which was used in this thesis, as an example to 

illustrate the titration method in general. UV-Vis spectroscopic titration, or spectrophotometric 

titration, refers to monitoring the intensity of an absorption band at a particular wavelength that is 

characteristic of either the complex or free host or guest upon stepwise addition of one of the 

binding partners. We define the absorption band coming from host in the following section. The 

absorbance intensity vs. concentration of added guest to a solution of constant host concentration 

can be plotted. For a 1:1 complex with the binding constant Ka=[HG]/[H][G], the absorbance 

intensity Aobs at a certain wavelength is given by: 

𝐴obs = 𝜀H𝑙[H] + 𝜀HG𝑙[HG]     Equation (4) 

Where Aobs is the observed absorbance; ε is the molar absorption coefficient; 𝑙 is the path length. If 

the concentration of the complex [HG] is known, then the concentration of free host [H] or guest 

[G] can be determined by the equation: 

[H]0 = [H] + [HG]      Equation (5) 

[G]0 = [G] + [HG]      Equation (6) 
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We define the fraction of host complexed with guest as fHG (fHG=[HG]/[H]0), Then after introducing 

equation (3) and (5), 𝑓HG can be rewritten as: 

𝑓𝐻𝐺 =
[HG]

[H]+[HG]
=

𝐾a[G]

1+Ka[G]
     Equation (7) 

Where [𝐻]0 is the initial concentration of host, which is a known constant. When equation (4) and 

(7) are combined, a new equation can be given: 

𝐴obs = 𝐴0 + (𝜀HG − 𝜀H)𝑙[H]0 ×  
𝐾a[G]

1+𝐾a[G]
    Equation (8) 

Here, A0 is the initial absorbance of the host solution without guest. When much more guest is 

added than the amount of host, then [G]0 ≫ [HG]. From equation (6), the unknown concentration 

of free guest will become close to the amount of the added guest, [𝐺]0 ≈ [𝐺]. Then, equation (8) 

can be rewritten as: 

𝐴𝑜𝑏𝑠 = 𝐴0 + (𝜀HG − 𝜀H)𝑙[H]0 ×  
𝐾a[G]0

1+𝐾𝑎[G]0
    Equation (9) 

In equation (9), 𝐴𝑜𝑏𝑠 , 𝐴0 , [H]0  is a known and fixed parameter; 𝜀HG , 𝜀H , and Ka are unknown 

constants. The titration curve can be given by plotting the observed absorbance against the variable 

[G]0. Finally, the binding constant can be given by a non-linear curve fitting of the data based on 

equation (9). A UV titration and data processing example is shown in Figure 1.6.  

 

Figure 1.6 UV titration of 1:1 complexation and data processing based on equation (9). (from Chapter 2) 

1.1.3 The non-covalent interactions that were employed in this thesis  

As aforementioned, non-covalent interactions include hydrogen bonding, metal-ligand interactions, 

host-guest interactions, van der Waals forces, π-π interactions and electrostatic effects. In this thesis, 

metal-ligand interactions and host-guest interactions were employed to build supramolecular 

materials. These three non-covalent interactions and the corresponding building blocks will be 

described in further detail in the following sections.  
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1.1.3.1 Metal-ligand interaction based on metalloporphyrin complex 

Porphyrins are a group of heterocyclic macrocyclic organic compounds, consisting of four (modified) 

pyrrole subunits interconnected at the α carbon positions by methine. The macrocyclic porphyrin is 

capable of binding different kinds of transition metal ions in its central cavity. After metal 

complexation, the positions on the metal ion axial to the plane of porphyrin ring are available to 

bind with other ligands.27-40 In the last few decades, the application of metalloporphyrins in 

biological systems has been reported in many papers, especially the effects of axial ligand binding 

on the metalloporphyrin structures.37, 41-44 Zinc porphyrin (ZnTPP) is one of the most accessible 

compounds among the metalloporphyrins and has, therefore, been chosen to study coordination 

with various electron-donor ligands. The structure of zinc porphyrin and the corresponding complex 

are depicted in Scheme 1.1. ZnTPP can be easily purified and is well soluble in organic solvents. 

Furthermore, in contrast to manganese-, copper-, and iron-containing porphyrins, ZnTPP does not 

participate in redox reactions. Up to date, ZnTPP was highly employed in the study of donor-

acceptor dyads with C60 bearing nitrogen based ligands based on metal-ligand interaction.39, 45-46 

The coordination of zinc porphyrin and pyridine was utilized in chapter 2 to construct a dynamic 

miktoarm star polymer. 

 

Scheme 1.1 The structure of zinc porphyrin and the complex, and the most used ligands in literature. 

1.1.3.2 Host-guest interactions based on cyclodextrin, cucurbit[n]urils and anthracene 

In the world of supramolecular chemistry, one of the frequently employed host compounds are 

cyclodextrins. Cyclodextrins are cyclic oligomers built up from six, seven or eight glucopyranose 

units, linked by α-(1-4)-glycosidiclinkages, named α-,β-and γ-cyclodextrins, respectively.47 The 

three-dimensional structure of CDs is like a truncated cone with all hydroxyl groups located at the 

surface of the molecule, making it soluble in water. On the other hand, the interior cavity of CDs is 

relatively hydrophobic, allowing lipophilic molecules with proper size to be included by host/guest 

interaction. The physical properties of the three cyclodextrins are shown in Figure 1.7. 
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Figure 1.7 Chemical structures, approximate geometric, dimensions, and physical propertie of α-,β-and γ-
cyclodextrins. Reprinted with permission from ref. 48 Copyright ©  2014, American Chemical Society. 

Among the three common CDs, α-CD is able to form a stable supramolecular complex with small 

hydrophobic guests, such as monocyclic aromatics, including azobenzene (Azo) and its derivatives; 

β-CD tends to interact with medium sized hydrophobic compounds, such as anthraquinone, 

cholesterol,49 ferrocene (Fc),50 adamantane (Ada),51-53 cyclic diene, azo compound and some 

derivatives. α-CD and β-CD are the most utilized CDs to form inclusion complexes for a wide range 

of applications, e.g. supramolecular hydrogels,46, 49-52 supramolecular polymer,48, 53 supramolecular 

nanoparticles,54 and so on. γ-CD has a relatively large cavity allowing  complex two guest molecules 

in its cavity yielding ternary inclusion complexes. For example, pyrene,55-57 anthracene58 or their 

derivatives have been reported to form ternary inclusion complexes with γ-CD where two guest 

molecules are included in the hydrophobic cavity. Inspired by this feature, the γ-CD was employed 

in Chapter 3 to prepare supramolecular networks using the ternary complex formation as dynamic 

crosslinks. 

Cucurbit[n]urils (CB[n]), each of which consists of n glycoluril units, have a hydrophobic cavity and 

two identical carbonyl-laced portals and are an important family of macrocyclic compounds. CB[n]s 

can be prepared from the acid-catalyzed condensation reaction of glycoluril and formaldehyde 

(Scheme 1.2).59 The structures and physical properties of CB[n]s are shown in Figure 1.8. Similar to 

CDs, the hydrophobic interior of CBs provides a potential site for inclusion of hydrophobic molecules 

with very high binding constants. Comparing to CDs, the utilization of CB[n] as host to form non-

covalent interactions is, however, limited by: (i) poor solubility in aqueous and organic media, 

especially CB [6] and CB[8]; (ii) more difficult access to (functional) CB[n] derivatives, compared to 

CDs.  

 

Scheme 1.2 Synthesis of CB[n] homologues by condensation of glycoluril and formaldehyde under acidic conditions.   
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However, the electrostatic potential of the carbonyl groups at the portals of the CB[n] cavity, which 

play a crucial role in molecular recognition in aqueous solution, is obviously more electronegative 

than the hydroxyl portals in CDs. Figure 1.9 shows the electrostatic potentials of CB[7] and β-CD as 

an example. Another advantage of CB[n] family is that the average binding affinity to hydrophobic 

guests is generally an order of magnitude higher than with CDs, which was reviewed by Houk et al.60 

In the wide field of host-guest chemistry, CB[n] is an important young family member of macrocylic 

hosts, able to form inclusion complexes with various guest molecules, such as cations, drug 

molecules, amino acids and peptides, and even high molecular weight guests. The excellent 

recognition properties of the CB[n] family have led to their extensive use in various applications, 

including catalysis, self-assembled monolayers, waste-stream remediation of textile industry, DNA 

binding and gene transfection, which was summarized by Isaacs et al.61 Among the CB[n] family, the 

cavity of CB[8] is similar in terms of size to γ-CD. In contrast to CB[5] to CB[7], the larger cavity 

provides the capability to simultaneously bind two aromatic guests to form ternary host-guest 

complexes.62-68 Even more strikingly, the ternary complex can be formed when mixing the host and 

guest at a ratio of 1:1 indicating strong cooperativity for the binding of the two guests. We took this 

advantage of CB[8] in Chapter 3 to prepare supramolecular hydrogels using the ternary complexes 

as dynamic supramolecular crosslinks. Furthermore, CB[8] can form hetero-ternary complexes 

resulting in enhanced interaction of the two different guests, which has not been reported for γ-CD 

until now.  

 

Figure 1.8 The chemical structures, cartoon representation, dimensions and physical properties of CB[n]. (note that: 
the values quoted for a, b, and c take into account the van der Waals radii of relevant atoms). Adapted from ref.61  
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Figure 1.9 Electrostatic potential map of (a) CB[7] and (b) β-CD, indicating the negatively charged carbonyl portals of 
CB[7] (in red) and neutral portal and cavity of β-CD (in green). Adapted from ref.69 and ref.70  

Anthracene is a polycyclic aromatic hydrocarbon consisting of three fused benzene rings. The ring 

is willing to act as a light induced electron donor or acceptor, which is easily tuned by the 

substitution pattern. The reversible photodimerization ability of anthracene (Scheme 1.3) has 

attracted a great interest in recent years, which was employed to prepare dynamic and/or reversible 

polymeric networks.71-73 Moreover, the hydrophobicity of anthracene makes it an excellent guest 

for γ-CD and CB[8] resulting in the formation of ternary complexes.66, 74-76 In the most recent reports, 

the two properties were combined and it was demonstrated that the constructed system can 

undergo a reversible conversion of the formed supramolecular ternary inclusion complex to a binary 

complex of the macrocyclic host with the anthracene dimer facilitated by the photodimerization of 

anthracene.66, 74, 76 

 

Scheme 1.3 Photoinduced conversion between anthracene and its dimer. 

1.1.3.3 π-π Interactions and electrostatic effects (charge transfer interaction) 

Cyclobis(paraquat-p-phenylene) (CBPQT4+, Blue Box (BB)) was one of the flagships in the history of 

host-guest chemistry and was first report in 1988 by J. Fraser Stoddart’s group.77 The structure of 

CBPQT4+ is composed of two π-electron-deficient 4,4’-bipyridinium (BIPY2+) recognition units linked 

by two para-xylylene spacers in a cyclic manner (Figure 1.10). The π-electron-deficient host can form 

strong host-guest complexes by taking advantage of the formation of strong charge-transfer donor-

acceptor interactions with electron-rich aromatic guest molecules. Furthermore, the α-hydrogen 

atoms of the BIPY2+ are electron deficient due to the positively charged nitrogen atoms, potentially 

allowing hydrogen bonding interaction with functional groups in the guest molecules, such as oligo-

ethylene glycol spacers. A number of host-guest complexes with various size- and electronic 

constitution-matched guests were studied and employed to build topological structures as well as 

molecular machines based on CBPQT4+.78-86 Some of the most used electron-rich guests, 1,5-

dialkoxynaphthalene (DNP), tetrathiafulvalene (TTF), dialkoxybenzene (DB), for blue box are 

depicted in Figure 1.10. 
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Figure 1.10 The structure of cyclobis(paraquat-p-phenylene) (counterions are omitted, but are crucial in determining 
the solubility in different solvents) and the typical guests. 

1.2 The development of supramolecular star polymers 

Since it was first proposed and demonstrated by Staudinger87 that polymers consist of a covalently 

bonded macromolecular structure consisting of many repeating units, polymers have become an 

inextricable and irreplaceable part of our everyday life owing to its extraordinary versatility of 

property profile and application range. The properties of polymers are dominated by the chemical 

composition and the topology of polymer. It has been demonstrated that branching of polymers 

gives rise to a more compact structure compared to the linear polymer with similar molecular 

weight resulting in higher segment density, which further affects the crystalline, mechanical, 

viscoelastic and solution properties of the polymers.88,89 

Star polymers were first prepared by Schaefgen and Flory in 1948,90 representing the simplest 

branched polymer structure. Such star polymers have attracted significant attention in recent 

years.91-93 Star polymers can be divided into homoarm star polymers and miktoarm star polymers 

according to the chemical composition of the arms. Star polymers are typically synthesized by 

divergent, convergent and coupling-onto strategies.94 A major effort in polymer chemistry is 

focusing on the synthesis of polymers with desired properties by the precise control of molecular 

weight, polydispersity, composition and topology of the polymer chains.93 

However, conventional polymers also pose challenges as they can be difficult to process and recycle. 

Supramolecular polymers are polymeric arrays of monomeric units that are held together by highly 

directional and reversible non-covalent interactions, including hydrogen bonding, host-guest 

interaction, metal-ligand coordination and so on. These reversible and dynamic non-covalent 

interactions play a leading role in the assembly and conformation of the supramolecular system, 

and have been widely employed to construct different types of supramolecular polymers. 

Parameters that control the polymer properties, e. g.  molecular weight, conformation, degree of 

polymerization and life-time of the chain, are highly depending on the strength of the non-covalent 

interactions, which can be tuned by adopting different arrays or different types of non-covalent 

interactions. The combination of the versatility of custom-made synthetic polymers and the 
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flexibility of the non-covalent dynamic interactions provide supramolecular polymers with unique 

properties catering applications in sensing, stimuli-responsive, self-healing and shape-memory 

materials.95-99 Moreover, significant efforts have been dedicated to elucidate the mechanism of the 

supramolecular polymerization, which has been well documented by Meijer et al..96 

Even though most efforts have been dedicated to linear supramolecular polymers, supramolecular 

star polymers are also interesting materials as the supramolecular association controls the topology 

of the polymer chains, thereby enriching material science with new potentials.100-102 The non-

covalent interactions provide new opportunities in dynamic and potentially stimuli-responsive 

materials. It is especially appealing to control the association of polymer chains to a core via 

supramolecular interactions as this provides supramolecular control over the number of arms 

and/or over the formation of homo-arm or mikto-arm star polymers. In this section, we will provide 

a brief overview of the use of different supramolecular interactions for linking of polymer chains to 

a core structure yielding dynamic supramolecular star-polymers.  

1.2.1 Hydrogen bonding interaction based supramolecular star-polymers 

The self-complementary ditopic hydrogen-bonding module, Bis-DeAP (Figure. 1.11), was developed 

by Zimmerman et al. in 1996 and used to assemble dendrimers at first.103 Inspired by the formation 

of stable discrete cyclic assemblies, the authors further used this module to prepare supramolecular 

star polymers by modifying it with initiators for ring opening polymerization or atom transfer radical 

polymerization (ATRP).104,105 The Bis-DeAP functionalized initiators were used to polymerize styrene 

or methylmethacrylate. The resulting polymers self-assembled into higher molecular weight 

structures with narrow molecular weight distribution that could be observed by SEC, showing a 

single peak at high molecular weight range with a small polymer dispersity. 
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Figure 1.11 The structure of ditopic hydrogen bonding module Bis-DeAP and its hexameric assembly (top); the SEC 
traces of the assembled supramolecular polymer and one free arm polymer. (bottom). Reproduced with permission 

from ref.104 Copyright ©  2007, American Chemical Society   

Barner-Kowollik et al. recently reported the formation of miktoarm (AB2
106 and ABC107) and 

homoarm (A3)106 supramolecular star polymers based on the hydrogen bonding interaction of the 

Hamilton wedge (HW) and cyanuric acid (CA) (Figure 1.12.). The supramolecular (mikto)arm 

polymers were formed by mixing the HW mid-chain functionalized poly(styrene) and CA end-

functionalized poly(styrene) or poly(methyl methacrylate). The more complicated ABC-type 

supramolecular star polymer was prepared by a similar strategy, for which the HW mid-chain 

functionalized polymer was polyethylene glycol-b-polystyrene (PEG-HW-PS) block copolymer and 

cyanuric acid chain-end functional linear polymer was poly(n-butylacrylate) (PnBA). 

 

Figure 1.12. General strategy for the preparation of ABC type miktoarm terpolymers. The HW building blocks are 
generated by a combined ATRP/CuAAC strategy. The linear α-CA functional PnBA is synthesized by raft polymerization. 

ABC-type miktoarm terpolymers are subsequently generated via the supramolecular self-assembly of HW/CA 
complementary recognitions motifs. Adapted from ref.107  

Bernard and co-workers also prepared supramolecular poly(vinyl acetate) (PVAc) 3-arm star 

polymers by the formation of hydrogen bonded heterocomplexes between polymer chains 

functionalized with heterocomplementary associating units (thymine and diaminophridine), 

prepared by RAFT polymerization.108-109 

1.2.2 Host-guest interaction based supramolecular star-polymers 

Although a large number of host/guest complexes have been reported, the most common host 

molecules involved in fabricating supramolecular star polymers include cyclodextrins (CDs), crown 

ethers, and cucurbit[8]urils (CB[8]). Guest molecules are generally the small hydrophobic organic 

compounds that can be incorporated inside the hydrophobic cavity of host. Until now, cyclodextrins 

have been mostly applied for the construction of supramolecular star polymers. 

CD-based supramolecular star polymers can be constructed based on a covalent star polymer with 

CD as the core moiety and a guest molecule that is functionalized with a polymer through host/guest 

complexation. An interesting architecture in that regard is the connection of CD-centered star 

polymers with linear polymers bearing one or two guest end-groups as reported by Li and 
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coworkers.110-111 The first report presented a system comprising a β-CD-core Poly(N-

isopropylacrylamide) (PNIPAm) star polymer which forms a supramolecular mikto-arm star polymer 

with poly(ethylene glycol) (PEG) bearing an adamantyl end-group through host-guest complexation 

(Figure 1.13a). The complex formation was proven via NOESY. The thermoresponsive properties of 

the supramolecular polymer could be tuned over a temperature scale around the body temperature 

by varying the number of guest moieties and the molecular weight of the employed PEG.110 Later, 

two β-CD centered PNIPAm star polymers were connected by complexation with poly(propylene 

glycol) (PPG) having two adamantane end-groups. As this system contains two kinds of 

thermoresponsive segments, PPG and PNIPAAm, it exhibited dual thermoresponsive behavior in 

aqueous solution. The supramolecular polymer underwent a reversible temperature-induced 

transition from solution to micelle and further to larger aggregates upon heating.111 

More recently, the same group reported a supramolecular star polymer as multifunctional gene 

carrier system.112 The supramolecular star polymer is self-assembled from two molecular building 

blocks: a star polymer host polymer, β-CD-SS-P, consisting of multiple arms of poly(2-

dimethylaminoethyl methacrylate) (PDMAEMA) linked to a β-CD core via bioreducible disulfide 

bonds, and a polymeric guest, adamantyl end capped poly(2-methacryloyloxyethyl 

phosphorylcholine) (Ada-PMPC), being an adamantane end capped poly(2-methacryloyloxyethyl 

phosphorylcholine) (PMPC) (Figure 1.13b). The host and guest polymers self-assemble to integrate 

both the gene complexing function of the PDMAEMA and the non-fouling function of pMPC  into 

one system, based on the host/guest interaction between β-CD and adamantane moieties.  
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Figure 1.13 (a) Supramolecular complexation formed via host/guest interaction between β-CD centered star polymer 
and adamantly functionalized PEGs. Reprinted with permission from ref.110 Copyright © 2008, American Chemical 

Society; (b) Formation of β-CD‐SS‐P/Ad‐pMPC pseudo‐diblock copolymer via host‐guest interaction, followed by DNA 
compaction to form β-CD‐SS‐P/Ad‐pMPC/DNA polyplex. Reprinted with permission from ref.112 Copyright ©  2014, 
John Wiley and Sons; (c) Supramolecular star polymers via azobenzene functionalized PEG and star polymer β-CD-

PLLA. Reprinted with permission from ref. 113 Copyright ©  2014, American Chemical Society. 

Wu and coworkers constructed a series of supramolecular star polymers by assembling a linear 

guest polymer, azobenzene-functionalized poly(ethylene glycol) (Azo-PEG), and multi-arm star host 

polymers consisting of β-CD functionalized with 14 poly(L-lactide) chains (β-CD-PLLA) (Figure 

1.13c).113 Different morphologies were obtained through aqueous self-assembly of these 

supramolecular polymers.  

An alternative approach of constructing supramolecular star polymers based on CD is based on a 

mono-polymer functionalized cyclodextrin and a guest modified polymer having the guest at the 

middle of the polymer. Barner-Kowollik and coworkers described the synthesis of such a miktoarm 

star polymer via supramolecular complexation between β-CD functionalized poly(N,N-

diethylacrylamide) (PDEAAm) and poly(N,N-dimethylacrylamide) (PDMAAm) mid-chain 

functionalized with adamantane (Figure 1.14a).114 The formation of the supramolecular miktoarm 

star polymer was proven via DLS, ROESY and turbidimetry. Additionally, the temperature induced 

aggregation behavior was studied by temperature sequenced DLS measurements. Furthermore, a 

wide variety of complex macromolecular X- and H- shaped star copolymers were reported based on 

similar self-assembly strategies by the same group (Figure 1.14b).115 Several building blocks 

including adamantyl mid-chain poly (N, N,-dimethylacrylamide) (pDMA), poly (N, N-

diethylacrylamide) (pDEA) and p(DEA-b-DMA) as well as double adamantyl end-functional pDMA 

and pDEA, along with mid-chain β-CD functionalized PDMA, PDEA and P(DEA-b-DMA), were 

synthesized via the combination of RAFT polymerization and copper catalyzed azide alkyne 

cycloaddition. Subsequently, the formation of the target architectures via supramolecular 

association of CD- and adamantyl-functionalized building blocks was evidenced by NOESY and DLS. 

Furthermore, the temperature responsive behavior of the obtained star block copolymers was 

investigated. 
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Figure 1.14 (a) Supramolecular miktoarm star formation via mid-chain adamantyl functionalized PDMMAm and β-CD 
end functionalized PDEAAm. (b) Examples of supramolecular X-shaped and H-shaped star block copolymers. adapted 

from ref. 114-115 

Another strategy for preparing supramolecular star polymers based on CD host-guest complexation 

is based on a multifunctional core molecule bearing multiple CD or guest molecules in combination 

with the complementary polymers having the guest or CD as chain end. Barner-Kowollik and 

coworkers utilized a core with three β-CDs and adamantyl-functionalized polyacrylamides to form 

three armed star polymers via the formation of inclusion complexes (Figure 1.15a).116 In brief, the 

Ada-PDMAAm and Ada-PDEAAm were synthesized via RAFT polymerization with adamantyl-

functionalized chain transfer agent. The core, β-CD3, was synthesized via CuAAc techniques. The 

formation of supramolecular star polymers was carried out in D2O and proven via DLS and ROSY 

NMR. In the case of star polymers with pDEAAm arms, the temperature-dependent solution 

behavior was studied by turbidity measurements. More recently, Ritter and coworkers utilized a 

core with six CDs to connect six phenolphthalein-functionalized methoxypoly(ethylene glycol) (PP-

mPEG) chains.117 The synthesis of the arms (PP-mPEG) and the core (β-CD6) was carried out via 

cycloaddition reaction. The formation of stable complexes based on supramolecular interactions 

between both building blocks was proven by UV-Vis measurement. The great advantage of the 

system is the possibility to follow the star polymer formation with the naked eye due to the 

introduction of phenolphthalein as guest leading to a color change upon complexation. Chen and 

coworkers described the construction of supramolecular star polymers based on the native protein 

concanavalin A (ConA) and adamantyl-functionalized PEGs (Ada-PEG).118 A dual linker (β-CD-Man) 

consisting of β-cyclodextrin (β-CD) and α-mannopyranoside (Man) was utilized to bind both 

adamantane end-functionalized PEG and the lectin ConA in an orthogonal manner (Figure 1.15b). 

The supramolecular association was probed via isothermal titration calorimetry (ITC). The complex 

formation was additionally investigated via DLS and SEC evidencing a strong dependence of the 

number of attached PEG chains on the concentration of the solution. Addition of free α-CD 

molecules was demonstrated to lead to hydrogel formation via threading of α-CD over the PEG 
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chains and further association of the form pseudorotaxane structures through hydrogen bonding of 

the α-CDs. 

An interesting macromolecular architecture star-star polymer was described by Li and coworkers.53 

A dendritic supramolecular star polymer was formed by complexation of a star shaped 8-armed 

poly(ethylene glycol) having adamantane end-groups and a β-CD centered star poly(N-

isopropylacrylamide) through inclusion complexation (Figure 1.15c). The formed structure further 

aggregated into a 3D network in response to temperature change, forming a thermoresponsive 

reversible “smart” hydrogel. 

 

Figure 1.15 (a) The formation supramolecular star polymers via host/guest inclusion complexes between adamantyl-
functionalized polyacrylamides and a three-pronged β-CD linker; (b) Schematic representation of supramolecular star 

polymer and further hydrogel formation. Reprinted from ref.118 Copyright ©  2013, American Chemical Society; (c) 
Formation of a dendritic supramolecular star polymer and the formation of a supramolecular hydrogel at a 

temperature above the LCST. Reprinted with permission from ref.53 Copyright ©  2013, John Wiley and Sons. 
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In addition to cyclodextrins, crown ethers and cucurbit[8]urils can also be employed in the 

fabrication of supramolecular star polymers. Crown ethers are cyclic chemical compounds 

consisting of a ring which contains several ether groups. The most popular guest molecules, which 

were utilized in the construction of supramolecular star polymers, are paraquat (N, N’-dimethyl-4, 

4’-bipyridinium) dications and secondary ammonium salts. To date, all these systems were reported 

by Gibson’s group. The first supramolecular star polymer based on crown ethers as supramolecular 

host was reported in 2005119 based on the self-assembly of a core molecule having three crown 

ether hosts and a complementary paraquat-terminated polystyrene guest. The formation of the 3-

armed star polymer was confirmed by viscometry. Additionally, the relationship among the three 

crown ether binding sites during the complexation with the polymeric guests was studied by NMR 

spectroscopy.  

The reverse system was reported five years later based on the complexation of a core molecule with 

three secondary ammonium salts or four paraquats as guests with crown ether (dibenzo-24-crown-

8) terminated polystyrene.120 The self-assembly processes were examined by NMR spectroscopy 

and viscometry revealing the formation of the supramolecular star polymers. It should be 

mentioned that the tetrafunctional paraquat core formed only 3-armed supramolecular star 

polymers instead of 4 armed, perhaps due to the steric effects. Similarly, the same group also 

designed and synthesized a C60 derivative having multiple ammonium groups as multitopic guest 

that complexed with crown ether end functionalized polystyrene to form supramolecular star 

polymers with up to 12 arms via supramolecular complexation.121 In the same year, polymers that 

incorporate paraquat or crown ether moieties as chain ends or central units were synthesized by 

stable free radical polymerization and atom transfer radical polymerization. Supramolecular star 

polymers were formed by mixing the appropriate end- or center-functionalized polymers.122 

Complexation studies to determine the stoichiometry and association constants were performed by 

NMR spectroscopy and isothermal microcalorimetric titration (ITC). A supramolecular 3-armed star 

polymer based on CB[8] was reported by Scherman and coworkers.123 In this study, viologen 

functional macromolecules were achieved by CuAAc type click reaction and the reaction conditions 

were optimized. The authors also prepared a viologen trifunctional trimer by this method. Through 

formation of a ternary complex, self-assembly between the viologen trimer, CB[8] and a naphthol-

terminated PEG polymer, a 7-component supramolecular 3-armed star polymer was formed in 

aqueous solution and characterized by 1H NMR and DOSY. 

1.2.3 Metal-ligand interaction based supramolecular star-polymers 

In this section, the use of metal-ligand interactions to construct supramolecular star polymers will 

be summarized. One of the earliest supramolecular star polymers was reported by Chujo and co-

workers based on complexation of 2,2’-bipyridine end-functionalized polymers that were prepared 

via post-polymerization chain end modification. The supramolecular star polymers were 

constructed by the coordination of 2,2’-bipyridyl terminated PEG124-125 and PPG126 with various 

transition metal ions such as Ni(II), Ru(II), Co(II) and Pd(II). Fraser and co-workers pioneered in new 
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methodology of employing metalloinitiators for the living cationic polymerization of 2-oxazolines by 

using iron(II) tris(bipyridine) 127 and di-, tetra-, hexa-functional ruthenium tris(bipyridine) 

initiators.128 The same research group performed the polymerization of different monomers, 

namely 2-methyl-, 2-phenyl-, 2-undocyl-2-oxazolines, with the same halomethyl substituted 

bipyridine.129 Schubert et al. contributed to this methodology by using the complex of 6.6’-

bis(bromomethyl)-2,2’-bipyridine with tetrahedral Cu(I) as initiator producing 4-arm poly(2-ethyl-

oxazoline).130  

Fraser and co-workers reported polylactide and polycaprolactone supramolecular star polymers 

based on the assembly of 2,2’-bipyridines with one or two polymer chains with Fe(II) or Ru(II).131 

Zhou and Haruna synthesized a 2,2’-bipyridine functionalized dithioester and successfully used it as 

RAFT agent for the polymerization of styrene and NIPAM.132 Supramolecular star polymers were 

formed by the addition of ruthenium(II) ions. Schubert et al. reported 4-arm homoleptic 

supramolecular star- polymers based on tridentate ligands.133 Terpyridine was employed as 

bifunctional initiator for the ring opening polymerization of 2-ethyl-2-oxazoline followed by metal 

complexation to form the metallo-supramolecular star-polymers. 

Dipyridinepyridazine (dpp) based metallo-supramolecular star polymers were reported based on 

the self-assembly of polymer functionalized dpp ligands into grid-like metal complexes with Cu(I) 

and Ag(I).134 The polymer functionalized dpp ligands were prepared by either polymerization using 

a dpp initiator or by post-polymerization end group functionalization (Figure 1.16) 135. 

 

Figure 1.16 Schematic representation of the synthesis of a poly(L-lactide) 3,6-di(2-pyridyl)pyridazine macroligand and 

the subsequent self-assembly into grid-like complexes with copper(I) ions. Adapted from ref.135 

1.3 Supramolecular hydrogels 

Hydrogels are 3-dimensional (polymeric) networks that trap large amounts of waters within their 

structure. Hydrogels found widely employed applications in industrial, environmental and biological 

areas.136-137 Natural hydrogels form an essential part of life, including chitosan, agarose, alginate, 

gellan gum and collagen based hydrogels, and even though they are still widely used in all kinds of 

applications, they were gradually replaced by synthetic hydrogels owing to the higher water 

absorption ability and robustness of synthetic hydrogels. Generally, the synthetic hydrogels can be 

classified in two categories based on the mechanism of cross-linking, chemical hydrogels and 
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physical hydrogels. Chemical hydrogels are formed by covalent bonds, whereas physical hydrogels, 

also called supramolecular hydrogels, are formed by non-covalent interactions, such as hydrogen 

bonds, metal-ligand interactions, host-guest interactions and hydrophobic interactions. Both of the 

two types of hydrogels have already been summarized in many reviews regarding the preparation, 

application and processing.11, 138-143 In the following section, we will give a brief overview of the 

development of covalent and physical hydrogels focusing on reports from the past few years. 

Chemical hydrogels, in which polymer chains are connected by chemical bonds, can be prepared by 

the following methods: (i) cross-linking by radical polymerization in presence of bifunctional 

monomers; (ii) cross-linking of preformed polymers having complementary reactive groups; (iii) 

cross-linking by high energy radiation. When performing free radical polymerization, hydrogels can 

be prepared by adding multifunctional crosslinkers, which are the most commonly used methods to 

prepare chemical hydrogel.  

Crosslinking of preformed polymers through coupling of reactive side chains is another popular 

method for the preparation of hydrogels. Various reactive groups, such as NH2, COOH, OH, present 

in hydrophilic polymers can be used to crosslink the material resulting in chemical hydrogels. For 

example, Zu Y. and coworkers synthesized hydrogels by adding the crosslinker glutaraldehyde to a 

solution of poly(vinyl alcohol), in which the chemical cross-links were formed by the reaction 

between the alcohol and the aldehyde.144 Polymers bearing amine groups can also be crosslinked 

by the same cross-linker resulting in Schiff bases. Polysaccharides have been crosslinked to form 

hydrogels by the addition of a bifunctional crosslinker, such as 1,6-hexamethylenediisocyanate,145 

divinylsulfone,146 or 1,6-hexanedibromide147.  

Hydrogels based on Tarragum/acrylic acid and bacterial cellulose were reported based on irradiation 

of the polymer solution with gamma rays148 and electron beam149, respectively. This method is more 

broadly applicable as the formation of poly(2-ethyl-2-oxazoline) and PEG hydrogels have also 

recently been reported based on gamma or beta irradiation of aqueous polymer solutions.150 

The chemical hydrogels possess excellent mechanical properties, but they are often brittle, lack 

transparency, and do not provide the possibility for reshaping or self-healing. In contrast, physical 

hydrogels overcame these issues relying on the reversible dynamic interaction, which has gained 

increasing interest. Physical crosslinking is made available through the use of supramolecular 

interactions. However, the dynamics of the crosslinks come at the cost of lower mechanical strength 

compared to covalent hydrogels. 

Host-guest inclusion complexation has been applied as non-covalent interaction for the formation 

of supramolecular hydrogels. The most common host motifs are cyclodextrins (CD) and 

cucurbit[n]urils (CB[n]). Many reports have shown that hydrogels could be prepared by grafting host 

and guest molecules onto polymer backbones. Hydrogels can be formed in a system where both the 

host and the guest are grafted onto the same polymer chain (Figure 1.17a),151-153 polymers grafted 

with either the host or the guest are mixed (Figure 1.17b),50, 154-157 or polymers grafted with guest 
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are mixed with dimers of the host (Figure 1.17c)52, 158. When it comes to larger macrocyclic hosts, e. 

g. γ-CD or CB[8], that form ternary complexes with two guest molecules, hydrogels can be form by 

mixing the polymers grafted with the guest and the free host molecule as employed in Chapter 3 of 

this thesis (Figure 1.17d).159-164  

 

Figure 1.17 Schematic illustration of the different ways that hydrogels can be formed through host/guest interactions: 
a) both host and guest were grafted onto one polymer, reprinted with permission from ref.151 Copyright ©  2015, John 

Wiley and Sons; b) polymer grafted with either host or guest, reprinted with permission from ref. 154 Copyright ©  
2013, American Chemical Society; c) polymer grafted with guest mixing with dimer of host, reprinted with permission 

from ref. 158 Copyright ©  2013, Royal Society of Chemistry; d) polymer grafted with guest mixing with larger 
macrocyclic host, reprinted with permission from ref.158, 164 Copyright ©  2012, American Chemical Society. 

Hydrogen bonds are directional supramolecular interactions in which a hydrogen atom bound to an 

electronegative atom forms a weak interaction with an electronegative atom. Single hydrogen 

bonds are not strong enough to form hydrogels, but several motifs which can form multiple 

hydrogen bonds can be used for preparation of hydrogels. 2-Ureido-4-pyrimidone (UPy) is an 

example of a multiple hydrogen bonding motif. Campo and coworkers reported a self-healing 

hydrogel based on UPy units. A UPy side-chain functionalized copolymer was prepared by 

copolymerization and the resulting polymer formed self-healing hydrogels above pH = 8 (Figure 

1.18).165 The multiple hydrogen motif UPy was also employed to form hydrogels in other reports.166-

167 
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Figure 1.18 Chemical structure of the copolymer decorated by UPy (A) and the schematic model of self-healing and 
stretching of the hydrogel formed by the copolymers (B). Reprinted with permission from ref.165 Copyright ©  2012, 

Royal Society of Chemistry. 

Another important type of non-covalent interactions for the formation of physical hydrogels are 

electrostatic interactions. A recently reported approach, to form supramolecular hydrogels is based 

on mixing of a charged ABA triblock copolymers with oppositely charged homopolymer (C)168 or 

oppositely charged triblock copolymer (CBC)169-170 (Figure 1.19). 

 

Figure 1.19 Schematic representation of hydrogel formation from two triblock copolymers. Reprinted with permission 
from ref.169 Copyright ©  2012, Royal Society of Chemistry. 



 

29 

 

Chapter 1 

1.4 Rotaxanes via click chemistry 

Rotaxanes are mechanically interlocked molecules (MIMs) comprising a linear species (guest; axle) 

on which a cyclic species (host) is bound together by a mechanical bond, i.e. the presence of 

sterically demanding end-groups on the axle ensure that the cycle cannot slide off. Such rotaxanes 

have been used in molecular devices, e. g. molecular nanovalves,171 molecular motors and 

muscles.172 A cartoon representation of a rotaxane is shown in Figure 1.20. The rotaxane structure 

is considered to provide a versatile platform for the construction of functional artificial 

nanomachines. Therefore, a more efficient synthetic strategy to prepare rotaxanes should 

significantly facilitate the development in this research area. Cyclobis(paraquat-p-phenylene) 

(CBPQT4+) as an electron-deficient macrocyclic host for electron-rich guests, such as 1,5-

dialkoxynaphthalene (DNP) and tetrathiafulvalene (TTF), has frequently been employed for the 

construction of [2]rotaxanes. In this section, we will give an overview of [2]rotaxanes, consisting of 

CBPQT4+/ DNP or (and) TTF, focusing on the synthetic approach. 

 

Figure 1.20 Cartoon representation of rotaxane. 

The first rotaxane based on CBPQT4+ was reported by Anelli and coworkers through the clipping 

method.173 A half blue box (1,4-bis(bromomethyl)benzene) and a dumbbell component were mixed, 

and the resulting supramolecular complex was further reacted with p-xylene dibromide to afford 

the [2] rotaxane. After that first report, the clipping method was also utilized to synthesize rotaxanes 

in Stoddart’s group.174 An alternative synthetic approach towards the [2]rotaxanes is the 

“stoppering” strategy. Stoddart and coworker employed CuAAC click chemistry to prepare such a 

[2]rotaxane in 2006,175 which greatly facilitated the development of rotaxane applications. (Scheme 

1.4) Afterwards, the click reaction has widely been utilized for the preparation of CBPQT4+ based 

[2]rotaxanes,176-177 as well in other macrocyclic host based rotaxanes.178-179 The click reaction for the 

synthesis of rotaxane has a number of advantages: (i) high regioselectivity; (ii) tolerance of sensitive 

functional groups; (iii) quite mild reaction conditions; and (iv) excellent yields. It should be pointed 

that the reaction can be performed at room temperature or lower, which is ideal for strong binding 

of CBPQT4+ to guest. Inspired by the advantages of CuAAC for the preparation of rotaxanes as well 

as the drawback of using copper(I), we introduced a new reactive stopper for the preparation of 

CBPQT4+-based [2]rotaxanes using strain promoted azide-alkyne cycloaddition in Chapter 4. 
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Scheme 1.4 Synthesis of [2]rotaxane via click reaction. Reprinted with permission from ref.175 Copyright ©  2012, Royal 
Society of Chemistry. 

1.5 Reversible addition-Fragmentation Chain Transfer Polymerization 

Within this thesis, the polymers that form the basis for the supramolecular materials were designed 

to have rather narrow molar mass distribution facilitating the analysis of the formed materials as 

well as to potentially derive structure-property relationships.  

In polymer chemistry, living polymerization is regarded as a chain propagation reaction, which still 

has the ability of propagation after full monomer conversion via the addition of further monomer.180 

Chain termination and chain transfer reactions are absent and the rate of initiation is faster than 

the rate of chain propagation and, as a result, the polymer chains grow at a more constant rate 

yielding polymer chains with low dispersity (Ð ).181-183 Anionic and some cationic polymerization 

were considered as truly living polymerizations, which are, however, not always easy to perform, 

especially in presence of functional (supramolecular) units. The most recently developed controlled 

radical polymerization (CRP) techniques, such as atom transfer radical polymerization (ATRP),184-186 

nitroxide-mediated polymerization (NMP)182, 187-189 and the reversible addition fragmentation chain 

transfer polymerization (RAFT)190-194 also yield polymers with low Ð , but are more functional group 

tolerant making them more attractive for developing supramolecular materials.195  

The polymers in this thesis were synthesized by RAFT polymerization, which is the most functional 

group tolerant from the different CRP methods while allowing polymerization of most monomer 

classes. RAFT polymerization is a reversible deactivation radical polymerization, in which the 
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equilibrium between active chains and dormant chains is regulated by a chain transfer agent (CTA), 

also known as RAFT agent. The CTA is the central element in the RAFT process that makes the 

polymerization controllable. The CTA is typically a thiocarbonyl thio compound bearing two 

substituents that are usually abbreviated as R- and Z- group (refer to the structure of 1 in Figure 

1.21). The R-group is the radical leaving group and the Z-group is the stabilizing group. The generally 

accepted mechanism for RAFT polymerization is illustrated in Figure 10. The first step is the initiation 

step, where the radical is fromed when the initiator, such as AIBN, is activated by heat or light. The 

radicals will react with monomers and oligomeric radicals are formed. Then the oligomeric radicals 

reversible react with the RAFT agent 1 in step (ii). The R-group of the RAFT agent is ideally a better 

leaving group than the monomer adduct, so that all the RAFT agents are consumed in this step.196 

The intermediate radical 2 can further fragment to oligomeric RAFT agent 3 and the R radical. It 

should be pointed out that the R group should also be a good reinitiating group. Polymer chains with 

a free radical end-group will grow by adding monomer at the reinitiation step, which quickly 

exchanges with the oligomeric RAFT agent 3. The formation of intermediate 4 in the chain transfer 

step limits the concentration of polymer chains with free radical end-groups and, thus, limits 

termination reactions. However, some termination reactions will still occur as depicted in step v. 

During the reaction, the concentration of active radicals in the system is very low as only a small 

fraction of the polymer chains carry free radicals, which together with the stable radical 

intermediate minimize termination reactions. 

 

Figure 1.21 Generally accepted mechanism for RAFT polymerization. Following initiation, as in conventional free-
radical polymerization (i), the radical reversibly adds onto the chain transfer agent 1 to form an intermediate radical 2, 



 

32 

 

Chapter 1 

which can fragment to liberate a reinitiating group and form a new dormant chain 3 (ii). The new radical reinitiates 
polymerization by reaction on monomers (iii). The rapid establishment of this reversible addition-fragmentation 
equilibrium (iv) allows for control over molecular weight and molecular-weight distribution, although irreversible 
termination reactions still occur, mainly due to the free radical introduced initially to initiate polymerization (v). 

Reprinted with permission from ref.197 Copyright ©  2010, Springer Nature. 

RAFT polymerization is a kind of CRP, which should follow the first order kinetic behavior with regard 

to the concentration of monomer [M]. This can be derived from the equation of the polymerization 

rate (Rp): 

𝑅𝑃 = −
𝑑[M]

𝑑t
=  𝑘𝑝[P∗][M] 

Where t is reaction time, kP is the propagation rate constant, [P*] is the concentration of 

propagating radical and [M] is the real-time concentration of monomer. This equation was 

integrated to give the following equation: 

𝑙𝑛
[M]0

[M]
= 𝑘𝑃[𝑃∗]𝑡 

Where [M]0 is the initial concentration of monomer. The plot of 𝑙𝑛
[M]0

[M]
 against reaction time can be 

used to evaluate the kinetics of polymerization, in which 𝑙𝑛
[M]0

[M]
 can be determined by gas 

chromatography (GC) or proton nuclear magnetic resonance spectroscopy.  

As with the controled living polymerization techniques, the degree of polymerization (DP)  should 

be linear to the monomer conversion during polymerization, and the number average molecular 

weight Mn can be calculated from the conversion of monomer: 

Mn = DP × M + M𝐶𝑇𝐴 =
[M]0 × C

[CTA]
× M + M𝐶𝑇𝐴 

Where M is the molecular weight of monomer, M𝐶𝑇𝐴 is the molecular weight of RAFT agent, [CTA] 

is the concentration of the RAFT agent, and C is the conversion of monomer. The linear relationship 

can be confirmed by plotting the Mn against the monomer conversion, in which Mn is usually 

measured by size exclusion chromatography (SEC), and the conversion can be calculated from the 

data of GC. Here it should be pointed out that the Mn from SEC is a relative molecular weight 

compared to polymer standards. The different properties between the measured polymer and the 

polymer standards lead to an inaccurate values due to the different hydrodynamic radius in the used 

solvent. 

As aforementioned, the controled living polymerization should lead to polymers with low dispersity, 

which is defined by 

Ð =
M𝑤

M𝑛
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where Mw is the weight-average molecular weight. The polymer dispersity can be determined 

directly by SEC.  

1.6 Summary 

The rationale and recent developments for supramolecular star polymers, supramolecular 

hydrogels and rotaxanes were highlighted in this section. The dynamic reversible properties make 

these systems very promising for application in the life and materials science, e.g. drug delivery, 

biocompatible materials or artificial nanomachines. The advances in supramolecular bonding, e. g. 

reversibility, stimulus-responsivity and dynamics, are a welcome addition to the properties of the 

traditional materials. In addition, a broad variety of supramolecular motifs as toolbox is available 

which offers large number of possibilities to form the intended structure with desired properties. 

Branched macromolecules are more compact than linear homologous ones due to their higher 

segment densities. The increased segment density results in a decreased tendency for these 

macromolecules to interpenetrate in solution as well as in bulk. A broad range of applications have 

been proposed for different branched polymers, therefore, the design of branched polymer with 

complex architectures would provide the opportunity to generate a broad range of material. Star 

polymers are characterized as the simplest case of branched polymers that have attracted 

significant attention in the last few years. To extend the applications, the non-covalent bonds were 

introduced in the construction of polymers, featuring a degree of flexibility, tunability and dynamics 

that was impossible using covalent chemistry. To date, various supramolecular star polymers have 

been prepared based on non-covalent interactions. However, to the best of our knowledge, there 

has been no report on the use of metalloporphyrin for the construction of supramolecular branched 

polymer, even though this kind of interactions were widely employed in other fields and it provides 

a highly tunable supramolecular interaction, both with regard to binding stoichiometry as well as 

interaction strength. The metal-ligand interaction based on metalloporphyrin and pyridine is firstly 

utilized to explore the construction of branched polymers, and a supramolecular miktoarm star 

polymer was selected to begin this research in Chapter 2. 

As previously stated, the hydrogels have attracted considerable interest of chemists during the past 

few decades, due to their wide application as an ideal class of materials. Chemical hydrogels are 

stable and exhibit robust mechanical properties due to the stability of the covalent bonds, and have 

been commonly employed when tough and stable hydrogels are required. However, the poor 

shapability and processability and their brittleness limited their applications. In contrast, physical 

hydrogels are formed by dynamic non-covalent bonds between polymer chains, which avoid the 

deleterious implications of chemical hydrogels (brittleness, limited reshapability etc.) at the price of 

mechanically weaker systems. In recent years, hydrogels combining physical and chemical 

crosslinking have been developed. The resulting materials exhibited combined properties. However, 

the fact that the covalent crosslinks are presented in the hydrogels lead to irreversible damage when 

large ruptures occur. A system that can be switched between physical and chemical hydrogels could 
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be hypothesized to address this issue. To the best of our knowledge, no study regarding the 

reversible conversion between physical and chemical hydrogels was reported. In Chapter 3, a new 

kind of hydrogel that undergoes the conversion based on supramolecular assembly and 

dimerization of anthracene group was designed and explored. 

Mechanically interlocked molecules (MIMs) have attracted increasing attention for over 50 years 

owing to their wide range of potential application in molecular devices. The rotaxane structure has 

been considered as a versatile platform for the construction of functional MIMs. Therefore, the 

development of highly efficient synthetic strategies for the preparation of rotaxanes should 

facilitate the further development of this research. Even though copper(I) catalyzed azide-alkyne 

cycloadditions have been used for this purpose, this leads to the incorporation of additional triazole 

linkers and may complicate purification by the presence of copper ions in the product. Therefore, in 

Chapter 4, a strained dibenzoazacyclooctyne (DIBAC) derivative was introduced for the preparation 

of a rotaxane by strain-promoted azide-alkyne cycloaddition (SPAAC). The carboxyl group present 

on the stopper would be further used to construct more complex mechanically interlocked 

molecules.  
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Abstract: A novel supramolecular miktoarm star polymer was successfully constructed in water 

from a pyridine end-functionalized poly(methoxy diethylene glycol acrylate) (Py-PmDEGA) and a 

metalloporphyrin based four-arm star poly(ethylene glycol) methyl ether (ZnTPP-(PEGME)4) via 

metal-ligand coordination. The Py-PmDEGA moiety was prepared via a combination of reversible 

addition-fragmentation chain transfer polymerization (RAFT) and subsequent aminolysis and 

Michael addition reaction to introduce the pyridine end-group. The ZnTPP(PEGME)4 star-polymer 

was synthesized by reaction between tetrakis (p-hydroxyphenyl)porphyrin and toluenesulfonyl 

poly(ethylene glycol) methyl ethers (PEGME-TOS), and followed by insertion of a zinc ion into the 

porphyrin core. The formation of a well-defined supramolecular AB4-type miktoarm star polymer 

was unambiguously demonstrated via UV-Vis spectroscopic titration, isothermal titration 

calorimetry (ITC) and diffusion ordered NMR spectroscopy (DOSY). 

.   
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2.1 Introduction 

Polymer properties are mainly influenced by the chemical composition and topology of the 

constituting macromolecules. A broad range of applications have been proposed for different 

polymer architectures, e.g. stabilization of polymer blends with block copolymers,1 drug delivery via 

amphiphilic block copolymers2 or drug-delivery with star polymers.3 Therefore, the design of 

complex macromolecular architectures represents an important field in modern polymer chemistry 

and provides the opportunity to generate a broad range of materials with tunable properties.4-6 Star 

polymers are an important class of polymers that have attracted significant attention in the last few 

years.7-9 They are typically synthesized via one of three common methodologies, i.e. core-first, arm-

first and coupling-onto.10 Various combinations of these three approaches can be employed to make 

even more complex miktoarm star block copolymers, unavoidably involving a significant number of 

synthetic steps. Miktoarm star polymers, also called asymmetric or mixed-arm star polymer, have 

polymer arms that vary in chemical structure and/or molecular weight. They exhibit unique and 

unusual phase separation behavior in bulk and selected solvents, which tremendously increased the 

variety of morphological structures. Thus, miktoarm star polymers are promising materials with 

many potential applications in fields of nanoscience and nanotechnology such as electronic and 

optical nanodevices, nanomaterials for lithography, nanoreactors carrying metal catalysts and 

enzymes, nanoscale microfilters and complex self-assembly. 11-17 

The advent of supramolecular chemistry, which utilizes noncovalent, reversible bonds for the 

assembly of materials, has had a tremendous influence on the synthesis and applications of 

macromolecular architectures.18 It has introduced the possibility of using noncovalent interactions 

for the creation of polymers, featuring a degree of flexibility, tunability and dynamics that was 

impossible using covalent chemistry.19-20 Hence, supramolecular polymers have received growing 

interest in recent years due to their unique dynamic properties making them applicable to a broad 

range of fields in chemistry, biology and physics.18, 21 To date, various supramolecular polymers with 

different architectures, such as linear,22-24 branched, star-shaped,25-29 and dendronized,30 have been 

prepared based on hydrogen bonding,24, 27-28, 30 π−π interactions,31-32 metal-ligand binding,29, 33-38 

and host-guest interactions.25-26 Among the non-covalent interactions, metal-ligand coordination is 

particularly interesting for the synthesis of supramolecular polymers. Indeed, in addition of being 

highly directional, metal-ligand coordination can be prepared from a wide range of easily 

functionalized ligands and metal ions, thereby allowing a large panoply of tunable metal-ligand 

complexes to be prepared both in organic and aqueous media.22 Moreover, the presence of a metal 

complex in the polymer structure can impart further properties of interest including electrochemical, 

photophysical, catalytic and magnetic properties. 

Porphyrins and their metal derivatives have attracted interest of chemists and biologists due to their 

importance and applications in biological fields. In particular, they represent a key-component of 

haemoglobin as well as for the inhibition of protease-resistant prion protein formation or for 

thermotherapy due to their strong affinity towards cancer cells.39-40 Also, owing to their ability of 
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forming π−π interactions or metal-ligand coordination, they constitute an important class of 

supramolecular building blocks,41-42 which has been widely employed in supramolecular 

chemistry.43 However, to the best of our knowledge, there has been no report on the use of 

metalloporphyrin for the construction of supramolecular block copolymers, star polymers or other 

even more complex polymer structures based on this interaction. 

In this chapter, we present a straightforward strategy allowing the formation of an AB4-type 

miktoarm star polymer in water, governed by the complexation of a pyridine unit and a 

metalloporphyrin moiety, based on a zinc-porphyrin based star poly(ethylene glycol) methyl ether 

((ZnTPP(PEGME)4) and a pyridine end-functionalized poly(methoxy diethylene glycol acrylate) (Py-

PmDEGA) (Figure 2.1). These two building blocks were synthesized and characterized by proton 

nuclear magnetic resonance (1H NMR) spectroscopy, size exclusion chromatography (SEC) and 

MALDI-TOF mass spectrometry. Finally, in aqueous solution, the effective formation of the 

supramolecular star polymer was proven via diffusion ordered NMR spectroscopy (DOSY), 

isothermal titration calorimetry (ITC) and UV-Visible spectroscopy (UV-Vis). 

 

Figure 2.1 Graphical representation of the formation of a supramolecular miktoarm star polymer in water by 
complexation of a zinc-porphyrin with four PEGME chains and a pyridine end-functionalized poly(methoxydiethylene 
glycol acrylate). (Gray framework with blue bend line: porphyrin and pyridine; Light blue sphere: zinc ion; black curve: 

PEGME chain; Orange curve: PmDEGA chain) 

2.2 Results and discussion 

The molecular design of the supramolecular miktoarm star-block copolymer is based on the metal-

ligand interaction between a zinc-porphyrin and pyridine, as they can form noncovalent interactions 

with high association constants up to 105 M-1 in water.44 The synthetic strategy towards these two 

building blocks is illustrated in Scheme 2.1. 
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Scheme 2.1 Synthetic routes of building blocks: (a) star polymer with zinc-porphyrin (ZnTPP(PEGME)4); (b) pyridine 
end-functionalized PmDEGA (Py-PmDEGA). 

The coupling of four poly(ethylene glycol) methyl ether (PEGME) (Mn = 2000 Da) chains to the 

porphyrin core was performed by the reaction between tetrakis(p-hydroxyphenyl) porphyrin and p-

toluenesulfonyl-poly(ethylene glycol) methyl ethers followed by the subsequent insertion of the 

zinc(II) ion into the porphyrin core (Scheme 2.1a). The metal-free porphyrin star polymer was 

purified via precipitation into a mixture of diethyl ether and dichloromethane followed by column 

chromatography and then analyzed via 1H NMR spectroscopy, SEC and MALDI-TOF MS. The 1H NMR 

spectrum of the metal-free porphyrin star polymer indicated that all four PEGME chains were 

successfully attached based on the integration ratio of the peaks from the porphyrin (8.78, 8.05 and 

-2.83 ppm) and the PEGME (4.37 and 3.99 ppm) (Figure 2.2). In addition, the star polymer was 

analyzed by SEC and MALDI-TOF MS (Figure 2.3 and 2.4), confirming the formation of a four-arm 

star polymer architecture. The molecular weight (31 kDa) measured by SEC was calculated against 

poly(methyl methacrylate) (PMMA) standards leading to a significant overestimation while the 

molecular weight from MALDI-TOF MS measurement is more accurate. Furthermore, the MALDI-

TOF MS spectrum revealed two distributions, both corresponding to the four-arm star polymer 

ionized with a sodium or a potassium ion, respectively. 
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Figure 2.2 The 1H NMR spectrum of H2TPP(PEGME)4 recorded in CDCl3 at 25 oC. 

 

Figure 2.3 SEC trace of metal-free star polymer H2TPP(PEGME)4. 
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Figure 2.4 Full MALDI-TOF MS spectrum of metal-free star polymer H2TPP(PEGME)4  (top) and the zoomed in spectrum 
(bottom) 

After insertion of the zinc(II) ion by Zn metalation, the peak of the N-H pyrrole protons in the 1H 

NMR spectrum disappeared, revealing that the pyrrole protons were successfully replaced by the 

zinc(II) ion (Figure 2.5). Furthermore, UV-Vis spectroscopy was performed evidencing the successful 

metalation based on the red-shift of the Soret band of the porphyrin unit to 428 nm and the 

disappearance of the main Q-band at 520 nm (Figure 2.6). 

 

Figure 2.5 1H NMR spectra of H2TPP(PEGME)4 and ZnTPP(PEGME)4, recorded in CDCl3 at 25°C. 
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Figure 2.6. UV-Vis spectra of H2TPP(PEGME)4 and ZnTPP(PEGME)4 in aqueous solution. 

The second part required for the supramolecular miktoarm star complex is a pyridine end-decorated 

poly(methoxy-diethyleneglycol acrylate) (PmDEGA). The PmDEGA polymer was synthesized by RAFT 

polymerization using methyl-2-(n-butyltrithiocarbonyl)propanoate as chain transfer agent (CTA) 

and azobutyronitrile as radical initiator, at 70 oC in toluene.45 After determination of the 

polymerization kinetics (Figure 2.7), a well-defined polymer was prepared with a degree of 

polymerization of 56. The polymer was purified by precipitation in diethyl ether (4x) and analyzed 

by 1H NMR spectroscopy and SEC. The acquired polymer was subjected to an aminolysis reaction to 

convert the CTA end-group into a thiol group followed by introducing N-(pyridine-4-ylmethyl) 

acrylamide by thiol-ene Michael addition.46-47 Hydrazine was employed for the aminolysis because 

of its strong nucleophilicity and antioxidant effect which significantly improved the aminolysis rate 

compared to primary alkyl amine and effectively suppressed the formation of disulfides. The 

polymers obtained before and after end group modification were characterized by SEC with 

refractive index (RI) detection, which revealed a minor change in the Mn and dispersity (Ð ) giving a 

first indication of successful end group modification (Figure 2.8). Furthermore, no additional 

shoulder was present in the SEC trace of the polymer after end group transformation indicating the 

absence of disulfide formation after aminolysis, which could only be achieved when working in 

oxygen free conditions. The transformation was also assessed by UV-Vis spectroscopy using the 

characteristic absorbance of the trithiocarbonate group around 310 nm (Figure 2.9). The original 

polymer exhibits a strong absorption at this wavelength while no absorption can be detected for 

the resulting pyridine end-decorated polymer. 
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Figure 2.7. The kinetic data for the polymerization of mDEGA. 

 

Figure 2.8. SEC traces of PmDEGA and pyridine end-functionalized PmDEGA. 
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Figure 2.9. Comparison of the UV-vis absorption spectra of PmDEGA before and after aminolysis of the CTA end-group 
with hydrazine and modification with pyridine by thiol-ene modification. 

In the next step, the formation of the supramolecular miktoarm star block copolymer via metal-

ligand coordination between the ZnTPP(PEGME)4 and Py-PmDEGA was assessed. The assembly 

process of the two building blocks can be efficiently followed by the characteristic changes in the 

absorption intensity of the porphyrin via UV-Visible spectroscopy. 

Detailed information regarding the stoichiometry of the self-assembly is very important for the 

study of the supramolecular system, as it directly affects the arm number of the miktoarm star 

polymer. Herein, we determined the stoichiometry by the continuous variation approach (Job plot) 

based on the change of the absorption intensity of the zinc-porphyrin upon complexation with Py-

PmDEGA in water. The total concentration of the two building blocks was kept constant at 5.05 μM, 

while the ratio was changed between 0:1 and 1:0. The anticipated 1:1 stoichiometry between the 

two blocks was indeed confirmed by the Job plot diagram (Figure 2.10a) by the minimum absorption 

intensity at the ratio 1:1 of the two blocks at 25 oC. The stoichiometry was also determined by 

fluorescence spectroscopy supporting the UV-Vis results (Figure 2.10b). 
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Figure 2.10 Continuous variation plot (Job plot) of ZnTP(PEGME)4 with Py-PmDEGA in Milli-Q water at 25 oC, a). by UV-
Vis spectroscopy; b). by fluorescence spectroscopy, showing a minimum/maximum at 0.5 mole fraction of 

ZnTPP(PEGME)4. 

After confirming the stoichiometry of the two building blocks, we focused our attention on the 

strength of the supramolecular assembly characterized by the thermodynamic association constant, 

Ka, of the Py-PmDEGA@ZnTPP(PEGME)4 complex. A UV-Vis spectrophotometric titration was 

employed to determine the binding constant in which a concentrated aqueous solution of Py-

PmDEGA was added to a dilute aqueous solution of ZnTPP(PEGME)4. As shown in Figure 2.11a, the 

addition of Py-PmDEGA resulted in a small red shift and a hyperchromicity of the Soret maximum in 

accordance with literature reports.48-49 The binding isotherm shown in Figure 2.11b was used for 

fitting with a 1:1 binding model, as confirmed by the Job plot, revealing a Ka of (2.9 ± 0.2) x 104 M-1 

for this supramolecular system. This value is similar to the Ka reported for small molecule analogues 

indicating that the polymer chains do not significantly affect the supramolecular interaction 

strength.48 Furthermore, the ITC binding isotherm resulting from addition of a concentrated 

aqueous solution of Py-PmDEGA (14.28 mM) to a dilute aqueous solution of Zn-TPP(PEGME)4 (1.49 

mM) showed exothermic responses (Figure 2.12), indicating the binding events. Fitting of the ITC 

curve was, however, not straightforward due to the strong exothermic dilution of Py-PmDEGA in 

water. Nonetheless, the ITC confirms exothermic binding of Py-PmDEGA to ZnTPP(PEGME)4 with a 

Ka in the range of 103 - 104 M-1. For comparison, the binding affinity of ZnTPP(PEGME)4 with pyridine 

was also determined revealing a Ka of (1.9 + 0.1) x 104 M-1, which is close to the Ka of ZnTPP(PEGME)4 

with Py-PmDEGA confirming that the polymer does not strongly influence the supramolecular 

association. Furthermore, the association constant was investigated at different temperatures 

indicating that there was no significant effect of temperature at 10 oC, 25 oC and 40 oC, which are all 

below the cloud point transition temperature of PmDEGA, on the association constant (Figure 2.13a). 

The association constant at the temperature above the cloud point transition temperature of 

PmDEGA was not studied as this is not possible due to the turbid phase separated solution. At last, 

the effect of pH of the solution (pH=1.68, 7.00 and 10.01) on the binding affinity was studied at 25 
oC, also demonstrating roughly similar association constants (Figure 2.13b). 
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Figure 2.11 a: UV-Vis titration of Py-PmDEGA to a 5 μM ZnTPP(PEGME)4 solution in Milli-Q water at 25 oC; b: 
absorbance changes of ZnTPP(PEGME)4 at 429.5 nm upon the addition of Py-PmDEGA; the red solid line is the binding 

isotherm obtained by the least-squares fit to the experimental data (R2 = 0.99856). 

 

Figure 2.12 Isothermal titration calorimetry data for the addition of Py-PmDEGA to Zn-Tpp(PEGME)4. Recorded in Milli-
Q water at 20 oC. 

 

Figure 2.13 The association constants of Py-PmDEGA and ZnTPP(PEGME)4 as function of (a) temperature and (b) pH 
value. All the UV-Vis titration experiments were performed in aqueous solution. 
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Next, to further prove that such metal-ligand interactions could effectively lead to the formation of 

supramolecular miktoarm star polymers from zinc porphyrin and pyridine functionalized polymer 

building blocks, two-dimensional diffusion-ordered 1H NMR spectroscopy (DOSY) experiments were 

carried out (Figure 2.14). 2D-DOSY is a simple and fast technique to determine diffusion coefficients 

of species in solution. It was expected that the metal-ligand interactions driven self-assembled 

structures would exhibit lower diffusion coefficients compared to the lower molar mass precursors 

and that all components have the same diffusion coefficient. The results revealed for the individual 

components ZnTPP(PEGME)4 and Py-PmDEGA diffusion coefficient values of (1.89 + 0.02) x 10-10 and 

(2.25 + 0.03) x 10 -10 m2/s, respectively. When a DOSY experiment was undertaken on the 1:1 

complex between ZnTPP(PEGME)4 and Py-PmDEGA, the diffusion coefficients associated with the 

single polymers moved to an identical diffusion coefficient value ((2.09 + 0.04) x 10-10 m2/s) 

indicating that they are associated. The lowest diffusion coefficient of the ZnTPP(PEGME)4 is rather 

surprising and indicates association of this component in water, presumably through π-π stacking 

interactions of the porphyrins. The intermediate diffusion coefficient of the mixture of the two 

components demonstrates the existence of the uniform miktoarm star block copolymer and, 

apparently, the suppression of the ZnTPP(PEGME)4 agglomerates. Moreover, no signals for the free 

polymer building blocks were detected, which suggest the efficient association between the two 

building blocks, ZnTPP(PEGME)4 and Py-PmDGEA, at least at this concentration. The reversibility of 

the metal-ligand complexation can also be assessed by DOSY spectroscopy. The addition of a large 

excess of the competitive low molecular weight pyridine ligand induced the disassembly process of 

the complexation, observed from the diffusion coefficient value transition of Py-PmDEGA. Hence, 

based on the DOSY measurements, it is evident that the supramolecular copolymer is capable of 

undergoing a reversible transition triggered by the addition of a competitive ligand. 
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Figure 2.14 Diffusion coefficients, D, as function of the chemical shifts of the resonances associated with the initial 
polymer blocks (ZnTPP(PEGME)4 and Py-PmDEGA), the supramolecular AB4 complex and the complex in the presence 

of large excess amount of pyridine. The DOSY experiments were carried out at 2.02 mM in D2O solution. 

Apart from the investigation of the supramolecular interaction between the two building blocks, we 

also studied the effect of the complexation on the thermoresponsive behaviors of Py-PmDEGA. The 

phase transitions were determined by turbidimetry for Py-PmDEGA and the complex Py-

PmDEGA@ZnTPP(PEGME)4 (Figure 2.15). The results indicated that the cloud point temperature of 

Py-PmDEGA (ca. 54 oC) did not significantly change after complexation. However, the hysteresis 

diminished after complexation, which may indicate that the hysteresis of PmDEGA could result from 

(de)protonation of the pyridine group upon phase transition and that this is no longer the case upon 

complexation. 

 

Figure 2.15 Plots of transmittance as a function of temperature measured for aqueous solutions (5 mg/mL) of Py-
PmDEGA and complex Py-PmDEGA@ZnTPP(PEGME)4. 

2.3 Conclusions 

In summary, a novel strategy is demonstrated for the preparation of supramolecular AB4 miktoarm 

star block copolymers by association of a four-armed star-polymer with a Zn-porphyrin core and a 

pyridine end-functionalized polymer. The metalloporphyrin based star polymer was prepared by 

reaction between tetrakis (p-hydroxyphenyl)porphyrin and p-toluenesulfonyl poly(ethylene glycol) 

methyl ethers followed by insertion of the metal ion into the porphyrin core. The synthesis of the 

pyridine end-functionalized linear polymer was carried out via RAFT polymerization and subsequent 

aminolysis and Michael addition reaction. The building blocks were characterized by SEC, MALDI-

TOF MS and 1H NMR spectroscopy. The formation of the supramolecular miktoarm star polymer 



 

55 

 

Chapter 2 

was investigated in H2O or D2O at 25 oC and successful formation was confirmed via a combination 

of UV-Vis spectrophotometric titration, ITC and DOSY NMR spectroscopy, while the stoichiometry 

was determined by Job plot analysis. 

We propose that other even more complex dynamic macromolecular architectures can be 

constructed via metalloporphyrin-pyridine interaction in future work. Taking into account that the 

supramolecular interaction and thermoresponsive polymer based architecture may be reversibly 

disassembled by applying various stimuli (temperature and the addition of competitive metal ion), 

this approach may open the way for the creation of a new family of responsive materials which 

expand the application areas of the conventional miktoarm star polymers. 

2.4 Experimental section 

2.4.1 Materials 

All solvents and basic materials were commercially available (Sigma-Aldrich) and used as received, 

unless otherwise stated. Dichloromethane (DCM) and dimethylformamide (DMF) were dried in a 

solvent purification system (JC Meyer) before use as reaction solvents. Milli-Q Water (18.2 MΩ/cm) 

was generated using a Millipore Milli-Q academic water purification system. The buffer solutions 

for UV-Vis titration were potassium tetraoxalate dihydrate (50 mM, pH= 1.68), sodium carbonate 

and sodium bicarbonate (25 mM, pH=10.01) in Milli-Q water. Azobisisobutyronitrile (AIBN, 98%, 

Aldrich) was recrystallized twice from methanol prior to use. Methyl-2-(n-

butyltrithiocarbonyl)propanoate (MBTTCP) was prepared according to the established 

procedures.50 Poly(ethylene glycol) monomethyl ether (average Mn= 2000, Sigma Aldrich) was 

characterized by size exclusion chromatography with dimethylacetamide as eluent (Mn = 2400, PDI 

= 1.06) and 1H NMR spectroscopy using CDCl3 as solvent (DP=48). 5, 10, 15, 20-tetra(4-

acetylphenyl)porphyrin (H2TPP(OAc)4) was synthesis according to a literature procedure.51 

2.4.2 Analytical Techniques 

1H NMR and 13C NMR spectra were acquired on a Bruker Avance 400 MHz spectrometer. Samples 

were dissolved in CDCl3 or D2O. Chemical shifts are expressed in ppm by comparison with the signal 

of TMS used as an internal standard. 

Size Exclusion Chromatography (SEC) was performed on an Agilent 1260-series HPLC system 

equipped with a 1260 online degasser, a 1260 ISO-Pump, a 1260 automatic liquid sampler, a 

thermostatted column compartment, a 1260 diode array detector (DAD) and a 1260 refractive index 

detector (RID). Analyses were performed on a PPS Gram30 column in series with a PPS Gram 1000 

column at 50 oC. DMA containing 50 mM of LiCl was used as an eluent at a flow rate of 0.6 mL/min. 

The SEC traces were analyzed using the Agilent Chemstation software with the GPC add on. Molar 

mass and PDI values were calculated against PMMA standards. 
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Gas Chromatography (GC) was performed on 7890A from Agilent Technologies with an Agilent J&W 

Advanced Capillary GC column (30 m, 0.320 mm and 0.25 μm). Injections were performed with an 

Agilent Technologies 7693 auto sampler. Detection was done with a FID detector. Injector and 

detector temperatures were kept constant at 250 oC and 280 oC, respectively. The column was 

initially set at 50 oC, followed by two heating stages: from 50 oC to 100 oC with a rate of 20 oC/min 

and from 100 oC to 300 oC with a rate of 40 oC/min. and then held at this temperature for 0.5 minutes. 

Conversion was determined based on the integration of monomer peaks using DMA as internal 

standard. 

MALDI-TOF mass spectra were acquired with a Voyager DE-STR (PerSeptive Biosystem) using a 

simultaneous delay extraction procedure (20 kV applied after 233 ns with a potential gradient of 

2545 V/mm and a wire voltage of 200 V) and detection in reflection mode. The instrument was 

equipped with a nitrogen laser (emission at 337 nm for 3 ns) and a flash AD converter (time base 2 

ns). Trans-2-[3-(4-t-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) was used as 

matrix. 

UV/Vis spectra were recorded on a Varian Cary 300 Bio UV/VIS spectrophotometer equipped with 

a Cary temperature and stir control. 

Fluorescence measurement for Job plot were carried out on a Cary Eclipse fluorescence 

spectrophotometer (Agilent Technologies) equipped with a Varian Cary Temperature Controller. 

The emission spectra resulting from excitation by a 428.5 nm laser were monitored from 500 -700 

nm, and the slit width was kept at 5 nm during the measurements. 

2.4.3 Job plots (continuous variation method) 

The stoichiometry of the self-assembly was determined via Job’s method of continuous variation.52 

A stock solution was prepared for each complementary recognitions motif dissolved in Milli-Q water 

in a 5 mL round bottom flask. The appropriate amount from the stock solution was transferred to 

the UV-Visible cuvette or fluorescence cuvette in which the total concentration of the recognition 

motifs was kept constant at 5.05 μM. The molar fraction of the motifs was varied between 0 and 1. 

The changes in absorption intensity were multiplied by the molar fraction and plotted vs. molar 

fraction to construct the Job plot. 

2.4.4 UV-Vis spectrophotometric titration experiment 

UV-Visible titration was performed by adding solutions containing the Py-PmDEGA polymer to a 

solution of the ZnTPP(PEGME)4 in a 1 cm path quartz cuvette by using microliter syringes. In all cases 

the ZnTPP(PEGME)4 was present in the Py-PmDEGA solution at the same concentration as that in 

the cuvette to avoid dilution effects. Mili-Q water (18.2 mΩ/cm) was used as solvent for UV-Visible 

titration. UV-Visible scanning conditions were as follows: Scanning rate =300 nm/min, bandwidth = 

0.5 nm, response time = 0.1 s, accumulations = 1 scan. 
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2.4.5 Isothermal titration calorimetry (ITC) experiment 

ITC experiments were performed at 20 oC using a nano-ITC titration calorimeter from TA Instruments 

with a standard sample cell volume of 1 mL, following standard procedures. A 250 μL injection 

syringe was used with stirring at 400 rpm. Host molecules were dissolved in Milli-Q water and the 

solutions were degassed gently under vacuum before use. Each titration comprised an initial 2 μL 

preinjection followed by 24 × 10 μL injections of Py-PmDEGA (14.28 mM) into Zn-TPP(PEGME)4 

solution (1.49 mM). Control experiments with identical injections of Py-PmDEGA into water alone 

were used to correct titration data. 

2.4.6 Diffusion ordered spectroscopy (DOSY) NMR experiment 

DOSY NMR experiments were performed on a 400 MHz Bruker Avance II spectrometer equipped 

with a broadband 1H decoupling probe (PABBO) using double stimulated echo, 2 spoil gradients and 

alternative phase cycle provided by Garreth Morris at a temperature of 298.2 K. Proton pulse 

lengths were determined to be 10.12 μs and bipolar gradient of δ=2.5 ms length were incremented 

from G=2.588 G/cm to 49.163 G/cm in 64 steps. 16 scans with 12 k complex data points were 

recorded for each increment with 16 dummy scans per experiment. The diffusion delay ∆ was set to 

1000 μs. Processing was achieved using TopSpin 3.2 with the Dynamic Center 2.0.4. After zero filling 

to 24 k points and apodization using an exponential window function with an additional linewidth 

of 0.1 Hz, 1D increment spectra were Fourier transformed and the Signal decay due to Gradients 

was fitted using  

𝒇(𝑮) = 𝑰𝟎 ∙ 𝒆
(−𝜸𝑯

𝟐 ∙𝑮𝟐∙𝜹𝟐∙(∆−
𝜹
𝟑

))∙𝑫
 

with the proton gyromagnetic ratio 𝛾𝐻  and the full signal intensity 𝐼0 . Corresponding diffusion 

coefficients D of the polymer signals and the solvent are the result of the fitting procedure and are 

plotted against chemical shifts. 

2.4.7 Turbidity measurements  

The turbidity measurements were performed on UV-Vis spectrophotometer at a wavelength of 700 

nm. The concentration of all the sample were 5 mg/mL. The transmittance was measured during at 

least two controlled cooling/heating cycles with a cooling/heating rate of 0.5 oC under stirring. 

 

2.4.8 Synthesis and characterizations 

2.4.8.1 Synthesis of α-methoxy-ω-toluenesulfonyl-PEG (PEGME-TOS) 

A solution of poly(ethylene glycol) methyl ether (4.0 g, 2.0 mmol) in 30 mL THF was added to a 7.5 

mL aqueous solution of NaOH (1.4 g, 36 mmol). The resulting mixture was cooled in an ice bath. A 
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solution of p-toluenesulfonyl chloride (4.4 g, 23 mmol) in 6 mL THF was added. The reaction solution 

was stirred at room temperature overnight. The solution was extracted with CH2Cl2 two times and 

the organic phase was combined and washed tree times with water. The organic phase was dried 

over MgSO4, filtered and concentrated under reduced pressure. Then, precipitation in cold diethyl 

ether yielded a white solid (3.6 g, 83.5 %). 1H NMR (400 MHz, CDCl3, δ/ppm): 2.38 (s, CH3-C6H5), 3.37 

(s, CH3-O), 3.51-3.72 (m, -CH2CH2-O), 3.81 (t, -CH2CH2-TOS, 4.09 (t, -CH2-CH2-TOS), 7.28 (d, arom), 

7.73 (d, arom). 

2.4.8.2 Synthesis of 5, 10, 15, 20-tetra(4-hydroxyphenyl)porphyrin (H2TPP(OH)4) 

In a 10 mL flask, 0.8 g H2TPP(OAc)4 (ca. 0.95 mmol) was dissolved in 6 mL of a EtOH/H2O (1:3) 

solution. Then 1 mL concentrated HCl was added and the mixture solution was refluxed for 2 hours. 

After cooling to room temperature, the reaction solution was diluted with H2O (40 mL), neutralized 

with 5% NaOH until the color of the green solution turned dark red and pH was 7.5. The mixture 

was stirred vigorously for 1 hour, then ethyl acetate was added, and the mixture was stirred for 

another 1.5 hours. The organic layer was separated, washed twice with water, dried over anhydrous 

MgSO4, filtered, and the solvent was removed at reduced pressure. Chromatography (silica, 

toluene/ethyl acetate = 2:1) was employed to isolate the pure product (506 mg, 79% yield). 1H NMR 

(400 MHz, acetone-d6, δ/ppm): -2.69 (s, N-H pyrrole protons), 7.30(d, C-H phenyl protons in β-

position with respect to the phenolic oxygen), 8.07(d, C-H phenyl protons γ to the phenolic oxygen), 

8.87 (s, O-H phenolic protons), 8.93(s, C-H pyrrole protons). 

2.4.8.3 Synthesis of H2TPP(PEGME)4 

Firstly, PEGME-TOS was melted at 80 oC in vacuum for 2 hours before use to removed traces of 

moisture. Then, a mixture of [H2TPP(OH)4] (100 mg, 0.147 mmol) and PEGME-TOS (2528 mg, 1.179 

mmol) was dissolved in 12 mL of dimethylformamide. To this solution, potassium carbonate (164 

mg, 1.179 mmol) was added and the solution was stirred at 80 oC for 48 hours. After cooling to room 

temperature, the solution was poured into water and extracted three times with CH2Cl2. The 

combined organic phase was washed with water three times and then with brine, dried over MgSO4, 

filtered and the solvent was evaporated under reduced pressure. The crude product was purified by 

precipitation into CH2Cl2/diethyl ether (4/45 v/v) from CH2Cl2 and column chromatography on silica 

gel using CH2Cl2/C2H5OH/N(C2H5)3 (50:1:0.5) as eluent to yield the desired product (H2TPP(PEGME)4 

(1.1 g, 80.6%). UV-Vis (H2O) max = 421 nm. 1H NMR (400 MHz, CDCl3, δ/ppm): -2.83 (s, N-H pyrrole 

protons), 3.31 (s, O-CH3), 3.46-3.82 (m, OCH2CH2O), 3.99 (t, O-CH2CH2OPh), 4.37 (t, O-CH2CH2OPh), 

7.24(d, C-H phenyl protons in β-position with respect to the phenolic oxygen), 8.05(d, C-H phenyl 

protons γ to the phenolic oxygen), 8.78 (s, C-H pyrrole protons). 

2.4.8.4 Synthesis of ZnTPP(PEGME)4 

To a well stirred solution of H2TPP(PEGME)4 (14.5 mg, 0.002 mmol) in 24 mL CH2Cl2/CH3OH (3/1 v/v) 

was added 4.0 mg Zn(OAc)2∙2H2O (0.018 mmol). The mixture was refluxed for 3 h. After the solution 
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cooled, it was diluted by CH2Cl2, washed three times with water, dried over MgSO4 and concentrated 

to give 13 mg product (90%). UV-Vis (H2O) max = 428 nm. 1H NMR (300 MHz, CDCl3, δ/ppm): 3.31 (s, 

O-CH3), 3.46-3.82 (m, OCH2CH2O), 3.99 (t, O-CH2CH2OPh), 4.37 (t, O-CH2CH2OPh), 7.24(d, C-H phenyl 

protons in β-position with respect to the phenolic oxygen), 8.05(d, C-H phenyl protons γ to the 

phenolic oxygen), 8.78 (s, C-H pyrrole protons). 

2.4.8.5 Synthesis of di(ethylene glycol) methyl ether acrylate (mDEGA) 

Diethylene glycol monomethyl ether (87.72 g, 0.73 mol) and trimethylamine (74.36 g, 0.73 mol) 

were dissolved in 400 mL dichloromethane. To this stirred solution, acryloyl chloride (73.85 g, 0.82 

mol) was added dropwise at 0 °C. After stirring for 10 hours at room temperature, the precipitated 

salt was removed by filtration. The filtrate was washed with aqueous NaHCO3 solution, and distilled 

water. Then the solution was dried over MgSO4, followed by filtration. The solvent (DCM) was 

evaporated under reduced pressure at room temperature. Then 113.7 g (89.5%) product was 

collected by reduced-pressure distillation in presence of hydroquinone as inhibitor. 1H NMR (300 

MHz, CDCl3, δ/ppm): 3.36 (s, 3H, OCH3), 3.49-3.78 (m, 6H, -CH2OCH2CH2-OCH3), 4.30 (t, 2H, -

C(O)OCH2-), 5.81 (dd, 1H, -CHCHC(O)-, trans-position with respect to carbonyl group), 6.07-6.19 (m, 

1H, CH2CHC(O)-), 6.37-6.43 (m, 1H, -CHCHC(O)-, cis-position with respect to carbonyl group). 13C 

NMR (100MHz, CDCl3, δ/ppm) 59.05 (OCH3), 63.63(CH2OCO), 69.14 (OCH2CH2OCO), 70.50 

(CH3OCH2CH2), 71.86 (CH3OCH2), 128.25 (CH=CH2), 130.93 (CH=CH2), 166.13 (OCO). 

2.4.8.6 Synthesis of Poly(mDEGA) (PmDEGA) 

mDEGA (1045 mg, 6 mmol), MBTTCP (25 mg, 0.1 mmol) and AIBN (0.99 mg, 0.006 mmol) were 

dissolved in toluene/DMA solvent mixture (3/2 vol) in a Schlenk flask. The concentration of 

monomer was fixed at 2 M. After four freeze-pump-thaw cycles, the flask was filled with argon, 

immersed in a preheated oil bath of 70 °C and stirred for 2 hours. The polymerization was stopped 

by cooling the solution in an ice bath. After the solution was cooled down to room temperature, the 

polymers were precipitated in ice-cold diethyl ether/hexane (80/20). The crude polymer was 

dissolved in dichloromethane and precipitated again in ice-cold diethyl ether/hexane (80/20). This 

procedure was repeated three times. The polymer finally was dried under reduced pressure at room 

temperature. Conversion of the monomer was analyzed by GC with DMA as internal standard. SEC 

was used to evaluate number average molecular weight (Mn) and polydispersity index (Ð ) of the 

obtained polymers. (see the kinetic data from Figure 2.7) 

2.4.8.7 Synthesis of N-(pyridin-4-ylmethyl) acrylamide (NP4MAM) 

4-aminomethyl pyridine (1.07 g, 9.85 mmol) and trimethylamine (0.99 g, 9.85 mmol) were dissolved 

in 20 mL dichloromethane. To this stirred solution, acryloyl chloride (0.98 g, 10.83 mmol) was added 

dropwise at 0 °C. The reaction solution was stirred over night at room temperature. The reaction 

solution was washed twice with saturated aqueous NaHCO3 solution, and three times with water. 

Then, the solvent (DCM) was evaporated under reduced pressure at room temperature. The crude 
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product was dissolved in distilled water. The pure product was extracted from the aqueous solution 

by ethyl acetate and then finally it was obtained by evaporation at 40 oC. (1.4 g, 87.6%) 1H NMR (300 

MHz CDCl3, δ/ppm): 4.55 (d, J = 6.2 Hz, 2H, -NHCH2-), 5.73 (dd, J = 10.2, 1.4 Hz, 1H, -CHCHC(O)- trans-

position with respect to carbonyl group), 6.02 (br, 1H, -NH-), 6.12-6.21 (m, 1H, CH2CHC(O)-), 6.37 

(dd, J = 17.0, 1.4 Hz, 1H, -CHCHC(O)- cis-position with respect to carbonyl group), 7.21 (d, J = 4.4 Hz, 

2H, α-pyridine proton), 8.56 (d, J = 6.1 Hz, 2H, β-pyridine proton). 

2.4.8.8 Synthesis of Pyridine functionalized PmDEGA (Py-PmDEGA) 

The solutions PmDEGA (280 mg, 0.033 mmol) in 1.5 mL DMF, NH2NH2∙H2O (50 mg) in 0.5 mL DMF 

and NP4MAM (100 mg) in 0.5 mL DMF was placed into three Schlenk vials, respectively. 0.5 mL 

aqueous solution of sodium ascorbate (3.3 mg, 0.0165 mmol) as reducing agent was added into the 

PmDEGA solution. All of the three solutions were degassed four times by freeze-vacuum-thaw cycles. 

NH2NH2∙H2O solution (83 μL, 0.165 mmol) was added into the PmDEGA solution under argon 

atmosphere. The reaction solution was stirred for 1 hour at 30 oC under argon atmosphere. During 

this period, the originally yellow solution became colorless. The NP4MAM solution (269 μL, 0.332 

mmol) was added to the reaction mixture which was stirred at 30 oC for a further 12 hours. The 

polymer was recovered and purified by two repeated re-precipitation from DCM to hexane/diethyl 

ether (80:20 v/v) and a following PD-10 gel chromatography. The obtained end-functionalized 

polymer was confirmed by UV-Vis and SEC. (see the data in Figure 2.9 and 2.8) 
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Abstract: 

This chapter describes a novel supramolecular hydrogel which undergoes a reversible 

transformation to the corresponding covalently crosslinked hydrogel upon UV-irradiation. The 

supramolecular hydrogel is based on the ternary host-guest interaction of two anthracene moieties 

and one large macrocyclic host. Two kinds of anthracene functionalized poly(N-acryloylmorpholine) 

were synthesized by post-polymerization modification of a copolymer containing N-

acryloylmorpholine and an activated ester comonomers, with and without a charge next to the 

anthracene. The binding affinity of the anthracene side chains with and without an additional 

cationic charge were studied with two macrocyclic hosts (cucurbit[8]uril or γ-cyclodextrin) by UV-

Vis titration revealing stronger binding in presence of the cationic charge due to further interactions 

with the macrocyclic hosts. Subsequently, the effect of the binding affinity on the hydrogelation was 

investigated, indicating that the stronger binding affinity facilitated the hydrogel formation at lower 

concentration. Finally, the reversible transformation of the supramolecular hydrogel to a chemical 

hydrogel by anthracene dimerization was studied by the UV irradiation at 365 nm or 254 nm. It 

could be demonstrated that the dynamic nature of the hydrogel that is responsible for the shear-

thinning behavior was indeed lost upon UV-irradiation indicative of the formation of a covalently 

crosslinked hydrogel. The capabilities of the formed supramolecular hydrogel that is easily 

processable and able to reversibly convert to a chemical hydrogel, provides potential applications 

in applying mechanically robust covalently crosslinked hydrogels in complex shapes and difficult to 

reach locations making use of the dynamic nature of the supramolecular crosslinks. 

 

Graphical representation of the overview of this chapter. Note that only the best performing anthracene hydrogel, 
including the cationic charge next to the anthracene, is shown here  
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3.1 Introduction 

Polymeric hydrogels are water-swollen polymeric 3D networks consisting of crosslinked hydrophilic 

polymers. The fact that they can swell but do not dissolve in water under biological conditions makes 

them an ideal class of materials in biomedical applications, such as drug delivery and tissue 

engineering, which have attracted considerable interest of chemists during the past few decades.1-

2 Generally, hydrogels can be categorized into chemical and physical hydrogels based on their 

crosslinking mechanisms. Chemically crosslinked hydrogels consist of polymer chains 

interconnected by permanent non-reversible covalent bonds and have been fabricated through a 

wide range of crosslinking chemistries.3-8 Chemical crosslinked hydrogels are stable and exhibit 

robust mechanical properties due to the stability of the covalent bonds, and have been commonly 

employed when tough and stable hydrogels are required.9 Furthermore, they need to be 

synthesized in the required shape as their shape cannot be changed once formed. However, the 

covalent nature of the crosslinks makes them rather brittle and unable to self-heal once the network 

is broken.10 In contrast, physically crosslinked hydrogels, also named supramolecular hydrogels, are 

formed by reversible crosslinks between polymer chains or small molecules that assemble into a 

fibrous network. The supramolecular crosslinks avoid the deleterious implications of chemical 

crosslinks (brittleness, limited reshapability etc.) at the price of mechanically weaker systems, 

because the gelation is driven by dynamic molecular self-assembly. Moreover, the non-covalent 

crosslinks endow tailored viscoelasticity and a dynamic nature, which is a desirable characteristic 

for a variety of important applications, such as biological recapitulation and injection. However, 

weak non-covalent bonds are not stable against dilution followed by dissipation, which limits their 

application potential. In recent years, gels combining supramolecular and covalent crosslinking have 

been developed.11-13 The resulting materials exhibited combined properties, such as mechanical 

properties, self-healing and shape memory behavior. However, the fact that the covalent crosslinks 

are presence in the hydrogel leads to irreversible damage when large ruptures occur. A system that 

can be switched between these two types of hydrogels could be hypothesized to combine the 

advantageous properties of both covalent and supramolecular hydrogels. 

To date, no study regarding the conversion between supramolecular and covalent hydrogels has 

been reported, to the best of our knowledge. In this chapter, we designed a new hydrogel that 

undergoes a conversion between non-covalent and covalent crosslinking based on supramolecular 

assembly and dimerization of anthracene groups. Upon the addition of a large macrocyclic host, e. 

g. cucurbit[8]uril (CB[8]) or γ-cyclodextrin (γ-CD), to an anthracene functionalized polymer, a 

supramolecular hydrogel should be formed by host-guest interaction between the macrocyclic host 

and two anthracene molecules by the formation of a stable 1:2 ternary complex. Such a 

supramolecular hydrogel can be further converted into its corresponding covalent crosslinked 

hydrogel upon irradiation at ca. 365 nm to induce photo-dimerization of the anthracene molecules 

in the cavity of the host. This process should be reversible by UV irradiation at ca. 254 nm, which 

results in the photochemical cleavage of the produced anthracene dimer. The type of crosslinking 
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can be easily switched in order to adequately alter the properties to meet the application’s 

requirements. The supramolecular hydrogel is dynamic and could be injected, reshaped or even 

heal damage, while the covalently crosslinked hydrogel provides higher strength and robustness. 

3.2 Results and discussion 

In most literature reports, 9-substituted anthracene derivatives have been employed for the 

preparation of covalently cross-linked hydrogels based on the reversible photodimerization of 

anthracene.14-17 However, 9-substituted anthracene derivatives cannot form a supramolecular 

complex with macrocyclic hosts due to steric effects. Thus, sterically less demanding 2-substituted 

anthracene derivatives were selected for the preparation of hydrogels in this chapter to enable 

supramolecular hydrogel formation by host-guest interactions as well as covalent hydrogels by 

anthracene dimerization. Compared to γ-CD, the negatively charged carbonyl portals of CB[8] result 

in a higher interaction strength with cationic guest, whereas γ-CD prefers to bind to neutral or 

anionic guests.18 Two kinds of small molecule anthracene-derivatives 1a and 2a, carrying no charge 

and a positive charge, respectively, were designed and synthesized as shown in scheme 3.1. The 

structures of host and guest molecules are illustrated in Figure 3.1. Commercially available 2-

anthracenecarboxylic acid was selected as the precursor to prepare the desired anthracene 

derivatives in several straightforward synthetic steps. First, 2-anthracenecarboxylic acid was 

converted to the corresponding acyl chloride by reaction with thionyl chloride followed by ester 

formation to give 1c or 2c in good yield. Subsequently, The Boc group of 1c was removed with 

trifluoroacetic acid (TFA) yielding the non-charged functional anthracene 1a. The Menshutkin 

reaction was used to modify 2c with dimethylethanolamine yielding the charged anthracene 2a. The 

anthracene derivatives (1a and 2a) were purified by column chromatography. 

 

Scheme 3.1. The synthetic routes of 1a and 2a 
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Figure 3.1. The chemical structure of anthracene derivatives and the macrocyclic host which were used in this chapter. 

3.2.1 Host-guest complexation and photodimerization of small molecules anthracene 1a and 2a 

The potential of the designed anthracene crosslinkers for hydrogel formation was assessed by 

investigating the host-guest complexation of the small molecule analogues and subsequent 

photochemical dimerization of the complexed 1a and 2a. The stoichiometry of the host-guest 

complexation of the anthracene derivatives with the macrocyclic host was determined by the 

continuous variation approach (Job plot) based on the change of the absorption intensity of the 

anthracene group upon complexation with the γ-CD or CB[8] macrocycles in water (Figure 3.2). The 

non-covalent binding affinity of 1a and 2a with γ-CD and CB[8] was studied by UV-Vis titration 

(Figure 3.3). The results are summarized in Table 3.1 showing that in all studied host-guest 

complexations, the stoichiometry is 2:1 between the anthracene derivative and the macrocyclic 

hosts as expected based on literature reports on related systems. In fact, many aromatic guests are 

efficiently and non-covalently dimerized by inclusion in a macrocycle on account of water release 

from the host cavity and π-π stacking interactions between the aromatic guests.19-25 The binding 

affinity is generally higher with CB[8] than with γ-CD and with the charged anthracene 2a than with 

the non-charged anthracene 1a. The latter effect is stronger with CB[8] as it provides efficient 

carbonyl cation interactions at the rim of the CB[8]. 



 

68 

 

Chapter 3 

  

Figure 3.2. a UV-Vis spectra of the aqueous solution of 2a and CB[8] at different molar ratio of the two moieties at 25 
oC, in which the total concentration was kept constant at 30 µM; b). Job’s plot of 2a and CB[8], where the absorbance 

at 259.5 nm was plotted against the molar fraction of 2a. 
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Figure 3.3 UV-Vis titration of concentrated host solution to 30 µM guest solution in Milli-Q water at 25 oC: a) γ-CD->1a, 
c) CB[8]->1a, e) γ-CD->2a, g) CB[8]->2a; b), d), f), h) the plots of absorbance changes of anthracene group at 259.5 nm 
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or 259 nm upon adding host solution (left plots are corresponding to right UV-Vis spectra), the red solid lines are the 
binding isotherm obtained by the least-squares fit to the experimental data (all R2 > 0.9900). 

Table 3.1 Stoichiometry and association constant Ka between guest molecules (1a, 2a) and host (γ-CD, CB[8]) from Job 
plot and UV-Vis titration in natural aqueous solution at 25 oC. 

 

After determining that the macrocyclic hosts (γ-CD or CB[8]) bind two anthracene units of 1a or 2a 

in its cavity, which is key for the potential formation of hydrogels, the photodimerization of the 

complexed anthracene molecules was investigated (Figure 3.4). To demonstrate the effect of 

macrocyclic host to the photodimerization of anthracene, the complexation of 1a and CB[8] were 

selected as an example to compare without the presence of CB[8]. A dilute aqueous solution of 1a 

(20 µM) and 0.5 equiv. of CB[8] was irradiated with UV light at 365 nm leading to a rapid decrease 

in the absorbance of the bands centered around 259.5 nm with an isosbestic point at 229 nm 

indicating a clean transition from the anthracene monomers to the anthracene dimer, which 

reached full conversion within 5 min. The control experiment carried out under identical conditions 

in the absence of CB[8] resulted in only 50% dimerization on the same time scale and required an 

extra 33 min to reach full conversion. The faster anthracene photodimerization in the presence of 

CB[8] can be ascribed to forcing the two anthracene moieties together inside the macrocyclic host 

(Figure 3.4c). Moreover, the fluorescence emission intensity at 468 nm decreased upon 

photoirradiation revealing very similar kinetics for photodimerization as obtained by UV-vis 

spectroscopy (Figure 3.4d). Thus, from the combination of the two experimental observations, it 

can be concluded that the non-covalent association of two anthracene derivatives with CB[8] 

accelerates the anthracene photodimerization reaction, which is in accordance with literature.26-28 
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Figure 3.4 UV-Vis spectra of a 1a (20 µM) (a) in the presence of 0.5 equiv. CB[8] and (b) in the absence of CB[8] in H2O 
upon photoirradiation with a 360 nm light source; (c) The normalised total intensity of the two UV-Vis spectra as 
function of the irradiation time; (d) the normalised intensity of fluorescence as a function of the irradiation time. 

3.2.2 Synthesis and characterization of anthracene functionalized functional polymers 

N-Acryloylmorpholine (NAM) is an acrylate monomer that yields hydrophilic poly(N-

acryloylmorpholine (PNAM), which in block copolymers has shown good biocompatibility with the 

human body,29 demonstrated promise in blood cell separation,30 and as drug delivery vehicle. In this 

chapter, PNAM was chosen as the primary polymeric material for the preparation of hydrogels on 

account of its high hydrophilicity and good biocompatibility, which is an advantage for many 

applications. To obtain anthracene side-chain functionalized copolymers, an apparent 

straightforward approach was first attempted, which involved the copolymerization of NAM and an 

anthracene based acrylate comonomer by reversible addition-fragmentation chain transfer 

polymerization (RAFT). Unfortunately, the reaction did not yield the desired product, presumably 

due to the fact that the 2-substituted anthracene itself is an efficient radical quencher and inhibitor 

of radical polymerization. The propagating macroradicals are stabilized by formation of unreactive 

dibenzylic radicals by direct addition of anthracene to the growing polymer chain as shown in 

Scheme 3.2.31 
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Scheme 3.2 Schematic representation of 2-substituted anthracene as radical trap to terminate the growing polymer 
chain. 

Therefore, to obtain the desired copolymers, a post-polymerization modification was utilized based 

on a reactive copolymer containing activated ester comonomers, namely poly(N-

acryloylmorpholine-co-pentafluorophenyl acrylate) (PNAM-PFPA, P0). The activated ester 

containing copolymer P0 was modified by nucleophilic substitution to incorporate the non-charged 

and charged anthracene derivatives (1a and 2a) in presence of base (Scheme 3.3).  

 

Scheme 3.3 Schematic representation of the nucleophilic substitution of pNAM-PFPA with anthracene derivative. 

Poly(N-acryloylmorpholine-co-pentafluorophenyl acrylate) was prepared by RAFT polymerization 

using methyl-2-(n-butyltrithiocarbonyl)propanoate as chain transfer agent (CTA) and AIBN as radical 

initiator, at 70 oC in dioxane. After determination of the polymerization kinetics that revealed near 

random incorporation of the activated ester commoner (Figure 3.5), a well-defined copolymer was 

prepared aiming for 90 % conversion to suppress the occurrence of chain termination reactions. The 

polymer was purified by precipitation in methanol (three times) and analyzed by 1H NMR, 19F NMR 

and FT-IR spectroscopy as well as SEC. The content of reactive ester for the polymer was determined 

by GC to be 3.14 % (molar fraction, spectra not included). P0 was then used to generate the PNAM 

copolymers with different anthracene side chains. The polymer modification reaction was 

performed with excess amount of anthracene derivatives in DMF with triethylamine (TEA) or 4-

dimethylaminopyridine (DMAP) as catalyst (see Scheme 3.3). In case of P1, a small amount of 

di(ethylene glycol) methyl ether acrylate (mDEGA) was added to scavenge any thiols released by the 

aminolysis of trithiocarbonate RAFT end groups by a thiol-Michael addition reaction. Products were 

isolated by extensive dialysis in water and subsequent lyophilization. The success of the reaction 

was confirmed by 1H, 19F NMR and FT-IR spectroscopy as well as size exclusion chromatography 
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(SEC). The analytical data are summarized in Table 3.2. The successful incorporation of the 

anthracene derivatives in P1 and P2 was confirmed with 1H NMR spectroscopy by the presence of 

all the characteristic signals attributed to the anthracene group and the methylene protons next to 

ester (as assigned in Figure 3.6). However, the molar fraction of anthracene groups in copolymers, 

P1 and P2, determined by 1H NMR spectroscopy was found to be smaller than the theoretical 

incorporation of pentafluorophenyl acrylate resulting from GC conversion, which is most likely due 

to incomplete modification although the small signals in the 1H NMR spectrum do not allow very 

accurate integration either. However, the pentafluorophenyl groups (PFP) were fully consumed 

after the reactions with the anthracene derivatives (1a and 2a) based on the complete 

disappearance of the peaks originating from PFP in the 19F NMR spectra (Figure 3.7). As such, the 

degree of anthracene modification will be around 1-3%, possibly in combination with some acrylic 

acid units resulting from hydrolysis of some PFP ester groups despite working under dry conditions. 

 

Figure 3.5 The kinetic data for the copolymerization of PNAM-PFPA. 

 

Table 3.2 Analytical data of the synthesized copolymers 
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Figure 3.6 Proton NMR spectra of P0, P1 and P2 in CD3Cl. (Note that only partial structure of P1 and P2 are shown here 
for simplicity) 

 

Figure 3.7 19F NMR spectra of P0, P1 and P2 in CDCl3. 

Furthermore, FT-IR measurements were performed of these three polymers (Figure 3.8). The 

spectrum of P0 showed the characteristic absorption band of the activated carbonyl group and the 

perfluorinated aromatic group (PFP) at 1776 and 1520 cm-1, respectively. In the infrared spectrum 

of P1 and P2, a characteristic peak at 1715 cm-1 appeared and this can be attributed to the C=O 

stretching vibration of anthracene ester. The new peak at 1742 cm-1 in P2 belongs to the C=O of the 

acrylate. The appearance of the new peaks (1742, 1715 cm-1) and the disappearance of the peaks 

of PFP-ester at 1776 and the PFP at 1520 cm-1 indicate that the PFP was fully removed. 
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Figure 3.8 FT-IR spectra of the PNAM-PFPA precursor P0 (bottom), the P1 (middle) and P2 (top). 

Size exclusion chromatograms of these three copolymers are shown in Figure 3.9. The slight 

difference in retention time and the polydispersity indicate slight changes in the hydrodynamic 

diameter, which could result from the different solvation behavior of the anthracene moieties and 

the pentafluorophenyl group. The SEC traces detected by UV at wavelength of 400 nm, a 

characteristic absorption of anthracene, of these three copolymers are shown in Figure 3.9b. The 

appearance of SEC trace at 400 nm UV-detection proves that the anthracene group is successfully 

incorporated in polymers P1 and P2. Additionally, the curve of P1 did not show any shoulder toward 

high molar masses, suggesting that unwanted thiol-thiol coupling reactions following from 

aminolysis of the RAFT end groups had not occurred. 

   

Figure 3.9 SEC traces of P0, P1 and P2 in DMA as mobile phase: a) RI detector; b) UV @400 nm detector. 
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3.2.3 Photochemical covalent hydrogel formation in the absence of macrocyclic host 

To prove the effectiveness of the design strategy to form covalent hydrogels in absence of 

supramolecular host, the obtained anthracene functionalized copolymers (P1 and P2) were 

irradiated by UV light at 360 nm for 20 min. As shown in Figure 3.10, the hydrogel was successfully 

formed after photoirradiation of a 5 wt % polymer solution, indicating that, on the one hand, the 

anthracene was successfully coupled to the polymer and, on the other hand, the content of the 

loaded anthracene (3.14%) is sufficient to act as covalent crosslinker to form hydrogels. In principle, 

if the binding affinity of host-guest is high enough the obtained copolymer should also form physical 

hydrogels as will be discussed in the next section. 

 

Figure 3.10 Pictures of P1 and P2 at 5 wt % in H2O. Left: P1 or P2 prior to photoirradiation; Right: after 
photoirradiation at 360 nm for 20 min. 

3.2.4 The formation of supramolecular hydrogels 

The formation of supramolecular hydrogels is proposed to occur upon formation of the ternary host-

guest inclusion complexes between one host molecule and two anthracene molecules, where the 

complexes act as non-covalent cross linker. The successful formation of host-guest inclusion 

complexes of the anthracene functionalized copolymers was confirmed by UV-Vis spectroscopy at 

low polymer concentration as shown in Figure 3.11 demonstrating the formation of the inclusion 

complex by the decrease of the intensity of the absorption peak at 260 nm.  



 

77 

 

Chapter 3 

250 300 350 400 450

0.0

0.2

0.4

0.6

0.8

1.0

 

 

A
b

s
o

rb
a

n
c

e

Wavelength (nm)

 P2 (0.2 mg/mL)

 P2 (0.2 mg/mL)+CB[8]

 

Figure 3.11 The UV-Vis spectra of 0.2 mg/mL P2 and after the addition of 0.5 equivalents of CB[8].  

After confirmation that the side-chain anthracene units can still form host-guest complexes, we 

continued to study whether hydrogels can be formed. The binding affinity of the host-guest 

inclusion complexation is a fundamental consideration in the design of the supramolecular 

hydrogels as too weak associating systems will require higher polymer concentration to form a 

sufficient number of supramolecular crosslinks. The supramolecular hydrogelation was studied by 

mixing the copolymers (P1 or P2) with the macrocyclic hosts (CB[8] or γ-CD in a 1:0.5 molar ratio of 

anthracene moieties), to examine the effect of the binding affinity to the gelation. P1 was first 

studied with γ-CD and CB[8] in water at different concentrations ranging from 1 to 15 wt %. The 

complexation of P1 with γ-CD was found to result in hydrogels at a minimum gelation concentration 

of 15 wt % (Figure 3.12a). However, the complexation of P1 with CB[8] could only be studied at a 

polymer concentration lower than 3 wt% due to the quite low solubility of CB[8] in water. As a result 

no hydrogels could be formed. The hydrogel formation of P2 was only studied at 5 wt%, which was 

insufficient for hydrogel formation with γ-CD. However, the addition of CB[8] to P2 resulted in the 

formation of a hydrogel already at 5 wt% due to the stronger supramolecular interaction. It should 

be noted that the efficient complexation of CB[8] with the charged anthracene derivative in P2 

enhanced the solubility of CB[8] enabling the study of this complexation at a higher polymer 

concentration than with P1. (Figure 3.12b). The supramolecular hydrogel formation results are 

summarized in Table 3.3. 
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Figure 3.12 Inverted vial tests demonstrating the formation of the hydrogel from the mixture of polymer and host (0.5 
eq. of anthracene group). (a) P1 with γ-CD (P1/ CB[8] were not given here); (b) P2 with γ-CD and CB[8]. 

Table 3.3 Summary of the gelation study. (---: CB[8] is insoluble in water; /: the system was not studied) 

 

Supramolecular hydrogels as a class of noncovalent cross-linked polymer materials display some 

basic physicochemical properties similar to covalent polymeric hydrogels, e. g. water-retention 

ability and mechanical properties. In addition, the dynamics of the crosslinked networks, that is 

inherent to the noncovalent nature of the crosslinks, allows the hydrogels to rapidly respond to a 

multitude of external stimuli, including physical (e.g., temperature, dilution effect, light and 

magnetic field) and chemical (e.g., pH, ionic strength, redox agent, glucose and competitive 

host/guest). In general, these external stimuli have an impact on the crosslinks leading to swelling 

or dissociation of the network. In this work, we examined the stimuli responsive properties of the 

obtained supramolecular hydrogels of P2 with CB[8] by heating and dilution with water. As shown 

in Figure 3.13a, upon the addition of water the hydrogel disappeared and dissolved within 5 minutes 

demonstrating the dynamic nature of the crosslinks. The supramolecular hydrogels also underwent 

a gel-sol transition upon an increase in temperature, and subsequently the supramolecular hydrogel 

was reformed spontaneously when the solution was cooled down to room temperature (Figure 

3.13b). This result indicated that the anthracene-CB[8] association is enthalpic in nature leading to 

weakening of the interaction upon increasing temperature. 
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Figure 3.13 (a) Photographs of the dilution effect of the hydrogel from P2 with CB[8] at 5 wt%; (b) photographs of the  
inverted vial test demonstrating thermal reversibility of the supramolecular hydrogel. 

3.2.5 The reversible transformation from supramolecular hydrogel to covalent hydrogel by 

photoirradiation 

The reversible transformation of the hydrogels from the noncovalent to covalent crosslinks upon 

photodimerization of the anthracene units was first studied by UV-Vis spectroscopy. As shown in 

Figure 3.14, P2 displays absorption peaks at 325, 342, 360, and 385 nm, respectively, indicating the 

presence of the anthracene group. The addition of CB[8] to the 5 mg/mL solution of P2 resulted in 

a decrease in the absorbance of the anthracene groups, indicating that they were encapsulated in 

the cavity of CB[8]. Upon irradiation of this solution by UV at 365 nm for 10 min, the absorbance 

peaks of the anthracene groups disappeared completely suggesting that a [4+4] 

photocyclodimerization of the anthracene groups occurred within the CB[8] cavity, which should 

lead to the transformation of the non-covalent supramolecular crosslinks to covalent crosslinks. 

Conversely, a significant increase in the absorbance of the anthracene units was observed after 

irradiating at 254 nm for 25 min, indicating the cycloreversion of the anthracene dimer, which leads 

to the transformation of the covalent hydrogel to the non-covalent supramolecular hydrogel. 
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Figure 3.14The UV-Vis spectra of P2 (5 mg/mL), and P2/CB[8] (0.5 equv. of anthracene moieties) before and after UV 
irradiation at 360 nm and 250 nm.  

Inspired by the UV-vis spectroscopy results of the reversible transformation of the low 

concentration solution (5 mg/mL), the transformation of the supramolecular hydrogel to a 

chemically cross-linked hydrogel was carried out by UV irradiation under identical conditions. 

Initially, the supramolecular hydrogel from P2/CB[8] (5 wt% polymer) was yellow and the yellow 

color disappeared after UV-irradiation at 365 nm for 10 minutes (Figure 3.15a), which indicates that 

the transformation to anthracene dimers had taken place. The formation of the chemically cross-

linked hydrogel was confirmed by heating it to 70 oC as well as by dilution with water. As shown in 

Figure 3.15a, the hydrogel was now resistant to heating or dilution, revealing the successful 

transformation of the supramolecular hydrogel to a covalently crosslinked hydrogel. 

We further investigated the reversible transformation of the hydrogel. Part of the covalently 

crosslinked hydrogel was transferred to a quartz cuvette and UV-irradiated at 254 nm for 40 min. 

After irradiation the color of the hydrogel changed back to yellow, suggesting the formation of the 

supramolecular hydrogel. This was further evidenced by the gel-sol transition as shown in Figure 

3.15b. 
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Figure 3.15 (a) Photographs of the hydrogel before and after the UV irradiation at 365 nm, and the inverted vial test 
demonstrating the stability of the hydrogel; (b) Photographs of the hydrogel before and after the UV irradiation at 254 

nm, and the inverted vial test showing the thermal reversibility of the hydrogel. 

3.3 Conclusions 

In this chapter, a supramolecular hydrogel was developed based on the inclusion complexation of 

two anthracene moieties with a macrocyclic host as cross-linker. It was demonstrated that such a 

supramolecular hydrogel could undergo a reversible transformation to the corresponding covalent 

cross-linked hydrogel driven by the reversible photodimerization of anthracene inside the host 

cavity. This approach affords a strategy for the reversible transformation between supramolecular 

to covalently linked hydrogels providing control over the dynamics, shapability and mechanical 

properties of the hydrogel. Moreover, the effect of the binding affinity of the host-guest interaction 

to the critical hydrogelation concentration was also investigated, demonstrating the significance of 

the binding affinity in the construction of a supramolecular hydrogel at lower concentrations. Finally, 

this chapter also provided an approach of the preparation of anthracene side-chain functionalized 

acrylate copolymers by post-polymerization modification as the 2-substituted anthracene based 

acrylate monomer cannot be polymerized by RAFT polymerization since it acts as radical trap. 

3.4 Experimental section 

3.4.1 Materials 

All chemicals and solvents were commercially available and used as received unless otherwise 

stated. Dichloromethane (DCM), N,N-dimethylacetamide (DMA), THF, methanol, CDCl3, hexane 

were obtained from Sigma Aldrich. DCM and THF was purified over aluminum oxide by means of a 
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solvent purification system from J.C. Meyer when it was use as reaction solvent. Milli-Q Water (18.2 

MΩ/cm) was generated using a Millipore Milli-Q academic water purification system. 2-

anthracenecarboxylic acid, N-acryloylmorpholine and γ-cyclodextrin were obtained from Tokyo 

Chemical Industry (TCI). 2-(2-Aminoethoxy)ethanol (98%), Di-tert-butyldicarbonate (99%), 2-

dimethylaminoethanol, 2-bromoethanol, trifluoroacetic acid (TFA, 99%) and pentafluorophenol 

were purchased from Sigma-Aldrich. Azobisisobutyronitrile (AIBN, 98%, Sigma-Aldrich) was 

recrystallized from MeOH (2x) and stored in the freezer. Methyl-2-(n-

butyltrithiocarbonyl)propanoate (MBTTCP) was prepared according to the established 

procedures.32 Cucurbit[8]urils (CB[8]) was synthesized according to a literature procedure and was 

kindly provided by Prof. Werner Nau.33 

3.4.2 Analytical techniques 

1H and 13C spectra were acquired on a Bruker Avance 400 MHz spectrometer. 19F NMR spectra were 

recorded on a Bruker Avance 500 MHz spectrometer. Samples were dissolved in CDCl3 or CD3OD. 

Chemical shifts are expressed in ppm by comparison with the signal of TMS used as an internal 

standard. 

Gas chromatography (GC) was performed on a 7890A from Agilent Technologies with an Agilent 

J&W Advanced Capillary GC column (30 m, 0.320 mm and 0.25 μm). Injections were performed with 

an Agilent Technologies 7693 auto sampler. Detection was done with a FID detector. Injector and 

detector temperatures were kept constant at 250 and 280 oC, respectively. The column was initially 

set at 50 oC, followed by two heating stages: from 50 oC to 100 oC with a rate of 20 oC/min and from 

100 oC to 300 oC with a rate of 40 oC/min. and then held at this temperature for 0.5 minutes. 

Conversion was determined based on the integration of monomer peaks using DMA as internal 

standard. 

Size exclusion chromatography (SEC) was performed on an Agilent 1260-series HPLC system 

equipped with a 1260 online degasser, a 1260 ISO-Pump, a 1260 automatic liquid sampler, a 

thermostatted column compartment, a 1260 diode array detector (DAD) and a 1260 refractive index 

detector (RID). Analyses were performed on a PPS Gram30 column in series with a PPS Gram 1000 

column at 50 oC. DMA containing 50 mM of LiCl was used as an eluent at a flow rate of 0.6 mL/min. 

The SEC traces were analysed using the Agilent Chemstation software with the GPC add on. Molar 

mass and PDI values were calculated against PMMA standards. 

Fluorescence measurement were carried out on a Cary Eclipse fluorescence spectrophotometer 

(Agilent Technologies) equipped with a Varian Cary Temperature Controller. The emission spectra 

resulting from excitation by a 428.5 nm laser were monitored from 500 -700 nm, and the slit width 

was kept at 5 nm during the measurements. 
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3.4.2.1 Job plots (continuous variation method) 

The stoichiometry of the self-assembly was determined via Job’s method of continuous variation.34 

A stock solution was prepared for each complementary recognition motif in Milli-Q water in a 5 mL 

round bottom flask. The appropriate amount from the stock solution was transferred to the UV-

Visible cuvette or fluorescence cuvette in which the total concentration of the recognition motifs 

was kept constant at 50 μM. The molar fraction of the motifs was varied between 0 and 1. The 

changes in absorption intensity were multiplied by the molar fraction and plotted vs. molar fraction 

to construct the Job plot. 

3.4.2.2 UV-Vis spectrophotometric titration experiment 

UV-Visible titration was performed by adding solutions containing the host (γ-CD or CB[8]) to a 

solution of the guest (1a or 2a) in a 1 cm path quartz cuvette by using microliter syringes. In all cases 

the guest was present in the host solution at the same concentration as that in the cuvette to avoid 

dilution effects. Mili-Q water (18.2 mΩ/cm) was used as solvent for UV-Visible titration. UV-Visible 

scanning conditions were as follows: Scanning rate =300 nm/min, bandwidth = 0.5 nm, response 

time = 0.1 s, accumulations = 1 scan. 

3.4.2.3 Photochemical reactions 

Photodimerization of anthracene occurred in a Metalight Classic from Primotec equipped with 12 double 

centered at 365 nm UV lamps of 9 W each; the cycloreversion was performed in a Metalight Classic from 

Primotec equipped with 12 double centered at 254 nm UV lamps of 9 W each. 

3.4.3 Synthesis and characterizations 

3.4.3.1 tert-butyl (2-(2-hydroxylethoxy) ethylcarbamate (1b)  

To a solution of 2-(2-aminoethoxy) ethanol (6.0 g, 56.76 mmol)  in anhydrous DCM (75 mL) was 

added di-tert-butyldicarbonate (13.6 g, 62.44 mmol) at 0 oC. The reaction solution was warmed to 

room temperature and stirred overnight. The reaction solution was washed with H2O (20 mL*4) and 

dried with anhydrous MgSO4, filtered. The product was given after removing solvent under vacuum 

as colorless oil (11.05 g, 94.9%). 1H NMR: (400 MHz, CDCl3) δ: 5.04 (br, 1H), 3.76-3.68 (m, 2H), 3.61-

3.50 (m, 4H), 3.37-3.25 (m, 2H), 1.43 (s, 9H). 13C NMR: (100 MHz, CDCl3, δ): 156.32, 79.41, 72.37, 

70.37, 61.62, 40.42, 28.48. HRMS (ESI, m/z): [M+Na]+ calcd for C9H19NNaO4, 228.1212; found 

228.1207.  

3.4.3.2 2-Anthracenecarboxyl chloride  

To a solution of 2-anthracenecarboxylic acid (4 g, 18 mml) in 60 mL SOCl2 was added one drop of 

DMF. The solution was stirring 48 h under anhydrous condition at room temperature and the solvent 

was removed under reduced pressure. The residual amount of SOCl2 was removed as an azeotrope 

with toluene (50 mL*2). Pure product was obtained as fine yellow powder in quantitative yields. 1H 
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NMR: (400 MHz, CDCl3) δ: 8.98 (s, 1H, #1), 8.65 (s, 1H, #9), 8.47 (s, 1H, #10), 8.09-8.04 (m, 3H, #4,5,8), 

7.97-7.94 (m, 1H, #3), 7.62-7.54 (m, 2H, #6,7). 13C NMR: (100 MHz, CDCl3, δ): 168.41, 137.18, 134.17, 

133.07, 132.46, 130.26, 130.07, 129.36, 128.83, 128.40, 127.67, 126.60, 123.65. 

3.4.3.3 2-[2-(tert-Butoxycarbonylamino)ethoxy]ethyl-2-anthracenecarboxylate (1c) 

To the solution of tert-butyl (2-(2-hydroxylethoxy)ethylcarbamate (3.6 g, 17.5 mmol) and Et3N (2.4 

mL, 17.5 mmol) in dry THF (50 mL), 2-Anthracenecarboxyl chloride (2 g, 8.3 mmol) in 30 mL dry THF 

was added dropwise. This mixture was stirred 24 hours at room temperature. The solvent was 

removed under reduced pressure. The residue was dissolved with DCM, then the solution was 

washed with saturated NaHCO3 aqueous solution (3x), brine (1x) and water (1x). The given solution 

was dried with MgSO4 and filtered. The crude product was concentrated and purified by silica 

chromatography (EtOAc:DCM=1:10 by volume). (2.8 g, 82.8%). 1H NMR: (400 MHz, CDCl3) δ: 8.84 (s, 

1H, #1), 8.59 (s, 1H, #9), 8.47 (s, 1H, #10), 8.06-7.97 (m, 4H, #3,4,5,8), 7.57-7.49 (m, 2H, #6,7), 4.95 

(br, 1H, NH), 4.56 (t, 2H, -C(O)OCH2-), 3.87 (t, 2H, -C(O)OCH2CH2-), 3.64 (t, 2H, -C(O)NHCH2CH2-), 

3.37 (t, 2H, -C(O)NHCH2-), 1.42 (s, 9H, -C(CH3)3. 13C NMR: (100 MHz, CDCl3, δ): 166.89, 133.27, 132.82, 

132.60, 132.14, 130.48, 128.90, 128.63, 128.60, 128.32, 126.92, 126.74, 126.37, 126.04, 124.18, 

73.62, 69.22, 64.38, 41.97. 

3.4.3.4 2-(2-aminoethoxy)ethyl-2-anthracenecarboxylate (1a) 

2-[2-(tert-Butoxycarbonylamino)ethoxy]ethyl-2-anthracenecarboxylate (2.7 g, 6.6 mmol) was 

dissolved in 30 mL of a 1:1 (vol/vol) solution of TFA in CH2Cl2. This mixture was stirred for 30 min at 

room temperature. The solvent was removed under reduced pressure. The residue was taken up by 

50 mL CH2Cl2 followed by washing with saturated aqueous NaHCO3 solution and water. The organic 

phase was dried with Na2SO4 and filtered. The result solution was concentrated and subjected to 

silica column chromatography (methanol (1 M NH3) / EtOAc =1:20). The fraction containing the 

product was collected, solvents were removed under reduced pressure and the product was 

obtained as brown solid (1.95 g, 95.6 %). 1H NMR: (400 MHz, CDCl3) δ: 8.84 (s, 1H, #1), 8.59 (s, 1H, 

#9), 8.47 (s, 1H, #10), 8.06-7.97 (m, 4H, #3,4,5,8), 7.57-7.49 (m, 2H, #6,7), 4.58 (t, 2H, -C(O)OCH2-), 

3.88 (t, 2H, -C(O)OCH2CH2-), 3.61 (t, 2H, NH2CH2CH2-), 2.92 (t, 2H, NH2CH2-). 13C NMR: (100 MHz, 

CDCl3, δ): 166.89, 133.27, 132.82, 132.60, 132.14, 130.48, 128.90, 128.63, 128.60, 128.32, 126.92, 

126.74, 126.37, 126.04, 124.18, 73.62, 69.22, 64.37, 41.97. 

3.4.3.5 2-bromoethyl-2-anthracenecarboxylate (2c) 

To the solution of 2-bromoethanol (2.04 g, 16.37 mmol) and Et3N (1.5 mL, 10.9 mmol) in dry THF 

(40 mL), 2-Anthracenecarboxyl chloride (1.31 g, 5.46 mmol) in 20 mL dry THF was added dropwise. 

This mixture was stirred 24 hours at room temperature. The solvent was removed under reduced 

pressure. The residue was dissolved with DCM, then the solution was washed with saturated 

NaHCO3 aqueous solution (3x), brine (1x) and water (1x). The given solution was dried with MgSO4 

and filtered. The crude product was concentrated and purified by silica chromatography 
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(petroleum:EtOAc=10:1 by volume). (1.5 g, 83.6%). 1H NMR: (400 MHz, CDCl3) δ: 8.85 (s, 1H, #1), 

8.59 (s, 1H, #9), 8.46 (s, 1H, #10), 8.06-7.97 (m, 4H, #3,4,5,8), 7.57-7.49 (m, 2H, #6,7), 4.72 (t, 2H, -

CH2CH2Br), 3.72 (t, 2H, -CH2Br). 13C NMR: (100 MHz, CDCl3, δ): 166.41, 133.37, 132.87, 132.19, 

130.45, 129.01, 128.76, 128.63, 128.34, 126.84, 126.42, 126.11, 124.07, 64.53, 29.03. ESI-MS (m/z): 

[M+H]+  calculated for C17H14BrO2
+: 329.01; found: 329.03. 

3.4.3.6 2-((anthracene-2-carbonyl)oxy)-N-(2-hydroxyethyl)-N, N-dimethylethan-1-aminium bromide (2a) 

Mix the 2-bromoethyl-2-anthracenecarboxylate (0.5 g, 1.52 mmol) and 2-Dimethylaminoethanol 

(764 µL, 7.60 mmol) in 30 mL acetonitrile. The reaction mixture was heated to reflux overnight. A 

yellow solid was precipitated during this period. The precipitation was filtered off and washed with 

DCM. After drying under reduced pressure, the pure product (2a) was obtained as yellow powder. 

(yield 0.62 g, 97.6%). 1H NMR: (400 MHz, CD3OD, ppm) δ: 8.89 (s, 1H, #1), 8.70 (s, 1H, #9), 8.56 (s, 

1H, #10), 8.16-8.08 (m, 3H, #4,5,8), 8.02-7.96 (m, 1H, #3), 7.61-7.52 (m, 2H, #6,7), 4.91 (m, 2H, -

C(O)OCH2-), 4.12-4.06 (m, 2H, -NCH2CH2OH), 4.05-4.03 (m, 2H, -C(O)OCH2CH2-), 3.72-3.69 (m, 2H, -

CH2OH), 3.38 (s, 6H, -N(CH3)2). 13C NMR: (100 MHz, CD3OD, δ): 167.21, 134.88, 134.12, 133.83, 

133.67, 131.63, 130.00, 129.96, 129.50, 129.28, 127.99, 127.41, 127.27, 127.20, 124.53, 67.73, 

65.23, 59.60, 56.91, 53.07. ESI-MS (m/z): [M-Br-]+ calculated for C21H24NO3
+: 338.17; found: 338.10. 

3.4.3.7 Pentafluorophenyl acrylate 

Pentafluorophenol (9.0 g, 48.90 mmol) and triethylamine (7.5 mL, 53.79 mmol) were dissolved in 

250 mL dry DCM and cooled to 0 oC. To this solution, acryloyl chloride (4.4 mL, 53.79) in 100 mL dry 

DCM was added dropwise, and the mixture was stirred and let warm to room temperature overnight. 

The product was obtained after washing the organic phase with water (200 x 3). 9.59 g product was 

obtained by drying in oven (yield, 82%). 1H NMR: (400 MHz, CDCl3, ppm) δ: 6.72 (dd, 1H, -CHCHC(O)-, 

cis position with respect to carbonyl group), 6.37 (dd, 1H, CH2CH-), 6.18 (dd, 1H, -CHCHC(O)-, trans-

position with respect to carbonyl group). 13C NMR: (100 MHz, CDCl3, ppm) δ: 161.82, 142.59, 140.95, 

140.04, 139.32, 138.42, 136.85, 135.64, 125.49. 19F NMR: (470 MHz, CDCl3, ppm) δ: -152.61 (m, 2F, 

ortho), -158.00 (t, 1F, para), -162.37 (m, 2F, meta). GC was measured for purification ( >99%).  

3.4.3.8 Poly(N-acryloylmorpholine-co-pentafluorophenyl acrylate) (PNAM-PFPA, P0) 

Monomer NAM (8.8 mL, 70 mmol, 1552 equv) and PFPA (0.356 mL, 2.16 mmol, 48 equv), RAFT agent 

MBTTCP (11.38 mg, 0.045 mmol, 1 equv), AIBN (0.74mg, 0.0015mmol, 0.1 equv) and 1.5 mL DMA 

were dissolved in 23.539 mL dioxane. The concentration of the monomer was fixed at 2 M. After 

three freeze-pump-thaw cycles, the flask was filled with argon, and a t0 sample was taken using a 

degassed syringe. The flask was immersed in a preheated oil bath of 70 oC and stirred for 3 hours. 

The samples for kinetic study was taken every 30 minutes during reaction. The polymerization was 

stopped by quenching the reaction with liquid nitrogen. The polymer were precipitated in ice-cold 

methanol, the isolated polymer was redissolved in THF and precipitated in methanol for another 3 

times. The final resulting polymer were dried under reduced pressure for 24 hours at 40 oC before 
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further analysis. SEC: Mn=67.9 KDa, Ɖ=1.46; 19F NMR (470 MHz, CDCl3, ppm) δ: -152.9 (bm, 2F, 

ortho), -156.08 (bs, 1F, para), -160.09 (bm, 2F, meta). FT-IR: ν/cm-1 =1776 (C=O of PFP-ester), 1520 

(aryl from PFP). 

3.4.3.9 Post-polymerization modification of pNAM-PFPA by 1a (P1) 

P0 (3.6 g, PFP units, 1 equiv.) and di(ethylene glycol) methyl ether acrylate (mDEGA) (5 µL) were 

dissolved in DMF solvent and degassed by nitrogen bubbling for 20 min. Then anthracene derivative 

1a (350 mg, 1.5 equiv.) and catalytic amount of TEA were quickly added to the polymer solution, 

and the mixture was stirred at 80 oC overnight. The solution was transferred in to a dialysis bag 

(MWCO=3.5KDa) and dialyzed against water for 1 week. The product was isolated by freeze-drying 

as a yellowish solid. SEC (DMA): Mn=71.27 KDa, Ɖ=1.42. 1H NMR (400 MHz, CDCl3, ppm) δ: 8.24 (bs, 

#1 of anthracene), 8.62 (bs, #9 of anthracene), 8.46 (bs, #10 of anthracene), 8.02 (bm, #3-5, 8 of 

anthracene), 7.53 (bm, #6, 7 of anthracene), 4.57 (m, -C(CO)CH2-), 4.00-3.08 (bs, morpholine and 

ethylene glycol), 2.77-2.17 (bs, back bone), 1.98-0.98 (bm, backbone). No signal was presented in 
19F NMR. FT-IR: ν/cm-1 =1715 (C=O of anthracene ester). 

3.4.3.10 Post-polymerization modification of pNAM-PFPA by 2a (P2) 

P0 (1.0 g, PFP units, 1 equiv.) were dissolved in DMF solvent and degassed by nitrogen bubbling for 

20 min. Then anthracene derivative 2a (104 mg, 1.2 equv) and catalytic amount of DMAP were 

quickly added to the polymer solution, and the mixture was stirred at 85 oC overnight. The solution 

was transferred in to a dialysis bag (MWCO=3.5KDa) and dialyzed against water for 1 week. The 

product was isolated by freeze-drying as a yellowish solid. SEC (DMA): Mn=67.72 KDa, Ɖ=1.46. 1H 

NMR (400 MHz, CDCl3, ppm) δ: 8.24 (bs, #1 of anthracene), 8.62 (bs, #9 of anthracene), 8.46 (bs, 

#10 of anthracene), 8.02 (bm, #4, 5, 8 of anthracene), 7.92 (bm, #3 of anthracene),  7.53 (bm, #6, 7 

of anthracene), 4.98 (backbone-C(O)OCH2-), 4.57 (m, -C(CO)CH2-), 4.00-3.08 (bs, morpholine and 

ethylene glycol), 2.77-2.17 (bs, back bone), 1.98-0.98 (bm, backbone). No signal was presented in 
19F NMR. FT-IR: ν/cm-1 =1742 (C=O of ester linked to backbone), 1715 (C=O of anthracene ester). 
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Abstract: A strained dibenzoazacyclooctyne (DIBAC) derivative was introduced for the preparation 

of a rotaxane by strain-promoted azide–alkyne cycloaddition (SPAAC), also referred to as a copper-

free click reaction. The DIBAC can efficiently act as a bulky reactive chain stopper to transform a 

pseudorotaxane architecture consisting of a diazo-functionalized dialkoxynaphthalene guest and a 

tetracationic cyclobis(paraquat-p-phenylene) (CBPQT4+) host into the corresponding [2]rotaxane. 

Furthermore, the use of the DIBAC is demonstrated to be limited to short rigid macrocycles, as it is 

unable to act as stopper for a rotaxane featuring a larger crown ether macrocyclic host. 
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4.1 Introduction 

The most recently introduced type of isomeric organic molecules1 are mechanically interlocked 

molecules (MIMs) such as catenanes, rotaxanes, and knots, the inspiration for which came from 

various natural objects and architectures.2-5 MIMs have attracted increasing attention for over 50 

years owing to their wide range of potential applications in molecular devices such as artificial 

machines,6-10 muscles,11 elevators,12 switches,13-14 and pumps15. It is noteworthy that the 2016 

Nobel Prize was awarded for work in this area.16-24 The rotaxane structure, as one type of 

mechanically interlocked molecule, has been considered as a versatile platform for the construction 

of functional artificial nanomachines.25-27 Therefore, the development of highly efficient synthetic 

strategies for the preparation of rotaxanes should facilitate the further development of this research 

area. The synthetic strategies for the preparation of rotaxanes range from statistical threading to 

directed template synthesis.28-29 In recent years, rotaxanes were mainly synthesized by either 

“clipping” a partially formed macrocycle around a dumbbell,27, 30-33 “slipping” the macrocycle over 

the bulky ends of the dumbbell,34 or by single or double “stoppering” of a pseudorotaxane with 

bulky stoppers; the double-stoppering strategy employed in this work is illustrated in Figure 4.1. The 

stoppering approach is most widely used to make rotaxanes, especially if cyclobis(paraquat-p-

phenylene) (CBPQT4+), also named blue box, is employed as the macrocyclic host to construct 

rotaxanes.35-38 

The CuI-catalyzed azide–alkyne cycloaddition (CuAAC), often referred to as a click reaction,39 has 

frequently been utilized in the stoppering strategy for the creation of rotaxanes owing to its high 

regioselectivity, tolerance to sensitive functional groups, and mild reaction conditions.35, 38, 40 

However, it is commonly performed in the presence of copper ions, which increase the complexity 

of the workup procedure and may interfere with the pseudorotaxane formation if metal templates 

are involved in the assembly process. Therefore, the interest in methods involving metal-free click 

reactions to replace CuAAC is growing.41-43 Rotaxanes have already been prepared by the metal-free 

cycloadditions of azides with bulky acetylenedicarboxylates42 as well as through cucurbituril-

catalyzed azide–alkyne cycloaddition.44 Several strain-promoted copper-free systems, such as 

oxanorbornadienes,45-46 cyclooctynes,47-49 and dibenzocyclooctynes50-53 have been developed for 

fast and selective reactions with azides, commonly referred to as strain-promoted azide–alkyne 

cycloaddition (SPAAC). To the best of our knowledge, there is only one previous report in which 

dibenzocyclooctyne was employed to construct a [2]rotaxane.54 However, that study only utilized 

the dibenzocyclooctyne to evaluate a new route for the synthesis of a [2]rotaxane under solvent-

free conditions without any further emphasis on its use as a stopper or the evaluation of its scope 

as a stopper to prepare compact [2]rotaxanes. Herein, we introduced a dibenzoazacyclooctyne 

(DIBAC) derivative to prepare a compact [2]rotaxane through this methodology and further 

addressed its scope as a stopper. 
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Figure 4.1 Graphical representation of the double stoppering of a pseudo-rotaxane to form a [2]rotaxane. 

4.2 Results and discussion 

In this chapter, we introduced a DIBAC derivative for the preparation of [2]rotaxanes, as we 

anticipated that it could act simultaneously as a reactive group and a bulky stopper to yield very 

compact [2]rotaxanes. Moreover, the commercial availability of various DIBAC derivatives further 

expands the applicability of such a synthetic protocol. The occurrence of the SPAAC reaction at room 

temperature or below is ideal for strong supramolecular binding, for example, of the CBPQT4+ ring 

to a variety of thread molecules with π-electron-donating nature, to form pseudorotaxanes 

efficiently. Strong supramolecular binding is a prerequisite for efficient rotaxane synthesis, which is 

often performed at room temperature or below.35, 55 As a first step in this work, the reactivity of the 

DIBAC derivative in acetonitrile at 0 oC was investigated by mixing a stoichiometric ratio of the DIBAC 

with 1,5-dialkoxynaphthalene (DNP) derivative 1 carrying azido-terminated glycol chains. The 

reaction solution was stirred for 48 h and then analyzed by ESI-MS without further purification, and 

the results obtained by both positive and negative ionization modes revealed the high reactivity of 

the cyclooctyne stopper, as only the dumbbell formed through the reaction with DIBAC was 

detected together with a trace amount of the excess free DIBAC stopper molecules (Figure 4.2). The 

obtained dumbbell was then mixed with excess CBPQT·4PF6 in acetonitrile to examine whether the 

stopper can effectively prevent the threading of the CBPQT4+ ring over the chain stoppers of the 

dumbbell molecule to form the rotaxane architecture and provide a first indication of the possible 

use of the DIBAC as a chain stopper. No color change was observed upon the addition of the 

CBPQT·4PF6 macrocycle to the dumbbell, whereas the direct addition of the CBPQT·4PF6 solution to 

a solution of DNP 1 caused the immediate appearance of a pink-purple color. These visual 

observations were confirmed by UV/Vis spectroscopy, which indicated the ability of the DIBAC to 

act as chain stopper to prevent the threading of the CBPQT4+ macrocycle over the dumbbell (Figure 

4.3). 



 

93 

 

Chapter 4 

 

Figure 4.2 ESI-MS spectra of dumbbell molecule 4 (left: positive model, right: negative model) 

 

Figure 4.3 UV-Vis spectra of before (black) and after (red) the addition of CBPQT.4PF6 to DNP (left) and dumbbell 4 
(right). 

 

Stimulated by these promising results, we synthesized the [2]rotaxane 3·4PF6 by the “threading-

followed-by-stoppering” strategy (Figure 4.1 and Scheme 4.1). Firstly, the two recognition elements, 

the DNP 1 thread molecule and the CBPQT4+
 macrocycle, were mixed at 0 °C to form the 

pseudorotaxane, as evidenced by the appearance of the characteristic purple color of the DNP-

CBPQT4+
 host-guest donor-acceptor complex. The rotaxane was then synthesized by the addition of 

the DIBAC stopper 2, and the pure rotaxane 3·4PF6 could be isolated in 61 % yield by preparative 

TLC after the reaction mixture was stirred for 2 days at 0 oC. 
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Scheme 4.1 The general synthetic route to [2]rotaxane 3·4PF6 (Note that only one triazole isomer is shown for 
simplicity). 

The [2]rotaxane 3·4PF6 was characterized by 1H NMR spectroscopy, matrix-assisted laser-

desorption/ionization time-off light (MALDI-TOF) mass spectrometry, and size-exclusion 

chromatography (SEC). Unfortunately, the rather complex structure of the obtained rotaxane, 

including the possible formation of different triazole isomers as well as different protonation states 

of the triazole and carboxylic acid groups, possibly in combination with limited mobility of certain 

parts of the structure led to broadened signals and a complicated 1H NMR spectrum, which made a 

full assessment of the purity difficult. Nonetheless, as shown in Figure 4.4, the resonance signals of 

DNP shifted upfield owing to shielding by the CBPQT4+ ring, as is typical for a rotaxane containing 

CBPQT4+ and DNP. The shift and broadening of the resonance signals of CBPQT4+ further confirmed 

the formation of a CBPQT4+-DNP donor-acceptor charge-transfer complex.35 The slow rotations of 

the bipyridinium units and p-phenylene rings in CBPQT4+ are reflected by the broad proton 

resonances at 298 K. These signals coalesce into narrower peaks at higher temperature, especially 

those of the β protons of the bipyridinium groups.  
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Figure 4.4 Partial 1H NMR spectra (500 MHz, CD3CN) of the [2]rotaxane 3·4PF6 at different temperatures (top: 325 K, 
middle: 298 K) and CBPQT·4PF6 (bottom). 

The MALDI-TOF mass spectrum of the [2]rotaxane confirmed its purity (Figure 4.5) as it only showed 

the peaks corresponding to the rotaxane with different numbers of PF6
- counterions, that is, [M-

4PF6
-+3e]+, [M-3PF6

-+2e]+, and [M-PF6
-+e]+. Furthermore, the observation of the intact rotaxane by 

MALDI-TOF MS indicates that the DIBAC-based stoppers are large enough to block the CBPQT4+ 

macrocycle on the chain. Finally, the obtained [2]rotaxane dissolved in 1,1,1,3,3,3-

hexafluoroisopropanol was analyzed by SEC; the intact rotaxane eluted over the column, as 

detected by the UV signal at λ=520 nm (Figure 4.6), which further confirmed the stability of the 

obtained rotaxane. 

 

Figure 4.5 MALDI-TOF mass spectrum of the [2]rotaxane 3·4PF6 
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Figure 4.6 SEC trace in HFIP of the [2]rotaxane 3·4PF6. 

To further evaluate the stability of the formed rotaxane 3·4PF6, the rotaxane solution was heated 

from 10 to 80 oC and monitored by UV/Vis spectroscopy. The temperature-dependent UV/Vis 

spectra are shown in Figure 4.7 and revealed that the absorption intensity of the rotaxane was 

constant at ca. 0.55 during the heating process. The minor decrease in absorption can be ascribed 

to the faster exchange between the complexed and uncomplexed forms of DNP and CBPQT4+ 

resulting from the movement of CBPQT4+ along the chain as well as a lowering of the concentration 

due to expansion of the solvent. In contrast, the heating of a solution of the precursor 

pseudorotaxane consisting of DNP 1 and CBPQT4+ led to a strong decrease in absorption intensity 

upon heating indicating dethreading and loss of the pseudorotaxane structure. Thus, these 

comparative results indicate that rotaxane 3·4PF6 is stable at elevated temperatures and confirm 

that the DIBAC-based stopper is large enough to stabilize the rotaxane structure, even at elevated 

temperature. Furthermore, these results also confirmed the purity of the product and again 

suggested that no semi(pseudo)rotaxane is present. 

 

Figure 4.7 Temperature-dependent UV/Vis spectra of (a) rotaxane 3·4PF6 and (b) the corresponding pseudorotaxane 
of DNP 1 with CBPQT4+ in acetonitrile. 
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In addition to its thermal stability, the stability of the rotaxane 3·4PF6 was also studied towards a 

competing guest molecule, tetrathiafulvalene (TTF), which has a much higher association constant 

for complexation with CBPQT4+ than that of the dialkoxynaphthalene present in the rotaxane. 

Moreover, the host-guest complex formed by CBPQT4+ and TTF exhibits a distinct green color, which 

is readily distinguishable from the purple CBPQT4+-DNP complex and allows the straightforward 

evaluation of the competition experiments. Upon the addition of some drops of concentrated TTF 

solution to a solution of rotaxane 3·4PF6, no clear color change was observed; therefore, no 

exchange was possible, and the stability of the rotaxane was confirmed (Figure 4.8). The minor 

change in color is most likely caused by the partial charge-transfer interaction between TTF and the 

CBPQT4+ ring through the complexation of TTF to the outer part of the CBPQT4+ ring. In contrast, the 

addition of TTF to the solution of the pseudorotaxane immediately resulted in the formation of a 

green solution, which is characteristic of the formation of the CBPQT4+ complex with TTF.56 These 

competition experiments were also monitored by UV/Vis spectroscopy, which supported the visual 

observations. The UV/Vis spectra for the competition experiment with the rotaxane suggest that 

the naphthalene-CBPQT4+ charge-transfer absorption band, centered at λ≈ 520 nm, did not decrease 

upon the addition of TTF, although a new absorption band at λ ≈ 800 nm most likely results from 

the charge-transfer interaction between TTF and the outside of the CBPQT4+ ring or trace amount 

of free CBPQT4+ owing to the incomplete purification. For the pseudorotaxane, the absorption band 

of the CBPQT4+ complex with DNP disappeared upon the addition of TTF, and a new quite strong 

absorption band at λ = 800 nm was ascribed to the CBPQT4+ complex with TTF. These observations 

demonstrate that the rotaxane is stable against the competing guest and give further evidence that 

the DIBAC derivative is large enough to act as stopper for the preparation of rotaxanes. 

 

Figure 4.8 UV/Vis spectra of (a) rotaxane 3·4PF6 and (b) the corresponding pseudorotaxane of DNP 1 with CBPQT4+ in 
the absence and presence of an excess of TTF in acetone at 25oC. 

To investigate the broader scope of the use of the DIBAC for the construction of macrocyclic host-

based rotaxanes, it was evaluated for the preparation of a [2]rotaxane based on 1,5- 

dinaphtho[38]crown-10 (DNP38C10; see Scheme 4.2) as a macrocyclic host with a larger and more 

flexible cavity than that of CBPQT4+. Therefore, a dumbbell was prepared by reacting the 2,7-bis(2-

(2-[2-(2-azidoethoxy)ethoxy]ethoxy)ethyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone 
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(5) guest molecule with DIBAC 2. The ESI-MS results of the reaction solution (Figure 4.9) indicated 

the quantitative formation of the double-stoppered dumbbell, as only the dumbbell and trace 

amount of excess free DIBAC stopper molecules were detected. Additionally, a minor excess of 

DIBAC that would not interfere with the formation of the host-guest rotaxane. As depicted in Figure 

4.10, the exposure of this dumbbell solution to a concentrated DNP38C10 solution in CDCl3 revealed 

the immediate appearance of a pink color, which indicates the donor-acceptor host-guest 

complexation of DNP38C10 and the naphthodiimide unit. This observation was further confirmed 

by UV/Vis spectroscopy, which revealed the characteristic charge-transfer absorption band of the 

DNP38C10–5 complex centered at λ≈ 520 nm. These results suggest that the cavity size of 

DNP38C10 is significantly larger than that of the DIBAC derivative in the dumbbell, which no longer 

acts as an efficient stopper. A comparison of the 1H NMR spectrum of the bare dumbbell with that 

of the mixture with DNP38C10 revealed the expected partial upfield shift of the naphthodiimide 

proton resonances, similar to those for a mixture of DNP38C10 with 5 (Figure 4.11). These 1H NMR 

spectroscopy results confirm that the DIBAC derivative cannot be used to construct rotaxanes with 

this larger macrocyclic ring. 

 

Scheme 4.2 The general synthetic route to dumbbell 6; only one triazole isomer is shown for simplicity (the inset 
shows the structure of host macrocycle DNP38C10). 
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Figure 4.9 ESI-MS spectra of dumbbell molecule 6 (left: positive model, right: negative model) 

 

Figure 4.10 UV-Vis spectra of before and after the addition of concentrated DNP38C10 to dumbbell 6. The inset 
photographs showing the color change of the dumbbell solution before and after the addition of concentrated 

DNP38C10 solution. Recorded in CDCl3 at 20 oC. 
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Figure 4.11 1H NMR comparison of the thread molecule and macrocycle with the corresponding pseudorotaxane (top), 
and dumbbell molecule in the presence of macrocyclic host (down). 

4.3 Conclusions 

A DIBAC derivative was introduced as a new reactive stopper for the preparation of small 

[2]rotaxanes by combining the high reactivity of DIBAC towards azides through SPAAC with a large 

steric bulky stopper. Several methods were employed to assess the efficiency of the stopper for the 

construction of a [2]rotaxane based on CBPQT4+ as a macrocyclic host, and the results clearly 

demonstrated that we have developed a new, highly efficient approach for the development of 

rotaxanes. The DIBAC was demonstrated to be limited to small rigid hosts as it was insufficient as a 

stopper for a rotaxane based on the larger and more flexible DNP38C10 macrocyclic host. 

Nonetheless, this straightforward synthetic strategy provides the opportunity to prepare 
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mechanically interlocked molecules efficiently. Last but not least, the commercial availability of 

various DIBAC derivatives facilitates their use as stoppers for the construction of rotaxanes. 

4.4 Experimental Section 

4.4.1 General Methods 

All reagents were purchased from Sigma-Aldrich and used without further purification unless 

otherwise noted. 1,5-Bis[2-(2-(2-(azide)ethoxy)ethoxy)ethoxy]naphthalene (1),35, 57 

cyclobis(paraquat-p-phenylene),58 2,7-bis(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)benzo[lmn]-

[3,8]phenanthrol-line-1,3,6,8(2H,7H)-tetraone (5)59 , 1,5-dinaphtho[38]crown1060 and 5-(11,12-

didehydrodibenzo[b,f]-azocin-5(6H)-yl)-5-oxopentanoic acid (2)53 were prepared according to 

procedures described in literatures. Thin layer chromatography (TLC) plates were purchased from 

Macherey-Nagel (pre-coated TLC-plates SIL G-25 UV254). 

4.4.2 Instrumentation and Measurements 

Nuclear magnetic resonance (NMR) spectra were recorded in CD3CN, acetone-d6 or CDCl3 on a 

Bruker Advance 500 MHz/400 MHz spectrometer at 298 K or 325 K. Chemical shifts are reported as 

parts per million (ppm) downfield from the Me4Si resonance as internal standard for both 1H and 
13C NMR Spectroscopies. Spectra were all processed using TOPSPIN 3.0. 

UV-Vis measurements were carried out on a Varian Cary 100 Bio UV-Visible spectrophotometer 

equipped with a 12 cell Peltier temperature controller. 

Matrix assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS) was 

performed on an Applied Biosystems Voyager De STR MALDI-TOF mass spectrometer equipped with 

2 m linear and 3 m reflector flight tubes, and a 355 nm Blue Lion Biotech Marathon solid state laser 

(3.5 ns pulse). All mass spectra were obtained in reflector mode with an accelerating potential of 20 

kV in positive ion mode and delay of 700 ns. 200 single shot acquisitions were summed to give the 

spectra and the data were analyzed using Data Explorer software. Samples were prepared by 

dissolving the matrix 2-(4-Hydroxyphenylazo)benzoic acid (HABA) in THF (20 mg mL-1), mixing with 

the rotaxane solution (2 mg·mL-1) and sodium iodide in THF that was used as cationizing agent. 

Electrospray ionization (ESI) mass spectra were recorded on a quadrupole ion trap LC mass 

spectrometer (Thermo Finnigan MAT LCQ), equipped with electrospray ionization. Acetonitrile was 

used as mobile phase. The data were collected in both positive and negative mode at 250 oC.  

The rotaxane was analyzed by size-exclusion chromatography (HFIP-SEC) using an Agilent HPLC that 

was equipped with a 1260 refractive index detector (RID) and a UV (520 nm) detector. The eluent 

was hexafluoro-2-propanol (HFIP) containing 20 mM sodium trifluoroacetate at a flow rate of 0.426 

mL·min-1. PMMA standards were used to calculate the molar mass values. The column set consisted 

of two PSS PEG 100 Å gel 5 μm mixed D column and a similar guard column (Agilent) at 35 oC in 
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series. The chromatograms were analyzed using the Agilent Chemstation software with the GPC 

module. 

4.4.3 Synthesis and characterization 

4.4.3.1 Dumbbell molecule 4:  

Diazide DNP derivative 1 (0.93 mg, 2.4 μmol), DIBAC 2 (1.61 mg, 5.0 μmol) were dissolved in CH3CN 

(4 mL) at 0 oC. The reaction solution was stirred at 0 oC for 2 days. Then the reaction solution was 

measured by ESI-MS without further purification. 1H NMR (500 MHz, Acetone-d6): δ 7.96-7.91(m, 

2H, ph from DIBAC), 7.88-7.81(d, 2H, DNP p-O), 7.61-7.55 (m, 2H, DNP, m-O), 6.99-6.87 (m, DNP, 2H, 

o-O), 7.77-7.70, 7.50-7.44, 7.29-7.13 (m, 14H, ph from DIBAC), 6.14-6.00 (m, 4H, ph-CH2-N)  4.78-

4.56 (m, 4H, CH2-O-DNP), 4.10-3.95 (m, 4H, OCH2CH2-O-DNP), 4.35-4.21 (m, 4H, OCH2CH2-triazole), 

3.95-3.82 (m, 4H, OCH2CH2-triazole), 2.16-2.10 (m, 4H, CH2C(O)N), 1.95-1.75 (m, 4H, CH2C(O)OH), 

1.68-1.56 (m, 4H, CH2CH2C(O)OH). 13C NMR (125 MHz, Acetone-d6): δ174.0, 170.6, 161,7, 155.0, 

142.9, 141.4, 137.0, 135.2, 132.1, 130.8, 130.1, 128.9, 127.7, 126.1, 114.8, 106.4, 69.3, 55.3, 33.2, 

20.9. ESI-MS (m/z), calculated for C58H56N8O10 [M+2H]2+ 513.2, measured 513.3; [M+H]+ 1025.4, 

measured 1025.4.  

4.4.3.2 [2]rotaxane 3·4PF6:  

Diazide DNP derivative 1 (9.5 mg, 0.025 mmol), CBPQT·4PF6 (35.21 mg, 0.032 mmol) was dissolved 

in CH3CN (25 mL) at 0 oC yielding a pink-purple solution. A solution of DIBAC 2 (16.5 mg, 0.052 mmol) 

in 7 mL acetonitrile was added after the pink-purple solution was stirred 0.5 h. The reaction solution 

was stirred at 0 oC for 48 h, and then acetonitrile was removed under reduced pressure to give a 

purple solid. The purple solid was washed by CH2Cl2 to remove trace amount of free stopper 2. Then, 

the crude product was dissolved in CH3CN and then purified by preparative TLC using 1% w/v NH4PF6 

solution in CH3CN as mobile phase. The product was obtained by washing the silica gel with excess 

of eluent solution followed by concentrating the CH3CN solution under reduced pressure and 

precipitation in cold water. The pure rotaxane 3·4PF6 was isolated as purple solid. (27 mg, 61%): 1H 

NMR (500 MHz, CD3CN, 325 K): δ 9.21-8.65 (m, 8H, α-CBPQT4+), 8.01 (s, 8H, β-CBPQT4+), 7.83 (m, 8H, 

aryl-CBPQT4+), 7.60-7.06 (m, 16H, aryl-DIBAC), 6.34-6.19 (m, 2H, DNP o-O), 6.08-5.96 (m, 8H,  CH2-

CBPQT4+), 5.79-5.65 (m, 2H, DNP m-O), 4.985 (br s, 4H, CH2-N in DIBAC), 4.90-4.60 (m, 4H, alkyl-

DNP), 4.59-4.38 (m, 4H, alkyl-DNP), 4.29-4.10 (m, 4H, alkyl-DNP), 4.09-3.94 (m, 4H, alkyl-DNP), 3.67-

3.51 (br s, 4H, alkyl-DIBAC),  3.51-3.37 (br s, 4H, alkyl-DIBAC),  2.58-2.44 (m, 2H, DNP p-O), 1.70-1.50 

(br s, 4H, alkyl-DIBAC); MS (MALDI-TOF): found m/z 1547.1 [M-4PF6
-+3e]+, 1691.8 [M-3PF6

-+2e]+, 

1836.8 [M-2PF6
-+e]+. 

4.4.3.3 Dumbbell molecule 6:  

2,7-Bis(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)-ethyl)benzo[lmn][3,8]phenanthroline1,3,6,8(2H,7-

H)tetraone 5 (1.3 mg, 1.9 μmol), DIBAC 2 (1.27 mg, 4.0 μmol) were dissolved in CH3CN (4 mL) at 0 
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oC. The reaction solution was stirred at 0 oC for 2 days. Then the reaction solution was measured by 

ESI-MS (Figure 4.9) without further purification. 
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Chapter 5 General conclusions and outlook  

Supramolecular chemistry has emerged as a significant tool in contemporary polymer science and 

nanoscience. The employment of supramolecular interactions such as hydrogen bonding, metal-

ligand interactions, and host-guest interactions, has afforded a wide range of polymeric materials 

or molecular machines with outstanding dynamic properties and promising applications in material 

science and nanotechnology. The advanced organic synthesis and polymerization techniques play 

an important role in polymer science and nanoscience as well, which provide the opportunities for 

designing and preparing complex supramolecular structures. The combination of the two concepts 

leading to supramolecular interaction driven polymeric materials and mechanically interlocked 

molecules is a greatly important, fundamental science research topic providing a basis for the 

development of next generation advanced materials as well as providing deeper understanding of 

complex dynamic systems. 

In this thesis, different non-covalent interactions were employed in polymeric materials and 

mechanically interlocked molecules. Chapter 1 provided a general introduction to the concepts that 

are used and studied in this thesis. Recent developments in the focus research areas, namely 

supramolecular star polymers, supramolecular hydrogels and rotaxanes were discussed as well. 

Chapter 2 described a novel strategy to construct supramolecular miktoarm star polymers through 

metal-ligand interactions between zinc porphyrin with pyridine. To achieve that goal, two building 

blocks, namely a four-arm star polymer with zinc porphyrin as core and a pyridine end-

functionalized polymer, were prepared. The formation of the supramolecular mikto-arm star 

polymer was investigated by mixing these two components in water and was confirmed via a 

combination of UV-vis spectrophotometric titration, ITC and DOSY NMR spectroscopy. The results 

indicated that the strength of the metal-ligand interaction of zinc porphyrin with pyridine is not 

affected by the presence of the polymers and is strong enough as driving forces to form the 

supramolecular star polymer. These results provide future opportunities to prepare dynamic mikto-

arm star polymers with different binding strength and dynamics by simply changing the metal ion 

of the metalloporphyrin. Furthermore, more complex dynamic macromolecular architectures can 

be prepared in future work by introducing polymers with multiple pyridine groups or alternative 

metalloporphyrin that bind pyridine on both sides leading to larger assemblies. From the point of 

view of applications, the assembled structures from multiple pyridine groups functionalized 

polymers and metalloporphyrin based polymers which bind pyridine on both sides lead to the 

formation of dynamic supramolecular hydrogels. The versatile properties owing to the tunable 

branched polymers make them good candidates as viscosity modifiers. 
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The graphical representation of the formation of a supramolecular miktoarm star polymer in Chapter 2 

Anthracene has attracted increasing attention in recent years, because it can form ternary inclusion 

complexes with large macrocyclic hosts and can undergo a reversible photodimerization reaction 

upon UV irradiation. Taking advantage of both these properties of anthracene, Chapter 3 described 

novel hydrogels in which the crosslinks could undergo a reversible transformation from 

supramolecular to covalent upon UV irradiation. The supramolecular hydrogel is formed based on 

the host-guest interaction of anthracene moieties and macrocyclic host to form ternary complexes 

as supramolecular crosslinks. The further photodimerization of two anthracene molecules inside 

the host cavity converted these supramolecular crosslinked hydrogels to covalent crosslinked 

hydrogels. Two kinds of anthracene functionalized poly(N-acryloylmorpholine) polymers were 

synthesized by post-polymerization modification of a copolymer containing N-acryloylmorpholine 

and an activated pentafluorophenyl ester comonomer. The main difference between the two 

polymers is that one polymer had a neutral side anthracene side chain while the other contained a 

positive charge in the linker to couple the anthracene as the cationic charge has been reported to 

enhance the binding constant for association with cucurbit[n]uril (CB[n]) as macrocyclic host. 

Importantly, attempts to prepare anthracene functionalized copolymers by copolymerization of an 

anthracene functionalized monomer failed since it acts as radical trap. The formation of 

supramolecular hydrogels and its conversion to a covalent hydrogel were investigated. The polymer 

with the neutral anthracene side chain was found to form supramolecular hydrogels with gamma-

cyclodextrin only at high polymer concentration (15 wt%) while the polymer with the charged 

anthracene side chain formed supramolecular hydrogels with CB[8] already at 5 wt% representing 

the difference in association constants. Furthermore, it was demonstrated that the latter hydrogel 

underwent a reversible transformation between supramolecular to covalently linked hydrogels 

under photoirradiation providing control over the dynamics, reshapability and mechanical 

properties of the hydrogel. The switchable hydrogel provides potential applications in reused 

materials of which the complex shapes can be easily shaped and processed by transforming from 

the dynamic precursors, and this kind of materials can be recycled or reshaped by going back to the 

dynamic precursors. 
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The graphical representation of the overview of Chapter 3. Only the best performing anthracene hydrogel is shown. 

Apart from polymeric materials, the non-covalent interactions are also employed in nanoscience, 

more specifically for the formation of mechanically interlocked molecules that can serve as basis for 

molecular motors and machines. In Chapter 4, a novel reactive chain stopper was introduced for 

the preparation of [2]rotaxanes consisting of CBPQT4+ and DNP driven by donor-acceptor 

interactions. The bulky dibenzocyclooctyne stopper bearing strained alkyne could be reacted with 

an azido functionalized pseudo-rotaxane under mild conditions without catalyst. The efficiency of 

the dibenzocyclooctyne stopper for construction of CBPQT4+-based [2]rotaxane by strain promoted 

azide-alkyne cycloaddition was assessed. The results demonstrated that the straightforward 

synthetic strategy provides the opportunity to prepare mechanically interlocked molecules 

efficiently, albeit being limited to rather small and rigid macrocyclic hosts as a more flexible crown-

ether type ring could slide over the chain stopper. Moreover, the carboxyl group present on the 

stopper could be used for further functionalization resulting in more complex mechanically 

interlocked molecules, or to incorporate in larger polymeric structures. 

 

The graphical representation of the double stoppering of a pseudo-rotaxane to form a [2]rotaxane in Chapter 4. 
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Supramoleculaire chemie wordt in de hedendaagse polymeerchemie en nanowetenschappen als 

een significant instrument gebruikt. Het gebruik van supramoleculaire interacties zoals 

waterstofbruggen, metaal-ligand interacties of gastheer-gast interacties, resulteert in een brede 

waaier van polymeermaterialen of moleculaire machines met opmerkelijke eigenschappen en 

veelbelovende toepassingsmogelijkheden in de materiaalwetenschappen en nanotechnologie. 

Bovendien spelen ook de geavanceerde organische synthese en polymerisatie technieken een 

belangrijke rol in de polymeerchemie en nanowetenschappen, waardoor complexe 

supramoleculaire structuren gecreëerd kunnen worden. De combinatie van beide concepten die 

leiden tot supramoleculaire polymeermaterialen en mechanisch verweven moleculen, is een 

uitermate belangrijk onderzoeksonderwerp voor de fundamentele wetenschap en als basis voor 

toekomstige volgende generatie geavanceerde materialen. 

In deze thesis worden verschillende niet-covalente interacties gebruikt voor de synthese van 

polymeermaterialen en mechanisch verweven moleculen. Hoofdstuk 1 geeft een algemene 

introductie over de gebruikte concepten in deze thesis. Verder worden ook de huidige 

ontwikkelingen in de vermelde onderzoeksvelden, supramoleculaire stervormige polymeren, 

hydrogelen en rotaxanen besproken. 

Hoofdstuk 2 beschrijft een vernieuwende strategie om supramoleculaire miktoarm ster polymeren 

te synthetiseren via metaal-ligand interacties tussen zink porfyrine en pyridine. Om dit doel te 

bereiken werden eerst de twee bouwstenen gesynthetiseerd, namelijk een vierarmig ster polymeer 

met een zink porfyrine kern en een polymeer met pyridine als eindgroep. Het zink porfyrine ster 

polymeer werd gevormd door reactie tussen tetrakis(p-hydroxyfenyl)porfyrine en p-tolueen 

sulfonyl-PEGME, gevolgd door insertie van het zink ion in de porfyrine kern. Het polymeer met 

pyridine als eindgroep werd bereid via RAFT polymerisatie en opeenvolgende aminolyse en Michael 

additie reactie van pyridine acrylaat. Hierna werd de vorming van het supramoleculaire ster 

polymeer onderzocht in water en bevestigd met behulp van UV-Vis spectrofotometrische titratie, 

ITC en DOSY NMR spectroscopie. De resultaten lieten zien dat de sterkte van de metaal-ligand 

interactie gebaseerd op zink porfyrine met pyridine niet beïnvloed wordt door de polymeerketens 

en dat deze sterk genoeg is om een supramoleculair ster polymeer te vormen. Dit onderzoek creëert 

de mogelijkheid om in vervolgonderzoek de sterkte en dynamiek van het ster polymeer te variëren 

door eenoudige wisseling van het metaal ion. Daarnaast kunnen meer complexe dynamische 

macromoleculaire structuren gevormd worden door koppeling van meerdere pyridine groepen aan 

een polymeer. In acht nemend dat de supramoleculaire interactie en de architectuur van het 

thermoresponsief polymeer reversibel ontbonden kunnen worden door gebruik te maken van 

verschillende stimuli, creëert dit werk de basis tot een nieuwe familie van responsieve materialen 

die het toepassingsgebied van de conventionele miktoarm ster polymeren verbreedt. 
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Onderzoek naar anthracenen ondervindt de laatste jaren steeds meer interesse door het feit dat ze 

ternaire inclusie complexen kunnen vormen met grote macrocylische gastheer moleculen, en dat ze 

een reversibele fotodimerisatie reactie kunnen ondergaan door middel van UV irradiatie. In 

Hoofdstuk 3 maken we gebruik van allebei deze voordelen van anthraceen door het ontwikkelen 

van hydrogelen die een omkeerbare transformatie kunnen ondergaan van supramoleculaire 

hydrogelen naar covalente hydrogelen. De supramoleculaire hydrogel is gebaseerd op ternaire 

gastheer-gast interacties tussen twee antraceen groepen en een macrocyclische gastheer 

resulterend in supramoleculaire crosslinks. De verdere fotodimerisatie van twee antraceen 

moleculen in de gastheer holte resulteert in omzetting van de supramoleculaire crosslinks naar 

covalente crosslinks. Twee soorten anthraceen-gefunctionaliseerd poly(N-acryloylmorfoline) 

werden gesynthetiseerd via een post-polymerisatie modificatie van een copolymeer bestaande uit 

N-acryloylmorfoline en een geactiveerd ester co-monomeer. Het belangrijkste verschil tussen de 

twee polymeren is dat de ene een neutrale anthraceen zijgroep heeft en de andere een anthraceen 

gekoppeld middeels een kationische linker, aangezien het bekend is dat de interactiesterkte van 

kationische anthracenen met cucurbit[n]uril (CB[n])veel sterker is dan met neutrale anthracenen. 

Het is belangrijk te vermelden dat pogingen om anthraceen gefunctionaliseerde copolymeren te 

maken middels copolymerisatie van een anthraceen-functioneel monomeer niet mogelijk is 

aangezien het optreedt als radicalaire val. Vervolgens werden de vorming van de supramoleculaire 

hydrogel en de omzetting naar de covalente hydrogel onderzocht. Het polymeer met de neutrale 

anthraceen zijketens vormde alleen supramoleculaire hydrogelen met gamma-cyclodextrine bij 

hoge polymeerconcentraties (15 wt%), terwijl het polymeer met de kationische anthraceen 

zijgroepen hydrogelen vormde met CB[8] bij 5 wt%, in overeenstemming met de hogere 

associatieconstante. Verder is het aangetoond dat de laatste hydrogel een reversibele transitie 

onderging tussen een supramoleculaire hydrogel en een covalente hydrogel onder fotobestraling 

wat controle biedt over de dynamiek, vormgeving en mechanische eigenschappen van de hydrogel. 

Naast polymeermaterialen worden niet-covalente interacties ook gebruikt in de 

nanowetenschappen, meer specifiek voor de vorming can mechanisch verstrengelde moleculen die 

als basis kunnen dienen voor moleculaire motoren en machines. In Hoofdstuk 4 werd een nieuwe 

stopper geïntroduceerd voor de synthese van een [2]rotaxaan bestaande uit CBPQT4+ en DNP, 

gedreven door donor-acceptor gastheer-gast interacties. De relatief grote dibenzocyclooctyn 

stopper met gespannen alkyn functionaliteit reageerde met een azido-gefunctionaliseerde gast in 

een pseudorotaxaan onder milde condities zonder katalysator. De efficiëntie van de stopper voor 

de opbouw van een CBPQT4+-gebaseerde [2]rotaxaan werd bepaald, waaruit bleek dat deze 

eenvoudige synthese strategie een opportuniteit biedt voor de efficiënte bereiding van mechanisch 

verstrengelde moleculen. Echter, deze strategie werkt alleen met vrij kleine en rigide macrocylische 

structuren aangezien een grotere kroonether gebaseerde macrocylclische gastheer over de stopper 

heen kon schuiven. In toekomstig onderzoek kan de carboxyl-groep op de stopper gebruikt worden 

voor verdere functionalisatie, wat resulteert in meer complexe mechanisch verstrengelde 

moleculen. 
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