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Baeyens L, Lemper M, Staels W, De Groef S, De Leu N, Heremans Y, German
MS, Heimberg H. (Re)generating Human Beta Cells: Status, Pitfalls, and Perspec-
tives. Physiol Rev 98: 1143–1167, 2018. Published May 2, 2018; doi:10.1152/
physrev.00034.2016.—Diabetes mellitus results from disturbed glucose homeo-
stasis due to an absolute (type 1) or relative (type 2) deficiency of insulin, a peptide

hormone almost exclusively produced by the beta cells of the endocrine pancreas in a tightly
regulated manner. Current therapy only delays disease progression through insulin injection
and/or oral medications that increase insulin secretion or sensitivity, decrease hepatic glucose
production, or promote glucosuria. These drugs have turned diabetes into a chronic disease as
they do not solve the underlying beta cell defects or entirely prevent the long-term complications
of hyperglycemia. Beta cell replacement through islet transplantation is a more physiological
therapeutic alternative but is severely hampered by donor shortage and immune rejection. A
curative strategy should combine newer approaches to immunomodulation with beta cell replace-
ment. Success of this approach depends on the development of practical methods for generating
beta cells, either in vitro or in situ through beta cell replication or beta cell differentiation. This
review provides an overview of human beta cell generation.
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I. KEY POINTS
• Current knowledge on human endocrine pan-

creas development, gained from scarce histopa-
thology samples, indicates some analogy with ro-
dents.

• Human beta cells are long-lived with limited ex-
pansion potential. Nevertheless, the adult human
beta cell mass retains plasticity to adapt to chang-
ing metabolic needs.

• High-content screening has identified several
novel adult beta cell mitogens. However, a lack of
cell specificity warrants caution for clinical trans-
lation.

• Breakthroughs in directed differentiation of hu-
man embryonic stem/induced pluripotent stem
cells create hope for cell therapy in diabetes.
Overcoming the risk for teratoma formation and

immune rejection will determine its true clinical
potential.

• Multiple approaches, including transdifferentia-
tion of adult human non-beta cells, harbor poten-
tial for clinical translation as an alternative to
stem cell-based therapy. A particularly attractive
strategy would be in vivo reprogramming of hu-
man acinar cells.

II. INTRODUCTION

Diabetes mellitus is a chronic metabolic disorder character-
ized by elevated blood glucose levels and increased risk of
micro- and macrovascular complications. Currently 415
million people have diabetes globally, and that number is
expected to rise to 642 million by 2040 (116a). Several
subtypes of diabetes can be clinically distinguished, includ-
ing polygenic/multifactorial, monogenic, and secondary
forms (165). The two most common forms of diabetes, type
1 (T1DM) and type 2 (T2DM) diabetes, are polygenic and
multifactorial. A large number of rarer monogenic and sec-
ondary varieties together explain roughly 10% of diabetes
(79, 246). Gestational diabetes [GDM, prevalence of
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around 10% of pregnancies (19, 138)], defined as maternal
diabetes commencing during pregnancy, represents a tran-
sient form of polygenic and multifactorial diabetes caused
by situational, relative insulin deficiency.

T1DM is characterized by an absolute shortage of circulat-
ing insulin due to progressive autoimmune destruction of
the insulin-producing pancreatic beta cells (3). In contrast,
T2DM results from a relative shortage of circulating insulin
due to 1) failure of the beta cell mass to adapt to rising
metabolic demands, most often caused by obesity-related
peripheral insulin resistance; and 2) increased beta cell
death and dysfunction (41, 109, 183, 278). Reduced in-
sulin signaling (whether from insulin resistance or beta
cell failure), results in decreased tissue uptake of glucose
and increased glucose release by the liver and kidney. The
resulting chronic hyperglycemia in turn damages blood
vessels and nerves, culminating in multiorgan damage
(83, 108).

Current pharmacological therapy for diabetes consists of
exogenous insulin injections and/or oral glucose-lowering
medications. None of these therapies directly addresses the
underlying beta cell deficit in most patients with diabetes.
Beta cell replacement therapies could effectively restore and
protect the functional beta cell mass. Transplantation of
cadaveric human donor islets represents one approach to
beta cell replacement.

The landmark Edmonton protocol overcame prior poor
success rates by using improved islet isolation techniques,
fresh islet preparations, and a steroid-free immunosuppres-
sive regimen to significantly improve transplantation out-
comes (220, 233, 234). This study pioneered a series of
reproducibility trials and improved protocols worldwide,
leading to insulin-independence durations of at least 5 yr in
50% of engrafted patients (20). Nevertheless, shortage of
donor islets severely limits more widespread clinical use and
has lowered the goal from achieving insulin independence
to reducing glycemic variability and elimination of hypo-
glycemia unawareness (107).

Therefore, the need for alternative supply of human islet
cells is obvious. Insulin-producing cells can be generated
by replication of preexisting beta cells and/or by (trans)
differentiation of non-beta cells (38, 125). Since rodent
models remain the most prevalent and accessible tool for
preclinical research, insights obtained from rodent pan-
creas development have guided the design of human beta
cell generation protocols. Although some analogy exists
between human and rodent pancreas development and
function, notable interspecies differences remain. Under-
standing the pathways that control human beta cell gen-
eration will be critical to devising a successful beta cell
therapy for diabetes.

III. HUMAN PANCREAS DEVELOPMENT
AND POSTNATAL HOMEOSTASIS

A. Human Pancreas Development

1. Specification and early differentiation of
multipotent pancreatic progenitor cells

Similar to rodent, the human embryonic pancreas develops
from the primitive gut tube early in development. The time-
line of human development is defined according to the Car-
negie system (Carnegie Stage, CS), based on age estimates
until 60 days post conception (dpc) when recognizable
human features become apparent and nomenclature is
switched from embryo to fetus (185). The human embry-
onic pancreas evolves as one dorsal and two ventral buds
from the primitive foregut at 30–33 dpc (CS12–13) (118,
119, 198). After regression of the left ventral bud, the right
ventral bud fuses with the dorsal bud around 58 dpc (CS22–
23) (169, 198, 200) (FIGURE 1).

Due to limited access to relevant early developmental hu-
man pancreatic tissue, insights into the earliest developmen-
tal stages of gut tube regionalization and pancreas specifi-
cation rely almost solely on model organisms. Prior to bud-
ding (25–27 dpc, CS10) and similar to pancreas
development in chick (104, 136) and mouse (135), the no-
tochord directly contacts the dorsal prepancreatic endo-
derm, leading to regional repression of sonic hedgehog
(SHH) (118). This notochord-endoderm interaction is in-
terrupted upon fusion of the paired dorsal aortas around
29–31 dpc (CS11) (FIGURE 1). In contrast to mouse where
the developmental transcription factor pancreatic and duo-
denal homeobox 1 (PDX1) can be detected at the earliest
stage of pancreas development (E8.0) when endoderm is
still in contact with the notochord (85, 124, 186, 251),
PDX1 does not appear in human pancreas until 29–31 dpc
(CS12) when the notochord-endoderm interaction is dis-
rupted (118, 240).

At 30–33 dpc (CS13), the stratified epithelium of the devel-
oping pancreatic expresses the same early pancreatic tran-
scription factors–PDX1, pancreas specific transcription
factor 1A (PTF1A), forkhead box A2 (FOXA2), GATA
binding protein 4 (GATA4), Nirenberg and Kim homeobox
factor 6.1 (NKX6.1), and sex determining region Y-box 9
(SOX9)–that define the multipotent pancreatic progenitor
cells (MPPCs) that give rise to all pancreatic cell lineages in
the developing murine pancreas (FIGURE 2) (57, 118, 160,
198). In analogy to murine development, mesenchyme-de-
rived fibroblast growth factor (FGF)7 and FGF10 amplify
the MPPC pool by stimulating proliferation of PDX1� cy-
tokeratin� MPPCs, resulting in substantial organ growth
between 33 and 45 dpc (CS14–18) (FIGURE 1) (25, 27, 282).
Expression of genes involved in WNT signaling including
numerous noncanonical WNT regulators (45) increases in
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MPPCs during 37–45 dpc (CS16–18), before significant
acinar and endocrine cell differentiation. From 37 to 40 dpc
(CS16) onwards, active growth and branching results in a
lobular epithelium (118, 200). Starting around 45–47 dpc
(CS19), the growing epithelial branches begin to organize
into distinct trunk and tip domains (FIGURE 1) (118). The
progenitor cells in the tip domain give rise to acinar cells
while the trunk progenitors yield ductal and endocrine cells.
At 14 wk post conception (wpc), tip-trunk segregation is
complete and trunk cells lose GATA4 expression while tip
cells cease SOX9 expression (118).

Notably, the succession of appearance of endocrine cells in
the early developing human pancreas differs from mouse.
Rather than the glucagon� that appear first in the mouse,
insulin� cells appear first in the developing human pan-
creas, around 49–52 dpc (CS21) (FIGURE 1), 3 wk after
budding, followed by glucagon� and somatostatin� cells at
8.5 wpc and by pancreatic polypeptide� and ghrelin� cells
at 9 wpc (118, 160, 198, 214). At mid-gestation (14–16
wpc), a near 1:1 ratio between insulin� and glucagon� cells
is observed that increases with time to approximate 1.5:1
postnatally (120). While 20–40% of the early endocrine
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FIGURE 1. Schematic representation of human pancreas development. Top panel: human pancreas devel-
opment is shown in relation to the Carnegie classification system (CS; numbers 9 to 23). Embryos are drawn
proportional to the UNSW Human Embryo Resource. Middle panel: pancreas morphogenesis is not depicted
proportionally but is intended to frame the key developmental steps (bottom panel) in the development of the
organ. The human embryonic pancreas evolves as one dorsal and two ventral buds from the primitive foregut
(yellow tube) at CS12–13. Prior to budding, the dorsal prepancreatic endoderm is in contact with the
notochord (red line). After regression of the left ventral bud, the right ventral bud fuses with the dorsal bud
around CS22–23. Bottom panel: key developmental steps include branching morphogenesis (green, tip cells;
orange, trunk cells) (A), the first appearance of NEUROG3� cells (pink) (B), formation of the initial hormone�

cells (green) (C), and establishment of lineage-committed monohormonal endocrine cells (green, red, brown,
purple) and formation of the islet cytoarchitecture (D).
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cells coexpressed insulin and glucagon between 9 and 16
wpc, this fraction declines by 21 wpc such that the vast
majority of fetal endocrine cells is monohormonal (120,
214). Notably, ghrelin does not colocalize with insulin or
glucagon, suggesting a separate ontology of epsilon cells
(214). While clusters of fetal beta cells are present by 10
wpc (118), true islet-like structures only appear from 12
wpc onward (198), reaching a maximum average size at
14 wpc (169).

Rodent studies have demonstrated the importance of the
vasculature in pancreatic endocrine development (70, 146,
287; reviewed in Ref. 272). In human pancreas, endothelial

cells localize near small beta cell clusters at 10 wpc (198)
and, by 14 wpc, vascular structures invade the fetal islets
(169, 198). Beyond this observation, more work is needed
to fully understand the role of endothelial cell differentia-
tion and blood vessel formation in the developing human
pancreas.

2. Proliferation of MPPCs and early endocrine cells

Reported cell proliferation rates in pancreas range widely,
at least partially due to the use of different proliferation
markers (191). As the human fetal pancreas grows, prolif-
eration of the epithelial cells drops significantly, with high-
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FIGURE 2. Overview of transcription factor expression during human beta cell development. Schematic
overview of the signaling cascade governing human pancreas development including currently known tran-
scription factors responsible for cell type fate determination. Transcription factors depicted in green are
associated with the development of monogenic diabetes; in red are the transcription factors known to cause
MODY.
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est rates seen around the expanding periphery of the organ
while endocrine differentiation from progenitor cells occurs
more centrally (119, 198). Both exocrine and endocrine cell
replication rates decrease between 8 and 34 wpc (169).
However, a transient burst of proliferation occurs neona-
tally in differentiated duct and beta cells (95).

As noted above, mesenchymal signals, especially Fgf7 (74)
and Fgf10 (25), drive the expansion of the MPPCs in ro-
dents. Human pancreatic mesenchyme also expresses both
growth factors, their levels parallel MPPC expansion (22),
and they activate the proliferation of human pancreatic ep-
ithelial cells in vitro (282). Together these data suggest a
similar role for FGF7 and FGF10 in both human and rodent
MMPC growth.

A careful analysis of the transcriptional regulatory program
in human MPPCs revealed a role for noncanonical WNT
regulatory genes, similar to developing mouse pancreas,
and the Hippo signaling effector TEAD1 and its coactivator
YAP in human MPPC expansion, mediated in part through
the transcription factor SOX9 (45), which regulates MPPC
growth in mouse and human (119, 197, 232). In addition,
the WNT agonist R-spondin1 (RSPO1), FGF10 and epider-
mal growth factor (EGF) enhance human MPPC expansion
in long-term cultures (27). Although Notch and retinoic
acid signaling also increase mouse MPPC proliferation (re-
viewed in Refs. 126, 192), their role in human pancreas
development is unknown. Taken together, despite evidence
for the involvement of specific extracellular signals in hu-
man MMPC expansion, a comprehensive picture is still
lacking.

3. Monogenic diabetes and transcription factor
hierarchy in human pancreas development

The spatiotemporal expression pattern of transcription fac-
tors in the developing human pancreas taken together with
the discovery of monogenic forms of diabetes caused by
mutations in many of the same transcription factors con-
firm their importance in human pancreatic development
(reviewed in Ref. 57). The hierarchy of transcription factors
guiding human pancreas development has been partially
disclosed by genetic studies of permanent neonatal diabetes
(PNDM). Genes that cause pancreas agenesis and therefore
likely contribute to early pancreas specification in human
include PDX1 (251), PTF1A (230, 276), and GATA6 (49,
63, 147). Defects in endocrine cell development and mani-
festation of PNDM or MODY are linked to mutations in
GATA4 (236), SOX9 (197), RFX6 (242), GLIS3 (66, 231),
MNX1 (28, 81), NEUROD1 (216), and NKX2.2 (81). In
addition, heterozygous loss-of-function mutations of PDX1
and HNF1b are associated with MODY4 (250) and
MODY5 (69, 286), respectively.

NEUROG3, a basic helix-loop-helix transcription factor
that acts as the initiating pro-endocrine transcription factor

in rodents (7, 94, 229), is transiently expressed in scattered
epithelial cells during human pancreas development around
8 wpc, concomitant with the appearance of the first hor-
mone-expressing cells (FIGURE 2) (118). NEUROG3 ex-
pression in the developing pancreas peaks between 10
and 14 wpc, declines after 18 wpc on (57, 118, 222), and
disappears around 35– 41 wpc (222). This wave of NEU-
ROG3 expression overlaps with the appearance of differ-
entiated endocrine cells in the pancreas (120, 222, 225).
In addition, NEUROG3�/PDX1�, NEUROG3�/INS�,
and NEUROG3�/GLUC� cells can be detected briefly
during these early stages of development (44, 160). How-
ever, in contrast to the biphasic Neurog3 expression pat-
tern that parallels the first and second transition of endo-
crine differentiation in murine pancreatic development
(271), only a single phase of NEUROG3 expression is
observed in the developing human pancreas (271). Inter-
estingly, the lack of an early phase of NEUROG3 expres-
sion and of a separate primary transition of endocrine dif-
ferentiation may result from differences in the vascular sig-
nals: in human development, the paired dorsal aortas do not
have early contact with the dorsal endoderm as they do in
mouse embryos, underscoring the potential importance of
vascular-derived signals in development of the human en-
docrine pancreas (118).

Based on the hierarchy of transcription factors during hu-
man pancreas development, the success of endocrine (trans)
differentiation protocols can be gauged as follows (118): 1)
foregut endoderm should express FOXA2 and SOX17
(dorsal endoderm) or SHH (ventral endoderm); 2) endo-
derm fated to become pancreas should express PDX1,
FOXA2, GATA4, NKX6.1, and SOX9; 3) trunk progeni-
tors that give rise to ductal and endocrine cells should ex-
press PDX1, FOXA2, SOX9, and NKX6.1; and 4) transient
expression of NEUROG3 to initiate endocrine differentia-
tion should correlate with loss of SOX9 and with gain of
NKX2.2 and ISL1 to define fetal beta cells (118). Additional
transcription factors such as PAX6, RFX6, PTF1A,
HNF1B, GATA6, ONECUT1, and MNX1 should be added
to this checklist since clinical case reports have demon-
strated their necessity for human islet development (81).

4. A ductal niche for MPPCs

Because the MPPCs form the branching, ductlike epithe-
lium where NEUROG3� cells and differentiated endocrine
cells first appear in the developing human pancreas, duct
cells have been proposed as endocrine progenitors (32). In
addition, during early fetal human development, all pancre-
atic epithelial cells express the ductal marker keratin 19
(KRT19) while some single endocrine cells and small islet
cell clusters express both duct and endocrine markers (32,
33, 169). Many transcription factors that are confined to
the postnatal ductal compartment are also expressed in
MPPCs during development. Furthermore, lineage tracings
using “duct-specific” promoters during early mouse pan-
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creas development suggest a ductal origin of endocrine cells
(86, 140, 141, 244). However, lineage tracing past the
MPPC stage, when terminal differentiation is established,
argues against a duct cell origin of new endocrine cells after
that time (86, 140, 141, 244). Moreover, the proximity of
two cells types cannot distinguish an important anatomical
niche from an actual lineage relationship in which one cell
type differentiates into another. Location alone is never
sufficient; formal proof should be obtained from carefully
designed lineage tracing experiments.

B. Postnatal Human Beta Cell Homeostasis

In humans, the adult beta cell mass roughly constitutes 2%
of the total pancreas mass, corresponding to 1–2 g of tissue
(278). Under normal conditions, beta cell turnover is tightly
regulated. Beta cell expansion in human mainly occurs dur-
ing the perinatal period, i.e., 2 mo before and after birth,
when ~3% of the insulin� cells express Ki67, a marker of
active cell cycling (131, 168, 169). This expansion decreases
rapidly with age such that, by adulthood and under normal
physiological conditions, human beta cells are mostly qui-
escent with replication rates below 0.1% (194). Consistent
with a very low rate of replacement, human beta cells have
a long half-life (54) and rarely undergo cell death (41, 168).

Notably, rates of adult beta cell proliferation are substan-
tially lower in humans than in rodents. This difference in
replicative potential between human and rodent beta cells
might be explained by species-specific replicative aging: in
humans, telomere shortening limits replication and leads to
senescence (279). This mechanism is considered a critical
anti-tumor defense, selected under evolutionary pressure to
compensate for the much larger human body and its longer
lifespan (237).

However, as in rodents, human beta cells can respond to
increased metabolic demands, such as obesity (101) or preg-
nancy (40, 212), by numeric or functional compensation. In
humans, the source of new beta cells in settings of increased
metabolic demand or pancreatic damage remains contro-
versial (91), but in mice, after birth, lineage tracing indicates
that in most circumstances new beta cells come from the
proliferation of preexisting beta cells (68, 264, 282).

In general, nutrients, especially glucose, activate signaling
pathways that can mediate beta cell growth (288). Hypo-
glycemia leads to beta cell atrophy, whereas persistent hy-
perglycemia provokes hypertrophy and hyperplasia (129,
162). Beta cells are uniquely designed to detect even small
changes in extracellular glucose concentrations. For in-
stance, in mice, a 4-day-long infusion of 50% glucose re-
sults in mild hyperglycemia, hyperinsulinemia, and in-
creased beta cell replication (3), the latter correlating with
increased levels and nuclear localization of cyclin D2 in beta
cells (3). Glucose metabolism also shortens the refractory

period of beta cells, primarily by increasing the abundance
of cyclin D2 postmitosis (223). Notably, aging negatively
correlates with the mitogenic effects of glucose on the beta
cell in vitro, possibly due to decreased PDX1 expression
(161). A mitogenic effect of glucose on human beta cells has
been observed both in vitro and after transplantation under
the kidney capsule of immune-deficient mice (154, 174,
248).

Glucose phosphorylation by glucokinase and subsequent
ATP-dependent closure of potassium (KATP) channels and
membrane depolarization are crucial for glucose-mediated
beta cell replication (201). Haploinsufficiency for glucoki-
nase in mouse beta cells blunts beta cell hyperplasia follow-
ing high-fat diet (261). In humans, a glucokinase-activating
mutation was associated with abnormally large islets and
increased beta cell proliferation in pancreatic tissue resected
from a 3 yr old (130), and treatment with a glucokinase-
activating drug induced the proliferation of human beta
cells via protein kinase C (PKC)-� (145). The glucose-sens-
ing transcription factor carbohydrate response element-
binding protein (ChREBP) also plays a role in glucose-stim-
ulated expression of cell cycle regulatory genes and beta cell
proliferation (174, 293).

The increase in insulin production and secretion induced by
glucose catabolism also contributes to beta cell expansion
through the induction of compensatory endoplasmic retic-
ulum signals (235), or possibly through autocrine stimula-
tion of the insulin receptor itself (11). Glucose catabolism
also activates insulin receptor substrate 2 (IRS-2) via the
Ca2�/calcineurin/NFAT pathway (64) and regulates
mTOR and cyclin D2 via activation of PKC-� to promote
beta cell replication independent of the insulin receptor
(145, 248).

These homeostatic mechanisms for balancing beta cell mass
with metabolic demands suggest that human beta cell rep-
lication can be triggered even when aging and maturation
have forced them into a dormant quiescent state. If we can
better understand and control these pathways, we may de-
velop clinically useful tools for controlled beta cell expan-
sion.

1. Postnatal human beta cell neogenesis

Despite indirect evidence, neogenesis of beta cells in post-
natal humans has never been directly demonstrated. The
indirect evidence consists of histological observations of
single insulin� cells dispersed over the pancreatic paren-
chyma (31), of cells coexpressing insulin and the duct
marker, and of insulin� cells within ducts (29). However, as
noted before, conclusions based on histology alone can be
misleading and do not provide definitive proof.

Beta cell neogenesis from a non-beta cell also requires fur-
ther steps of maturation to yield a normally functioning
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adult beta cell that can correctly regulate insulin secretion in
response to glucose and other physiological signals. This
maturation process is still poorly understood. Relative to
mature beta cells, FACS-purified immature human beta
cells (PDX1�/INSlow) are enriched for transcripts encoding
proteins characteristic of beta cell development, cell cycling,
apoptosis, and other islet cell types. Thus the heterogeneous
expression pattern of INS and PDX1, as described previ-
ously in vitro (255), also occurs in vivo (256). This subset of
PDX1�/INSlow beta cells also contain C-peptide and
GLUT2 (42). More extensive knowledge of human beta cell
maturation will further refine strategies for in vitro genera-
tion of fully functional beta cells for the treatment of dia-
betes mellitus.

2. Postnatal human beta cell replication

Given the technical hurdles to studying the human pancreas
in vivo, available data on human beta cell mass and turn-
over are very scarce. Most studies are limited to analysis of
post mortem tissue samples or to in vitro study of cells
isolated from cadaveric pancreases. Human pancreas sam-
ples are inherently variable, mandating the analysis of a
sufficient number of, preferably healthy, donors to draw
valid conclusions (115, 131, 168, 215). Furthermore, ante
mortem events such as prolonged life support and post mor-
tem handling of the tissues can alter assessment of beta cell
proliferation as assessed by Ki67 staining (115, 254).

Notwithstanding these obstacles, we know that the highest
rates of human beta cell replication occur during infancy
(0–3 yr), thereafter declining from youth to adulthood
(131, 168, 275), with the peak in beta cell mass per kilo-
gram body weight preceding the increase in insulin demand
that occurs during puberty (177). The increase in beta cell
mass during infancy mainly results from an increase in the
number of beta cells per islet rather than the number of
islets (168). A study using thymidine analogs administered
8 days to 4 yr before death found that beta cell labeling
could be detected only in the youngest patients (18–20 yr
old) and was absent from subjects over 30 yr of age (194),
confirming that the human beta cell mass is largely estab-
lished by the age of 20 (55).

Similar to other cell populations, the beta cell mass is not
only determined by hyperplasia but also balanced by cell
death through apoptosis, a process collectively referred to
as “remodeling” (90). The frequency of beta cell apoptosis
in pancreases obtained from normal human fetuses and
infants is low during weeks 17–32 of gestation, increases
perinatally, and declines again after 6 mo of age, adding to
the relative increase in beta cell abundance at early child-
hood.

The limited proliferative capacity of adult human beta cells
implies they have an extended lifespan. Cellular longevity
can be deduced from intracellular lipofuscin body content.

Lipofuscin bodies are multivesicular storage organelles
from the lysosomal system, and their accumulation in a cell
is an indication of cell aging. An age-related increase in the
fraction of lipofuscin body-positive beta cells has been ob-
served in human (89% in 1 yr olds, 95% in 5 yr olds, 97%
in 20 yr olds, and 98% after age 50), again supporting the
conclusion that the human beta cell mass is largely estab-
lished by the age of 20 (54, 55).

Despite the low rates of beta cell replication in adult hu-
mans, some research efforts have focused on the stimulation
of beta cell replication as a means of beta cell replacement.
Although a number of growth factors have been proposed to
drive beta cell replication in vivo, few, if any, have been un-
equivocally validated as effective human beta cell mitogens. In
mice, beta cell proliferation and mass expansion can be stim-
ulated by infusion with the insulin receptor antagonist S961.
Initially, these effects were attributed to a liver-derived mRNA
encoding angiopoietin-like 8 (ANGPTL8, renamed “betatro-
phin”) (122, 283). However, S961 failed to induce a similar
proliferative response in human beta cells engrafted into mice
(77), and elevated plasma concentrations of betatrophin were
found in patients with longstanding T1DM, suggesting that
betatrophin alone may not protect or expand human beta cell
(76). Subsequently, repeated studies could not confirm the
betatrophin effects in rodents that could not attribute the
effects of the insulin receptor antagonist to betatrophin
(60, 98, 284, 285). The effects of S961, however, were
reproducible in rodents, and other studies suggest that
the liver secretes the protease inhibitor SerpinB1 in re-
sponse to insulin resistance and obesity in mouse, ze-
brafish, and human (73). SerpinB1 acts as an inhibitor of
elastase and modulates phosphorylation of several fac-
tors related to the beta cell cycle and survival, including
p-GSK3, p-MAPK3, and p-PRKAR2B (73).

As it stands, the list of mouse beta cell mitogens that fail to
induce a comparable human beta cell proliferative response
is growing and, among others, includes growth hormone,
prolactin, insulin-like growth factor I (IGF-I), placental lac-
togen, betacellulin, hepatocyte growth factor, serotonin,
gastrin, gamma-aminobutyric acid, osteocalcin, and aden-
osine kinase inhibitor (24, 33, 249). Nevertheless, the
search for effective human beta cell mitogens to restore an
adequate beta cell mass remains important, given the pres-
ence of residual insulin� cells in most diabetic patients, even
in those with longstanding T1DM (167). Importantly, stud-
ies that evaluate cell proliferation should examine the pres-
ence of mitotic figures and positivity for the G2 to M tran-
sition marker phosphohistone H3 to prove that thymidine
analog or Ki67-positive cells indeed are driven towards a
proliferative pathway, rather than toward a polyploid state
that is relatively frequent in normal human pancreas (72).
Obviously, any clinical application of human beta cell mi-
togens will require concurrent inhibition of the original
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cause of beta cell loss, and must be monitored for aberrant
cell growth and tumorigenesis.

C. Pregnancy-Associated Changes in Human
Beta Cell Mass

Proper fetal growth relies on a constant and adequate flow
of nutrients from the mother to the fetus. The largest por-
tion of the energy required by the growing fetus comes from
glucose diffusion across the placenta (17, 18, 103). During
early pregnancy, a passive glucose gradient is maintained by
the fetal beta cells through high basal insulin secretion (10,
78). However, as the fetus grows, the fraction of maternal
glucose diverted to the fetus grows. To guarantee a suffi-
ciently high maternal glucose concentration to maintain
this glucose gradient in the later part of pregnancy, hor-
mones secreted by the placenta induce maternal insulin re-
sistance (144, 184). To prevent excessive nutrient flows to
the fetus after meals, the maternal peripheral insulin resis-
tance is balanced by an increase in maternal beta cell mass
in both rodents and humans (1, 40, 262, 265, 268, 280). In
pregnant rodents, the maternal beta cell mass expansion
occurs mainly, if not exclusively, by beta cell replication (1,
262, 265, 280). The dominant mechanism in human, be it
replication, neogenesis, or a combination of both, remains
unclear.

In rodents, lactogenic hormones from the pituitary and pla-
centa trigger beta cell replication as demonstrated by the
necessity of an intact prolactin receptor (PRLR) (5, 84, 93,
113, 206) and by the effects of prolactin and placental lac-
togen in vitro (35–37, 245). PRLR signaling induces key
genes that control serotonin production in the maternal
beta cells (133, 148, 213, 228). In addition, a beta cell-
specific switch in serotonin receptor expression occurs dur-
ing rodent pregnancy: expression of the G�q-linked HTR2B
receptor increases while expression of the G�i-linked
HTR1D receptor (133) falls. These changes result in in-
creased beta cell replication driven by the HTR2B receptor.
At the end of pregnancy and post partum, HTR2B expres-
sion is downregulated and HTR1D expression reinstated,
causing a drop in beta cell replication and increased beta
cell apoptosis. In addition, serotonin signaling causes en-
hanced insulin secretion by mildly depolarizing the cells
through upregulation of the ionotropic HTR3A receptor
(187). During rodent pregnancy, PRLR-induced JAK2/
STAT5 signaling impacts many other signaling pathway
components that may contribute to beta cell adaptation,
including insulin receptor substrate 1 (IRS1), insulin recep-
tor substrate 2 (IRS2), phosphatidylinositol 3-kinase
(PI3K), AKT, p70S6K, mTOR FOXM1, HNF4a, FOXD3,
and menin (5, 6, 97, 114, 128, 199, 289, 291, 292).

The recent, rapid, and independent evolution of the pla-
centa and the lactogenic hormones and their receptors
makes direct comparisons among the placental mammals

difficult (53, 99). In addition, compared with rodent, hu-
man beta cells are much more resistant to mitogenic stimuli
and rarely divide (275). However, we do know that, as in
rodents, beta cell mass increases in pregnant women, based
on two autopsy studies. The first reported a 1.4-fold in-
crease in human beta cell mass during pregnancy, did not
detect an increase in beta cell proliferation, and concluded
that new beta cells were generated by neogenesis (40). How-
ever, as noted above, heterogeneity among pathological
samples may complicate correct interpretation of histolog-
ical observations. Also, a temporal peak in human beta cell
replication during pregnancy is easily missed if sampling
does not span the entire period of pregnancy. The second
study only assessed maternal pancreases from the latter half
of and detected a 2.4-fold increase in human beta cell mass
(268).

It remains to be determined whether the increase in beta
cells during human pregnancy results from increases in pro-
liferation or in neogenesis, or whether any of the pathways
that contribute to murine maternal beta cell mass adapta-
tion are active in human pregnancy. Treatment of human
islet cells in vitro with prolactin, placental lactogen, or
growth hormone increases glucose-stimulated insulin secre-
tion (36), but beta cell proliferation is unaffected (50, 193).
Overexpression of murine instead of human STAT5 in hu-
man beta cells bypasses this restraint on human beta cell
proliferation, leading to the hypothesis that human beta
cells have inherent defects in prolactin signaling (50).

The design of experimental models, in vivo or in vitro, that
mimic pregnancy-mediated human beta cell adaptation will
help to unravel the molecular mechanisms underlying hu-
man beta cell expansion and function. The use of serum
from pregnant women at various time points throughout
pregnancy or the use of placental cell types as signaling
source may be a first step in better understanding the effects
of pregnancy on human beta cells.

D. Obesity-Associated Changes in Human
Beta Cell Mass

Ample studies in rodent models have demonstrated beta cell
adaptation and increases in beta cell mass in response to
increased adiposity and insulin resistance (8, 61, 294). Lin-
eage tracing has demonstrated that the new beta cells gen-
erated in these settings come from the proliferation of pre-
existing beta cells (264, 282).

Human beta cell mass also correlates with adiposity: non-
diabetic, obese humans have ~50% more beta cell mass
relative to lean nondiabetic individuals based on autopsy
studies (204, 221). This increase apparently depends on
genetic ethnicity, since surgically resected pancreases from
obese Japanese patients have almost no increase in beta cell
mass compared with lean Japanese patients (116). Adipos-
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ity-driven beta cell mass expansion is not due to cellular
hypertrophy (221), but just as with gestational increases in
beta cell mass, the source of the increased numbers of beta
cells in obese humans remains uncertain in the absence of
lineage tracing. Some evidence suggests that the additional
beta cells come from neogenesis (41, 101), while other evi-
dence supports a role for proliferation in the generation of
these new beta cells (61).

Several mechanisms have been implicated in obesity-in-
duced beta cell adaptation and replication. As discussed
earlier, glucose can promote beta cell proliferation through
its catabolism in beta cells (145, 248). However, in nondi-
abetic obese individuals with normal glucose levels, in-
creases in beta cell proliferation cannot be attributed to
hyperglycemia.

To prevent hyperglycemia, however, beta cells must pro-
duce and secrete more insulin to compensate for the increas-
ing insulin resistance that occurs as central adiposity in-
creases. In mice, beta cell-specific knockout of the insulin
receptor disrupted beta cell replication in response to a
high-fat diet, supporting the conclusion that insulin signal-
ing plays a role in compensatory beta cell replication during
obesity and insulin resistance (186). Insulin and insulin-like
growth factors (IGFs) mediate their proliferative actions via
IRS2-PI3K/AKT axis. Downstream of AKT [also known as
protein kinase B (PKB)], phosphorylation of p27Kip1 and of
the antiproliferative transcription factor FOXO1 promotes
nuclear exclusion of the latter, thereby allowing beta cell
replication (137).

In addition, the obesity-induced increase in insulin synthesis
and processing in high-fat diet or db/db mice induces endo-
plasmic reticulum (ER) stress and the adaptive unfolded
protein response (UPR), which promotes beta cell prolifer-
ation via activating transcription factor 6 (ATF6). The
adaptive UPR also elevates thymidine-analog labeling in
human beta cells upon exposure to high glucose in vitro
(235).

In addition to glucose, SerpinB1, and insulin, other obesity-
induced, extrapancreatic beta cell mitogens have been pro-
posed, including growth hormone (GH) (111), incretins
(GLP-1 and GIP) (270), WNTs (96, 142, 164, 207, 227),
and hepatocyte growth factor (HGF) (4, 8, 173).

Finally, microRNAs (miRNAs) also regulate the compensa-
tory beta cell expansion in response to obesity in mice
(182). Beta cell-specific disruption of Dicer-1, a key process-
ing enzyme required for the synthesis of all miRNA, caused
glucose intolerance due to a significant decrease in pancreas
insulin content. A more specific knockdown of miR�24,
miR�26, miR�182, and miR�148 in isolated murine islets
enhanced insulin expression, at least in part, by repressing
insulin gene transcriptional repressors (172). Other miR-

NAs, including miR-375 (202) and miR338–3p (117), play
a direct role in compensatory beta cell proliferation by reg-
ulating a cluster of genes controlling cell cycle and growth.
Additional evidence for the role of miRNAs in adaptive beta
cell proliferation comes from the reduced compensatory
beta cell expansion in the absence of Argonaut 2 (Ago2),
which facilitates interactions of miRNAs with their target
mRNAs (260).

Taken together, it is becoming increasingly clear that beta
cells integrate various extra- and intracellular signals to
adjust their mass in response to the increased insulin de-
mand of obesity.

IV. STRATEGIES FOR GENERATING AN
ABUNDANT SUPPLY OF
TRANSPLANTABLE HUMAN BETA
CELLS

A. In Vitro Beta Cell Replication

Transplantation of in vitro expanded human beta cells
could offer a logical approach to beta cell replacement in
people with diabetes. However, as discussed above, human
beta cells are terminally differentiated and long-lived cells
that become established in the first few years of life followed
by very low proliferation rates in adult humans (54, 194).
The age-dependent decline in replicative potential repre-
sents a major obstacle to therapeutic beta cell expansion
since currently the principal source of human beta cells is
adult cadaveric donors.

In contrast to rodent beta cells, human beta cells have been
proven difficult to maintain, let alone expand in vitro (71,
193). In addition, often when replication of human beta
cells has been achieved, glucose-stimulated secretion from
the proliferated cells has declined (217, 226). For example,
while glucose is clearly mitogenic for rodent beta cells, it
exerts very limited effects on human beta cell cycling, de-
pending on donor age, duration of glucose exposure, and
glucose concentration (161).

The low rates of basal and glucose-stimulated proliferation
in human beta cells have led to efforts to identify other and
better human beta cell mitogens (267). Among candidate
human beta cell growth factors, those signaling through
IRS2 have attracted particular interest. Even though the
efforts to understand the involvement of IRS2 signaling by
IGF-I mainly focused on rodent beta cells (158, 203, 211,
257), in vitro propagation of human beta cells will most
likely depend on the identification of growth factors that
maintain activation of such a key signal transducer. How-
ever, mitogens in this pathway may not display much beta
cell specificity.
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Recent advances in high-throughput screening with large
libraries of compounds have identified a number of factors
capable of stimulating significant human beta cell prolifer-
ation (239, 274) (TABLE 1). One such molecule, WS6, can
stimulate proliferation of human beta cells in a dose-re-
sponsive manner (239). Although its mechanism of action is
largely unknown, involvement of Erb3 binding protein
(EBP1) and of the I�B kinase IKK� has been suggested
(239). In additional screens, small molecule inhibitors of the
DYRK1A kinase were identified as potent inductors of hu-
man beta cell proliferation (67, 238, 274). Two of these,
harmine and INDY, inhibit DYRK1A by inserting into its
ATP-binding pocket. The pro-proliferative effects of the
DYRK1A inhibitors have been linked to the calmodulin-
calcineurin-cMyc pathway.

It is clear, however, that these molecules are not beta cell
specific but rather trigger cell cycle activation in most cell
types, warranting extreme caution and emphasizing the
need of beta cell specific delivery of these mitogens. Cell
specificity can be enhanced by using combinations of drugs.
For example, combining a selective inhibitor of the endo-
crine tumor suppressor menin combined with a GLP1 re-
ceptor agonist (exendin-4) yields potent beta cell-specific
mitogenic activity (47).

These reports are encouraging and may lead to strategies to
expand human beta cells in vitro or even in vivo. Small
molecule screening also identified compounds with activity
similar to SerpinB1, the protease inhibitor with beta cell
mitogenic activity induced in the liver in response to insulin
resistance and obesity (73). Osteoprotegerin (OPG) is yet
another factor whose concentration increases in models of
beta cell expansion, including obesity and pregnancy. In
response to lactogens, OPG induces beta cell proliferation
without dedifferentiation, by modulating proliferative
pathways in rodent and human islets (139). OPG inhibits
glycogen synthase kinase-3 (GSK3), stimulates cAMP re-
sponse element-binding protein (CREB), and inhibits the
RANKL/RANK pathway that acts as a brake on beta cell
proliferation (139). Other recently identified human beta
cell mitogens were recently reviewed by Shirakawa et al.
(241).

Despite the availability of numerous rodent beta cell lines,
the first functional human beta cell line (EndoC-�H1) was
generated only recently by introducing immortalizing trans-
genes in human fetal pancreatic tissue (205). This cell line
has been further optimized through Cre-mediated excision
of the immortalizing transgenes, resulting in a phenotype
more similar to genuine human beta cells (22, 226). Despite
the potential to generate an unlimited supply of transplant-
able human beta cells with this or similar lines, the use of
lentiviral vectors for immortalization, combined with the
potential for incomplete excision of the immortalizing on-
cogenes in every cell, prevents the direct application of En-

doC cells to human therapy, although they remain a
uniquely useful tool for drug development and preclinical
studies of cell replacement therapy in diabetes.

In contrast to murine beta cells (12, 178, 277), epithelial-
to-mesenchymal transition (EMT) of adult human beta cells
generates proliferative fibroblast-like cells that, upon serum
removal and addition of growth factors, appear to rediffer-
entiate into insulin-producing isletlike structures that can
replace beta cell function in hyperglycemic mice (15, 92,
149, 189). The origin, identity, and ultimate fate of these
cells have provoked vigorous debate. Eventually the beta
cell origin of the proliferating cells was confirmed by genetic
lineage tracing (217, 219). Reexpression of insulin and
other beta cell-specific genes occurs only in the beta cell-
derived mesenchymal cells, demonstrating that these cells
arise by redifferentation rather than by de novo differenti-
ation from non-beta cells. Inhibition of NOTCH (15) and
Wnt signaling (153) synergistically promote endocrine red-
ifferentiation. Although these cells can further mature in
vivo into functional beta-like cells (15), the reproducibility
of this approach has been questioned (132). In addition,
detailed characterization of the expansion capacity of this
approach and the fidelity of the beta cell characteristics of
the resulting cells has not been fully established. Also, it
remains unknown whether EMT of human beta cells occurs
in vivo and, if so, whether it could be therapeutically ex-
ploited.

Unrestrained metabolic stress alters the expression of many
functionally important and cell type-specific genes in ma-
ture beta cells, in a process sometimes broadly labeled “ded-
ifferentiation” or “loss of cell type identity.” This process
can lead to cells that express typically progenitor- or alpha
cell genes and lose glucose-stimulated insulin secretion.
These pathological changes may contribute to the beta cell
failure in T2DM (123, 258). In this regard, treatment of
beta cell dysfunction should aim for reduction of metabolic
stress, thereby potentially correcting these pathological
beta cell changes and reestablishing metabolic control.

B. In Vitro (Trans)differentiation to Beta
Cells

1. Differentiation of embryonic stem and induced
pluripotent stem cells to beta cells

Directed differentiation of human embryonic stem (hES)
cells and induced pluripotent stem (iPS) cells into glucose-
responsive, insulin-producing beta cells represents a prom-
ising route for generating an unlimited source of human
beta cells for replacement therapy in people with diabetes
(FIGURE 3) (TABLE 1). The most successful protocols use a
stepwise process that manipulates the cellular micro- and
macroenvironment in stages, based on our understanding
of pancreatic development gained from developmental
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Table 1. Postnatal sources of new human beta(-like) cells

Method of Beta Cell
Generation Cell of Origin Trigger Mechanism Reference Nos.

Replication Beta cell Glucokinase Signals via protein kinase
C-�

130, 145

Harmine Calmodulin-calcineurin-cMyc
pathway

274

INDY (harmine
analog)

Calmodulin-calcineurin-cMyc
pathway

274

WS6 Involvement of Erb3 binding
protein (EBP1) and the
IkB kinase IKKe has been
suggested

239

Osteoprotegerin (and
denosumab)

Inhibits glycogen synthase
kinase-3 (GSK3),
stimulates cAMP
response element-binding
protein (CREB), and
inhibits RANKL/RANK
pathway

139

SerpinB1 Activation of proteins in
insulin/IGF-I signaling
pathway, altered
phosphorylation of MAPK,
PRKAR2B, and GSK3
subunits

73

Differentiation of ES/
iPS cells

ES/iPS 7-stage protocol Neurog3 induction, thyroid
hormone, and a gamma
secretase inhibitor
addition to induce Nkx6,
1/ins� cells, and MAFA
induction for maturation

208

Sequential treatment
with multiple
growth and
differentiation
factors over a
period of 5 wk

Progenitor differentiation by
modulating signaling by
Wnt, activin, hedgehog,
EGF, TGF-�, thyroid
hormone, and retinoic
acid, as well as �-
secretase inhibition

190

15- to 21-day
protocol to
generate
monohormonal
endocrine cells

Omission of BMP inhibitors
at the pancreas
progenitor stage, addition
of EGF�KGF for rapid
Nkx6.1 induction, and
BMP�ALK inhibition to
synchronize Neurog3
expression

218

Transdifferentiation of
adult stem cells

Pancreas-derived multipotent
precursors from adult
human pancreas

Facultative stem
cells within the
beta cell population

Spontaneous expansion and
differentiation upon
isolation and cell culture

243

Islet-derived mesenchymal
stem cells

Mix of appropriate
factors under
serum-free
conditions

Directed differentiation 87

Human bone marrow-derived
MSCs

Exposure to specific
growth factors,
mimicking diabetic
hyperglycemic
niche,
supplementation of
fetal pancreatic
extract

Directed differentiation 195

Human bone marrow-derived
MSCs

Pdx1
overexpression,
transplantation
into hyperglycemic
niche

Forced differentiation by
transcription factor
overexpression

127

Continued
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studies. Nevertheless, this approach remains empirical. The
first major breakthrough in the field of directed human stem
cell differentiation mimicked the normal developmental
program, guiding hES cells through formation of definitive
endoderm to pancreatic endoderm and subsequently to en-
docrine progenitor and beta cell-like stages (62). Early pro-
tocols generated cells that often expressed multi-hormones
and had poor (62, 196) to moderate (121) glucose-stimu-
lated human insulin C-peptide secretion. Careful analysis of
the insulin-expressing cells after in vitro differentiation
identified many differences from normal adult beta cells on
the levels of function, transcriptome proteome, and epig-
enome (16). Further maturation to glucose responsive,
beta-like cells capable of correcting experimental diabetes
was achieved by long-term engraftment in immune-defi-
cient mice (39, 143). In vivo, the polyhormonal cells mainly
differentiated to a glucagon-positive phenotype while the
progenitors were not immediately able to reverse hypergly-

cemia and engrafted mice required exogenous insulin until
the transplanted cells functionally matured and produced
sufficient amounts of insulin (209). Notably, besides char-
acterization of the resulting cells at the transcript, protein,
and functional levels, epigenetic profiling may reveal fur-
ther abnormalities caused by a failure to eliminate poly-
comb group-mediated repression of endocrine-specific
genes (281).

The development of patient-derived iPS cells now allows
the generation of autologous cells for transplantation
(163), although this approach does not solve the problem
of autoimmunity in patients with type 1 diabetes. The
availability of genome-wide reference maps of DNA
methylation and gene expression of hES and iPS cells
facilitates in-depth characterization of different cell lines
(26). Genome-wide transcriptional analysis of insulin�

cells derived from three independent human iPS lines

Table 1.—Continued

Method of Beta Cell
Generation Cell of Origin Trigger Mechanism Reference Nos.

Human multipotent adipose
tissue-derived stem cells

Multi-step protocol Directed differentiation 48, 134, 176,
188

Human multipotent adipose
tissue-derived stem cells

PDX1
overexpression

Forced differentiation by
transcription factor
overexpression

151

Reprogramming of
nonpancreatic cell
types

Hepatocytes Ectopic expression of
PDX1

Inhibition of liver-gene
expression by inhibition of
C/EBP�

23, 170, 171,
181, 224,
290

Hepatocytes Overexpression of
PDX1 � exendin-4

Exendin-4 induces liver cell
proliferation and
maturation of
transdifferentiated cells

13

Keratinocytes Overexpression of
PDX1

Forced differentiation by
transcription factor
overexpression

166

Fibroblasts Combination of
growth factors,
chemical
compounds, and
nonintegrative
episomal
reprogramming
factors

Directed differentiation 296

Reprogramming of
pancreatic cell
types

Duct cells PDX1/NEUROG3/
MAFA/PAX4 �
epigenetic
signaling events

Forced differentiation by
transcription factor
overexpression

157

DPP-4i, PPI Directed differentiation 252, 253
Acinar cells MAPK/STAT3

overexpression in
an in vitro setting
using sequential
free-floating and
3D matrix culture

Constitutively active
MAPK�STAT3
overexpression

152

Alpha cells Nonspecific
methyltransferase
inhibitor

Potential role for p53 34, 82

Overview of the currently known sources of new human beta(-like) cells in vitro and the mechanisms used to stimulate beta cell generation. See
text for definitions.
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resulted in cells resembling human fetal beta cells rather
than adult beta cells. Similar to hES, in vivo maturation
was necessary for iPS-derived cells to advance to a more
adult beta cell phenotype (112).

Several groups have reported the generation entirely in vitro
of hES-derived cells with more similarities to mature,
functional cells (190, 208) reported optimized protocols
for the in vitro generation of mature, functional beta-like
cells from hES cells. The first described a seven-stage
protocol resulting in the efficient conversion (�50%) of
hES cells to monohormonal, phenotypically mature, and
glucose responsive beta-like cells, stably expressing
NKX6.1, insulin, and MAFA. Although these cells
closely resemble adult beta cells, important differences
remained. Most notably, the hES-derived beta-like cells
showed a blunted and delayed response during dynamic
glucose stimulation with normal Ca2� oscillations ob-
served in only a fraction of the insulin� cells. Nonethe-
less, when transplanted into mice, these cells reversed
diabetes within 40 days (208).

The second study reported a scalable three-dimensional cul-
ture system using sequential treatment with multiple
growth and differentiation factors over a period of 5 wk to
transform hES cells into monohormonal, functional beta-
like cells. Insulin� cells (33% of final cells) displayed key
features of mature human beta cells including normal Ca2�

oscillations and glucose responsiveness, expression of ma-
ture beta cell markers (PDX1, NKX6.1, insulin, C-peptide,
ZnT8), and ultrastructural features reminiscent of adult

beta cells. When transplanted into mice, these cells pro-
duced detectable circulating human insulin within 2 wk
(190).

Recent reports demonstrated that synchronization of
NEUROG3 expression following initial induction of
PDX1�NKX6.1� MPPCs prevents preemptive endocrine
differentiation and generation of dysfunctional polyhor-
monal cells, allowing greater yields of functional beta-like
cells (210, 218). A followup report described the generation
of functional beta-like cells by a similar protocol from iPS
cells derived from a patient with T1DM (175).

The generation of functional, mature beta-like cells from
hES/human iPS cells has moved stem cell-derived beta
cells closer to clinical application. The United States
Food and Drug Administration approved an Investiga-
tional New Drug (IND) application for a phase1/2 safety,
tolerability, and efficacy trial of stem cell-derived encap-
sulated cell replacement therapy in adult patients with
T1DM in 2014.

Despite advancements, several concerns regarding the use
of pluripotent-stem cell-derived beta cells in patients re-
main. These concerns include the risk of tumor formation,
either from undifferentiated pluripotent cells that might re-
main among the differentiated beta-like cells or from onco-
genic mutations that accumulate during the differentiation
process. Also, cells with unregulated insulin secretion could
cause hypoglycemia in the recipient.

Reprogramming 

Donor 
cells

iPS cells

Surrogate
insulin-producing

cell

Induced pluripotency 

Implantation 
Differentiation 

ES cells

ESC generation 

Blastocyst with
inner cell mass

(ICM)

FIGURE 3. Nonpancreatic cell sources for beta cell generation. Illustration of the potential use of
nonpancreatic cell types to generate new beta(-like) cells in vitro based on hES/hIPS directed differentia-
tion or postnatal donor cell reprogramming. The cells of origin depicted represent healthy donor cells.
Functional beta(-like) cells could be reintroduced to replenish the beta cell pool lost in diabetes patients.
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In addition, transplanted beta-like cells must be protected
from allograft rejection (for beta-like cells not derived from
the recipient) and autoimmune destruction (in recipients
with T1DM) by blocking or modifying the immune re-
sponse. Clinical application will also require cell culture on
an industrial scale, and potentially the generation of an
hESC bank based on growth, differentiation, and HLA-type
matching (43, 179, 266). Whether patient-derived iPS cells
can replace hES cells for cell therapy remains to be deter-
mined, but already patient-derived iPS cells are contributing
to disease modeling.

2. Differentiation of adult stem cells to beta cells

The end of the last century witnessed much excitement over
the possibility that adult stem cells and hematopoietic stem
cells (HSCs) might have the capacity to differentiate across
tissue lineages and even across germ layer boundaries (FIG-
URE 3). For example, HSCs were thought to transdifferen-
tiate into lung, gut, skin, muscle, liver, and neurons. In
2003, bone marrow cells transplanted into lethally irradi-
ated mice reportedly generated “glucose-competent” beta
cells, but subsequent studies could not replicate these unex-
pected findings (52, 150, 259). In general, these observa-
tions of adult stem cell plasticity were often over-inter-
preted or could be explained by experimental artifacts
(273).

Interestingly, a subsequent study showed that bone mar-
row-derived stem cells could induce pancreatic regenera-
tion after injection in diabetic mice in a non-cell autono-
mous manner (110). Rather than transdifferentiating into
beta cells, the injected cells acquired an endothelial cell
phenotype and stimulated beta cell proliferation (110). Al-
though the exact mechanism remains unclear, this observa-
tion fits well with the role of signals from mesoderm-derived
tissues in pancreas development and adult beta cell prolif-
eration and function.

Autologous non-myeloablative HSC transplantation led to
insulin independence with good glycemic control in a series
of patients with newly diagnosed T1DM (58). However,
this exciting finding could not be corroborated in patients
with T1DM of more than 5 yr duration (75) or when um-
bilical cord blood was infused intravenously in young chil-
dren with T1DM (100). This difference in outcomes sug-
gests that the preparatory treatment with cyclophosph-
amide and rabbit anti-thymocyte globulin altered the
disease course in new-onset patients, while the subsequent
stem cell infusion had no measurable impact on the disease.

Recent research focus has shifted to the isolation and study
of other populations of adult human stem cells besides the
well-characterized HSCs. For example, so-called “pancre-
as-derived multipotent precursors” (PMPs) were isolated
from islets of adult human and mouse pancreas, indepen-
dent of age (243). These PMP cells proliferate and differen-

tiate into multiple differentiated neuronal and pancreatic
cell types. The generated beta cells contain about one-third
of the amount of insulin of a primary beta cell. After trans-
plantation into mice, these cells produced circulating hu-
man C-peptide and ameliorated experimental diabetes. Im-
munohistochemistry of the graft detected human insulin�

cells (243). Independent confirmation and further charac-
terization of the PMPs and PMP-derived beta cells and their
molecular mechanism of differentiation will help determine
the utility of this approach to beta cell replacement therapy.

Mesenchymal stem cells (MSCs) isolated from various tis-
sues have also been suggested as a potential source of endo-
crine progenitors. For example, human islet-derived MSCs
develop into isletlike clusters when exposed to a cocktail of
differentiation factors under serum-free conditions. After
differentiation, expression of glucagon, somatostatin, and
transcription factor Islet 1 (ISL1) was noted. Although the
resulting cells stained for C-peptide, they did not secrete
insulin in a glucose-regulated manner (87).

Human bone marrow-derived MSCs (hBM-MSC) form is-
letlike aggregates after exposure to a differentiation cock-
tail. However, significant maturation, secretion of human
C-peptide, and normalization of glycemia were only ob-
served after transplantation in mice with lowered beta cell
mass after pancreatectomy or following streptozotocin-in-
duced beta cell ablation (195). Similar findings were previ-
ously reported using hBM-MSCs ectopically expressing
PDX1 (127).

Finally, human multipotent adipose tissue-derived stem
cells (hASCs) have been proposed as a readily accessible
source of stem cells for beta cell generation (134). Following
a multistep differentiation protocol, abdominal fat tissue
obtained by liposuction generated isletlike aggregates con-
taining insulin� cells that secreted insulin in vitro (48, 176,
188). Two to three weeks after transplantation in diabetic
mice, these cells could restore near-normoglycemia for up
to 8 wk (48). As with hBM-MSCs, overexpression of PDX1
in hASCs enhanced pancreatic differentiation. The resulting
cells secreted insulin in response to glucose stimulation in
vitro and reduced blood glucose levels in diabetic mice with-
out achieving normoglycemia (151) (TABLE 1).

Despite continued interest in generating beta cells from
adult stem cells due to their ready availability and practi-
cality, it remains unclear how similar the derived cells are to
normal beta cells at the level of gene expression, stability, or
function or how well they compare with beta-like cells de-
rived from hES or human IPS cells.

3. Transdifferentiation of nonpancreatic cells to beta
cells

Transdifferentiation of differentiated adult human nonpan-
creatic cells represents another potential route to new beta
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cells (TABLE 1). Because pancreas and liver cells originally
derive from bipotent progenitor cells in the gut endoderm
during embryonic development (65), transdifferentiation of
liver cells became a major focus in the quest for beta cell
replacement (FIGURE 3). In the first experiment of its kind,
ectopic expression of PDX1 in adult human hepatocytes
induced insulin synthesis, processing, storage, and glucose-
regulated release. In diabetic mice, these cells reduce blood
glucose levels (13, 23, 127, 170, 171, 180, 181, 224, 290).
Treatment with GLP1 agonist exendin-4 further enhanced
this transdifferentiation to insulin-producing cells (13). The
reprogrammed human liver cells expressed pancreas-spe-
cific genes, and cell lineage tracing showed that the insulin�

cells originated from genuine hepatocytes. Further study,
however, suggested that these insulin� cells appear only in
culture after undergoing EMT and that a similar phenom-
enon may not occur in vivo (170). More recently, the TALE
homeodomain transcription factor Tgif2 was used to repro-
gram mouse liver cells to pancreas progenitor-like cells that
express Pdx1, Ptf1a, Neurod1, Pax6, MafA, Isl1, and
Insm1, a potential starting point for generation of beta(-
like) cells (46).

Similar to hepatocytes, human keratinocytes ectopically ex-
pressing PDX1 also transformed into glucose-responsive
beta-like cells (166). The pool of potential nonpancreatic
cell sources for beta cell generation was even further en-
larged by the derivation, from human fibroblasts, of prolif-
erative endodermal progenitors and, subsequently, pancre-
atic beta-like cells that exhibit glucose-stimulated insulin
secretion in vivo (296). Despite the range of nonpancreatic
cell sources (many of which fall beyond the scope of this
review), efforts to transdifferentiate nonpancreatic cells to-
wards beta cells have recently dwindled, possibly because
these efforts have failed to generate functionally equivalent
beta-like cells. Increasing evidence suggests that tissue-spe-
cific resident or facultative stem cells may provide a more
successful starting cell, and newer protocols using hES/iPS
cells are generating cells increasingly similar to normal
adult human beta cells.

4. Transdifferentiation of pancreatic cell types to
beta cells

Because pancreatic endocrine cells arise during human pan-
creas development from branching pancreatic endoderm
comprised of epidermal MPPCs that share many similarities
with adult human pancreatic duct cells, the duct cells are
often considered candidates for transdifferentiation to-
wards endocrine cells. Adult human pancreatic duct cells
express a network of transcription factors that also play a
role in the maintenance of progenitor cell characteristics in
embryonic MPPCs (105, 159).

Several studies have shown that adult human duct cells can
propagate in vitro as well as generate new isletlike cells
(FIGURE 4) (30, 89). These conclusions were based on the

observation that isletlike structures could bud from three-
dimensional ductal cysts (30, 89). Notably, when contami-
nating endocrine cells were depleted from these cultures, the
original findings were no longer reproducible, suggesting
that beta cell dedifferentiation rather than neogenesis may
explain the former conclusions (88). In a proof-of-concept
study, ectopic expression of Neurog3 in adult human duct
cells has shown a capacity for adult duct cells to differenti-
ate into endocrine-like cells (106). Other reports show how
cotransplantation with fetal cells (102) or engraftment fol-
lowed by introduction of gastrin/GLP1 appears to induce
beta cell generation from human ducts (252) (253). Impor-
tantly, none of these studies included lineage tracing, and in
adult mice, lineage tracing with different duct-specific pro-
moters has not supported a duct-related origin of regener-
ating endocrine cells (86, 140, 141, 244). Working with
human cells, lineage tracing is imperative to rule out redif-
ferentiation of residual degranulated or fully dedifferenti-
ated beta cells rather than actual transdifferentiation of
exocrine cells.

Human acinar cells were genetically traced and shown to
undergo EMT in vitro (156). Upon ectopic expression of
NEUROG3, PDX1, MAFA, and PAX4 and a series of (epi-
genetic) signaling events, the human exocrine cells could
give rise to insulin� cells capable of normalizing blood glu-
cose levels (156), thereby extrapolating the initial findings
documented in mice in vivo (295). Of note, in vitro trans-
differentiation towards beta-like cells seemed most efficient
using freshly isolated tissue under conditions whereby EMT
was inhibited. Supplementing this approach with ARX in-
hibition yielded a monohormonal cell population contain-
ing 40% C-peptide�, 4% glucagon�, and �2% somatosta-
tin� cells. The resulting beta-like cells were glucose respon-
sive and expressed insulin protein levels at 15% of adult
human islets, similar to hIPS cell-derived beta-like cells.
When grafted in hyperglycemic mice, an immediate and
prolonged effect on normalization of blood sugar levels was
noted (157).

Another approach was based on ectopic expression of
activated mitogen-activated protein kinase and STAT3 to
induce human acinar-to-beta cell conversion through a
NEUROG3� intermediate (152). The expression of the
pro-endocrine factor NEUROG3 was activated in more
than half of transduced exocrine cells. Genetic lineage
tracing identified human acinar cells as a source of NEU-
ROG3� and insulin� cells. However, the number of in-
sulin� cells in vitro only increased following sequential
suspension and three-dimensional Matrigel culture.
Long-term engraftment into immune-compromised mice
amplified the efficiency of reprogramming to insulin�

cells. Under normoglycemic conditions, the engrafted
mice displayed an increase in circulating human C-pep-
tide, starting at around day 90 posttransplantation.
Upon chemical destruction of the endogenous rodent
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beta cells, human C-peptide levels further spiked, and the
sharp increase in blood glucose observed in controls was
attenuated in engrafted mice. Removal of the graft un-
equivocally identified the human cells as the source of
C-peptide and blood glucose control (152).

These data demonstrate that exocrine cells from human
pancreas can be transdifferentiated to transplantable insu-
lin-producing cells that acquire functionality (FIGURE 4).
Given the large number of exocrine cells in a donor pan-
creas, this approach presents a novel strategy to expand
beta cell therapy in diabetes. Efficient transdifferentiation
of human acinar cells would be able to augment the beta cell
number by 10-fold or more. Can exocrine cells, shown to be
surprisingly plastic in the rodent pancreas, be the key to
resolving the shortage in human donor beta cells? Future
experiments will need to find the definitive answers. How-
ever, acinar cells also force us to be cautious as emerging
evidence identifies these cells as potential origin of pancre-
atic ductal adenocarcinoma (PDAC), one of the most ag-
gressive pancreas malignancies in humans.

Finally, since the endocrine lineages are closely related, it
seems likely that, analogous to rodents, non-beta endocrine
cells represent another ideal source for generating new beta
cells (FIGURE 4). Indeed, similar to rodents, human alpha
and beta cells share a close epigenetic relationship making

human alpha cells perhaps even more amenable to convert
into beta cells compared with other pancreatic cell types
(34, 82). Treatment of adult human islets with a nonspecific
histone methyltransferase inhibitor generates GCG�/INS�

and GCG�/PDX1� cells (34). A potential role for p53 in
insulin expression by adult human alpha cells was suggested
(82). Vice versa, adult human beta cells were recently con-
verted to alpha-like cells in a model of islet cell cluster
formation (247). These observations lend evidence to the
notion that chromatin-modifying compounds affect plastic-
ity of endocrine cells.

Regarding the potential of pancreatic cell types to serve as a
beta cell replacement (TABLE 1), we can conclude that, his-
torically, human duct cells were considered the cell type
with the highest probability for harboring transdifferentia-
tion potential. This notion is mainly due to histological
studies observing single insulin� cells as well as whole islets
near ducts in the human pancreas and the detection of en-
docrine progenitors in the lining of embryonic ductules.
However, current evidence is still limited to suggest that
duct cells have an increased capacity over other cell types to
respond to cell transdifferentiation signals. Recently, alpha,
delta, or acinar cells (14, 51, 263) have received increasing
attention following their successful transdifferentiation in
rodent studies. Human alpha cells bear bivalent epigenetic
marks, allowing easier transdifferentiation into beta cells.

Islet of
Langerhans

Beta cell
Pancreas

1. Replication

2. Reprogramming

Pancreas

Acinar

Duct

Islet
of Langerhans

Alpha cell

Delta cell

Beta-like
cell

Not shown in humans

Pancreatic sources of new human beta cells

Shen W. et al. J Am Chem Soc, 2013
Wang P. et al. Nat Med, 2015
Chamberlain C. et al. JCI, 2014
Dirice E. et al. Diabetes, 2016
Shen W. et al. Nat Commun, 2015
El Ouaamari A. et al. Cell Metab, 2016

Lemper M. et al. Cell Death Diff, 2015
Lima MJ. et al. Diabetes, 2013
Lima MJ. et al. Plos One, 2016
Suarez-Pinzon WL. et al. Cell Transpl, 2011
Heremans Y. et al. J Cell Biol, 2002
Fomina-Yadlin D. et al. Plos One, 2012
Bramswig NC. et al JCI, 2013

FIGURE 4. Strategies to increase human beta cell numbers in vitro from pancreatic cell types. Schematic
overview of the strategies used to generate new beta(-like) cells in vitro using cell types of pancreatic origin.
Black arrows represent strategies that have been documented; red arrow depicts a potential strategy that has
yet to be shown using human cells.
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However, given the relatively small fraction of alpha cells in
human islets (9), this approach would generate only a lim-
ited amount of transplantable beta cells unless the alpha cell
pool would be replenished. This is the case by continuous
mobilization of duct-lining progenitor-like cells in mice
with ectopic expression of Pax4 (2, 56) or inactivation of
Arx (59) selectively in alpha cells. Interestingly, GABA sig-
naling was identified as an inducer of alpha- to beta-like cell
conversion (21), and artemisinins were reported to func-
tionally repress Arx via enhancement of GABAA receptor
signaling, also in human cells (155). However, conversion
of alpha to mature beta cells through artemisinins has just
recently been disproven (269).

V. CONCLUSIONS AND PERSPECTIVES

Given the critical importance of the beta cells in metabolic
homeostasis, it is not surprising that the complex forces
control the size and function of the beta cell population in
the pancreas. Recent evidence suggests that multiple signals
orchestrated by the interplay among various organs as well
as contributions from autocrine and paracrine signals
within the pancreas regulate beta cell mass. Thus it seems
possible that new beta cells can be generated via multiple
routes, a conclusion that provides optimism that we can
develop successful therapies for beta cell regeneration.
However, despite important conceptual progress, major
practical challenges remain before we can meet the ambi-
tious goal of beta cell (re)generation for people with diabe-
tes.
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