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Outlook and goals 

Mercury (Hg) is one of the most important global pollutants. It can travel long 

distances through the atmosphere, be persistent in the environment and be 

accumulated along the food web. The toxicity of Hg strongly depends on its 

chemical form, methylmercury (MeHg) being the most toxic Hg species. Since the 

Minamata disaster in 1956, there is a rising concern about the potential risk of this 

highly toxic heavy metal and its related compounds. Hg occurs in the environment 

as a result of both natural and anthropogenic sources. Atmospheric Hg is 

abundantly deposited in the oceans, one of the major reservoirs of Hg on Earth, and 

fish consumption is considered as the main source of human MeHg exposure. 

Thus, the development of novel tools aiming to evaluate the risks associated with 

Hg in aquatic ecosystems is of the utmost importance. Next to elemental (total Hg 

quantification) and speciation (inorganic versus organic Hg) analysis, isotopic 

analysis of Hg has been revealed as a key tool to study the complex biogeochemical 

Hg cycle in nature and to evaluate the risks associated with the presence of and 

exposure to Hg.  

However, Hg isotopic analysis still poses important analytical challenges, such as (i) 

the high precision required to see the small natural variations in the isotopic 

composition of Hg and/or (ii) the low Hg concentrations present in most of the 

samples of interest. Multi-collector ICP-mass spectrometry (MC-ICP-MS) is the 

technique of choice for high-precision isotopic analysis of Hg. This technique 

enables accurate and precise isotope ratio measurements, although at the cost of a 

relatively poor sensitivity and a laborious and time-consuming sample preparation 

(e.g., isolation of the target analyte from the sample matrix). In the case of Hg, cold 

vapor generation (CVG) coupled to MC-ICP-MS can be used for sample introduction; 

Hg2+ is selectively converted into Hg0 (gas) via reaction with SnCl2 and can be 

transported out of the reaction cell and into the ICP via an Ar carrier gas. In this 

way, spectral interferences and/or matrix effects can be avoided, while the 

sensitivity can be increased significantly. Hg isotopic analysis via CVG-MC-ICP-MS 

is, however, still affected by instrumental mass discrimination, a phenomenon 

resulting in a measured isotope ratio different from the true one. Therefore, this 

instrumental mass bias needs to be adequately corrected for. 
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The main goals of this PhD were the development, optimization and validation of a 

robust analytical method for accurate and precise Hg isotopic analysis and its 

subsequent application in the context of real-life situations of high environmental 

relevance. 

The first chapter of this PhD thesis provides a description of the importance of Hg 

as a global environmental pollutant. This includes a summary of its chemical 

characteristics, most common sources, toxicity, exposure pathways, health 

implications, and a general overview of the complex biogeochemical Hg cycle. In 

addition, the capabilities of high-precision Hg isotopic analysis as a means to study 

the occurrence of Hg in the environment has been described into some detail. For 

this purpose, the general principles of Hg isotope fractionation, the extent of this 

fractionation in different environmental processes, and a general overview of the Hg 

isotopic signatures reported for several environmental matrices, are provided. 

Chapter 2 summarizes the basic operating principles of multi-collector ICP-MS (MC-

ICP-MS), the technique of choice for Hg isotopic analysis. In this chapter, the setup 

used during this PhD, comprising a cold-vapor generation (CVG) system for sample 

introduction and a multi-collector ICP-MS instrument, is briefly described. Finally, 

the last part of this chapter is devoted to instrumental mass discrimination, a 

phenomenon strongly affecting MC-ICP-MS measurement results. This section 

discusses the origin of instrumental mass discrimination, the most widely applied 

approaches used for mass bias correction within the scientific community, and a 

more in-depth description of the correction approach selected in this PhD research 

project for Hg isotopic analysis. 

In chapter 3, an in-depth evaluation of Hg isotopic analysis via the use of two 

different sample introduction systems, pneumatic nebulization and cold vapor 

generation, is provided. This work has been carried out in the context of the SIB-09 

“Elements” project, funded by the EMRP (European Metrology Research Programme 

of EURAMET). The aim of this work was to provide National Metrology Institutes 

(NMIs) with sufficient information as to which approach to use in the 

characterization of future Hg isotopic reference materials. This study comprises (i) 

an optimization of the instrument settings and acquisition parameters, (ii) an 

assessment of the effect of Hg and Tl (analyte and internal standard, respectively) 

concentrations, and (iii) an evaluation of the applicability of different mass bias 

correction approaches. Additionally, the extent and stability of mass bias and short- 
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and long-term precision of Hg isotopic analysis were documented, as well as the 

effect of the matrix composition. Finally, the methodology selected has been used 

for the determination of the Hg isotopic composition of several reference materials 

(RMs) with environmentally relevant matrices. 

After the development, optimization and validation of a reliable protocol for high-

precision Hg isotopic analysis, it has been applied to different sample types and in 

different studies of high environmental relevance. As indicated above, fish 

consumption is considered the major source of MeHg for humans. Therefore, 

several marine species from different levels within the trophic chain were analyzed 

for their Hg isotope ratios.  

In this context, Chapter 4 describes a research project carried out in collaboration 

with the Norwegian National Institute of Nutrition and Seafood Research (NIFES). 

The goal of this work was to assess the effect of the introduction of a large amount 

of metallic Hg leaking from a submarine wreck on the local food web. The U-864 

submarine was torpedoed and sunk during WWII close to the Norwegian coast and 

in the immediate proximity of Fedje island. The U-864 was carrying approximately 

70 tons of metallic Hg in its keel, and a large fraction of this metallic Hg was 

introduced in the marine ecosystem. In this work, the information provided by THg 

quantification, MeHg speciation, and Hg isotopic analysis of different sample types 

has been combined, aiming to evaluate the potential impact of the U-864 Hg. The 

isotopic signature of metallic Hg salvaged from the sunken submarine was 

compared to those obtained for sediments from the immediate vicinity of the wreck 

location, and those for different tissues of crabs (Cancer pagurus) from the wreck 

location, 4 nautic miles north and 4 nautic miles south of this location.  

Based on the hypotheses and tentative conclusions provided in Chapter 4, Chapter 

5 describes a subsequent study, going one step further by analyzing a fish species 

located at a higher level within the food web. For this work, liver and muscle tissues 

of tusks (Brosme brosme) have been analyzed for their THg and MeHg 

concentrations and Hg isotopic signatures for tracing Hg pollution along the 

Norwegian coast, and for evaluating the possibility of using tusk as a fish species in 

future Hg monitoring programs. Tusks from eight coastal locations, including 

fjords, have been analyzed and the results have been complemented with those 

obtained upon quantification of other environmentally relevant metals (As, Cd, Cu, 

Cr, Ni, Pb and Zn) in order to elucidate the origin and fate of Hg. 
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Finally, Chapter 6 deals with the study of Hg in a marine mammal (located at the 

top of a marine trophic chain), an issue of great concern in terms of seafood safety, 

and of special relevance owing to the similarities these species may show with 

humans in terms of metabolic pathways. A cooperation with the University of 

Aberdeen (Scotland, UK) was established and, in the context of this work, different 

sample types of long-finned pilot whales (Globicephala melas), stranded on a beach 

between Ansturther and Pittenween in Scotland (UK) on the 12th of September 

2012, were studied. In this work, different tissue types (liver, kidney and muscle) 

and biological fluids (blood and milk) of these stranded long-finned pilot whales 

have been analyzed for their THg and MeHg concentrations, and Hg isotope ratios, 

aiming at obtaining a more profound insight into the metabolic pathways that Hg 

undergoes in this type of animal.  
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Situering en doelstellingen 

Kwik (Hg) is wereldwijd één van de belangrijkste verontreinigende stoffen. Het kan 

grote afstanden afleggen doorheen de atmosfeer, is niet afbreekbaar en vertoont 

biomagnificatie in de voedselketen. De toxiciteit van Hg is sterk afhankelijk van de 

chemische vorm, waarbij methylkwik (MeHg) beschouwd wordt als de meest 

toxische Hg-species. Sinds de Minamata-ramp in 1956 is er een groeiende 

bezorgdheid over het potentiële risico van dit zeer giftige zware metaal en zijn 

verbindingen. Hg komt in de omgeving voor als gevolg van zowel natuurlijke als 

antropogene bronnen. Atmosferisch Hg wordt overvloedig afgezet in de oceanen, één 

van de belangrijkste reservoirs van Hg op aarde. De consumptie van vis en 

schaaldieren wordt beschouwd als de belangrijkste bron van menselijke 

blootstelling aan MeHg. Bijgevolg is de ontwikkeling van nieuwe methodes om de 

risico's van Hg in aquatische ecosystemen te evalueren van het grootste 

belang. Naast elementanalyse (voor de kwantitatieve bepaling van het totale Hg-

gehalte) en speciatie-analyse (waarbij onderscheid kan gemaakt worden tussen 

anorganisch en organisch Hg), wordt isotopenanalyse van Hg gezien als een 

belangrijk middel om de complexe biogeochemische Hg-cyclus in de natuur te 

bestuderen en de risico's die samenhangen met de aanwezigheid van en 

blootstelling aan Hg te evalueren. 

Hg-isotopenanalyse kent nog steeds belangrijke analytische uitdagingen, zoals (i) de 

hoge precisie die vereist is om de kleine natuurlijke variaties in de 

isotopensamenstelling van Hg te detecteren en kwantificeren en (ii) de lage Hg-

concentraties die aanwezig zijn in de meeste van de relevante monsters. Multi-

collector ICP-massaspectrometrie (MC-ICP-MS) is de techniek bij uitstek voor 

isotopenanalyse van Hg met hoge precisie. Deze techniek maakt een accurate en 

precieze meting van isotopenverhoudingen mogelijk, weliswaar met een relatief 

beperkte gevoeligheid en vaak is een omslachtige en tijdrovende 

monstervoorbereiding vereist (bijvoorbeeld isolatie van het analietelement uit de 

monstermatrix). In het geval van Hg kan de koude-damp-methode (Cold Vapour 

Generation of CVG) gebruikt worden voor monsterintroductie in MC-ICP-MS. Bij 

deze methode wordt Hg2+ selectief gereduceerd tot Hg0 (gas) via reactie met SnCl2, 

waarna de Hg-damp via Ar-draaggas uit de reactiecel kan verwijderd worden en 

naar het ICP worden getransporteerd. Op deze manier kunnen spectrale 

interferenties en/of matrixeffecten worden vermeden, terwijl de gevoeligheid 
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aanzienlijk kan worden verhoogd. Hg isotopenanalyse via CVG-MC-ICP-MS wordt 

echter nog steeds beïnvloed door instrumentele massadiscriminatie, een fenomeen 

dat resulteert in een gemeten isotopenverhouding die verschilt van de ware. Daarom 

moet voor deze instrumentele afwijking adequaat worden gecorrigeerd. 

De belangrijkste doelen van dit doctoraat waren de ontwikkeling, optimalisatie en 

validatie van een robuuste analytische methode voor accurate en precieze Hg-

isotopenanalyse en de daaropvolgende toepassing ervan in actuele contexten met 

een hoge milieurelevantie. 

Het eerste hoofdstuk van dit proefschrift beschrijft het belang van Hg als een 

wereldwijd milieuverontreinigende stof. Dit omvat een samenvatting van de 

chemische kenmerken, meest voorkomende bronnen, toxiciteit, blootstellingsroutes, 

gezondheidsimplicaties en een algemeen overzicht van de complexe 

biogeochemische Hg-cyclus. Bovendien zijn de mogelijkheden van hoge-precisie Hg-

isotopenanalyse als middel om het in de omgeving aanwezige Hg te bestuderen tot 

in detail beschreven. Voor dit doel worden de algemene principes van Hg-

isotopenfractionactie, de omvang van deze fractionatie in verschillende 

omgevingsprocessen en een algemeen overzicht van de isotopische samenstellingen 

van Hg die voor verschillende omgevingsmatrices zijn gerapporteerd, verstrekt. 

Hoofdstuk 2 vat de basisprincipes van multi-collector ICP-MS (MC-ICP-MS) samen, 

de voorkeursmethode voor hoog-precieze Hg-isotopenanalyse. In dit hoofdstuk 

wordt de opstelling beschreven die tijdens dit doctoraat werd gebruikt, bestaande 

uit een koude damp systeem (CVG) voor monsterintroductie en een multi-collector 

ICP-MS-instrument. Ten slotte is het laatste deel van dit hoofdstuk gewijd aan 

instrumentele massadiscriminatie, een fenomeen dat de meetresultaten met MC-

ICP-MS sterk beïnvloedt. Deze paragraaf bespreekt de oorsprong van instrumentele 

massadiscriminatie, de meest toegepaste benaderingen gebruikt voor correctie, en 

een meer diepgaande beschrijving van de correctie-aanpak die in dit werk werd 

geselecteerd. 

Hoofdstuk 3 beschrijft de resultaten van een grondige  evaluatie van MC-ICP-MS 

Hg-isotopenanalyse via het gebruik van twee verschillende 

monsterintroductiesystemen, nl. pneumatische verstuiving en koude 

dampgeneratie. Dit werk werd uitgevoerd in het kader van het SIB-09 "Elements" 

project, gefinancierd door het EMRP (European Metrology Research Program of 
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EURAMET). Het doel van dit werk was om Nationale Metrologische Instituten 

(NMI's) voldoende informatie te verschaffen over de te gebruiken aanpak bij de 

karakterisering van toekomstige Hg-isotopische referentiematerialen. Deze studie 

omvat (i) een optimalisatie van de instrumentinstellingen en acquisitieparameters, 

(ii) een beoordeling van het effect van de Hg- en Tl-concentratie (als respectievelijk 

analiet en interne standaard), en (iii) een evaluatie van de toepasbaarheid van 

verschillende methodes om te corrigeren voor massadiscriminatie. Bovendien werd 

de stabiliteit van de instrumentele massadiscriminatie en de korte- en lange-termijn 

precisie van Hg-isotopenanalyse gedocumenteerd, evenals het effect van de 

matrixsamenstelling. Ten slotte werd de gekozen methode gevalideerd via de 

bepaling van de isotopische samenstelling van Hg van verschillende 

referentiematerialen (RM's) met voor het milieu relevante matrices. 

Na de ontwikkeling, optimalisatie en validatie van een betrouwbaar protocol voor 

hoge-precisie Hg isotopenanalyse, werd dit ingezet in verschillende studies met een 

hoge milieurelevantie. Zoals hierboven aangegeven, wordt de consumptie van vis en 

schaaldieren beschouwd als de belangrijkste bron van MeHg voor mensen. Daarom 

werden mariene species van verschillende niveaus binnen de trofische keten 

geanalyseerd op hun Hg-isotopenverhoudingen. 

In dit verband beschrijft hoofdstuk 4 een onderzoeksproject dat werd uitgevoerd in 

samenwerking met het Noorse National Institute for Nutrition and Seafood Research 

(NIFES). Het doel van dit werk was om het effect van de introductie van een grote 

hoeveelheid metallisch Hg dat lekt uit een onderzeeërwrak op de lokale voedselketen 

te beoordelen. De U-864-onderzeeër werd tijdens de Tweede Wereldoorlog 

getorpedeerd en tot zinken gebracht dicht bij de Noorse kust en in de onmiddellijke 

nabijheid van het eiland Fedje. De U-864 vervoerde ongeveer 70 ton metallisch Hg 

in zijn kiel en een groot deel daarvan werd geïntroduceerd in het mariene 

ecosysteem. In dit werk werd de informatie, bekomen op basis van kwantificering 

van het totale Hg-gehalte, MeHg-bepaling en Hg-isotopenanalyse van verschillende 

monstertypes, gecombineerd om de potentiële impact van het U-864 Hg te 

evalueren. De isotopische samenstelling van metallisch Hg bemonsterd in de 

gezonken onderzeeër werd daarbij vergeleken met deze verkregen voor sedimenten 

uit de onmiddellijke nabijheid van de locatie van het wrak, en die voor verschillende 

weefsels van krabben (Cancer pagurus) bemonsterd op de locatie van het wrak en 4 

zeemijlen ten noorden en ten zuiden van deze locatie. 
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Hoofdstuk 5 beschrijft een vervolgstudie, die een stap verder gaat door het 

analyseren van een vissoort die zich op een hoger niveau in de voedselketen 

bevindt. Voor dit werk zijn lever- en spierweefsels van de Lom (Brosme brosme) 

geanalyseerd op hun THg- en MeHg-concentraties en de isotopische samenstelling 

van het aanwezige Hg voor het opsporen van Hg-vervuiling langs de Noorse kust, en 

voor het evalueren van de mogelijkheid om Lom in de toekomst als vissoort te 

gebruiken voor het monitoren van Hg-vervuiling. Vissen afkomstig van acht 

kustlocaties, waaronder fjorden, werden geanalyseerd en de resultaten zijn 

aangevuld met de concentraties  bepaald voor andere voor het milieu relevante 

metalen (As, Cd, Cu, Cr, Ni, Pb en Zn) om de oorsprong van het aanwezige Hg te 

onderzoeken en de processen waaraan het deelneemt te documenteren. 

Tot slot behandelt hoofdstuk 6 de studie van Hg in een zeezoogdier (gesitueerd aan 

de top van een mariene trofische keten). Dit omwille van het grote belang van de 

voedselveiligheid van predatorspecies, en de relevantie wegens de overeenkomsten 

die deze soorten kunnen vertonen met mensen wat betreft de metabole routes. 

Hiervoor werd een samenwerking opgezet met de Universiteit van Aberdeen 

(Schotland, VK), waarbij verschillende monstertypes werden bestudeerd afkomstig 

van grienden (Globicephala melas), die strandden op een strand tussen Ansturther 

en Pittenween in Schotland (VK) op 12 september 2012. In dit werk werden 

verschillende weefseltypes (lever, nieren en spieren) en biologische vloeistoffen 

(bloed en melk) van deze gestrande grienden onderzocht op hun THg- en MeHg-

concentraties en Hg-isotopenverhoudingen, met als doel een grondiger inzicht te 

verkrijgen in de metabole omzettingen die Hg bij dit type dier ondergaat. 
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1.1. Mercury as a global pollutant 

Mercury (Hg) occurs in the environment as a result of natural and anthropogenic 

sources, and both wildlife and humans are exposed to the harmful effects of this 

highly toxic heavy metal and its compounds. Since the Minamata disaster in 1956, 

the risks associated with Hg are widely recognized and there is increasing concern 

about the rising levels of Hg around the world.[1] As a result, the United Nations 

Environment Program (UNEP) mandated to study the impacts of Hg and to provide 

legal instruments as to address the Hg issue. In 2013, the Minamata Convention on 

Mercury was signed, which aims to protect human health and the environment 

from anthropogenic emissions and releases of Hg and Hg compounds. Nowadays, 

Hg is recognized as one of the most important global pollutants because it can 

travel long distances through the atmosphere, be persistent in the environment, be 

accumulated in the food web, and cause severe adverse effects on human and 

ecosystem health.[2]  

This chapter aims at giving a general overview, thus providing a basic 

understanding of the chemistry of Hg, its toxicity and the risks associated with Hg 

exposure, the most important Hg sources and exposure pathways, the complexity of 

the Hg cycle, and the role of isotopic analysis of Hg as a key tool for unraveling the 

biogeochemistry of Hg in nature. 

 

1.1.1. Chemistry of mercury 

Mercury (Hg) is the only metal that is liquid at room temperature, a reason why it 

was commonly known as “quicksilver” or “liquid silver”. The symbol “Hg” is coming 

from the Latin term “hydrargyrum”. The atomic number of Hg is 80 and its atomic 

weight is 200.6025 amu. As a result of its electronic configuration, with completely 

full f and d orbitals ([Xe]4f145d106s2), Hg shows a similar stability as the noble gas 

elements. Due to its unique physicochemical properties, i.e. melting point of -38.87 

°C, boiling point of 356.7 °C, density of 13.534 g cm-3, vapor pressure of 1.22 x 10-3 

mmHg at 20°C and solubility of 5.6 x 10-7 g L-1 in water at 25 °C,[3, 4] Hg has been 

used by humans since ancient times. Hg occurs in the environment in three main 

oxidation states: Hg(0) (elemental or metallic), Hg(I) (mercurous) and Hg(II) 

(mercuric). However, Hg(I) is metastable and is typically an intermediate in the 
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oxidation of Hg (0) to Hg (II). In the atmosphere, Hg(0) comprises approximately 95% 

of the total Hg, while Hg(II) is the most common oxidation state in aquatic and 

terrestrial ecosystems. In addition, both Hg(I) and Hg(II) can form inorganic and 

organic chemical compounds.[5] Hg(II) is commonly present in water, soils and 

sediments under the form of sulfides, chlorides, selenides and tellurides, while the 

organic compound monomethylmercury (MMHg or MeHg) is the dominant Hg 

species in biota.[6]  

Some fractions of Hg present in the environment have been classified as 

“operationally defined fractions” instead of specific compounds, depending on how 

they can be collected and how elemental Hg can be released from them (see Figure 

1-1). However, there is still some controversy  regarding the names and definitions 

of some of those fractions, such as DGHg (dissolved gaseous Hg), HgR (reactive Hg 

dissolved in water), Hg(II) (dissolved Hg, used to quantify bio-available Hg), Hg-Col 

(colloidal Hg), RGM (reactive gaseous mercury) and PHg (particulate-bound Hg).[7-

10] 

 

 

Figure 1-1. Diagram representing the major chemical forms of Hg found in water 

and air.[10] 
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1.1.2. Mercury sources 

Mercury is a naturally occurring element in the Earth’s crust that can enter the 

environment as a result of natural and anthropogenic processes, and it can be re-

emitted or re-mobilized after its introduction. The main natural sources of Hg are 

volcanoes, forest fires, cinnabar (ore) and fossil fuels, such as coal, petroleum and 

natural gas deposits. Cinnabar (HgS) is considered the main mineral source of Hg, 

however, intermetallic alloys, halides, sulfides, arsenides, selenides, antimonides, 

tellurides, sulfosalts, oxides, carbonates and sulfates are also considered as Hg 

mineral sources. They occur in magmatic, hydrothermal, evaporitic and surface 

weathering environments.[11] Therefore, the “pure” natural processes that can emit 

Hg into the atmosphere may include volcanic eruptions, geothermal vents and Hg 

emission from terrestrial enriched soils,[10] with gaseous elemental mercury (GEM) 

as the predominant form of Hg from natural emissions (> 99%).[12] Some models of 

the flow of Hg through the environment suggest that natural sources account for 

about 10% of the estimated amount of Hg emitted and re-emitted into the 

atmosphere (see Figure 1-2).[13] 

Human activities have increased the mobilization of Hg from deep mineral 

reservoirs into the environment, raising the Hg levels in the atmosphere, soils, fresh 

waters and oceans. The main anthropogenic Hg sources are fossil fuel combustion, 

gold production, non-ferrous metal smelting (mainly of lead and zinc), cement 

production, caustic soda manufacturing, chlor-alkali production, iron and steel 

production and waste incineration. Other activities involving the use of considerable 

amounts of Hg, such as the production of batteries, measuring and control 

instruments, electrical lighting, wiring devices and electrical switches can also 

contribute to the release of Hg into the environment, as well as dental amalgams, 

medicinal waste incinerators and landfills.[10, 14] Similarly to natural emissions, 

anthropogenic Hg is mainly released to the atmosphere as GEM (~61%), although 

also reactive gaseous mercury (RGM, ~ 32%) and particulate Hg (PHg, ~ 7%) 

occur.[14]    

Therefore, in the case of both natural and anthropogenic sources, the atmosphere 

plays a major role in the global transport of Hg. GEM can be transported over long 

distances from the point source owing to its high atmospheric residence time, 

ranging from several months to one year. Hg(0) can be oxidized in the atmosphere 
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and be removed by particle and gas-phase dry deposition or by scavenging by 

precipitation. RGM and PHg have shorter residence times in the atmosphere in 

comparison with GEM, therefore they are typically deposited locally or regionally, 

relatively close to the point source.[2] Atmospheric deposition can occur in a 

terrestrial and/or in an aquatic ecosystem, in which Hg can subsequently follow 

different pathways (see section 1.1.4.) 

 

 

Figure 1-2. Global Hg budgets, based on models, of the main environmental 

compartments including natural sources, anthropogenic sources, as well as re-

emissions of Hg previously deposited.[13] 

 

1.1.3. Toxicity, exposure and health implications  

Mercury is a toxic heavy metal, but its toxicity strongly depends on its chemical 

form. Inorganic mercury compounds are elemental mercury (Hg0), which can be in 

metallic or gaseous form, and mercurous (Hg2
2+) or mercuric (Hg2+) salts. Organic 

mercury compounds contain carbon-containing structures, such as (a) methyl, 

ethyl or phenyl group(s) bound to Hg. The most typical organic Hg compounds are 
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methyl mercury (CH3Hg+) and dimethyl mercury (CH3)2Hg, which are the most toxic 

mercury species.  

In liquid state, elemental Hg is minimally absorbed by humans, but the problem 

arises when the elemental Hg is in its gaseous form. After inhalation, GEM is 

readily absorbed in the lungs and is able to enter the blood stream, from where it is 

distributed to all tissues within the body.[15] It can pass though the blood-brain 

barrier, where it can cause severe damage to the central nervous system,[16] and 

also the placenta barrier, settling down in the fetal brain.[17] Other organs or 

tissues that can also be affected by the deposition of metallic Hg include the 

kidneys, liver, pancreas, lungs, muscles, thyroid gland, myocardium, salivary 

glands, prostate, testes and breasts.[18] The biological half-life of absorbed Hg 

vapor in blood is approximately two to four days, while part of the Hg vapor is 

oxidized to Hg2+, the rest is excreted via urine and feces.[19] Elemental Hg exposure 

is normally divided into occupational and non-occupational exposure. Occupational 

exposure occurs as a result of activities that produce Hg vapor, such as the 

manufacturing of chlor-alkali compounds, the production of lighting or Hg-

containing devices, and mining activities. In addition to Hg mining itself, one of the 

other mining activities of special concern is the artisanal and small-scale gold 

mining (ASGM) in developing regions, where also children participate in the gold 

extraction under “unsafe” conditions. For the extraction of Au, Hg is added to the 

gold-containing ore, aiming at producing an amalgam between gold and mercury 

(AuHg). Subsequently, the Hg from this amalgam is burned off to obtain pure gold. 

Of course, this leads to the release of Hg in gaseous form.[20] Occupational 

exposure can induce both short-term and chronic effects, including dyspnea, 

paroxysmal cough, chest pain, pulmonary infiltration, chills, nausea, vomiting, 

tremor, psychological disturbances, erethism (psychotic symptoms), gingivitis, 

stomatitis and severe kidney damage associated with the nephrotic syndrome.[21] 

The most important non-occupational Hg exposure occurs through amalgam dental 

fillings. The majority of these filling consist of about 50% of metallic Hg mixed with 

other metals, typically silver, copper, tin and zinc. The Hg present in these dental 

fillings can be continuously released from the surface into the oral cavity by 

chewing, eating, brushing and drinking hot liquids.[22] The research community 

has published several studies investigating the relation between the number of Hg-

containing dental fillings with some symptoms, diseases or elevated Hg levels in the 
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body.[23-25] Nowadays, alternative materials are investigated and used for dental 

fillings. However, up to date it is not possible to provide a clear solution to this 

problem.[26, 27]  

Mercurous Hg salt mainly occurs under the form of Hg2Cl2 (calomel), and due to its 

low solubility, it is poorly absorbed. However, once inside the body, it undergoes 

disproportionation, leading to Hg0 and Hg2+, which are more absorbable Hg forms. 

Major pathways of exposure to this Hg compound was via the use of teething 

powders, deworming products and laxative preparations until the mid-20th century, 

sometimes causing acrodynia or “pink desease”, which is characterized by a pink 

discoloration of the hands and feet, photophobia, irritability and polyneuritis.[28] 

The most typical mercuric salt, cinnabar (HgS), shows an extremely low solubility in 

water, and therefore, its toxicity is relatively low. However, mercury chloride (HgCl2), 

also called sublimate, is readily soluble in water, and consequently, its toxicity is 

much higher.[29] This compound was typically used as a component of some skin 

creams, as preservative and for the devolvement of photographic films. Its ingestion 

in a sufficient dose can cause extensive corrosive damage in the gastrointestinal 

tract, complete collapse of the kidney function, and indirectly, also cardiovascular 

collapse.[30] The patients surviving such intoxication commonly develop renal 

tubular necrosis with anuria.[31] Although the kidneys are the main organ affected 

by mercuric salts, they can also cause dermatitis, immune dysfunctions, asthma, 

stomatitis and gastroenteritis.[32] Nowadays, poisoning with mercury salts is rare, 

and the most common form of occupational exposure is to Hg vapor. Mercuric Hg 

cannot cross the blood-brain barrier as efficiently as elemental Hg, but it can be 

accumulated in the placenta, fetal tissues and amniotic fluid.[33] The free Hg2+ ions 

show an extremely high affinity to compounds containing functional sulfhydryl (–

SH) groups, such as amino acids, peptides and proteins, allowing Hg accumulation 

in the red blood cells, brain, liver, kidney and other tissues. This can produce an 

inhibition of the activity of the corresponding cells, leading to damage in their cell 

membranes, a denaturalization of proteins, causing severe problems in the immune 

system and in the central nervous system.[15, 21]   

The most common organic Hg species are monomethyl-, dimethyl-, ethyl- and 

phenyl-mercury compounds. Among these, the last two are rapidly converted into 

inorganic Hg, resulting in similar toxic effects as those of mercuric compounds, 

although they are more efficiently absorbed into the body. These compounds have 
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been used and are – to a lower extent – still used as preservative antibacterial 

agents in vaccines, e.g., thimerosal (ethylmercury thiosalicylate), and they were 

widely used as components of latex paints before the 1990s.[21] On the other hand, 

the two methylmercury compounds are considered potent neurotoxins. Other 

organic Hg compounds can enter the environment from anthropogenic sources 

because of their presence in some products, such as fungicides, slimicides and 

paints, although nowadays their use has declined.[34] The main source of 

methylmercury compounds, however, is their production from inorganic Hg species 

by microorganisms in natural waters and/or at sediment-water interfaces, or via 

the decomposition of other organomercurial compounds.[10] The microorganisms 

convert the mercuric species into methylated species as a protective mechanism, 

because for them MeHg is less toxic than Hg2+. Sulfate-reducing bacteria are 

considered the main responsible for this methylation process in aquatic ecosystems 

(see section 1.1.4.). DMHg is a volatile Hg compound with a short lifetime in the 

atmosphere because it is easily degraded by chemical or photochemical reactions. 

In aquatic ecosystems, it is rarely present in surface waters, and it is slowly 

accumulated in deep open ocean waters below the thermocline, because its rate of 

formation is of the same order as its decay rate.[7] MeHg is the most stable organic 

Hg compound, is one of the most abundant Hg species in the environment, is highly 

toxic and has been stated as the major source of human Hg exposure; therefore, it 

is considered the Hg species of greatest interest and most studies have focused on 

it.[35, 36] In terrestrial environments, the MeHg bioaccumulation is relatively low. 

However, the effect of Hg on plant growth and its transfer into food products of 

plant origin have been studied because of the use of some organomercurial 

compounds in agriculture. Exceptionally high levels of MeHg intake from a food 

source occurred upon consumption of rice originating from some mining regions in 

China. The particular characteristics of rice cultivation involving the flooding of the 

paddies were demonstrated to enhance the microbial activity, favoring the 

production of MeHg from inorganic Hg. This newly generated MeHg can be easily 

taken up by the rice plant, and subsequently accumulated in the rice grains, which 

are consumed in high amounts in these areas.[37, 38] In aquatic environments, on 

the other hand, the bioaccumulation of MeHg is extremely high, thus making the 

consumption of fish and seafood the most important source of human MeHg 

exposure. Once MeHg is produced, it can be easily bioaccumulated and 

biomagnified across the aquatic food web, reaching the highest levels in the top fish 
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predators, marine mammals and aquatic birds which are important sources of food 

for humans around the world. The most vulnerable populations are those for which 

fish consumption is the major source of proteins. Self-evidently, this vulnerability 

can be increased if the population lives close to a local Hg pollution source.[39] 

Approximately 95% of the MeHg ingested via the diet, mainly via fish consumption, 

is absorbed in the intestine and transferred to the blood stream. There, it mainly 

adheres to sulfhydryl groups, particularly to those of cysteine, and is distributed to 

all the body tissues, while only the 5% of the absorbed dose remains in the blood 

compartment.[21] The main target organ of MeHg is the brain and the nervous 

system, causing cell membrane damage, free radical generation, neurotransmitter 

disruption and stimulation of neural excitoxins. These damages result in sensory 

disturbance, constriction of the visual field, deafness, mental disorders, and 

motoric aberrations, such as ataxia, dysarthria, cramps, tremors and paralysis.[30, 

40] An important subject of study is the adverse effects that MeHg can cause in 

neonates, infants and children. MeHg can pass the placenta barrier, inhibiting the 

fetal brain development, resulting in severe cerebral palsy-like symptoms in the 

infants, although the mother has no manifestation of any such symptom.[35] Some 

studies of children exposed in-utero to MeHg have documented different symptoms 

and signs such as mental retardation, cerebellar ataxia, primitive reflexes, 

dysarthria, strabismus, hyper-salivation, epileptic attacks, chrorea and athetosis, 

growth disorders and hyperkinesias.[41, 42] In addition to the brain and nervous 

system, MeHg can also affect the reproduction system and cause severe damage in 

the immune and cardiovascular systems, although the data obtained in these 

studies are still studied to evaluate a possible association between MeHg exposure 

and the symptoms observed.[35]        

 

1.1.4. Biogeochemical mercury cycle 

The global biogeochemical Hg cycle comprises the different transformations that Hg 

can undergo in the atmosphere, land and aquatic ecosystems, as well as its 

transport between the different compartments.  

In the atmosphere, Hg can be present under three main forms: gaseous elemental 

Hg (Hg(0)), divalent Hg or reactive gaseous mercury (Hg(II) or RGM) and particulate 

Hg (PHg or Hg(P)). Hg(0) is the most abundant form of Hg in the atmosphere (~95 
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%). It has a long lifetime in the atmosphere (up to 1 year) because of its relatively 

low deposition velocity and high vapor pressure.[43] These characteristics enable 

Hg to be globally distributed. The most common divalent mercury form in the 

atmosphere is HgCl2, and both RGM and PHg are shorter-lived and only constitute 

~ 5 % of the THg present.[44] These both forms are more soluble in water than 

Hg(0), and they are deposited into terrestrial or aquatic ecosystems through wet and 

dry deposition. In addition to divalent Hg, Hg can also be present as organic 

compounds, such as MeHg and DMHg, although they are considered negligible in 

comparison with the inorganic forms because they tend to be converted into 

elemental or RGM due to their high instability.[45, 46] The atmospheric chemistry 

of Hg has to be explained in terms of the conversion processes (see Figure 1-3) 

between the different Hg forms in the atmosphere, Hg deposition and evasion 

to/from other ecosystems (terrestrial and aquatic). The conversion between different 

Hg species in the atmosphere comprises redox reactions. The main redox reaction 

that occurs in the atmosphere is the oxidation of Hg(0) to Hg(II) or to Hg(P). It was 

stated that this reaction principally occurs due to the presence of oxidants such as 

OH, O3 and molecular halogens, although further observations indicate that the 

oxidation process must be mainly produced by photochemical reactions involving  

halogens or other radicals, principally Br and OH.[47] The occurrence of a 

reduction process producing Hg(0) has been demonstrated to occur in the 

atmosphere and also in power plant plumes.[48, 49] Hg deposition occurs through 

wet or dry deposition. Wet deposition involves scavenging of RGM and PHg, and it is 

more efficient by cold precipitation and snow, respectively. In both cases, the 

deposition rate can vary seasonally.[50] On the other hand, dry deposition involves 

surface uptake of Hg(0) and Hg(II). Although few measurements have been carried 

out and the mechanisms have only been poorly characterized, it could be even more 

important than wet deposition.[51] Finally, the evasion of Hg from other 

environmental compartments into the atmosphere can also be taken into account. 

This evasion is produced by the reduction of Hg(II) into Hg(0) or via desorption 

processes. At the water-atmosphere interface, this reaction mainly occurs via 

photoreduction, and to a lesser extent, via biotic processes. However, also oxidation 

occurs, and at similar rates as reduction, causing an equilibrium between the two 

processes.[52] The evasion of Hg from soil surfaces to the atmosphere is considered 

an important source of atmospheric Hg, and the extent to which it occurs depends 

on the Hg species present, the soil pH, its content of organic matter, the 
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temperature, wind speed and turbulence, the vegetative cover, microbial activity, 

barometric pressure and particularly, the amount of solar irradiation.[53] 

Therefore, the terrestrial cycling is extremely closely related with the atmospheric 

one, because the Hg deposited from the atmosphere has been shown to 

preferentially re-volatilize (between 5 – 60 %), a process called “prompt 

recycling”.[54] Within terrestrial ecosystems, vegetation plays an important role in 

the absorption and release of Hg, although the chemical processes involved in this 

exchange require further experiments for clarification.[55] In the terrestrial 

ecosystem, the majority of absorbed Hg resides in the soil, associated with the thiol 

groups of natural organic matter (NOM), although in places with direct deposition of 

Hg from industrial or mining processes, Hg has also be found in other mineral 

forms, such as HgO, HgCl2, Hg2OCl, Hg3Cl3O2H, Hg3S2Cl2 and Hg3O2SO4.[56] The 

other part of the absorbed Hg which is in solution can be runoff into a watershed or 

undergo methylation. 

 

 

Figure 1-3. Schematic representation of the chemical processes of Hg in the 

atmosphere and at the interface of the different environmental compartments.[57] 
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The aquatic ecosystems are considered of high relevance within the biogeochemical 

Hg cycle because of the MeHg formation, bioaccumulation across the food web and 

subsequent human MeHg exposure via fish consumption. Different aquatic 

ecosystems exist: freshwater, marine and oceanic systems. The freshwater systems 

include watersheds, lakes, ponds and reservoirs, and the marine systems include 

estuaries and coastal waters. The Hg cycle in the aquatic ecosystems mainly 

comprises redox reactions, and methylation/demethylation processes (see Figure 1-

4). The inorganic Hg (II) species can be photochemically or biotically reduced to 

Hg(0), which can then volatilize into the atmosphere. At the same time, the Hg(0) or 

the PHg can be oxidized into soluble or insoluble Hg(II) species, such as HgS, which 

can precipitate and accumulate in the sediments, although remobilization of the 

HgS from the sediments has also been observed.[58]  

 

 

Figure 1-4. Mercury cycling in a lake and its watershed.[59] 
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The methylation and demethylation processes have been widely studied over the 

years because they directly affect the net amount of MeHg, which is available for the 

aquatic organisms. Microbial Hg methylation is the main source of MeHg in aquatic 

ecosystems, although abiotic Hg methylation can also occur in humic 

substances.[60] Microbial methylation occurs mainly in anoxic environments 

mediated by sulfate-reducing bacteria (SRB), and to a lesser extent by iron-reducing 

bacteria.[61, 62] Different parameters can affect the extent of methylation and 

among these, dissolved organic matter (DOM) plays a pivotal role.[63, 64] The main 

difference between the aquatic ecosystems is that in open oceans, a deficit of 

oxygen is not a prerequisite for MeHg formation, while the methylation process can 

also produce DMHg.[65] MeHg degradation can occur via photodemethylation or via 

a microbially mediated process. The photodegradation of MeHg is caused by 

ultraviolet radiation and enhanced by the presence of organic ligands. The extent to 

which this process occurs, is lower in seawater than in freshwater, although also 

high rates have also been observed in marine surface waters.[66] The biotic 

demethylation in the water column and in sediments can proceed under aerobic 

and anaerobic conditions, and oxidative or reductive pathways have been described. 

The oxidative mechanism is still unclear, although it has been stated to be the 

major pathway for degradation of MeHg in the environment. Reductive 

demethylation involves the organomercury lyase enzyme of the microbial mer 

operon (vide infra) and leads to the degradation of MeHg into Hg (II) and 

methane.[67, 68]    

In summary, the biogeochemical Hg cycle comprises a large number of pathways 

and transformation (see Figure 1-5). An enhanced insight into this biogeochemical 

cycle is required to finally mitigate the adverse health effects that this toxic heavy 

metal can produce in humans and wildlife. Along the years, different approaches 

have been developed for this purpose, and efforts were especially directed at 

quantification and speciation analysis of Hg. More recently, Hg isotopic analysis has 

been introduced as it was deemed a powerful tool, capable of shedding more light 

onto the complex biogeochemical cycle by identifying important Hg sources and 

unraveling the pathways that Hg follows in the environment. 
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Figure1-5. Schematic representation of the environmental processes that Hg can 

undergo in the environment.[69] 
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1.2. Mercury isotope fractionation in the 

environment 

1.2.1. Principles of mercury isotope fractionation 

The isotopic compositions of the elements are sometimes assumed to be constant in 

nature, but, some variations occur, mainly as a result of the decay of naturally 

occurring and long-lived radionuclides and/or natural isotope fractionation effects. 

The latter is the most common process affecting the isotopic composition of the 

elements, including Hg. It occurs because different isotopes of the same element 

can show small differences in their physicochemical behavior, and therefore they 

can take part to a slightly different extent in physical processes or (bio)chemical 

reactions.[70] However, the natural variations in the isotopic composition of the 

elements tend to be very small and therefore, high-precision isotope ratio 

measurement is required to reveal and quantify these small variations, and the use 

of delta notation in per mil (δ, ‰) has been established to report the deviations 

relative to a reference standard. 

Mercury has seven stable isotopes 196Hg, 198Hg, 199Hg, 200Hg, 201Hg, 202Hg and 204Hg 

with natural abundances of 0.155, 10.04, 16.94, 23.14, 13.17, 29.73 and 6.83 % 

respectively.[71] However, due to the low abundance of 196Hg and the isobaric 

interference of 204Hg with 204Pb, these Hg isotopes are typically not measured. The 

entire scientific community tends to use the 198Hg isotope as the denominator for 

reporting Hg isotope ratios, following the convention in stable isotope geochemistry 

that the isotope with the lower mass is used as denominator.[72] The reference 

material NIST SRM 3133 is commonly used as Hg reference standard for calculating 

δxxxHg values.[71] 

 

𝜕 𝐻𝑔 (‰) =  (
( 𝐻𝑔𝑥𝑥𝑥 𝐻𝑔198⁄ )

𝑠𝑎𝑚𝑝𝑙𝑒

( 𝐻𝑔𝑥𝑥𝑥 𝐻𝑔198⁄ )
𝑁𝐼𝑆𝑇 𝑆𝑅𝑀 3133

− 1)𝑥𝑥𝑥 ∗ 1000          

 

where xxx = 199, 200, 201 or 202. 
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Mercury is one of the few elements that can undergo different types of isotope 

fractionation effects, i.e. mass-dependent and mass-independent fractionation (MDF 

and MIF). MDF is a fractionation effect observed to occur in many 

thermodynamically or kinetically controlled processes and is governed by the 

differences between the masses of the nuclei, which affect the frequencies of 

molecular vibrations.[73] For Hg isotopic analysis, MDF is typically reported as 

δ202Hg and it affects all isotopes of Hg. It has been experimentally observed during 

evaporation, volatilization, adsorption, leaching, diffusion, reduction, complexation 

with thiol resins, methylation and demethylation. The effect of MDF allows one to 

discern between different processes, allowing us to identify the Hg transformations 

in the environment. A more detailed description of each process is provided in the 

next section. 

MIF is governed by other properties of the nuclei than their mass, such as nuclear 

spin and charge density. This specific type of fractionation occurs for specific 

reactions only, thus providing interesting information on them. Most of the studies 

on Hg isotopic composition in environmental samples testify of MIF affecting the 

odd-numbered Hg isotopes only. Additionally, recent studies of samples of 

atmospheric origin have also reported MIF affecting the even-numbered isotopes of 

Hg, although the mechanisms involved have not been unraveled yet.[74-76] The 

extent of MIF is provided as the difference between a measured δxxxHg value and the 

one predicted assuming pure kinetically controlled MDF.[71]  

 

∆ 𝐻𝑔 =  𝜕 𝐻𝑔 − (𝜕 𝐻𝑔202 ∗  0.2520)         199199  

∆ 𝐻𝑔 =  𝜕 𝐻𝑔 −  (𝜕 𝐻𝑔202 ∗  0.5024)200200          

∆ 𝐻𝑔 =  𝜕 𝐻𝑔 −  (𝜕 𝐻𝑔202 ∗  0.7520)201201           

 

The constant values have been calculated applying the exponential law: 

 

𝒔𝒍𝒐𝒑𝒆 (
𝜹𝒂 𝒃⁄

𝜹𝒄 𝒃⁄

) =  
𝐥𝐧 𝒎𝒂 𝒎𝒃⁄

𝐥𝐧 𝒎𝒄 𝒎𝒃⁄
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𝛿199 198 ⁄ 𝐻𝑔

𝛿202 198⁄ 𝐻𝑔
=  

ln 198.968 197.9667⁄

ln 201.971 197.9667⁄
= 0.2519 

 

𝛿200 198 ⁄
′ 𝐻𝑔

𝛿202 198⁄
′ 𝐻𝑔

=  
ln 199.968 197.9667⁄

ln 201.971 197.9667⁄
= 0.5023 

 

𝛿201 198 ⁄
′ 𝐻𝑔

𝛿202 198⁄
′ 𝐻𝑔

=  
ln 200.97 197.9667⁄

ln 201.971 197.9667⁄
= 0.7519 

 

Two different mechanisms have been proposed as responsible for the odd-MIF, the 

nuclear volume effect (NVE) and the magnetic isotope effect (MIE). These 

mechanisms can be distinguish based on the Δ199Hg/Δ201Hg ratio. The NVE is 

controlled by the nuclear radius of the isotopes.[77] For the even isotopes, the 

nuclear radius correlates with mass, but for the odd isotopes this correlation 

disappears, leading to a smaller size than expected. The resulting higher nuclear 

charge density and its effect on the surrounding electron cloud results in weaker 

chemical bonds for the odd-numbered Hg isotopes.[78] It has been observed that 

the NVE occurs mainly during reactions resulting in an equilibrium, such as 

equilibrium evaporation. The MIE is a kinetically controlled isotope fractionation, 

mainly accompanying radical reactions and it is caused by the hyperfine interaction 

between nuclear and electron spins.[79] The odd-numbered Hg isotopes have 

unpaired nuclear spins and thus are subject to spin-selective separation from the 

even-numbered Hg isotopes during radical reactions.[80] The MIE has been 

observed for aquatic Hg photoreactions, i.e. photoreduction of Hg (II) and 

photodegradation of MeHg. Between the two different mechanisms explaining the 

MIF, the MIE is considered the predominant effect due to the low magnitude of 

NVE.  

  

1.2.2. Mercury isotope fractionation in environmental processes 

As was explained in the previous section, Hg isotopic analysis can be used to 

identify the different transformations that Hg can undergo in the environment. This 
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section attempts to summarize the isotope fractionation effects (MDF and MIF) 

observed for the different environmental processes that Hg can be involved in (see 

Figure 1-6).  

 

Figure 1-6. Overview of the general patterns in Hg isotope fractionation observed 

experimentally.[81]  

 

1.2.2.1. Physical processes 

Volatilization of Hg(0) dissolved in water, producing Hg(0) vapor is accompanied by 

MDF, with an enrichment of the lighter Hg isotopes in the gas phase.[82] The same 

fractionation effect has been observed to accompany evaporation of metallic Hg(0) 

into Hg(0) vapor, where the vapor phase is enriched in the lighter isotopes relative 

to the liquid metal. Additionally, also a small degree of MIF has been observed in 

these evaporation processes, with condensed Hg vapor being enriched in the odd-

numbered Hg isotopes, thus leading to slightly positive Δ199Hg and Δ201Hg values. 

Based on the ratio obtained in some studies between the MIF values of the two odd 

Hg isotopes (Δ199Hg/Δ201Hg ~ 1.6), it has been stated that this small MIF is caused 

by the NVE.[83, 84]  
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It is well known that Hg shows strong affinity for the thiol groups of dissolved 

organic matter (DOM).[85] Therefore, the complexation of Hg(II) by thiol ligands 

mobilizes Hg from soil and sediments, which makes Hg more available for further 

important transformations, e.g., methylation.[86] Additionally, in soils and 

sediments with low organic matter contents, the adsorption of Hg to mineral 

phases, such as iron or other metal oxides, can decrease the mobility of Hg, and 

thus its transport and bioavailability.[87] In both cases, the dissolved Hg(II), i.e. the 

most mobile and bioavailable form of Hg, is enriched in the heavy Hg isotopes, while 

the Hg sequestered in the mineral or organic matter is isotopically lighter. The same 

pattern of MDF has also been found in leaching processes, where the water-soluble 

and (NH4)2S2O3-extractable Hg species were enriched in the heavier isotopes relative 

to the total Hg in the soil samples.[88] Small MIF effects were observed to 

accompany the complexation with organic matter via the thiol groups, and they 

were attributed to the NVE, produced by shifts in electron density during ligand 

exchange. However, for adsorption onto minerals and leaching, MIF was observed to 

be insignificant. 

The last physical process that has been recently studied in relation with Hg isotope 

fractionation is Hg diffusion in air. The MDF accompanying this diffusion can be 

modeled using a Rayleigh distillation model, with the lighter isotopes diffusing 

faster than the heavier ones.[89] 

 

1.2.2.2. Methylation 

The methylation process is of the utmost importance because of the production of 

the most dangerous of the Hg species. Methylation can occur via biotic processes 

and under abiotic conditions. The methylation process most studied is the biotic 

methylation mediated by sulfate-reducing bacteria (SRB) under anaerobic 

conditions. Despite the importance of this reaction, the isotope fractionation 

accompanying this process has not been widely investigated due to the challenges 

associated with isotope ratio measurements of the MeHg thus produced, such as 

the necessity of using organic solvents and of handling highly toxic MeHg-

containing solutions. Chromatographic separation coupled on-line to an MC-ICP-

MS unit has been preferred over off-line extraction followed by digestion prior to 

MC-ICP-MS measurement in this context.[90-92] Off-line approaches are based on 
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multiple sequential extraction steps, a process that is tedious and time-consuming, 

while the resulting MeHg has to be converted into the oxidized Hg2+ species prior to 

CVG-MC-ICP-MS. In the case of on-line approaches, the main issues are 

degradation of the Hg isotope ratio precision owing to the necessity of dealing with 

short transient signals (e.g., those produced using GC and/or HPLC), also requiring 

a more complex and less straightforward data evaluation. Methylation under abiotic 

conditions in aquatic environments has recently been studied using 

methylcobalamin as methyl donor compound under dark and visible light 

conditions.[93] In both cases, under biotic and abiotic conditions, MDF has been 

observed with preferential methylation of the lighter Hg isotopes leading to positive 

δ-values in the remaining Hg(II) substrate and negative δ-values in the MeHg 

formed. In addition, MIF has only been observed under abiotic conditions with 

irradiation. 

 

1.2.2.3. Reduction of Hg (II) and MeHg (demethylation) 

As is the case for methylation, also the reduction process can proceed via a biotic or 

abiotic pathway. The importance of the reduction of Hg(II) and MeHg into Hg(0) is 

linked to the limited bioavailability of Hg(II), which is rather susceptible to 

methylation than to release of Hg(0) into the atmosphere.  

Biotic Hg(II) and MeHg reduction are carried out by micro-organisms, mainly by Hg-

resistant aerobic bacteria expressing the mer operon, although other anaerobic 

bacteria are also able to produce the reduction. The mer operon is a naturally 

occurring cluster of genes that confers mercury resistance to bacterial cells. The 

structure of the mer operons vary and are constituted by genes that encode the 

functional proteins for regulation (merR), transport (merT, merP and/or merC, merF) 

and reduction (merA and/or merB).[94] Most often, bacteria capable of expressing 

the mercuric reductasa (merA) enzyme are involved in biotic Hg(II) reduction. The 

complete process comprises the diffusion of Hg(II) across the outer cell membrane, 

the transport of Hg(II) by merP – merT through the periplasm and inner membrane 

into the cytoplasm, and the final reduction by MerA. This process leads to a net 

MDF favoring the reduction of the light Hg isotopes following the Rayleigh 

fractionation law. Therefore, the Hg(0) produced is enriched in the light isotopes, 

resulting in negative δxxxHg values  with respect to the remaining substrate of 
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Hg(II).[95, 96] Biotic MeHg reduction can proceed according to two different 

pathways, oxidative or reductive. The oxidative pathway has been associated with 

methanogenic and SRB leading to Hg(II) and CO2, although little is known about 

this pathway. The reductive pathway has been studied more intensively and it has 

also been associated with the mer system. This process also comprises different 

steps including the breakage of the Hg – C bond by the organomercuial-lyase MerB 

to produce Hg(II) and its subsequent reduction by merA to Hg(0).[97] It is important 

to point out that the biotic Hg(II) and MeHg reduction are not accompanied by MIF. 

Abiotic Hg(II) and MeHg reduction have been described to be typically initiated by 

DOC, and it can proceed under dark or light conditions. It has been demonstrated 

that the reduction under sunlight, i.e. photochemical pathway, is one of the most 

important mechanisms to produce Hg(0) in aquatic ecosystems. The main 

characteristic of the photochemical reduction is that it is accompanied by MIF in 

addition to the common MDF due to the radical character of the reaction. 

Depending on the mechanistic conditions, the MIF can be positive or negative. 

Laboratory experiments were carried out at a high Hg/DOC ratio and under 

exposure to sunlight. The reduced Hg(0) shows enrichment in the lighter Hg 

isotopes in comparison with the remaining Hg(II) or MeHg species (higher δ202Hg 

values) and negative Δ-values due to the MIE. This means that the remaining Hg(II) 

or MeHg in the solution are significantly enriched in the odd-numbered Hg isotopes 

(positive MDF and MIF). Also the photoreduction of Hg (II) and MeHg can be 

differentiated on the basis of the Δ201Hg/δ202Hg and the Δ199Hg/Δ201Hg ratio. The 

Δ201Hg/δ202Hg ratio was observed to be ~1.5 and ~3.0 for Hg(II) and MeHg 

photoreduction, respectively. Additionally, the Δ199Hg and Δ201Hg values are linearly 

correlated leading to a slope of 1.00 for Hg(II) photoreduction and 1.36 for MeHg 

photoreduction.[98] The different slopes observed for the two different 

photoreductions allow the differentiation of the two processes when applied to real 

environmental samples. It has been demonstrated that the Hg/DOC ratio in natural 

waters, the total level of dissolved solids (TDS), the pH of the water and the 

presence of substances that can act as radical scavengers affect the degree of MIF 

accompanying photochemical reduction.[99] The Hg/DOC ratio also has an 

important impact on the slope between the Δ-values for MeHg photoreduction, 

varying between 1.31 for a high Hg/DOC ratio and 1.19 at lower ratios, which agree 

better with the actual values in natural waters.[100] Further experiments were 
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carried out to evaluate the isotopic effects produced by specific functional groups 

present in low molecular-weight organic compounds. It was stated that when Hg 

binds with O/N functional groups, the fractionation is similar to that observed in 

previous works, however, in the presence of reduced sulfur groups the fractionation 

is following an opposite MIF trend, with the remaining Hg(II) depleted in the odd-

numbered isotopes (negative MIF).[80] The same patterns of MIF have been 

observed in the reduction of Hg(II) associated with halogens in surface snow in the 

Artic.[101] As was mentioned before, also non-photochemical abiotic reduction can 

occur, although it is not the dominant pathway in the presence of light. The 

reduction of Hg(II) by SnCl2 and NaBH4 was investigated and the reactant tends to 

be enriched in the heavier isotopes, while the Hg(0) formed is enriched in the lighter 

ones, but MIF for the odd-numbered Hg isotopes during the reduction process was 

found to be insignificant.[102] However, in a later work also investigating the 

abiotic reduction of Hg(II) in the absence of light by DOM and SnCl2, the same trend 

for MDF was reported, but also significant MIF anomalies were observed. These MIF 

anomalies were found to enrich the final product in the odd-numbered Hg isotopes 

and this observation was attributed to the contribution of the NVE rather than that 

of the MIE.[103]  

 

1.2.3. Mercury isotopic composition in environmental matrices 

The study of the Hg isotope fractionation occurring during different environmentally 

relevant Hg transformations (previous section) in combination with the 

measurement of the isotopic composition of Hg in actual environmental samples 

can contribute to a better understanding and quantification of the sources and 

processes involved in the complex global biogeochemical Hg cycle. Many studies 

have already determined the Hg isotope composition in natural samples of different 

origin, e.g., geogenic reservoirs, surface soils and sediments, the hydrosphere and 

atmosphere. A large variability in the Hg isotopic composition of the different 

natural samples has been observed, but the samples can be grouped in order to 

obtain a general overview about how the Hg isotopic composition is affected in 

nature. The Hg isotopic composition of different sample types, expressed as δ202Hg 

(MDF) and Δ199Hg (MIF), is shown in Figure 1-7. Generally speaking, the Hg isotopic 

composition shows an important variability of ~7 ‰ for δ202Hg and of ~10 ‰ for 
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Δ199Hg for the complete set of samples. However, it is necessary to point out that the 

main variability in Δ199Hg values needs to be attributed to the differences between 

snow samples and/or aquatic organisms, while larger differences have been 

observed in the case of δ202Hg values. This variability in δ202Hg between different 

groups is to be expected, because most of the physical and (bio)chemical processes 

are accompanied by MDF, and the extent of this MDF strongly depends on the 

characteristics of the specific ecosystem. In addition to the differences between 

groups, also high variations in δ202Hg values have been found in the case of 

samples from the same group, e.g., sediments samples can show different δ202Hg 

values depending of the site where they were sampled, the temperature, organic 

content, pH, etc. On the other side, the relatively small variability of the Δ199Hg 

values between most of the samples is a result of the fact that MIF occurs for some 

specific reactions only. Additionally, the two mechanisms hypothetically at the basis 

of MIF, i.e. the NVE and the MIE produce different extents of MIF, with the resulting 

Δ-values significantly higher for the MIE than for the NVE. The two exceptional MIF 

anomalies (snow and aquatic organisms) can be tentatively explained because this 

MIF is occurring in photochemical reactions, accompanied with different extents of 

the MIE occurring, depending on the ligand with which Hg is binding, i.e. with or 

without thiol groups, resulting in a preferential release of the odd or the even Hg 

isotopes, respectively, as was explained in the previous section.[80, 98, 99]  

 

 

Figure 1-7. Summary of published Hg isotope ratio data in natural samples (A: 

δ202Hg; B: Δ199Hg).[104] 
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2.1. Basic principles of (multi-collector) ICP-MS 

Inductively coupled plasma-mass spectrometry (ICP-MS) is considered one of the 

most powerful analytical techniques for elemental and isotopic analysis of metals 

and metalloids in a large variety of sample matrices. The main advantages of ICP-

MS are the low limits of detection attainable, its multi-element capabilities, a wide 

linear dynamic range, relatively simple spectra, high sample throughput, and the 

ease of combination with different introduction systems and with chromatographic 

separation techniques. Self-evidently, the technique also has disadvantages, the 

most important being the occurrence of spectral interferences. An ICP-mass 

spectrometer has three main parts, the ion source, the mass analyzer and the 

detection system, and other additional, but no less important parts, such as the 

sample introduction system and the interface (see Figure 2-1). The samples are 

introduced via the introduction system into the ion source. This ion source is an 

argon inductively coupled plasma (ICP), which can reach very high temperatures, 

thus allowing the formation of atomic ions (M+). The ions thus formed are extracted 

via an interface and separated from one another depending on their mass-to-charge 

(m/z) ratio in the mass analyzer. Finally, the resulting ion beam is converted into 

an electrical signal in the detection system. 

The main components of an ICP-MS unit are briefly described here in general 

terms. This technique has been widely described in literature, where more detailed 

information can be found. During this PhD research project, mercury quantification 

was done via single-collector sector field ICP-MS (SC-SF-ICP-MS) and Hg isotopic 

analysis has been carried out using multi-collector ICP-MS (MC-ICP-MS), which will 

be described in more detail in the next section. 

ICP-MS is primarily designed for the analysis of liquid samples (solutions). The 

conventional introduction system comprises the nebulizer and the spray chamber. 

The main objective of the nebulizer is to form the primary aerosol, while the spray 

chamber is used to smooth the pulses created by the peristaltic pump and to select 

the smallest droplets of the aerosol formed in order to allow an efficient production 

of M+ ions in the ion source. Different types of nebulizers and spray chambers have 

been developed over the years. Both pneumatic and ultrasonic nebulizers exist, and 

within the “pneumatic category”, different types can be distinguished, such as 

concentric, micro-concentric and cross-flow nebulizers. The two more common 
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designs of spray chambers are the Scott-type double-pass and cyclonic spray 

chambers, although the combination of both designs is also used and is typically 

called dual spray chamber. The main disadvantages of the standard sample 

introduction system are the low introduction efficiency (approximately 1 – 2%), 

which can compromise the sensitivity, and the limitation to liquid samples 

(solutions). Other introduction strategies that can be used in ICP-MS include laser 

ablation, electrothermal vaporization and cold vapor or hydride generation. In this 

research project, both conventional pneumatic nebulization and cold vapor 

generation have been used. Special attention has been paid to the hyphenation of a 

cold vapor generation system to a MC-ICP-MS unit and a more detailed description 

is included in section 2.2.2. 

 

 

Figure 2-1. Schematic representation of the different parts of an ICP-MS (Q-ICP-

MS) unit.[1] 
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As mentioned before, the aerosol produced in the introduction system is 

transported into the ion source. The plasma ion source is formed at the end of a 

torch, surrounded by an RF coil, fed by the RF supply. The ion source is an argon 

plasma, initially formed by an electrical discharge and is further maintained by 

energy that is transferred from a radio frequency (RF) generator by inductive 

coupling. The temperature of the plasma varies depending on the location and is 

between 6000K to 10000K. At that temperature, the sample aerosol is desolvated, 

the salt particles vaporized, the molecules thus formed atomized and the atoms 

thus generated finally ionized. The ionization process relies on electron impact 

ionization, charge transfer ionization and/or Penning ionization and the ionization 

efficiency depends on the first ionization energy of the element. 

The introduction system and the ICP ion source are operated under atmospheric 

pressure (105 Pa), while the mass spectrometer should be under high vacuum 

conditions (≤10-2 Pa). Therefore, an interface between these two instrument 

compartments is required to extract the ions formed in the ICP and transport them 

to the mass spectrometer. The interface consists of two consecutive water-cooled 

metal cones, sampler and skimmer,  typically made of Ni or Pt, with a small orifice 

(0.8 – 1.2 and 0.4 – 0.8 mm, respectively). Between the two cones, an intermediate 

vacuum of ~ 102 Pa is maintained via the use of a fore-vacuum pump. The ions 

extracted by the interface are guided to the mass spectrometer by an ion optic 

system, which also selects the positive ions, rejecting the electrons, the negatively 

charged and the neutral species. 

The ion beam focused by the ion optic system enters into the mass spectrometer 

where the ions are separated according to their m/z ratio. Three main types of mass 

spectrometer used in commercially available ICP-MS instrumentation: the 

quadrupole mass filter (Q), sector field mass spectrometer (SF) and time-of-flight 

(ToF) analyzer, although the latter is less conventional. All of them have advantages 

and disadvantages, but two main characteristics that have to be taken into account 

are mass resolution and abundance sensitivity.[2] Mass resolution is defined as the 

capability of the mass spectrometer to distinguish two neighboring spectral peaks, 

and two approaches are used to calculate it. One is based on the width at 5% of the 

experimentally observed spectral peak, while the other considers the valley between 

two peaks of equal intensity that are considered as separated when the valley 

intensity does not exceed the 10 % of the peak heights:[3] 
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𝑅 =  
𝑚

𝛥𝑚5%
 ≈  

(
𝑚1 +𝑚2

2
)

𝑚2 −𝑚1
          𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 − 𝟏 

 

Abundance sensitivity expresses the contribution of the tail of a neighboring peak to 

the signal intensity of the target analyte. 

Here, a brief comparison between Q-ICP-MS and SF-ICP-MS instrumentation will be 

made. A quadrupole filter consists of four parallel cylindrical or hyperbolic rods to 

which a combination of a direct current (DC) and an alternate current (AC) potential 

is applied to select ions within a narrow m/z window only (see Figure 2-2). The 

opposite rods are electrically connected, forming two electrode pairs, and the 

voltage applied to these pairs is the same in magnitude but different in sign. The 

main advantages of a Q-ICP-MS instrument are its technical simplicity and low 

cost, while the main disadvantage is the lower mass resolution (m/Δm = 300). With 

the introduction of the collision/reaction cell (CRC) technology, the capabilities for 

resolving spectral interferences improved considerably.  

 

 

Figure 2-2. Schematic representation of a quadrupole mass spectrometer.[4] 
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A double-focusing sector field mass spectrometer consists of a combination of an 

electrostatic sector, used as energy filter, and a magnetic sector, used to separate 

the ion beams according to their m/z ratio. Sector field mass anayzers are 

characterized by a high mass resolution (up to 10,000 in ICP-MS), low abundance 

sensitivity, high ion transmission efficiency and the ability to generate flat-topped 

peaks with trapezoidal shape at low mass resolution. The ThermoScientific Element 

XR SF-ICP-MS instrument used in this work allows one to work in three different 

resolution modes: low resolution (LR, R = 300), medium resolution (MR, R = 4000) 

and high resolution (HR, R = 10,000), but the sensitivity is decreasing roughly 10-

fold when increasing the mass resolution setting from LR to MR and from MR to 

HR.[5]  

When the ions accelerated by the ion optics enter into the magnetic field they are 

focused to move along a circular path with a specific radius depending on the m/z 

ratio by the Lorentz force. The radius of the trajectory depends on the acceleration 

voltage (V) and the strength of the magnetic field (B): 

 

𝐹 =  
𝑚𝑣2

𝑟
= 𝑧𝑣𝐵 →  𝑟 =  

𝑚𝑣

𝑧𝐵
=  
√2𝑉𝑚

𝐵√𝑧
       𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 − 𝟐 

 

The electrostatic sector improves the mass resolution by dispersing the ions 

according to their energy before introducing them into the magnetic sector. For this 

purpose, the ions are forced to follow a circular path in an electrostatic field created 

between a positively charged and negatively charged bent plate. The centripetal 

force required is provided by the electrical field (E), and the radius of the trajectory 

depends on the kinetic energy of the ion: 

 

𝐹 =  
𝑚𝑣2

𝑟
= 𝑧𝐸 →    𝑟 =  

𝑚𝑣2

𝑧𝐸
=  
2𝐸𝐾𝑖𝑛
𝑧𝐸

     𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 − 𝟑 
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Figure 2-3. Representation of the different double focusing setups. a) Mattauch-

Herzog, b) Nier-Johnson, and c) reversed Nier-Johnson.[2, 3] 
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Three main double-focusing geometries have been developed (see Figure 2-3): (i) the 

Nier-Johnson geometry, where a 90° electrostatic sector is followed by a 90° 

magnetic sector, (ii) the reverse Nier-Johnson geometry; this geometry is opposite to 

the previous, i.e. the 90° magnetic sector is located first and is followed by the 90° 

electrostatic sector, and (iii) the Mattauch-Herzog geometry that comprises a 30°50’ 

electrostatic sector followed by a curved 90° magnetic sector. The latter allows a 

simultaneous monitoring of the entire mass spectrum because the focal points of all 

ion beams are located in one focal plane. In the reverse Nier-Johnson geometry, 

only for one m/z ratio, the ion beam can be focused. Therefore, the signals have to 

be measured in dynamic mode, the so-called peak-hopping mode. However, the 

Nier-Johnson geometry allows a simultaneous separation and monitoring of 

different ion beams, and it is this geometry that is used in MC-ICP-MS 

instrumentation for isotopic analysis (see next section).  

The final part of an ICP-MS unit is the detection system, where the ion beam 

coming from the mass analyzer is converted into electrical pulses to be counted by 

an integrated measurement circuitry or into an amplified electrical current that can 

be measured and correlated with the amount of analyte in the sample via the use of 

proper calibration approaches. Two types of detector are commonly used in the 

modern ICP-MS instruments: the electron multiplier and the Faraday cup. An 

electron multiplier can consist of one continuous dynode or of several discrete 

dynodes and is typically working in pulse counting mode. The ions collide with the 

surface made of a semiconducting material, which releases electrons. These 

electrons are accelerated to the backside of the detector and on their way, they can 

continue to collide with the surface, liberating more electrons, thus leading to an 

intense pulse for each incoming ion. The time required to treat the pulses is the 

detector dead time and it should be taken into account to obtain the correct signal. 

The electron multiplier can also work in analog mode at higher count rates to 

extend the lifetime of the detector. The other type of detector is the Faraday cup. It 

consists of a metallic cup collecting the ions coming from the mass analyzer. These 

ions are neutralized by electrons from ground, and thus, a potential difference over 

a high-ohmic resistor is induced. The amplifiers currently used show a resistance of 

1010, 1011, 1012 or 1013 Ω. The Faraday cup is extremely robust, provides an 

accurate and linear response, and has a long lifetime. However, it has lower 

sensitivity and shows a slower response than an electron multiplier.  



Mercury isotopic analysis via cold vapor generation multi-collector inductively coupled 

plasma-mass spectrometry (CVG-MC-ICP-MS) 
 

 

40 
 

2.2. Mercury isotopic analysis 

For a long time, thermal ionization mass spectrometry (TIMS) was considered the 

technique of choice for isotopic analysis of a wide range of metallic and metalloid 

elements due to the high precision attainable. However, TIMS also has some 

important drawbacks, the requirement of laborious sample preparation, the mono-

element capabilities, the low sample throughput, and the limitation to elements 

with low ionization potential (< 7.5 eV). ICP-MS can be seen as a viable alternative 

because it can avoid some of the drawbacks associated with TIMS. Unfortunately, 

the use of quadrupole-based ICP-MS (Q-ICP-MS) and single-collector sector field 

ICP-MS (SC-SF-ICP-MS) are limited to a few types of applications owing to the 

improved isotope ratio precision (down to ~ 0.05% RSD under ideal circumstances) 

in comparison with TIMS.[5] The introduction of multi-collector ICP-MS (MC-ICP-

MS) instrumentation allowed to measure all the isotopes of a target element 

simultaneously, improving the isotope ratio precision down to 0.002 % RSD.[6] At 

that point, MC-ICP-MS became to the technique of choice for isotopic analysis of 

the majority of metals and metalloids.  

 

2.2.1. Multi-collector ICP-MS (MC-ICP-MS) 

Multi-collector ICP-MS instruments are typically based on a double-focusing sector 

field mass analyzer with Nier-Johnson geometry followed by an array of Faraday 

cups as detection system, which allows simultaneous detection of several ion 

beams. Faraday cups are preferred over ion counters for their linearity, robustness 

and accuracy, and they also do not suffer from dead time effects. However, some ion 

counters can also be pre-installed for selected isotope systems. 

As was mentioned in Chapter 1, determination of an element isotopic composition 

provides relevant information on the natural changes produced by different 

processes in the context of geo- and cosmochemical, environmental, and biomedical 

applications. Isotope ratio measurement by MC-ICP-MS was demonstrated to reach 

the accuracy and precision similar to those attainable with TIMS.[7] Moreover, the 

ICP ion source allows the efficient ionization of elements with high ionization 

energy, which are not accessible via TIMS, as is the case for Hg. Therefore, the use 

of MC-ICP-MS is in many cases the preferred technique for isotopic analysis due to 
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the higher sample throughput, the wider application range and the more robust 

character of the ion source, operated at atmospheric pressure.  

For the specific case of Hg, its high first ionization energy (10.437 eV) and its high 

volatility do not allow the measurement of the Hg isotopic composition by TIMS 

because, this technique is limited to elements with ionization energies below 7.5 eV. 

Additionally, the natural isotopic composition of Hg is affected by natural isotope 

fractionation only, which causes only subtle variations in its isotopic composition, 

such that the precision attainable with Q-ICP-MS or SF-ICP-MS instruments is not 

sufficient to reveal these small variations. Therefore, MC-ICP-MS is the only 

technique which can provide sufficiently accurate and precise Hg isotope ratio 

measurements. One of the main drawbacks of MC-ICP-MS is that it suffers from 

mass discrimination, which needs to be corrected for in order to obtain accurate 

isotope ratio results (see section 2.3) 

The MC-ICP-MS instrument used during this PhD research project is a 

ThermoScientific Neptune (Bremen, Germany) installed at the Atomic and Mass 

Spectrometry unit (A&MS) of the Department of Chemistry at Ghent University 

(UGent). This instrument is equipped with nine movable Faraday cups connected to 

1010 (2), 1011 (6) and 1012 Ω (3) amplifiers. The cup configuration used for Hg 

isotopic analysis comprises the use of seven Faraday cups, five for different Hg 

isotopes (198Hg, 199Hg, 200Hg, 201Hg and 202Hg), and two more for the monitoring of 

the two isotopes of thallium (203Tl and 205Tl) used for mass discrimination correction 

purposes. For the less abundant 198Hg isotope, a 1012 Ω amplifier was used. 

 

Cup configuration 

Isotope  198Hg 199Hg 200Hg 201Hg 202Hg 203Tl 205Tl 

Cup name L3 L2 L1 C H1 H2 H3 

Amplifier (Ω) 1012 1011 1011 1011 1011 1011 1011 
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2.2.2. Cold vapor generation system (CVG) 

As was indicated in the first section of this chapter, ICP-MS is typically used for 

liquid samples (solutions). One important drawback of the standard sample 

introduction system (nebulizer + spray chamber) is the low introduction efficiency, 

compromising the sensitivity of the method. In the case of Hg isotopic analysis, this 

is of the utmost importance due to the low concentration of Hg in most environment 

samples. Therefore, alternative introduction systems aiming to improve the Hg 

introduction efficiency have been under study over the years. Due to the special 

chemical properties of Hg, the generation of Hg vapor was proposed as the preferred 

method for Hg introduction. The use of hydride generation (HG) was extensively 

used for the determination of elements that can form volatile hydrides, such as 

arsenic, antimony and selenium via their reaction with sodium borohydride 

(NaBH4).[8, 9] An extensive description of the corresponding setup for As 

introduction was provided by Klaue and Blum (1999),[10] and it was further 

improved over the next years. This approach has also been used for the production 

of Hg vapor for Hg isotopic analysis of cinnabar ores, as described by Hintelmann 

and Lu (2003).[11] Later on, the use of tin chloride (SnCl2) was preferred over 

NaBH4 due to its specificity for Hg, avoiding hydride formation of other 

elements.[12, 13] Nowadays, it is the preferred introduction system for Hg isotopic 

analysis applications, although also other introduction systems are used, such as 

gold trap amalgamation (GTA) and gas chromatography (GC).[14] The main 

advantages of the cold vapor generation (CVG) of Hg over the other approaches are 

the generation of a continuous stable signal, instead of a transient signal, while the 

sample throughput is improved. A picture and schematic diagram of the 

commercially available cold vapor generation and hydride generation system used 

in this work (HGX-200 from Teledyne Cetac Technologies, US) is shown in Figure 2-

4.  
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Figure 2-4. HGX-200 Cold Vapor & Hydride Generator from Teledyne Cetac 

Technologies (US).[15] 

 

The cold vapor generation of Hg is based on the production of Hg0 vapor via the 

reduction of Hg2+ to Hg (0) by the use of SnCl2, as follows: 

 

 

Hg2+ + Sn2+ Hg0 + Sn4+      Equation 2-4 

 

It is important to point out that all the Hg present in the liquid sample should be 

present as Hg2+, therefore pre-oxidation can be carried out prior to CVG if 

necessary. The liquid sample containing the Hg2+ is introduced and mixed with a 

solution of SnCl2 in a mixing block prior to the introduction in the gas liquid 

separator (GLS) with a “frosted tip” design, which enhances the efficiency of the 

gas/liquid phase exchange. The Hg0 generated is flushed out of the liquid phase 

with Ar carrier gas. The U-shape of the HGX-200 in combination with the PTFE 

membrane located after the GLS allows to reduce the signal noise and to achieve a 

complete gas/liquid separation. Also, an additional current of Ar gas is introduced 



Mercury isotopic analysis via cold vapor generation multi-collector inductively coupled 

plasma-mass spectrometry (CVG-MC-ICP-MS) 
 

 

44 
 

after the PTFE membrane to further minimize signal noise and reduce washout 

time, as well as to improve the stability of the signal. 

An in-depth evaluation of the CVG system and comparison with the conventional 

pneumatic nebulization sample introduction system for Hg isotopic analysis has 

been carried out in the context of this PhD research project and is summarized in 

Chapter 3. 

 

2.3. Instrumental mass discrimination 

As was previously mentioned, the main drawback of isotopic analysis via ICP-MS is 

that the raw measurement data are affected by instrumental mass discrimination. 

This phenomenon produces a bias between the measured isotope ratio and the 

corresponding true value. Therefore, this phenomenon needs to be corrected for to 

obtain accurate isotope ratio results. In this section, a brief explanation of this 

phenomenon, as well as the different correction approaches enabling mass 

discrimination to be addressed will be described. 

 

2.3.1. Origin of mass discrimination 

Instrumental mass discrimination (also called mass bias) in ICP-MS leads to a non-

stoichiometric detection of the ions with respect to the original sample, due to a 

more efficient transport of the ions of a heavier than of a lighter isotope of the 

analyte. This deviation is typically of the order of 1% per mass unit, but it can be 

significantly higher for light elements (e.g., up to 25% for lithium [16]), and it is 

much larger than the bias introduced by fractionation in TIMS. Additionally, the 

mass fractionation observed in TIMS and the mass discrimination produced in ICP-

MS are profoundly different.  
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Figure 2-5. Comparison of mass fractionation in TIMS (a) and ICP-MS (b).[3] 

 

In TIMS, the mass fractionation is time-dependent, while the mass discrimination 

in ICP-MS remains essentially stable (see Figure 2-5). This difference arises 

because in TIMS, the preferential ionization/vaporization of the lighter isotopes is at 

the origin of the phenomenon, while in ICP-MS the ion beam is continuously 

enriched in the heavier isotopes. The causes of this phenomenon in ICP-MS are not 

completely understood yet, but have been related with different processes occurring 

in the plasma source and in the interface region. It is considered mainly as a mass-

dependent phenomenon, although cases of mass-independent instrumental mass 

discrimination have also been reported when using a high sensitivity interface (Jet 

interface) in the ThermoScientific Neptune, and they have been associated to oxide 

ion formation.[17] The most important contribution has been associated with the 

space-charge effects, which cause the lighter ions to be displaced out of the center 

of the ion beam, such that the heavier ions are more efficiently transported to the 

detector.[18, 19] In addition, it has also been partly attributed to the supersonic 

expansion occurring in the interface region between the sampler and skimmer cone, 

which leads to a more efficient extraction of the heavier ions as a result of the so-

called nozzle effect.[20, 21]  

It has been demonstrated that the target element concentration and the 

concomitant matrix have an important effect on the extent of mass 

discrimination.[22] Therefore, isolation of the target element prior the MC-ICP-MS 

measurements is typically done in order to minimize the effect of the matrix while 

all sample and standard solutions are concentration-matched.[23] 
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2.3.2. Mass discrimination correction approaches 

In order to obtain accurate isotope ratio results via ICP-MS, it is necessary to 

correct for instrumental mass discrimination. Several correction approaches have 

been proposed over the years and they are basically based on the use of external or 

internal standardization, or a combination of both.[24] However, this terminology is 

considered ambiguous because no clear consensus exists as to their exact meaning.  

External standardization is referring to the measurement of an isotopic standard of 

the target element with known isotopic composition and comparison of the 

measured isotope ratio(s) to the corresponding true value(s) to calculate the 

deviation produced by mass discrimination. As such, a correction factor which 

should also be applied to the sample can be obtained. The typical way to apply 

external standardization is in a sample-standard bracketing approach (SSB), in 

which the sample is measured between “brackets”, i.e. the measurement of each 

sample is preceded and followed by a measurement of the isotopic standard. With 

this approach, it is assumed that mass discrimination evolves linearly with time 

and that the external standard and the samples are affected equally by mass 

discrimination. Therefore, it is of the utmost importance that the target analyte is 

isolated from the concomitant matrix or that a “matrix matched” standard is used, 

and that the concentration of the target element in both the sample and the 

external standard match within ± 30%.[23] SSB is often the preferred choice for 

mass discrimination correction due to its simplicity. 

Internal standardization can be performed in two different ways, by the use of a 

pair of isotopes of the analyte that is considered sufficiently constant, or by the use 

of a pair of isotopes of another element, which is admixed to the sample as internal 

standard. These two possibilities can be called intra-element or inter-element 

internal standardization.[25] The intra-element standardization can correct for both 

mass discrimination and natural mass-dependent isotope fractionation of the target 

analyte, thus allowing to reveal mass-independent contributions. However, this 

approach has limited applicability, almost exclusively for some analytes with 

radiogenic isotopes. Therefore, the inter-element internal standardization approach 

is the most common. The internal standard selected should has at least two 

isotopes, show a mass number similar to that of the analyte and have a known 

isotopic composition (preferably certified isotopic composition). Several models have 



 

Chapter 2 –Instrumental mass discrimination 
 

 

47 
 

been proposed over the years, depending on the assumption that the mass 

discrimination varies according to a linear, power-law or exponential function as a 

function of the difference in mass between the two isotopes (Δm).[26] Nowadays, the 

so-called exponential Russell’s law still remains the most widely used approach for 

MC-ICP-MS, and here, the mass discrimination factor (f) is assumed to rather vary 

with the mass of the isotopes instead of with the mass difference between them:[27] 

 

𝑅𝑡𝑟𝑢𝑒 = 𝑅𝑒𝑥𝑝  (
𝑚𝑖
𝑚𝑗
)

𝑓

     𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 − 𝟓 

 

𝑓 =  
𝑙𝑛(𝑅𝑡𝑟𝑢𝑒/𝑅𝑒𝑥𝑝)

ln(𝑚𝑖/𝑚𝑗)
     𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 − 𝟔 

 

First, the mass discrimination correction factor is calculated for the internal 

standard. This correction factor can then be subsequently applied for mass 

discrimination correction for the analyte. It is assumed that both elements display 

the same behavior (fanalyte = fIS). However, this assumption could be risky, and 

further refinements were introduced, based on linear relationships between the 

correction factors for analyte and internal standard (“Woodhead approach”).[28]  

 

An alternative approach relies on plotting the natural logarithms of the measured 

ratios obtained for standard solutions of analyte and internal standard against one 

another ( “Baxter approach”).[29] 

 

ln 𝑅𝑎𝑛𝑎𝑙𝑦𝑡𝑒,𝑅𝑀 = 𝑎 + 𝑏 ∗ ln 𝑅𝐼𝑆,𝑅𝑀      𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 − 𝟕 

 

where Ranalyte,RM and RIS,RM are the measured ratios of the analyte and the internal 

standard for the reference materials, respectively. Also, a and b correspond with the 

intercept and slope of the regression line obtained. Therefore, the corrected isotope 

ratio for the sample (Rsmpl,correct) can be calculated as: 
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𝑅𝑠𝑚𝑝𝑙,𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑟𝑠𝑚𝑝𝑙,𝑚𝑒𝑎𝑠 ∗
𝑅𝑎𝑛𝑎𝑙𝑦𝑡𝑒,𝑅𝑀

𝑒𝑎 ∗ (𝑟𝐼𝑆,𝑚𝑒𝑎𝑠)
𝑏
     𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 − 𝟖 

 

where rsmpl,meas and rIS,meas are the measured ratios for the analyte and the internal 

standard in the sample, respectively, with a and b the previously calculated 

intercept and slope. 

 

These two approaches are currently those most often used for mass discrimination 

correction in MC-ICP-MS, although the common analyte internal standardization 

(CAIS approach) has also been evaluated. In this approach, the raw isotope ratios 

for the analyte and the internal standard of the reference solutions are plotted 

versus one another and the best fitting straight line is traced through the data 

points.[30] 

 

𝑅𝑎𝑛𝑎𝑙𝑦𝑡𝑒,𝑅𝑀 = 𝑎 + 𝑏 ∗ 𝑅𝐼𝑆,𝑅𝑀                           𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 − 𝟗 

𝑅𝑎𝑛𝑎𝑙𝑦𝑡𝑒,𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 = 𝑎 + 𝑏 ∗ 𝑅𝐼𝑆,𝑚𝑒𝑎𝑠                𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 − 𝟏𝟎 

𝑅𝑠𝑚𝑝𝑙,𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑟𝑠𝑚𝑝𝑙,𝑚𝑒𝑎𝑠 ∗
𝑅𝑎𝑛𝑎𝑙𝑦𝑡𝑒,𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑

𝑅𝑎𝑛𝑎𝑙𝑦𝑡𝑒,𝑟𝑒𝑓.𝑚𝑒𝑎𝑠
      𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 − 𝟏𝟏 

 

Additionally, the use of the double spike approach has also been used for mass 

discrimination correction purposes. In this approach the sample is spiked with a 

standard solution of the analyte enriched in two of its isotopes with known isotope 

ratio. It can provide accurate and precise isotope ratio data and allows to correct for 

sample loss during sample preparation. However, it is necessary that the analyte 

has at least four isotopes, while the isotopically enriched materials are expensive, 

the sample throughput is low and memory effects may occur.[31-33] 

The selection of the mass discrimination correction approach should be evaluated 

for each specific case due to the influence of different factors, such as analyte and 

matrix. For a large number of applications, the use of a combination of internal and 

external standardization has been proposed. 
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For the specific case of Hg, an in-depth evaluation has been done as is presented in 

chapter 3. However, the final approach selected for mass discrimination correction 

in all the applications summarized in this thesis is the combination of the “Baxter 

approach” and the SSB approach as is explained below. 

 

 

Double mass discrimination correction approach (Baxter + SSB) for the 

accurate and precise isotopic analysis of Hg 

 

The double mass bias correction approach (Baxter + SSB) is based on both internal 

and external standardization. First, the internal standard (NIST SRM 997 – Tl – in 

this case) is added to all solutions: the external standard, i.e. an isotopic reference 

material of the analyte element (NIST SRM 3133 – Hg – in this case), and the 

sample solutions. Then, the isotope ratios for analyte element and internal standard 

are measured in a “bracketing” sequence (standard – sample – standard). After the 

measurements, the natural logarithm of the raw ratios obtained for the analyte 

element in the external standard solution (NIST SRM 3133 – Hg) are plotted versus 

the natural logarithm of the raw ratios obtained for the internal standard selected 

(NIST SRM 997 – Tl).  The best-fitting straight line is traced through these data 

points and its intercept (a) and slope (b) are determined. Correction of the Hg 

isotope ratios according to the Baxter approach (with Tl as internal standard) uses 

these values of a and b as shown below. 

 

(
Hgxxx

Hg198 )
smpl,correct(Baxter)

= (
Hgxxx

Hg198 )
smpe,meas

∗  

 (
Hgxxx

Hg198 )
NIST SRM 3133,recomm

ea ∗ (
Tl205

Tl203 )

b
     𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 − 𝟏𝟐   

 

Once the isotope ratios of the analyte element – Hg – have been corrected for mass 

bias as explained above, additional external correction is applied, based on the 

corresponding isotope ratios measured for the external standard (NIST SRM 3133 – 

Hg) solutions measured immediately before and after the sample considered. The 
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results for the double mass bias correction approach can be presented as (i) isotope 

ratios and/or (ii) delta values δ (‰), as follows: 

 

(
Hgxxx

Hg198 )
smpl,correc (Baxter+SSB)

=

(

 
 
 
 (

Hgxxx

Hg198 )
smpl,correct(Baxter)

(
Hgxxx

Hg198 )
NIST SRM 3133−1,meas

+ (
Hgxxx

Hg198 )
NIST SRM 3133,meas

2 )

 
 
 
 

∗ (
Hgxxx

Hg198 )
NIST SRM3133,recomm

 

Equation 2-13 

 

𝜕𝑥𝑥𝑥𝐻𝑔 (‰)(𝐵𝑎𝑥𝑡𝑒𝑟+𝑆𝑆𝐵) = 

(

 
 
 
 

( Hgxxx Hg198⁄ )
smpl,correct(Baxter)

(
Hgxxx

Hg198 )
NIST SRM 3133−1,meas

+ (
Hgxxx

Hg198 )
NIST SRM 3133+1,meas

2

− 1

)

 
 
 
 

∗ 1000 

 

Equation 2-14 
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3.1. Introduction 

Due to its toxicity, its various natural and anthropogenic sources and its transport 

over long distances, Mercury (Hg) is one of the most important global pollutants.[1, 

2] The toxicity of Hg strongly depends on its chemical form, with methyl-Hg 

compounds being more toxic than inorganic Hg.[3-5] Elemental Hg, on the other 

hand, is volatile, persistent in the atmosphere, prone to long-range atmospheric 

transport and deposition far from the original source.[6] The remarkable behavior of 

Hg results in a challenge for the scientific community, as new approaches for 

obtaining a more profound insight into the biogeochemistry of this element are 

required. The determination of the isotopic composition of Hg is an elegant 

approach to identify Hg sources and to improve the understanding of its transport 

pathways, conversions and/or deposition mechanisms.[7-10] 

However, Hg isotopic analysis is not free from challenges, mainly due to the high 

precision required to reveal the slight differences in the isotopic composition of Hg 

between different sources or samples and the very low concentrations at which Hg 

occurs in some matrices. The isotopic composition of Hg shows natural variation as 

a result of mass-dependent isotope fractionation (MDF),[11, 12] accompanying 

physical processes and/or bio-chemical reactions.[13] These variations are usually 

reported as per mil deviation (δxxxHg ‰) with respect to an isotopic reference 

material (NIST SRM 3133), as indicated in equation 3-1. 

 

𝜕 𝐻𝑔 (‰) =  (
( 𝐻𝑔𝑥𝑥𝑥 𝐻𝑔198⁄ )

𝑠𝑎𝑚𝑝𝑙𝑒

( 𝐻𝑔𝑥𝑥𝑥 𝐻𝑔198⁄ )
𝑁𝐼𝑆𝑇 𝑆𝑅𝑀 3133

− 1)𝑥𝑥𝑥 ∗ 1000          𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟏 

 

where xxx can be 199, 200, 201, 202 or 204. Among the Hg isotopes, 204Hg is less 

frequently measured due to its lower abundance, the limitation in the number of 

Faraday cups available and/or potential 204Pb interference. 

In addition, the isotopic composition of Hg can also be affected by mass-

independent fractionation (MIF), typically exhibited by the odd-numbered isotopes. 

“Odd-MIF” can be tentatively explained via hyperfine coupling between the nuclear 

spin and the electron cloud of these odd-numbered isotopes and/or by the nuclear 

field shift effect.[14, 15] The latter effect stems from the fact that the nuclei of the 
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odd-numbered Hg isotopes are smaller than those of their even-numbered 

“neighbors”, as a result of which also the electron cloud surrounding the nucleus is 

affected differently. Recently, MIF has also been reported for 200Hg. The origin of this 

“even-MIF” is still unclear, although tentatively related with the photo-initiated 

oxidation of Hg0 in the tropopause.[16, 17] The 'capital delta' (Δ) has been widely 

accepted as a suitable way to report MIF, as done previously for sulfur and 

oxygen.[18, 19] ΔxxxHg is calculated as the difference between the experimentally 

observed δxxxvalue and the corresponding “predicted” value when assuming mass-

dependent kinetic fractionation only, as derived from the δ202Hg/198Hg value, as is 

exemplified in equations 3-2, 3-3 and 3-4. 

 

∆ 𝐻𝑔 =  𝜕 𝐻𝑔 − (𝜕 𝐻𝑔202 ∗  0.2520)          𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟐199199  

∆ 𝐻𝑔 =  𝜕 𝐻𝑔 − (𝜕 𝐻𝑔202 ∗  0.5024)200200           𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟑 

∆ 𝐻𝑔 =  𝜕 𝐻𝑔 − (𝜕 𝐻𝑔202 ∗  0.7520)201201           𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 − 𝟒 

 

As the extent of MDF tends to decrease significantly with the increase of the atomic 

mass, or more accurately with a decreasing relative difference between the masses 

of the isotopes considered, high-precision mass spectrometry is required for Hg 

isotopic analysis. However, due to the high volatility and ionization energy of Hg, 

thermal ionization mass spectrometry (TIMS) does not allow for Hg isotopic 

analysis. It was only with the introduction of multi-collector inductively coupled 

plasma-mass spectrometry (MC-ICP-MS) that high-precision isotopic analysis of Hg 

was enabled, and several works to date have reported on environmental 

applications relying on isotopic analysis of Hg.[20-24] However, even with MC-ICP-

MS, Hg isotopic analysis is not self-evident, and a number of pitfalls need to be 

avoided.  

MC-ICP-MS suffers from instrumental mass discrimination,[25, 26] resulting in a 

measured isotope ratio different from the corresponding true value (typically by 

approx. 1% per amu mass difference between the isotopes). This phenomenon is not 

completely understood yet, but different processes occurring in the plasma source 

and in the interface region have been identified as contributions. These include 

collisional scattering and space-charge effects.[27, 28] Also, matrix effects have 
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been widely reported.[29, 30] Different correction approaches to correct for these 

mass discrimination effects relying on the use of an external and/or an internal 

standard are used within the scientific community.[11, 26, 27, 31-33] External 

correction is based on the use of an isotopic standard of the analyte element with 

known isotopic composition and is preferably carried out in a sample-standard 

bracketing (SSB) approach, i.e. the external standard is measured immediately 

before and after every sample. In this case, mass discrimination is assumed to 

evolve linearly with time and the interpolated relative difference between the 

measurement result and the true value for the external isotopic standard is 

assumed to be valid for the sample as well.[33] Also, an internal standard, i.e., 

typically a pair of isotopes of an admixed element with an atomic mass similar to 

that of the analyte element,[34, 35] can be selected for mass discrimination 

correction purposes. In this case, a mass bias correction factor can be obtained via 

comparison of the measured and the true values for the internal standard isotope 

ratio. Several mass bias correction models have been used (e.g., linear law, power 

law, exponential law, Russell law) depending on how the mass discrimination is 

assumed to vary as a function of the mass difference between the analyte element 

isotopes or as a function of the analyte element nuclide masses.[31, 32] The Russell 

law is one of the most widely used approaches in MC-ICP-MS.[36] In the original 

Russell law, it is assumed that the mass bias correction factors for the analyte 

element and the internal standard are identical, although later studies have 

demonstrated that this assumption needs to be refined.[37, 38] In further 

improvements of the Russell law, a relationship between the mass bias correction 

factors for analyte element and internal standard is established using standard 

solutions, such that later on, the mass bias correction factor obtained for the 

internal standard admixed to the sample can be converted into a correction factor 

applicable to the analyte element. For that purpose, the mass bias correction 

factors (Woodhead approach),[39] the ln(raw isotope ratio) values (Baxter 

approach),[40] or the raw isotope ratio values themselves (CAIS approach) [33] for 

analyte element and internal standard are plotted versus one another, and the best 

fitting straight line is traced through the experimental data points. Also other 

approaches, such as the generalized power law [41] or the double spike 

approach,[42] for mass bias correction have been developed.  
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In addition to the problems arising from mass discrimination, Hg isotopic analysis 

via MC-ICP-MS at low level concentrations of Hg (e.g., biological samples) is not an 

easy task. Different approaches to overcome the challenge posed by these low 

concentrations have been proposed in the literature. For instance, sample 

combustion and subsequent trapping of the Hg on a gold trap can be used as a 

means of pre-concentration.[43-45] However, the sample throughput is strongly 

reduced with this approach, and the necessity of dealing with transient signals can 

jeopardize the precision of the results. Meanwhile, several researchers have adapted 

cold vapor generation (CVG) as the preferred sample introduction strategy for the 

accurate and precise isotopic analysis of Hg at low concentrations. First, Hg vapor 

was created via reaction of Hg2+ with sodium borohydride (NaBH4),[46] but later on, 

stannous chloride (SnCl2) was selected as a more specific reductant for Hg,[47] 

among other to avoid potential interference from 204Pb. As the analyte introduction 

efficiency with CVG is much higher (theoretically 100%) than with pneumatic PN 

(from 1–2 % for a 1 mL min-1 concentric nebulizer to several % for a microconcentric 

version [48]), the corresponding enhancement in Hg+ signal intensity allows one to 

measure at lower concentrations, at which other approaches have failed. A very 

important additional advantage of CVG over other introduction systems, is the fact 

that Hg is efficiently separated from the concomitant matrix, such that 

chromatographic isolation of Hg prior to MC-ICP-MS analysis, as required with PN, 

can be avoided. Of course, also in the case of sample introduction with CVG, 

instrumental mass discrimination needs to be corrected for. An external standard 

in an SSB approach is typically used for this purpose, but also the use of Tl as 

internal standard for mass bias correction has been reported on.[49-51] In this 

approach, a Tl standard solution with known isotopic composition is nebulized and 

the corresponding aerosol is desolvated before it is admixed to the Hg-containing 

carrier gas stream from the CVG unit. In both configurations, dry plasma 

conditions are obtained, which can sometimes give rise to a lower plasma 

robustness and to plasma instability.[52] 

Several papers to date have reported on the use of CVG for the isotopic analysis of 

Hg in a variety of applications. However, no systematic comparison between or in-

depth evaluation of Hg isotopic analysis via PN-ICP-MS and CVG-MC-ICP-MS can 

be found in the literature. Therefore, in the context of the SIB-09 "Elements" 

project, funded by EMRP (European Metrology Research Programme of EURAMET), 
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we have carried out an extensive study, aiming to provide National Metrology 

Institutes (NMIs) with sufficient information as to which approach to use in the 

characterization of future Hg isotopic reference materials. The effect of several 

experimental parameters with sample introduction via PN and via CVG on the 

figures of merit have been assessed and the capabilities and limitations of various 

approaches to correct for mass discrimination in the context of Hg isotopic analysis 

have been compared. This systematic study also involved a comparison of PN and a 

dual introduction system based on the combination of CVG for Hg introduction and 

PN for Tl, the internal standard selected for correction for mass discrimination 

(simply called CVG henceforth). In the latter case, wet plasma conditions are 

obtained via the introduction of an aqueous solution – also containing Tl isotopic 

standard – into the Hg vapor containing carrier gas coming from the CVG unit. 

These are expected to provide higher plasma robustness than dry plasma 

conditions.[52] Hg isotopic analysis via the final PN-MC-ICP-MS and CVG-MC-ICP-

MS protocols was assessed using the metallic Hg reference material UM-Almaden, 

and the results thus obtained were compared with literature values available for 

this reference material. Additionally, various reference materials (RMs) with 

different matrix compositions were analyzed via CVG-MC-ICP-MS for their Hg 

isotopic composition. While older RMs were used for validation purposes, novel Hg 

isotopic data are provided for the latest generations of some biological RMs. 

 

3.2. Experimental 

3.2.1. Instrumentation and sample introduction system 

The isotope ratio measurements were performed using a ThermoScientific Neptune 

(Germany) multi-collector ICP-MS instrument, equipped with nine Faraday 

collectors. Two different introduction systems were evaluated: (i) conventional PN 

for the introduction of Hg – as analyte element – and Tl – as an admixed internal 

standard to correct for mass discrimination effects – as a wet aerosol produced by a 

concentric nebulizer (100 µL min-1) fitted onto a dual spray chamber, consisting of a 

cyclonic and a Scott-type sub-unit, and (ii) the combination of CVG for Hg 

introduction using a HGX-200 Cold Vapor & Hydride Generation unit (Teledyne 

Cetac Technologies, US) and PN for Tl introduction.[52, 53] The latter combination 

will be simply referred to as ‘CVG’ in the further text. In the HGX-200 unit, Hg2+ 
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was reduced with SnCl2 into Hg(0), which was transported using Ar carrier gas into 

the ICP ion source. The wet aerosol containing Tl is mixed with the Hg vapor coming 

from the HGX-200 unit via a "T piece". Figure 3-1 provides a schematic 

representation of both introduction systems and, in Table 3-1, the operating 

conditions for each configuration have been summarized. Both setups were studied 

and the figures of merit thus obtained will be documented throughout this chapter. 

 

 

Figure 3-1. Schematic representation of both sample introduction systems 

evaluated in this study: pneumatic nebulization (PN) and the dual introduction 

system for the simultaneous introduction of gaseous elemental Hg – using a cold 

vapor generation unit – and Tl – by pneumatic nebulization – via mixing in a "T 

piece" (CVG). 
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Table 3-1. Instrument settings and data acquisition parameters for the Neptune 

MC-ICP-MS unit. 

Neptune MC-ICP-MS 

Cup configuration 

L3 L2 L1 C H1 H2 H3 

198 Hg 199Hg 200Hg 201Hg 202Hg 203Tl 205Tl 

Instrument settings 

RF power (W) 1250 – 1300 

Cool gas flow rate (L min-1) 13 

Auxiliary gas flow rate (L min-1) 0.70 

Nebulizer gas flow rate (L min-1) 0.70 – 0.75 

Carrier gas flow rate (L min-1) 0.19 – 0.21 

Additional gas flow rate (L min-1) 0.03 – 0.04 

Uptake rate sample – Hg (mL min-1) 0.7 

Uptake rate Tl (mL min-1) 0.17 

Uptake rate SnCl2 (mL min-1) 0.7 

Uptake time (s) 100 

Wash time (s) 180 

Sensitivity 202Hg (µg L-1) mV 120 - 190 

Sampler cone Ni Thermo Scientific 

Skimmer cone Ni, H-type Thermo Scientific 

Resolution Low resolution 

Mode Static mode 

Data acquisition parameters 

Integration time (s) 4 

Blocks 5 

Cycles/block 10 

Total cycles 50 

 

A Thermo Element XR single-collector sector-field ICP-MS instrument was used for 

quantitative Hg determination. The introduction system comprises a 100 µL min-1 

concentric nebulizer and a cyclonic spray chamber. The selected instrument 

settings for elemental assay are provided in Table 3-2. 
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Table 3-2. Instrument settings and data acquisition parameters for the Element XR 

SF-ICP-MS unit (quantitative Hg determination). 

Element XR SF-ICP-MS 

Instrument settings  

RF power (W) 1250 

Cool gas flow rate (L min-1) 15 

Auxiliary gas flow rate (L min-1) 0.85 

Nebulizer gas flow rate (L min-1) 0.97 – 1.05 

Resolution Low resolution 

Scan type EScan 

Data acquisition parameters  

Mass window (%) 150 

Search window (%) 150 

Integration window (%) 80 

Sample time (s) 0.01 

Samples/peak 30 

Total analysis time/sample (s) 90 

Nuclides monitored 103Rh, 202Hg 

 

 

3.2.2. Reagents and standards 

High-purity water (resistivity > 18.2 MΩ.cm) was obtained from a Milli-Q Element 

water purification system (Millipore, France). Pro-analysis 14 M HNO3 and 12 M 

HCl (ChemLab, Belgium), further purified by sub-boiling distillation, and 9.8 M 

H2O2 (Fluka, Belgium) were selected for the purpose of sample digestion and 

dilution. Pro-analysis SnCl2.2H2O (3% SnCl2 in 1.2 M HCl) was used for Hg2+ 

reduction in the CVG unit. When PN was used, KBrO3 (0.01 mM KBrO3 in 0.12 M 

HCl) was added to all sample and wash solutions (0.35 M HNO3) to avoid Hg 

volatilization and reduce memory effects. Both solutions were made fresh every day 

and the SnCl2 solution was bubbled with purified Ar during 30 min in order to 

avoid possible Hg contamination. 



 

Chapter 3 –Experimental 
 

 

63 
 

Two standard solutions of Hg – one based on the isotopic reference material NIST 

SRM 3133 and an in-house standard solution (Inorganic Ventures, The 

Netherlands, Lot: F2-HG02105) – and a standard solution of Tl – based on the 

isotopic reference material NIST SRM 997 – were appropriately diluted (with 0.35 M 

HNO3 for PN, while for CVG, 0.35 and 0.7 M HNO3 was used for Tl and Hg 

solutions, respectively) and used throughout the work for optimization, method 

development and validation purposes. Appropriate dilutions of single-element 

standard solutions (1 g L-1; Instrument Solutions, The Netherlands) were used in 

the quantification of the analyte element Hg (with Rh as internal standard) and for 

evaluation of the effect of concomitant elements – Ba, Ce, Cl, Cs, Na and Sb – on Hg 

isotope ratio results.  

 

3.2.3 Samples and sample preparation 

The reference material UM-Almaden was selected for further evaluation of the 

accuracy and precision attainable in Hg isotopic analysis, using both introduction 

systems (PN and CVG). Seven reference materials – NIST SRM 2704 (Buffalo River 

sediment), NRC-CNRC DORM-1, DORM-2 and DORM-4 (Fish protein), NRC-CNRC 

TORT-2 and TORT-3 (Lobster hepatopancreas), and BCR CRM 464 (Tuna fish) – 

were analyzed via CVG-MC-ICP-MS and, when possible, the experimentally 

determined Hg isotope ratio results were compared to the corresponding values 

reported in the literature (see Table 3-7). 

Digestion of the samples analyzed was accomplished via acid digestion in closed 

Teflon® Savillex beakers, which were pre-cleaned with HNO3 and HCl and 

subsequently rinsed with Milli-Q water. The selected protocol consists of digestion 

of approx. 0.2 - 1 g of sample with 3 mL of 14 M HNO3 and 1 mL of 9.8 M H2O2. To 

complete the procedure, the samples were heated on a hot plate at 110 °C 

overnight. The resulting solutions were appropriately diluted to 5 µg/L of Hg for 

elemental and isotopic analysis. 
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3.3. Results and discussion 

3.3.1. Effect of instrument settings and acquisition parameters 

In order to obtain the best analytical performance for the isotopic analysis of Hg via 

MC-ICP-MS using either PN or CVG as introduction system, the influence of the 

most important instrument settings and data acquisition parameters was 

evaluated.  

First, the effect of the combination of RF power and different gas flow rates – of 

nebulizer gas for PN and of carrier, nebulizer and additional gases for CVG (see a 

diagram of the setup in Figure 3-1) – was tested as these are the most important 

parameters affecting the intensity and stability of the Hg+ signal. The complete sets 

of results are shown in Figure 3-2 and the conditions finally selected in Table 3-1. 

An approximately 20-fold increase in the Hg+ signal intensity was achieved with 

CVG in comparison to PN. There was no significant effect on the precision at equal 

signal intensities > 0.5 V (see also section 3.2). Thus, according to the results 

shown in section 3.2 and aiming at identifying optimum conditions in further 

experiments, the concentration of Hg was selected to be 200 µg L-1 and 10 µg L-1 for 

PN and CVG, respectively. 

Once the optimum instrument settings were selected for each configuration, the 

data acquisition parameters – integration time and number of cycles – were 

optimized in order to reach an internal precision ≤0.002% RSE, without 

compromising the measurement time to values strongly affecting the sample 

throughput. 

Integration times in the range of 1 – 16 s were evaluated, with the number of cycles 

fixed at 50, and the results obtained for each configuration are summarized for the 

202Hg/198Hg isotope ratio in Figure 3-3A. An important degradation of the internal 

precision was observed for integration times < 4 s, while for integration times > 4 s 

the precision was only slightly better than at 4 s. 
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Figure 3-2. Effect of the RF power on the signal intensity for 202Hg using different 

gas flow rates for CVG (A, B and C) and PN (D) using 10 µg L-1 and 200 µg L-1 of Hg, 

respectively. For A, nebulizer and additional gas flow rates were fixed at 0.735 and 

0.04 L min-1, respectively. For B, carrier and additional gas flow rates were fixed at 

0.2 and 0.04 L min-1, respectively. For C, nebulizer and carrier gas flow rates were 

fixed at 0.735 and 0.2 L min-1, respectively. See Figure 3-1 for a better 

understanding of the different gas flows. 

 

A similar tendency was found for both PN and CVG, and thus, a compromise 

between precision and measurement time was achieved at 4 s, which was selected 

as the optimum integration time and this value was used throughout further work. 

With the integration time fixed at 4 s, optimization of the number of cycles was 

carried out. MC-ICP-MS software allows one to divide a cycle into a number of 

blocks, however, Hintelmann et al.[46]  have demonstrated that only the final 

number of cycles (regardless of how the cycles are divided into blocks) affects the 

accuracy and precision of the isotope ratio measurements. Therefore, the number of 

cycles was studied in the range of 10 to 300. As can be seen in Figure 3-3B, 50 
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cycles provided suitable precision without resulting in an excessively long total 

acquisition time. 

 

Figure 3-3. Effect of the integration time and number of cycles on the internal 

precision for the raw 202Hg/198Hg isotope ratio values using both introduction 

systems, PN (200 µg L-1 Hg) and CVG (10 µg L-1 Hg) for approximately the same 

202Hg+ signal intensity (1.1 – 1.3 V). 

 

3.3.2. Optimization of the concentrations of Hg and Tl 

It is well known that the concentrations of analyte and internal standard have an 

important effect on the accuracy and precision of isotope ratio results.[11] This is 

often even more relevant in the case of Hg, because of its typically low 

concentrations in real samples, while as a result of important memory effects, 

excessively high concentrations of Hg also need to be avoided. As this study was 

focused onto providing National Metrology Institutes (NMIs) with sufficient 

information as to which approach to use in the characterization of future Hg 

isotopic reference materials, also the optimum analyte element concentration could 

be evaluated. Self-evidently, in real-life applications the Hg concentration in the 

sample is often the limiting factor. For evaluating the capabilities and limitations of 

the approaches studied, and in order to establish the optimum concentrations of 

analyte element and internal standard, several experiments were conducted for 

both introduction systems, PN and CVG, using NIST SRM 3133 for Hg and NIST 

SRM 997 for Tl. The results obtained were corrected for mass discrimination using 

the Baxter approach followed by SSB, which was selected as the approach of 

choice, as is explained in the next section. 
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First, the effect of the Hg concentration was evaluated by fixing the concentration of 

Tl at 20 µg L-1, while the concentration of Hg was varied in the range of 50 to 500 µg 

L-1 and 1 to 20 µg L-1 for PN and CVG, respectively. These concentrations were 

selected such that accuracy and precision (n = 15) obtained using both introduction 

systems could be compared at similar Hg+ signal intensities. As the same 

conclusion was obtained for all the Hg isotope ratios studied, only an example of 

such results is shown in Figure 3-4A, which represents the variation in the 

202Hg/198Hg isotope ratio results and the accompanying RSD (%) – left y-axis – and 

the δ202Hg (‰) and accompanying SD – right y axis – as a function of the signal 

intensity of 202Hg. As can be seen, the concentration does not seem to exert a clear 

influence on the accuracy of the isotope ratio results using either of the two 

introduction systems studied. However, with CVG, the precision seems to be 

strongly affected by the Hg+ signal intensity (0.004 – 0.024 % RSD), while with PN, 

the impact of the Hg concentration on the precision seems to be less pronounced 

(0.004 – 0.007 % RSD). It was verified that this observation was reproducible. The 

reason for this different effect on the precision attainable at equal signal intensities 

is not clear to us. Based on these results, it can be concluded that in the case of 

CVG, at signal intensities below ca. 0.5 V (202Hg+ signal intensity), the precision is 

substantially deteriorated, while in the case of PN, the degradation in precision is 

less outspoken. However, at signal intensities > 0.5 V, no significant differences 

were found between the precision obtained using both introduction systems, in 

spite of the considerable differences in concentration, and thus, 200 µg L-1 and 10 

µg L-1 were selected as suitable Hg concentrations for further experiments with PN 

and CVG, respectively. 

Once the effect of the concentration of Hg was evaluated and an appropriate analyte 

element concentration was selected as explained above, the effect of different 

concentrations of Tl (10 - 30 µg L-1) – used as internal standard to correct for the 

mass bias using the Baxter approach followed by external correction in an SSB 

approach – was studied, and an example of the results thus obtained is shown in 

Figure 3-4B, which represents the 202Hg/198Hg isotope ratio results and the 

accompanying RSD (%) – left y-axis – and the δ202Hg (‰) and accompanying SD – 

right y axis – as a function of the 205Tl signal intensity (n = 15). As with the 

concentration of Hg, there is no clear effect of the Tl concentration on the accuracy 

of the results. With CVG, there is also no important effect on the precision (0.005 – 
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0.009 % RSD). However, a strong effect on the precision is seen for PN (0.005 – 

0.026 % RSD), especially at 205Tl signal intensities lower than ca. 1.5V. This 

difference in response towards variation in the Tl concentration between both 

introduction systems at similar Tl signal intensities was verified to be reproducible 

and was tentatively attributed to the analyte element / internal standard ratio. 

Therefore, a compromise concentration of 20 µg L-1 Tl was selected for both 

configurations and used throughout the further work. 

 

 

Figure 3-4. Effect of the signal intensity for Hg (A) and Tl (B) on the accuracy and 

precision of the 202Hg/198Hg isotope ratio results reported as the 202Hg/198Hg isotope 

ratio and RSD (%) – left y-axis – and δ202Hg (‰) and SD (‰) – right y-axis – for n = 

15 using both introduction systems: PN (green) and CVG (red). For Fig. 3-4A, the 

concentration of Tl was selected to be 20 µg L-1, while the concentration of Hg was 

in the range of 50 – 500 µg L-1 and 1 – 20 µg L-1 for PN and CVG, respectively. For 

Fig. 3-4B, the concentration of Hg was fixed at 200 and 10 µg L-1 for PN and CVG, 

respectively, while the concentration of Tl was in the range of 5 – 30 µg L-1.  
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3.3.3. Evaluation of different mass bias correction approaches 

As has been described in the introduction, all types of ICP-MS instrumentation, and 

thus also MC-ICP-MS, suffer from instrumental mass discrimination, resulting in 

an isotope ratio that is biased with respect to the true value. For that reason, the 

selection of an adequate mass bias correction approach is an important prerequisite 

for successful isotopic analysis. Using the optimum measuring conditions detailed 

above, several approaches for mass bias correction were evaluated using an in-

house standard solution of Hg. After the evaluation, the reference material UM-

Almaden was used to further validate the accuracy and precision attainable with 

the finally selected approach. The Hg isotopic reference material NIST SRM 3133 

was used as an external standard to correct for mass bias in a sample – standard 

bracketing approach (SSB) and the Tl isotopic reference material NIST SRM 997 

was selected as internal standard. External correction was done in an SSB 

approach,[33] and combinations of this approach with different strategies for 

internal correction were tested for their capability to accurately and precisely 

correct for mass discrimination using both introduction systems, PN and CVG. The 

analyte element concentration in the external standard was always matched within 

 10% with that of the sample. 

 

Table 3-3 shows the comparison of the isotope ratio results for the in-house 

standard solution of Hg (n = 50) expressed in delta notation (δxxxHg, ‰) and in 

capital delta (ΔxxxHg ‰) obtained for 200 µg L-1 or 10 µg L-1 of Hg in the case of PN 

and CVG, respectively, and 20 µg L-1 of Tl (for both approaches). For internal 

correction, we relied on the Russell law,[36] and some refined approaches based on 

the Russell law and a linear relationship between (i) the mass bias correction 

factors for analyte element and internal standard (Woodhead approach),[39] (ii) the 

ln(raw isotope ratio) values for analyte element and internal standard (Baxter 

approach) [40] or (iii) the raw isotope ratio results for analyte element and internal 

standard (CAIS).[33] ANOVA indicated that there are no significant differences 

between the different mass bias correction approaches for each δxxxHg value 

(Fexperimental = 0.070 – 0.19 (PN), 0.20 – 0.53 (CVG) < Fcritical = 2.41), nor between both 

introduction systems (Fexperimental = 0.64 – 1.18 < Fcritical = 1.90).  
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The results suggest that the dual CVG (Hg) – PN (Tl) sample introduction system 

allows for the accurate and precise measurement of the isotopic composition of Hg 

without the introduction of additional fractionation, and that the introduction of Tl 

solution as a wet aerosol to a current of Hg vapor can be successfully applied to 

correct for mass discrimination effects. Moreover, the analyte introduction efficiency 

with this approach is approximately a factor of 20 higher than that of PN, thus 

allowing sample solutions with lower Hg concentration to be successfully analyzed 

for their Hg isotopic composition.  

 

In order to further validate the accuracy and precision of the approaches using PN 

and CVG, the Hg isotopic composition of the reference material UM-Almaden was 

determined. As the mass bias correction methods evaluated above performed 

equally, a combination of the Baxter approach followed by SSB was selected and 

used throughout the further work, except for that part of the work described in 

section 3.5, in which also the use of SSB only was considered of interest when 

evaluating matrix effects. Table 3-4 shows the comparison of the experimental 

δxxxHg (‰) and ΔxxxHg ‰ values obtained in this work (n = 15) using both 

approaches to literature values for the isotopic composition of Hg in UM-Almaden. 

At a 95% level of significance, no differences were found between the results 

obtained using both PN and CVG (texperimental = 0.11 – 1.23 < tcritical = 2.05). 

Additionally, no significant differences were found between the results obtained in 

this work and the literature values (texperimental = 0.42 – 2.06 < tcritical = 2.14), which is 

a further proof of the capabilities of the approaches evaluated for the accurate and 

precise measurement of the Hg isotopic composition. 
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3.3.4. Assessment of extent and stability of mass bias and long-

term precision of Hg isotopic analysis 

In order to better assess the extent and stability of the mass bias, Hg isotope ratio 

data for NIST SRM 3133 (Hg) and NIST SRM 997 (Tl) were collected during a period 

of 18 months (n = 250) for each introduction system. An example of the raw 

202Hg/198Hg and 205Tl/203Tl isotope ratios is given in Figure 3-5.  

 

 

Figure 3-5. Comparison of the raw 205Tl/203Tl (A) and 202Hg/198Hg (B) isotope ratio 

values for PN (200 µg L-1 Hg) and CVG (10 µg L-1 Hg) using 20 µg L-1 of Tl for both 

configurations 

  

For both configurations, the raw ratios of Hg were clearly biased in favor of the 

heavier of the two isotopes considered, but the extent of bias was slightly lower with 

CVG than with PN. The same tendency was observed in the raw 205Tl/203Tl results, 

which supports the conclusion that the admixed Tl – introduced as a wet aerosol – 

can be properly used to correct for mass discrimination in the isotopic analysis of 

Hg. Additionally, when plotting the raw isotope ratios for Hg divided by the 

corresponding true ratios as a function of the nuclide mass of the isotope indicated 

in the nominator, a linear relationship is obtained for both configurations (R2 = 

0.9998 and 0.9994, PN and CVG, respectively), indicating that no instrumental 

mass-independent fractionation could be observed within the level of precision 

attained (see Figure 3-6), despite the claim of some authors that this effect can 

occur in MC-ICP-MS instrumentation.[54] 
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Figure 3-6. Evidence for the absence of mass-independent instrumental mass 

fractionation: raw isotope ratios for Hg divided by the corresponding recommended 

value plotted as a function of the nominator nuclide mass using results in a 

straight line for both configurations, PN (200 µg L-1 Hg) and CVG (10 µg L-1 Hg). 

 

For evaluating the accuracy after mass discrimination correction, the parameter 

“Bias (B, ‰)” was defined as indicated in equation 3-5. The results are shown in 

Table 3-5 and Figure 3-7 and provide a view on the stability of this parameter over 

the entire period of measurements, showing a random distribution, which proves 

the robustness of the approaches developed for the isotopic analysis of Hg. 

Additionally, F-tests indicate no significant differences between both introduction 

systems in terms of precision (Fexperimental < Fcritical), except for the B199Hg, for which a 

slight significant difference was observed (Fexperimental = 1.43 > Fcritical = 1.23). 
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Figure 3-7. Representation of the accuracy and long-term precision attainable for 

NIST SRM 3133 after mass bias correction – expressed as the bias with respect to 

the recommended value B202Hg (‰) – during a period of 18 months (n = 250) for 

both introduction systems, PN (200 µg L-1 Hg, left, green) and CVG (10 µg L-1 Hg, 

right, red). 

 

Furthermore, Table 3-5 shows the comparison between the isotope ratios for NIST 

SRM 3133 obtained in this work and the recommended values, extracted from the 

work of Blum et al.,[55] and with the certified values for NRCC NIMS-1 (a dilution of 

NIST SRM 3133).[56] In addition, Table 3-6 shows the capital delta – ΔxxxHg ‰ – 

values obtained for the NIST SRM 3133 in this work. It can be clearly seen that no 

significant differences from ΔxxxHg = 0 were found. In terms of precision, values 

around 0.004 – 0.006 % RSD were obtained (n = 250), without differences between 

PN and CVG. Such precision values are sufficient for studying natural variation in 

the isotopic analysis of Hg.[55] 
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Table 3-6.  Capital delta values – ΔxxxHg (‰) – obtained for NIST SRM 3133 (long 

term study, n = 250, 18 months) using both introduction systems, PN (200 µg L-1 

Hg) and CVG (10 µg L-1 Hg), and corrected for mass bias using the double correction 

approach – Baxter + SSB. See Table 3-4 for the corresponding δxxxHg (‰) values. 

  NIST SRM 3133 

  PN CVG 

  Δ199Hg Δ 200Hg Δ 201Hg Δ 199Hg Δ 200Hg Δ 201Hg 

Baxter + SSB 
Average 0.00 0.00 0.00 0.00 0.00 0.00 

2SD 0.08 0.07 0.08 0.11 0.11 0.13 

 

 

3.3.5. Effect of matrix composition 

In MC-ICP-MS, the matrix composition affects the ionization and transmission 

efficiencies of the analyte nuclides,[57, 58] which can jeopardize the accuracy and 

precision of the isotope ratio results. For that reason, typically the analyte element 

is chemically isolated prior to MC-ICP-MS isotopic analysis. Due to the matrix 

removal via the use of CVG, this effect is expected to be removed. However, the 

presence of concomitant elements at relatively high concentrations may induce 

changes in the chemical reaction taking place in the CVG unit, thus potentially 

introducing additional fractionation. In this section, experiments permitting one to 

evaluate the presence or absence of matrix effects using both introduction systems 

and to assess whether the application of SSB and the double mass bias correction – 

Baxter and SSB approach – still provide accurate results under these conditions are 

reported on.  

It has been described in literature [29, 59, 60] that a few elements can induce 

higher disturbances in mass discrimination, for instance, easily and/or hardly 

ionizable elements (e.g., Na and Cl – ionization energies of 5.14 and 12.97 eV, 

respectively) are able to produce changes in the plasma conditions, and therefore in 

the extent of mass discrimination, while also elements with a high level of oxide ion 

formation (e.g., Ce) may significantly affect the mass bias.[30] For evaluating the 

actual effect of possible concomitant elements on Hg isotope ratio results, Ba, Cl, 

Ce, Cs, Na and Sb were selected as to cover a broad range of ionization potentials, 
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and the effect of their presence in the plasma on the extent of mass discrimination 

was assessed. Therefore, six artificial matrices were prepared via addition of these 

elements to the in-house standard solution of Hg previously characterized as 

reported on in section 3.3.  

 

 

 

Figure 3-8. Evaluation of the effect of concomitant elements on the δ202Hg (‰) 

values obtained using both introduction systems, PN (200 µg L-1) and CVG (10 µg L-

1), and corrected for mass discrimination via SSB and double correction (Baxter + 

SSB). 
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The concentrations were selected in order to keep the Hg / concomitant element 

ratio constant at a ratio of 1:50, which corresponds to 10 mg L-1 of the concomitant 

elements for PN, and 500 µg L-1 for CVG. To check for and avoid possible remaining 

effects after the introduction of a synthetic matrix solution, the in-house standard 

solution of Hg was measured in-between two doped solutions. The measurements 

were otherwise performed in a random sequence. The results for δ202Hg (‰) are 

shown as an example in Figure 3-8. The experiment was carried out for PN and 

CVG, and the results were corrected for mass discrimination using both, SSB and 

the combination of the Baxter approach followed by SSB, as indicated in section 

3.3. As can be seen, with CVG, there are no significant differences between the 

δ202Hg (‰) values obtained for the non-doped in-house standard solutions via any 

of the selected approaches, except for a slight degradation in the precision when 

only the SSB approach was used instead of the double correction. Additionally, the 

δ202Hg (‰) values in the solutions containing the concomitant elements did not 

deviate significantly from the reference value with CVG, which further confirms the 

absence of additional fractionation coming from possible changes in the formation 

of Hg0, induced by the concomitant elements studied. This illustrates the 

capabilities of this approach for the isotopic analysis of Hg without the necessity of 

prior isolation of the analyte element. With PN as a means of sample introduction, 

important deviations from the correct δ202Hg (‰) value were observed when the 

SSB approach was used to correct for mass discrimination effects: a bias of -0.42, -

0.28, -0.30 and +0.40 ‰ was found in the presence of Ba, Cs, Na and Sb, 

respectively. The combination of the Baxter approach and SSB, however, allows one 

to adequately correct for mass discrimination in all cases, except in the case of Na, 

where the application of the double correction method results in a bias of +0.23‰ 

with respect to the reference δ202Hg (‰) value. These differences between results 

obtained via SSB and via the double correction approach with PN can be explained 

by the different matrix composition for standard and sample solutions in the case of 

external standardization, while in the double correction approach, the internal 

standard (Tl) is of course measured under exactly the same (matrix) conditions, 

thus providing accurate results, with the exception of the case of Na as concomitant 

element. 
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3.3.6. Hg isotopic analysis of reference materials via CVG-MC-ICP-

MS 

To further proof the capabilities of the approach developed using the dual 

introduction system, the determination of the Hg isotopic composition in 7 

reference materials of different origin and of environmental interest, was carried out 

via CVG-MC-ICP-MS. Three replicate digests were obtained for each reference 

material. The concentration of Hg was measured – using the Element XR SF-ICP-

MS with Rh as an internal standard – to ensure quantitative Hg recovery after acid 

digestion (90 – 99 %). After elemental analysis, isotopic analysis using CVG-MC-

ICP-MS (avoiding any chromatographic separation) was performed for each digest. 

The contribution of the blank was less than 1% of the total Hg intensity, leading to 

maximal deviations of ~ 0.01 ‰ (δxxxHg), which is negligible within the precision 

attainable, and thus, no blank subtraction was performed.[47] The corresponding 

results are shown in Table 3-7, which represent the average δxxxHg (‰) and ΔxxxHg 

(‰) values and accompanying 2SD (for N = 3 different digestion replicates). In 

general, good agreement was found between the results obtained in this work and 

the literature values available (t-test, texp < tcrit, p = 0.05). According to the best of 

the author’s knowledge, no results for the Hg isotopic composition of DORM-4 (Fish 

protein) and TORT-3 (Lobster hepatopancreas) have been reported earlier. The 

results testify of mass-independent fractionation for the biological reference 

materials – DORM-1, 2 and 4, TORT-2 and 3, and BCR CRM 464 – affecting the 

odd-numbered Hg isotopes. For these materials, the Δ199,201Hg value (Table 3-7) is ≠ 

0 (‰), which is not the case for the sediment reference material – NIST SRM 2704. 

 

3.4. Conclusion 

A systematic study, addressing the influence of various instrument settings on the 

figures of merit of Hg isotopic analysis via MC-ICP-MS was carried out. The 

capabilities and limitations of two different introduction systems, PN and CVG, were 

evaluated and the differences between both documented in detail. With the CVG 

approach, the internal standard Tl was added via mixing of a PN-produced wet 

aerosol with the dry Hg stream in a "T-piece". When using CVG instead of PN, the 

intensity was enhanced approximately 20-fold and the influence from the matrix 
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composition was avoided, enabling Hg isotopic analysis of samples with low analyte 

concentration without the requirement of prior isolation of the analyte element, in 

contrast to the situation with PN. At similar signal intensities (approx. 1.2 V for 

202Hg), there was no significant difference in long-term precision – ≤0.006% RSD (N 

= 250, 18 months) between both set-ups evaluated. Instrumental mass 

discrimination was adequately corrected for by using a combination of external and 

internal correction (admixed Tl, revised Russell law – Baxter approach). CVG-MC-

ICP-MS was subsequently validated via successful Hg isotopic analysis of various 

reference materials. For the latest generations of some biological RMs, first Hg 

isotope ratio results were presented. The results obtained in this work also 

demonstrate the suitability of the approach developed in this work for a variety of 

real-life applications for which Hg isotopic analysis is of scientific interest. 
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4.1. Introduction 

At the end of World War II (February 9th, 1945), the German submarine U-864 was 

torpedoed and sunk by the British submarine HMS Venturer in the proximity of 

Bergen (Norway) as it is shown in Figure 4-1. According to the cargo list, the U-boat 

was transporting 67 tons of metallic mercury (Hg) in almost 2000 steel containers 

in its keel. In 2003, the wreckage was discovered by the Royal Norwegian Navy at 

150 m depth and 2 nautic miles (nmi) west of Fedje island. Some of the containers 

were broken and Hg has contaminated the surrounding sediments. This has 

aroused serious concern about the corresponding environmental impact.[1] Since 

2004, the Hg levels in seafood have been monitored by the National Institute of 

Nutrition and Seafood Research (NIFES) on behalf of the Norwegian Coastal 

Administration to evaluate potential introduction of this Hg into the marine food 

chain.[2, 3]  

 

 

Figure 4-1. U-864 submarine wreckage. 

 

Hg is a highly toxic heavy metal that can be globally distributed due to its capacity 

for traveling long distances in the atmosphere, and it readily biomagnifies through 

the trophic chain.[4, 5] Hg toxicity strongly depends on its chemical form, and 

although both inorganic (IHg) and organic Hg have a deleterious effect on human 

health, methylmercury (MeHg) poses the greatest risk. This Hg species is prevalent 

in fish, the consumption of which is the primary source of human MeHg 

exposure.[4, 6, 7] Hg in the environment is mainly attributed to anthropogenic 

sources, e.g., fossil fuel combustion, mining-related emissions, and industrial 
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activities;[8-10] although also natural sources, e.g., volcanic emissions,[11] 

contribute. Hg deposition in aquatic systems and sediments enables the conversion 

of IHg into MeHg via microbial methylation,[12] thus favoring its bioaccumulation 

through the aquatic food web. Previous studies have found a strong correlation 

between the Hg levels in sediments and in biota,[13, 14] suggesting such processes 

as the main source of Hg in the aquatic food web. However, atmospheric 

deposition[15] and/or MeHg accumulation in the water column particles, have also 

been suggested as possible sources.[16]  

Next to elemental and speciation analysis,[17, 18] determination of the isotopic 

composition of Hg has emerged as a key tool for providing a better understanding of 

the biogeochemical cycling of this element and for evaluating its environmental 

risk.[19-22] However, although its applicability has already been demonstrated in 

some real-life case-studies during the last years,[8, 13, 23, 24] important 

knowledge gaps concerning the chemical transformations that Hg can undergo in 

complex environmental systems and the corresponding effects on its isotopic 

composition remain. This remark is especially valid for the unusual context of this 

work, characterized by the presence of a massive amount of elemental Hg. In 

addition, Hg isotopic analysis is not free from challenges and multi-collector 

inductively coupled plasma-mass spectrometry (MC-ICP-MS) instrumentation is 

required due to the small range of natural variation in the isotopic composition of 

Hg. Cold vapor generation (CVG) of Hg(0) enables accurate and precise Hg isotopic 

analysis as a steady signal without isotope fractionation is generated via complete 

reduction of the Hg(II) in the sample digest using SnCl2. Also, compared to 

conventional pneumatic nebulization, CVG provides a 20-fold improvement in Hg+ 

signal intensity, allowing the measurement of environmental samples in which Hg 

concentrations tend to be low.[25-27] 

Hg isotopes display fractionation as its isotopes may engage in physical processes 

and/or bio-geochemical reactions to a slightly different extent. In the case of mass-

dependent fractionation (MDF), the observed change in the isotope ratio is linearly 

dependent on the difference in mass between nominator and denominator 

isotope.[28, 29] The resulting differences in the isotopic composition are typically 

reported as δ202Hg and have already been measured in several sample types, e.g., 

coal, soil, rock, lichen, peat, snow, rainfall, sediment and biological materials,[19-

21] and many environmental processes and reactions, e.g., evaporation, biotic 
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methylation and demethylation,[30-32] were shown to be accompanied by MDF. 

This renders Hg isotopic analysis a viable tool for the identification of Hg pollution 

sources and for tracing Hg emitted into the environment.[8, 33]  

In addition to MDF, the isotopic composition of Hg may also be affected by mass-

independent fractionation (MIF),[34, 35] reported as Δ199Hg and Δ201Hg. Although 

the origin of MIF has not been fully understood yet, it has been tentatively 

explained in terms of nuclear volume and magnetic isotope effects.[36, 37] Berquist 

and Blum[38] and Malinovsky et al.[39] reported MIF for the odd-numbered 

isotopes of Hg as a result of photochemical reduction in aqueous medium, while 

this “odd-MIF” was not observed when the reduction was carried out in dark abiotic 

conditions. Bergquist and Blum[38] showed that fish samples collected from three 

different lakes displayed a wide range of MIF (expressed as Δ199Hg) and used these 

data to estimate the extent of MeHg photodegradation prior to MeHg uptake by 

organisms from the lowest level within the food web, assuming that MIF is not 

modified by trophic transfer to fish. Although this assumption has been 

experimentally documented in previous studies,[13, 23, 40] Jackson et al.[41] and 

Das et al.[42] suggested that Δ199Hg values can be modified in vivo. Further 

indications for the absence of in vivo MIF are presented along this PhD manuscript 

and are based on experimental results obtained for different species along the food 

chain (see the results provided in this chapter and in chapters 5 and 6). In addition 

to “odd-MIF”, recent studies have also reported MIF of the even-numbered isotopes 

of Hg. This "even-MIF" has been observed for samples of atmospheric origin, e.g., 

rain water and snow; photo-initiated oxidation of Hg(0) in the tropopause has been 

suggested as the possible origin of this MIF.[43-45]  

Clearly, the complementary information provided by MDF and MIF of Hg isotopes 

may help in understanding the chemistry of Hg in the environment and in tracking 

Hg sources. In this work, quantitative Hg determination and MeHg speciation have 

been combined with high-precision MC-ICP-MS Hg isotopic analysis of sediments 

and Cancer pagurus tissues with the aim of evaluating the degree of Hg pollution in 

the vicinity of the U-864 wreck and of assessing the potential introduction of 

metallic Hg released from the wreck into the marine food chain. Chapter 5 provides 

additional information on the introduction of the U-864 Hg into another level in the 

marine food chain as it focuses on a fish species (Brosme brosme) from the same 

geographic location. 
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4.2 Experimental section 

4.2.1. Area of study and sample collection 

Metallic Hg from the U-864 wreck was retrieved from an intact steel container found 

in the sediment near the wreckage (Figure 4-2A). Core sediments (n = 14, Figure 4-

2B) were sampled in the immediate vicinity of the wreck at different depths (0 – 2.4 

m) in January 2013 using an ROV (Solhjell & Lunne, 2013).  

 

Figure 4-2. Samples analyzed in this work: metallic Hg (A), sediment samples (B) 

and Cancer pagurus tissues (C) 

 

Cancer pagurus crabs (n = 74, Figure 4-2C) were caught in June 2014 at three sites 

– the wreck location and about 4 nmi north and 4 nmi south – from the M/K 

Vikingfjord H-1-A vessel using deep-water pots (Figure 4-3 shows the sampling 

zones). Sample preparation at NIFES was done as described in detail by Julshanm 

et al.[46] Claw meat (muscle) and brown meat (mainly hepatopancreas and gonads) 

were analyzed separately. From the complete set of samples, claw meat and brown 

meat from 13 individual crabs from each location were selected for the purpose of 

this work (n = 78). C. pagurus, also referred to as brown crab, is abundant in 

northern European coastal waters, is night active and known to prey on mussels, 

snails, barnacles, sea urchins and polychaetes that it can crush with its claws. It 

might also eat softer species like algae, jellyfish and ascidians.[47, 48] In Norway, 

C. pagurus is exploited for consumption both commercially and recreationally,[49] 

and both the claw meat and the brown meat are consumed.   

 

A B C
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Figure 4-3. Map of the sampling locations. Location of the U-864 submarine wreck 

and sediment collection (green triangle), and of the three zones of crab collection: 

wreck location (red circles), 4 nautical miles north (blue triangles) and 4 nautical 

miles south (black squares).  

 

4.2.2. THg and % of MeHg determination 

The metallic Hg from the submarine was dissolved in 14 M HNO3 (ChemLab, 

Belgium) and diluted appropriately for isotopic analysis (without prior 
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quantification) with high-purity water (resistivity > 18.2 MΩ.cm) obtained from a 

Milli-Q Element water purification system (Millipore, France). The total mercury 

(THg) concentration was determined in all sediment and crab tissue samples using 

a ThermoScientific (Germany) Element XR single-collector sector field ICP-MS (SF-

ICP-MS) instrument, equipped with a 100 µL min-1 concentric nebulizer mounted 

onto a cyclonic spray chamber for sample introduction. Quantification was 

accomplished via external calibration with Rh (1 µg L-1) as an internal standard and 

KBrO3 (0.009 mM) for inhibiting Hg evaporation and minimizing memory effects. 

Acid digestion was accomplished with a 3:1 mixture of 14 M HNO3 and 9.8 M H2O2 

(Fluka, Belgium) and of 7 M HNO3 and 9.8 M H2O2, for sediment and crab tissue 

samples, respectively. It needs to be pointed out, though, that a complete 

mineralization of the sediment samples was not achieved using this mixture. 

However, all Hg was extracted from the sediment samples, it was demonstrated by 

the results obtained for NIST SRM 2704 – Buffalo river sediment, a certified 

reference material with matrix composition similar to that of the samples of interest 

(vide infra). The digestion was carried out in closed Teflon® Savillex Beakers, pre-

cleaned with HNO3 and HCl (ChemLab, Belgium) and subsequently rinsed with 

Milli-Q water. The samples were heated on a hot plate at 110 °C overnight to 

complete the digestion and diluted subsequently for ICP-MS analysis. For the 

sediment samples, multiple digestion replicates were obtained (n = 2 – 3), whereas 

for the crab tissue samples, only one digestion was possible due to the limited 

sample mass, low Hg concentration and subsequent high sample intake required 

for isotopic analysis. The entire procedure was validated using the following 

certified reference materials (CRMs) with a matrix composition similar to that of the 

samples of interest: BCR CRM 464 (tuna fish), NIST SRM 2704 (Buffalo river 

sediment), NRC-CNRC DORM-1, DORM-2 and DORM-4 (fish protein), and NRC-

CNRC TORT-2 and TORT-3 (lobster hepatopancreas). The results thus obtained are 

summarized in Table 4-1. In addition to THg determination, MeHg speciation was 

performed for the crab tissue samples via isotope dilution gas chromatography ICP-

MS (GC-ICP-IDMS). The method was validated in a previous work with the CRMs 

ERM CE 464 (tuna fish), NIST SRM 1566B (oyster tissue) and NIST SRM 2977 (blue 

mussel), NRC-CNRC DOLT-4 (dogfish liver), DORM-3 and TORT-2, as reported by 

Valdersnes et al.[50]  
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Table 4-1. Results obtained for quantification and isotopic analysis of Hg in various 

certified reference materials (average ± SD – 3 digestion replicates) 

 

 

Recoveries 

(%) 
δ202Hg (‰) Δ199Hg (‰) Δ 201Hg (‰) 

 NIST SRM 2704 

Gantner et al. [13]  -0.43 ± 0.02 -0.05 ± 0.03 -0.07 ± 0.02 

Rua-Ibarz et al. [27]  -0.48 ± 0.09 -0.03 ± 0.02 -0.09 ± 0.03 

This study 98.2 ± 3.0 -0.48 ± 0.02 -0.03 ± 0.01 -0.11 ± 0.02 

 NRC-CNRC DORM-1 

Gantner et al. [13]  0.19 ± 0.21 1.20 ± 0.07 0.94 ± 0.07 

Rua-Ibarz et al. [27]  0.09 ± 0.09 1.15 ± 0.06 0.89 ± 0.05 

This study 96.0 ± 5.4 0.06 ± 0.03 1.16 ± 0.05 0.88 ± 0.01 

 NRC-CNRC DORM-2 

Bergquist et al. [38]  0.18 ± 0.04 1.07 ± 0.02 0.88 ± 0.03 

Malinovsky et al. [51]  0.11 ± 0.08 1.08* 0.93* 

Mead et al. [52]  0.18 ± 0.04 1.11 ± 0.04 0.94 ± 0.03 

Rua-Ibarz et al. [27]  0.16 ± 0.14 1.00 ± 0.06 0.88 ± 0.04 

This study 98.8 ± 5.5 0.17 ± 0.06 1.04 ± 0.05 0.87 ± 0.05 

 NRC-CNRC DORM-4 

Rua-Ibarz et al. [27]  0.26 ± 0.07 1.59 ± 0.08 1.34 ± 0.11 

This study 98.5 ± 2.7 0.23 ± 0.07 1.63 ± 0.04 1.34 ± 0.07 

 NRC-CNRC TORT-2 

Masbou et al. [53]  -0.33 ± 0.08 0.82 ± 0.04 0.67 ± 0.06 

Hintelmann [54]  -0.18 ± 0.02 0.70 ± 0.02 0.59 ± 0.01 

Kwon et al. [55]  0.10 0.79 0.57 

Rua-Ibarz et al. [27]  -0.41 ± 0.11 0.61 ± 0.05 0.45 ± 0.04 

This study 95.8 ± 3.5 -0.38 ± 0.10 0.66 ± 0.03 0.48 ± 0.01 

 NRC-CNRC TORT-3 

Rua-Ibarz et al. [27]  -0.47 ± 0.09 0.68 ± 0.07 0.50 ± 0.06 

This study 95.9 ± 3.1 -0.30 ± 0.05 0.65 ± 0.01 0.49 ± 0.04 

 BCR CRM 464 

Epov et al. [56]  0.59 ± 0.10 2.18 ± 0.04 1.79 ± 0.04 

Laffont et al. [57]  0.27 ± 0.10 2.20 ± 0.02 1.82 ± 0.03 

Perrot et al. [23]  0.55 ± 0.03 1.88 ± 0.13 1.54 ± 0.10 

Perrot et al. [58]  0.77 ± 0.09 2.42* 1.98* 

Masbou et al. [53]  0.73 ± 0.07 2.29 ± 0.05 1.92 ± 0.02 

Sherman et al. [24]  0.68 ± 0.03 2.40 ± 0.01 1.97 ± 0.04 

Rua-Ibarz et al. [27]  0.56 ± 0.10 1.95 ± 0.08 1.63 ± 0.09 

This study 97.4 ± 6.6 0.63 ± 0.03 2.00 ± 0.05 1.68 ± 0.04 
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4.2.3. Hg isotopic analysis 

Hg isotopic analysis was carried out using a ThermoScientific (Germany) Neptune 

multi-collector ICP-MS (MC-ICP-MS) unit, equipped with nine Faraday cups 

(instrumental parameters are shown in Table 4-2).  

 

Table 4-2. Cup configuration, instrument settings and data acquisition parameters 

for the Neptune MC-ICP-MS instrument 

Neptune MC-ICP-MS 

Cup configuration 

L3 L2 L1 C H1 H2 H3 
198 Hg 199Hg 200Hg 201Hg 202Hg 203Tl 205Tl 

Instrument settings 

RF power (W) 1250 – 1300 

Cool gas flow rate (L min-1) 13.00 – 13.50 

Auxiliary gas flow rate (L min-1) 0.67 – 0.72 

Nebulizer gas flow rate (L min-1) 0.70 – 0.75 

Carrier gas flow rate (L min-1) 0.19 – 0.21 

Additional gas flow rate (L min-1) 0.03 – 0.04 

Uptake rate sample – Hg (mL min-1) 0.7 

Uptake rate Tl (mL min-1) 0.17 

Uptake rate SnCl2 (mL min-1) 0.7 

Uptake time (s) 100 

Wash time (s) 180 

Sensitivity 202Hg (mV per µg L-1) 120 - 190 

Sampler cone Ni Thermo Scientific 

Skimmer cone Ni, H-type Thermo Scientific 

Resolution Low resolution 

Mode Static mode 

Data acquisition parameters 

Integration time (s) 4 

Blocks 5 

Cycles/block 10 

Total cycles 50 

 

The sample introduction system was based on the combination of CVG – using an 

HGX-200 Cold Vapor & Hydride Generation unit (Teledyne Cetac Technologies, US) 

– and pneumatic nebulization (PN) – using a concentric nebulizer (100 µL min-1) 

fitted onto a dual (cyclonic and Scott-type) spray chamber – for Hg (analyte) and Tl 

(internal standard selected for mass discrimination correction purposes), 
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respectively.[27] Hg was reduced to Hg(0) by SnCl2 (3% SnCl2.2H2O in 1.2 M HCl) in 

the gas liquid separator (GLS) of the CVG unit, and the resulting Hg vapor was 

carried away with an Ar gas flow and admixed with the wet aerosol of the Tl 

standard solution produced by PN prior to its introduction into the plasma. 

Instrumental mass discrimination was corrected for by using Tl (NIST SRM 997) as 

an internal standard in the “Baxter approach”,[59] followed by external correction 

relying on NIST SRM 3133, measured in a sample-standard bracketing (SSB) 

approach. External standard and sample solutions were matched in both the Hg (5 

± 0.5 µg L-1) and acid (0.7 M HNO3) concentration. Data acquisition was carried out 

using 5 blocks of 10 cycles and 4 s of integration time. Procedural blank solution 

intensities were less than 1 % of the sample intensities, and therefore, no blank 

subtraction was performed because its effect on the δxxxHg results was 

demonstrated to be of the order of ~0.01 ‰ only, which was considered negligible 

within the precision attainable. MDF is reported in delta notation (δxxxHg ‰), 

referring to NIST SRM 3133: 

 

𝜕 𝐻𝑔 (‰) =  (
( 𝐻𝑔𝑥𝑥𝑥 𝐻𝑔198⁄ )

𝑠𝑎𝑚𝑝𝑙𝑒

( 𝐻𝑔𝑥𝑥𝑥 𝐻𝑔198⁄ )
𝑁𝐼𝑆𝑇 𝑆𝑅𝑀 3133

− 1)𝑥𝑥𝑥 ∗ 1000          𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒 − 𝟏 

 

where xxx = 199, 200, 201 or 202. 

 

MIF signatures are expressed using the capital delta notation (ΔxxxHg ‰), as the 

difference between the measured δxxxHg and the theoretically calculated value, 

assuming purely kinetic MDF:[28]  

 

∆ 𝐻𝑔 =  𝜕 𝐻𝑔 −  (𝜕 𝐻𝑔202 ∗  0.2520)          𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒 − 𝟐199199  

∆ 𝐻𝑔 =  𝜕 𝐻𝑔 −  (𝜕 𝐻𝑔202 ∗  0.5024)200200           𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒 − 𝟑 

∆ 𝐻𝑔 =  𝜕 𝐻𝑔 −  (𝜕 𝐻𝑔202 ∗  0.7520)201201           𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒 − 𝟒 
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Table 4-3. Hg isotopic composition of the in-house standard solution 

In-house Hg standard solution 

 
δ199Hg 

(‰) 

δ200Hg 

(‰) 

δ201Hg 

(‰) 

δ202Hg 

(‰) 

Δ199Hg 

(‰) 

Δ200Hg 

(‰) 

Δ201Hg 

(‰) 

 -0.18 -0.31 -0.48 -0.60 -0.02 0.00 -0.02 

 -0.15 -0.24 -0.43 -0.53 -0.02 0.02 -0.03 

 -0.17 -0.27 -0.37 -0.54 -0.03 0.00 0.03 

 -0.07 -0.27 -0.45 -0.55 0.07 0.01 -0.04 

 -0.23 -0.33 -0.43 -0.58 -0.09 -0.04 0.00 

 -0.08 -0.29 -0.42 -0.52 0.05 -0.03 -0.03 

 -0.13 -0.22 -0.41 -0.51 0.00 0.04 -0.03 

 -0.07 -0.22 -0.36 -0.53 0.06 0.04 0.04 

 -0.12 -0.33 -0.47 -0.65 0.04 -0.01 0.02 

 -0.10 -0.21 -0.41 -0.57 0.04 0.07 0.01 

 -0.14 -0.23 -0.38 -0.53 -0.01 0.04 0.02 

 -0.16 -0.34 -0.47 -0.65 0.01 -0.02 0.02 

 -0.16 -0.29 -0.48 -0.58 -0.02 0.00 -0.05 

 -0.13 -0.22 -0.40 -0.51 0.00 0.03 -0.02 

 -0.16 -0.30 -0.43 -0.54 -0.02 -0.03 -0.02 

 -0.08 -0.25 -0.44 -0.64 0.08 0.07 0.04 

 -0.09 -0.22 -0.37 -0.52 0.04 0.04 0.02 

 -0.19 -0.33 -0.50 -0.64 -0.02 -0.01 -0.01 

 -0.14 -0.27 -0.44 -0.53 0.00 0.00 -0.04 

 -0.18 -0.36 -0.58 -0.66 -0.02 -0.03 -0.09 

 -0.13 -0.24 -0.35 -0.50 -0.01 0.01 0.02 

 -0.17 -0.36 -0.57 -0.61 -0.02 -0.06 -0.11 

 -0.13 -0.28 -0.40 -0.53 0.00 -0.01 0.00 

 -0.17 -0.28 -0.45 -0.62 -0.02 0.03 0.02 

 -0.18 -0.27 -0.45 -0.51 -0.05 -0.01 -0.07 

 -0.12 -0.22 -0.43 -0.53 0.02 0.05 -0.03 

 -0.11 -0.30 -0.37 -0.58 0.03 -0.01 0.07 

 -0.14 -0.29 -0.35 -0.55 0.00 -0.02 0.06 

 -0.12 -0.32 -0.47 -0.61 0.04 -0.02 -0.02 

 -0.11 -0.28 -0.39 -0.56 0.03 0.01 0.03 

 -0.09 -0.29 -0.46 -0.68 0.08 0.05 0.05 

 -0.16 -0.28 -0.46 -0.51 -0.03 -0.02 -0.08 

 -0.07 -0.28 -0.36 -0.55 0.07 0.00 0.06 

 -0.14 -0.39 -0.50 -0.63 0.02 -0.07 -0.03 

 -0.06 -0.20 -0.35 -0.52 0.07 0.07 0.04 

 -0.17 -0.27 -0.41 -0.58 -0.02 0.03 0.03 

 -0.12 -0.23 -0.46 -0.55 0.01 0.04 -0.05 

 -0.18 -0.32 -0.45 -0.66 -0.02 0.01 0.05 

 -0.08 -0.26 -0.50 -0.55 0.06 0.01 -0.08 

 -0.13 -0.26 -0.43 -0.55 0.01 0.02 -0.02 

Average -0.13 -0.28 -0.43 -0.57 0.01 0.01 -0.01 

SD 0.04 0.05 0.06 0.05 0.04 0.03 0.04 
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An in-house Hg standard solution (Inorganic Ventures, The Netherlands, Lot: F2-

HG02105)[27] was measured approximately every five samples as a measurement 

quality control sample (Table 4-3). Its associated uncertainty – expressed as 

standard deviation (SD, n = 40) – can be used as the uncertainty in those cases in 

which the SD calculated for the sample is smaller than that associated to the in-

house Hg standard solution. In addition, the same CRMs selected for validation of 

the Hg quantification were also used to validate the isotopic analysis of Hg in the 

samples of interest. The isotopic compositions obtained for these CRMs are 

provided in Table 4-1, in which δ202Hg and Δ199,201Hg are compared to values 

reported in literature. The entire procedure was also validated in chapter 3, in 

which an in-depth evaluation of accuracy and precision in Hg isotopic analysis was 

performed.[27] 

 

4.3. Results and discussion 

4.3.1. THg concentration in sediments  

The THg concentration in sediments collected close to the submarine wreck as a 

function of depth (n = 2 – 3 at each depth) ranged from ~60 to ~24,000 mg Kg-1 (wet 

weight – w.w.). The complete data set is provided in Table 4-4. Previous studies 

have documented THg concentrations in marine sediments coming from, e.g., the 

Gulf of Trieste (0.1 – 23.3 mg Kg-1),[8] the central Portuguese Margin (0.018 – 0.594 

mg Kg-1),[60] and the South China Sea (12 – 84 µg Kg-1).[61] The THg background in 

ocean sediments is 20 – 100 µg Kg-1.[62] Both the high THg concentration and the 

wider range obtained here indicate important Hg contamination, as was previously 

reported on by Uriansrud et al.,[63] who obtained IHg levels in surface sediments 

next to the U-864 wreck of up to 108,000 mg Kg-1. The THg distribution as a 

function of depth, provided in Figure 4-4 (left y-axis), demonstrates high 

heterogeneity, with peak values at 1 and 2.6 m depth, corresponding with samples 

containing visible metallic Hg droplets. The depth profile does not reveal 

information on origin (or timing) and/or changes in Hg pollution. The heterogeneity 

can be related to the explosion that occurred during the torpedoing/sinking, the 

possibility of metallic Hg sinking down through the sand and clay particles, and the 

fact that the location suffers from landslides,[64] preventing time-resolved 

information to be obtained from the variation in THg as a function of depth.
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Table 4-4. THg concentration (mg Kg-1) and Hg isotopic composition (δxxxHg and 

ΔxxxHg ) of sediment samples collected at a location in the immediate vicinity of the 

U-864 submarine wreck at different depths 

Sediment samples 

 
Depth 

(m) 

THg  

(mg Kg-

1) 

δ199Hg 

(‰) 

δ200Hg 

(‰) 

δ201Hg 

(‰) 

δ202Hg 

(‰) 

Δ199Hg 

(‰) 

Δ200Hg 

(‰) 

Δ201Hg 

(‰) 

S1 0.05 3522 -0.16 -0.24 -0.43 -0.44 -0.07 -0.01 -0.10 

  1702 -0.12 -0.25 -0.40 -0.51 -0.02 0.00 -0.02 

  7092 -0.18 -0.30 -0.47 -0.61 -0.05 0.01 -0.01 

 Average 2100 -0.16 -0.24 -0.41 -0.48 -0.06 0.00 -0.05 
 SD 1300 0.03 0.01 0.02 0.03 0.04 0.01 0.04 

S2 0.15 7092 -0.18 -0.30 -0.47 -0.61 -0.05 0.01 -0.01 
  7903 -0.18 -0.31 -0.43 -0.60 -0.06 -0.01 0.02 

 Average 7500 -0.18 -0.30 -0.45 -0.61 -0.05 0.00 0.01 

 SD 570 0.00 0.00 0.03 0.01 0.00 0.01 0.02 

S3 0.25 1303 -0.16 -0.23 -0.41 -0.45 -0.07 -0.01 -0.08 

  433 -0.14 -0.16 -0.28 -0.33 -0.07 0.00 -0.03 

  796 -0.12 -0.20 -0.37 -0.53 -0.01 0.07 0.03 

 Average 670 -0.13 -0.19 -0.34 -0.36 -0.06 -0.01 -0.07 

 SD 560 0.03 0.04 0.07 0.07 0.02 0.01 0.03 

S4 0.45 796 -0.12 -0.20 -0.37 -0.53 -0.01 0.07 0.03 

  280 -0.11 -0.14 -0.25 -0.35 -0.04 0.03 0.01 

 Average 540 -0.11 -0.17 -0.31 -0.44 -0.02 0.05 0.02 
 SD 360 0.01 0.04 0.08 0.13 0.02 0.02 0.01 

S5 0.5 2395 -0.13 -0.19 -0.35 -0.40 -0.05 0.01 -0.05 

  1074 -0.12 -0.20 -0.33 -0.45 -0.03 0.02 0.01 
  6025 -0.18 -0.26 -0.42 -0.54 -0.07 0.01 -0.01 

 Average 1550 -0.15 -0.23 -0.40 -0.48 -0.06 0.01 -0.05 

 SD 740 0.05 0.06 0.11 0.09 0.03 0.01 0.05 

S6 0.6 6025 -0.18 -0.26 -0.42 -0.54 -0.07 0.01 -0.01 

  2316 -0.21 -0.26 -0.52 -0.62 -0.08 0.05 -0.05 

 Average 4200 -0.19 -0.26 -0.47 -0.58 -0.08 0.03 -0.03 

 SD 2600 0.02 0.00 0.07 0.06 0.00 0.03 0.03 

S7 0.7 883 -0.15 -0.26 -0.44 -0.48 -0.05 -0.02 -0.07 

  1024 -0.18 -0.24 -0.39 -0.47 -0.08 0.00 -0.04 

 Average 950 -0.16 -0.25 -0.41 -0.48 -0.07 -0.01 -0.06 

 SD 100 0.02 0.01 0.03 0.00 0.02 0.01 0.03 

S8 0.9 196 -0.12 -0.18 -0.39 -0.42 -0.03 0.03 -0.07 

  260 -0.12 -0.19 -0.32 -0.34 -0.05 -0.01 -0.06 

 Average 228 -0.12 -0.18 -0.35 -0.38 -0.04 0.01 -0.07 
 SD 45 0.00 0.00 0.05 0.05 0.01 0.03 0.01 

S9 1.0 24106 -0.19 -0.29 -0.49 -0.58 -0.07 0.00 -0.05 

  8544 -0.17 -0.28 -0.45 -0.54 -0.06 0.00 -0.04 
  1908 -0.19 -0.18 -0.42 -0.44 -0.10 0.04 -0.09 

 Average 12900 -0.18 -0.28 -0.46 -0.55 -0.06 0.00 -0.04 

 SD 9800 0.01 0.01 0.03 0.03 0.01 0.00 0.01 

S10 1.2 1908 -0.19 -0.18 -0.42 -0.44 -0.10 0.04 -0.09 

  1068 -0.15 -0.23 -0.35 -0.44 -0.06 -0.01 -0.02 

 Average 1490 -0.17 -0.21 -0.39 -0.44 -0.08 0.01 -0.05 

 SD 590 0.03 0.04 0.05 0.00 0.03 0.04 0.05 
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Sediments – continued 

S11 2.0 648 -0.04 -0.09 -0.24 -0.27 0.01 0.05 -0.04 

  35 -0.05 -0.10 -0.13 -0.19 -0.02 0.00 0.02 
 Average 56 -0.05 -0.09 -0.18 -0.23 0.00 0.02 -0.01 

 SD 54 0.01 0.00 0.08 0.06 0.02 0.03 0.04 

S12 2.2 214 -0.16 -0.25 -0.45 -0.49 -0.06 -0.01 -0.08 
  451 -0.17 -0.31 -0.36 -0.50 -0.07 -0.05 0.02 

 Average 330 -0.16 -0.28 -0.41 -0.50 -0.06 -0.03 -0.03 

 SD 170 0.01 0.04 0.06 0.01 0.01 0.03 0.07 

S13 2.4 108 -0.09 -0.12 -0.24 -0.23 -0.03 0.00 -0.07 

  139 -0.07 -0.15 -0.26 -0.28 0.00 -0.01 -0.05 

  104 -0.07 -0.08 -0.14 -0.15 -0.04 0.00 -0.02 

 Average 117 -0.08 -0.12 -0.21 -0.22 -0.02 -0.01 -0.05 

 SD 19 0.01 0.04 0.07 0.06 0.02 0.01 0.02 

S14 2.6 5216 -0.17 -0.33 -0.44 -0.53 -0.07 -0.06 -0.04 

  21646 -0.16 -0.30 -0.43 -0.59 -0.04 0.00 0.02 

 Average 13000 -0.17 -0.31 -0.43 -0.56 -0.05 -0.03 -0.01 
 SD 12000 0.01 0.02 0.01 0.05 0.02 0.04 0.04 

Average 3300 -0.14 -0.22 -0.37 -0.45 -0.05 0.00 -0.04 

SD 5600 0.04 0.07 0.10 0.12 0.03 0.03 0.04 

 

 

 

Figure 4-4. Total Hg concentration (THg, blue squares, left y-axis) and δ202Hg (red 

circles, right y-axis) as a function of depth for sediment samples collected in the 

immediate vicinity of the U-864 submarine wreck. The error bars indicate the SD 

for 2 or 3 digestion replicates. The solid and dashed green lines show the δ202Hg 

(average ± SD, n = 10) for the metallic Hg salvaged from the submarine wreck. 
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4.3.2. THg and MeHg concentration in crab tissue samples 

THg and MeHg concentrations in the two types of tissues for the crab samples (n = 

78), as well as the average and the SD for each type of meat are provided in Table 

4-5 for the three locations studied. Within the entire area, the THg concentration 

varied from 0.033 to 0.220 mg Kg-1 (w.w.) with a mean of 0.094 mg Kg-1 in brown 

meat and from 0.036 to 0.290 mg Kg-1 (w.w.) with a mean of 0.11 mg Kg-1 in claw 

meat. Previous results for C. pagurus caught along the entire Norwegian coast were 

in the range of 0.015 to 0.35 mg Kg-1 (mean of 0.067 mg Kg-1)  and 0.021 to 0.40 mg 

Kg-1 (mean of 0.095 mg Kg-1) for brown and claw meat, respectively.[65] 

Concentrations of THg in brown meat of crabs were higher near the submarine 

wreck than background levels for the Norwegian coast. Claw meat, on the other 

hand, showed levels similar to background levels. In other studies using the same 

crab species in different marine ecosystems, the THg concentration determined 

ranged from 0.10 to 0.23 mg Kg-1 (dry weight – d.w.) for hepatopancreas and from 

0.16 to 2.04 mg Kg-1 (d.w.) for muscle.[66-68] In agreement with literature values, 

the THg concentrations reported in this work are higher for the claw meat than for 

the brown meat (Figure 4-5A – average values), although the differences are not 

statistically significant (texp = 1.81 < tcrit = 2.02). In addition, the THg concentration 

was established to be slightly higher in samples from the north compared to 

samples from the two other locations, as indicated via ANOVA (Fexp = 9.28 > Fcrit = 

3.12), which could be tentatively explained by the North Atlantic oceanic current 

going from the south to the north in this region.  

MeHg speciation was carried out to determine the fraction of THg present as MeHg 

(expressed as the MeHg fraction in %) in the two types of crab meat and at the three 

different locations. Clearly, the MeHg fraction (%) was distributed differently 

between the two tissue types (texp = 2.01 < tcrit = 13.58) with ranges of 53 to 62% 

and of 89 to 99% for brown and claw meat, respectively (see Figure 4-5B and Table 

4-5). Such difference in bioaccumulation of IHg and of MeHg in different tissues has 

been documented in the literature and possible accumulation routes have been 

described. Previous studies concluded that the dominant input of Hg in marine 

organisms comes from the food, although also direct uptake from the water column 

contributes.[69-71] After Hg ingestion, both IHg and MeHg are rapidly transferred 

to the visceral organs, i.e. brown meat in crab, and from there, the Hg species are 

further distributed. In crustaceans, the hepatopancreas acts as the main reservoir 
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Table 4-5. THg concentrations (mg Kg-1). % of MeHg and Hg isotopic composition 

(δxxxHg and ΔxxxHg ) for both types of meat for the selected crab samples collected at 

the wreck location, 4 nautical miles north and 4 nautical miles south. 

 

Crab Samples (Cancer Pagurus) 

 
THg 

(mg Kg-1) 
% 

MeHg 
δ199Hg 
(‰) 

δ200Hg 
(‰) 

δ201Hg 
(‰) 

δ202Hg 
(‰) 

Δ199Hg 
(‰) 

Δ200Hg 
(‰) 

Δ201Hg 
(‰) 

North 0.120 59 0.30 0.09 0.37 0.17 0.26 0.00 0.23 

Brown 0.120 83 0.37 0.05 0.25 -0.01 0.37 0.06 0.26 

 0.100 65 0.22 0.01 0.08 -0.05 0.24 0.03 0.12 

 0.160 38 0.23 0.18 0.26 0.24 0.17 0.06 0.08 

 0.094 72 0.48 0.15 0.40 0.16 0.44 0.07 0.28 

 0.130 75 0.40 0.10 0.34 0.10 0.38 0.05 0.27 

 0.130 26 0.14 0.05 0.17 0.11 0.12 0.00 0.09 

 0.077 60 0.21 0.04 0.05 -0.08 0.23 0.09 0.11 

 0.130 29 0.17 -0.01 0.00 -0.07 0.18 0.02 0.06 

 0.170 34 0.19 0.01 0.13 -0.03 0.19 0.02 0.15 

 0.220 64 0.13 -0.02 0.10 -0.15 0.16 0.06 0.21 

 0.068 31 0.28 0.11 0.21 0.01 0.28 0.11 0.20 

 0.150 54 0.18 0.02 0.06 -0.08 0.20 0.05 0.11 

Average 0.128 53 0.25 0.06 0.19 0.02 0.25 0.05 0.17 

SD 0.041 19 0.11 0.06 0.13 0.12 0.10 0.03 0.08 

Wreck 0.130 38 0.12 0.02 0.07 0.05 0.11 0.00 0.03 

Brown 0.130 55 0.21 0.05 0.17 0.02 0.21 0.04 0.16 

 0.052 65 0.17 0.02 0.08 -0.13 0.20 0.08 0.17 

 0.160 45 0.12 -0.07 -0.04 -0.24 0.18 0.05 0.13 

 0.130 38 0.16 -0.16 -0.24 -0.42 0.27 0.05 0.08 

 0.150 36 0.26 0.05 0.14 -0.12 0.29 0.11 0.23 

 0.046 70 0.15 0.01 0.21 0.04 0.14 -0.01 0.18 

 0.076 36 0.04 -0.16 -0.10 -0.27 0.11 -0.02 0.11 

 0.060 63 0.15 -0.09 0.05 -0.16 0.19 0.00 0.18 

 0.042 62 0.21 -0.10 -0.01 -0.31 0.29 0.06 0.22 

 0.042 64 0.30 -0.01 0.16 -0.12 0.33 0.05 0.25 

 0.041 59 0.32 -0.04 0.13 -0.10 0.34 0.01 0.21 

 0.049 67 0.25 0.05 0.19 0.02 0.24 0.04 0.18 

Average 0.085 54 0.19 -0.03 0.06 -0.13 0.22 0.03 0.16 

SD 0.047 13 0.08 0.08 0.13 0.15 0.08 0.04 0.06 

South 0.033 73 0.43 0.05 0.32 0.06 0.42 0.02 0.28 

Brown 0.096 49 0.30 0.14 0.33 0.20 0.25 0.04 0.18 

 0.092 60 0.23 0.03 0.19 0.02 0.23 0.02 0.17 

 0.072 54 0.34 0.03 0.30 0.09 0.32 -0.01 0.23 

 0.097 70 0.13 -0.07 0.03 -0.09 0.15 -0.03 0.10 

 0.062 60 0.19 0.01 0.13 -0.02 0.19 0.02 0.15 

 0.078 73 0.44 0.11 0.50 0.20 0.38 0.00 0.35 

 0.095 69 0.34 0.08 0.34 0.16 0.30 0.00 0.21 

 0.066 50 0.12 -0.02 0.07 -0.06 0.13 0.01 0.12 

 0.070 41 0.20 0.08 0.18 0.14 0.16 0.01 0.07 

 0.043 67 0.22 0.02 0.24 0.00 0.22 0.02 0.24 

 0.058 90 0.29 0.04 0.24 -0.01 0.29 0.04 0.25 

 0.044 48 0.16 0.05 0.16 0.14 0.13 -0.02 0.06 

Average 0.070 62 0.26 0.04 0.23 0.07 0.24 0.01 0.18 

SD 0.022 13 0.11 0.05 0.13 0.10 0.09 0.02 0.09 

Average 0.094 56 0.23 0.02 0.16 -0.01 0.24 0.03 0.17 

SD 0.045 16 0.10 0.08 0.15 0.15 0.09 0.03 0.08 
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Crab Samples (Cancer Pagurus) – continued 

 
THg 

(mg Kg-1) 
% 

MeHg 
δ199Hg 
(‰) 

δ200Hg 
(‰) 

δ201Hg 
(‰) 

δ202Hg 
(‰) 

Δ199Hg 
(‰) 

Δ200Hg 
(‰) 

Δ201Hg 
(‰) 

North 0.170 106 0.61 0.36 0.87 0.70 0.43 0.01 0.35 

Claw 0.100 95 0.31 0.10 0.34 0.08 0.29 0.06 0.28 

 0.100 95 0.48 0.30 0.55 0.46 0.36 0.07 0.21 

 0.180 100 0.56 0.33 0.68 0.51 0.44 0.08 0.30 

 0.290 100 0.89 0.42 1.12 0.72 0.71 0.06 0.58 

 0.160 113 0.60 0.30 0.79 0.57 0.46 0.01 0.36 

 0.078 94 0.49 0.22 0.54 0.31 0.41 0.06 0.31 

 0.074 95 0.35 0.10 0.41 0.11 0.33 0.04 0.32 

 0.072 88 0.38 0.18 0.52 0.41 0.28 -0.02 0.21 

 0.140 100 0.56 0.23 0.58 0.31 0.49 0.08 0.35 

 0.240 96 0.52 0.32 0.63 0.59 0.37 0.02 0.19 

 0.046 107 0.44 0.19 0.55 0.31 0.36 0.03 0.32 

 0.110 100 0.28 0.17 0.37 0.24 0.22 0.05 0.19 

Average 0.135 99 0.50 0.25 0.61 0.41 0.40 0.04 0.31 

SD 0.068 6 0.16 0.10 0.22 0.20 0.12 0.03 0.10 

Wreck 0.071 89 0.49 0.34 0.82 0.61 0.34 0.03 0.37 

Claw 0.140 93 0.67 0.19 0.72 0.32 0.59 0.04 0.48 

 0.110 72 0.37 0.11 0.44 0.20 0.32 0.01 0.29 

 0.140 93 0.53 0.21 0.68 0.46 0.41 -0.02 0.34 

 0.052 88 0.49 0.11 0.51 0.18 0.44 0.02 0.37 

 0.140 86 0.52 0.26 0.74 0.38 0.42 0.07 0.45 

 0.100 93 0.56 0.31 0.70 0.56 0.42 0.03 0.27 

 0.071 89 0.55 0.29 0.69 0.50 0.43 0.04 0.31 

 0.075 92 0.35 0.08 0.33 -0.01 0.35 0.08 0.33 

 0.090 88 0.51 0.20 0.50 0.28 0.44 0.06 0.29 

 0.056 98 0.47 0.20 0.63 0.32 0.39 0.04 0.38 

 0.075 89 0.60 0.29 0.71 0.45 0.48 0.07 0.38 

 0.100 91 0.42 0.10 0.41 0.20 0.37 0.00 0.26 

Average 0.094 89 0.50 0.21 0.61 0.34 0.42 0.04 0.35 

SD 0.030 6 0.09 0.09 0.15 0.17 0.07 0.03 0.07 

South 0.036 86 0.63 0.15 0.68 0.36 0.54 -0.03 0.41 

Claw 0.110 91 0.71 0.39 0.91 0.70 0.54 0.04 0.39 

 0.087 91 0.64 0.25 0.78 0.44 0.53 0.03 0.45 

 0.120 100 0.69 0.22 0.86 0.54 0.55 -0.05 0.45 

 0.150 93 0.66 0.33 0.81 0.60 0.51 0.02 0.36 

 0.086 90 0.37 0.22 0.58 0.45 0.26 0.00 0.24 

 0.130 100 0.46 0.08 0.53 0.07 0.45 0.04 0.48 

 0.180 89 0.64 0.34 0.89 0.67 0.47 0.01 0.38 

 0.067 85 0.63 0.14 0.71 0.32 0.55 -0.03 0.47 

 0.065 95 0.38 0.28 0.63 0.55 0.24 0.00 0.22 

 0.069 90 0.58 0.25 0.70 0.53 0.44 -0.02 0.30 

 0.092 99 0.37 0.04 0.33 0.06 0.35 0.01 0.29 

 0.047 91 0.31 0.05 0.27 0.10 0.28 0.00 0.20 

Average 0.095 92 0.54 0.21 0.67 0.41 0.44 0.00 0.36 

SD 0.040 5 0.14 0.11 0.20 0.22 0.12 0.03 0.10 

Average 0.108 94 0.51 0.22 0.63 0.39 0.42 0.03 0.34 

SD 0.053 7 0.13 0.10 0.19 0.20 0.10 0.03 0.09 

  



 

Chapter 4 –Results and discussion 
 

 

107 
 

for IHg when contamination comes from the food. IHg remains in the brown meat, 

whereas MeHg is accumulated in muscle tissue (claw meat), which is characterized 

by high MeHg storage capacity and low depuration rates.[18] In addition, the 

Assimilation Efficiency (AE) is considerably higher for MeHg than for IHg,[17] while 

the excretion is favorable for the latter,[72] which is in good agreement with the 

results reported in this work.  

In contrast to the differences in THg concentration, ANOVA indicates no significant 

variations in the MeHg fraction (%) between the 3 locations studied (Fexp = 0.46 < 

Fcrit = 3.12), as is shown in Figure 4-5B and Table 4-5. However, neither the THg 

concentration, nor the MeHg fraction (%), provides any insight into origin of the Hg 

pollution, thus necessitating Hg isotopic analysis. 

 

 

Figure 4-5. Total mercury (THg) concentration (as determined by ICP-MS) and 

fraction of the THg present as MeHg (% of MeHg, as determined via GC-ICP-IDMS) 

expressed as average of the selected individuals (n = 13 for each location) for both 

crab meat types and for the three locations studied. 

 

4.3.3. Isotopic composition of metallic Hg 

Isotopic analysis of metallic Hg salvaged from the submarine wreck was carried out 

aiming to elucidate whether this contamination source could be correlated with the 

Hg pollution observed in the surrounding area. The resulting isotopic composition 

reported as delta (δxxxHg ‰) and capital delta (ΔxxxHg ‰) notation (average ± SD, n 

= 10) is shown in Table 4-6. The δ202Hg value is -0.58 ± 0.06 ‰ and the isotopic 

composition seems to be affected by a slight extent of MIF (Δ199Hg = -0.06 ± 0.04 ‰ 
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and Δ201Hg = -0.07 ± 0.04 ‰). These values are similar to those reported in 

literature for UM-Almaden metallic Hg (δ202Hg = -0.58 ± 0.08 ‰ and Δ199Hg = -0.01 

± 0.01 ‰),[27, 73] although with a slightly higher degree of negative MIF.  This low-

extent MIF (<0.2‰) is most likely caused by the nuclear volume effect (NVE) 

potentially accompanying metallic Hg vaporization.[74] In literature, NVE was 

reported to accompany Hg0 evaporation/condensation,[31] Hg2+ reduction in the 

dark,[75, 76] and equilibrium Hg2+ – thiol complexation.[77] In the case of Hg0 

evaporation, the lighter isotopes with higher nuclear charge density are enriched in 

the vapor phase as a result of their weaker metallic bond and higher vapor 

pressure, while the heavier isotopes preferably remain in the metallic fraction. MIF 

caused by the NVE is characterized by a Δ199Hg/Δ201Hg ratio of ~1.6, a value that 

can be used to identify the presence of covalent Hg species, such as metallic Hg.[78] 

However, the low Δ199,201Hg values and their corresponding uncertainties in the 

metallic Hg studied do not enable to reliably calculate their ratio. 

 

Table 4-6. Hg isotopic composition of metallic Hg salvaged from the U-864 

submarine wreck 

Metallic Hg 

 
δ199Hg 

(‰) 

δ200Hg 

(‰) 

δ201Hg 

(‰) 

δ202Hg 

(‰) 

Δ199Hg 

(‰) 

Δ200Hg 

(‰) 

Δ201Hg 

(‰) 

 -0.22 -0.31 -0.56 -0.65 -0.06 0.01 -0.07 

 -0.18 -0.29 -0.55 -0.62 -0.02 0.02 -0.08 

 -0.21 -0.36 -0.57 -0.68 -0.04 -0.02 -0.06 

 -0.16 -0.24 -0.52 -0.57 -0.02 0.04 -0.09 

 -0.20 -0.29 -0.52 -0.58 -0.06 0.00 -0.08 

 -0.20 -0.26 -0.52 -0.57 -0.06 0.03 -0.09 

 -0.20 -0.31 -0.48 -0.57 -0.06 -0.03 -0.06 

 -0.19 -0.26 -0.39 -0.49 -0.07 -0.02 -0.02 

 -0.22 -0.34 -0.51 -0.60 -0.07 -0.04 -0.06 

 -0.23 -0.29 -0.45 -0.51 -0.10 -0.03 -0.06 

Average -0.20 -0.30 -0.51 -0.58 -0.06 0.00 -0.07 

SD 0.02 0.04 0.06 0.06 0.02 0.03 0.02 
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4.3.4. Hg isotopic composition of sediment samples 

The isotopic composition of Hg in the sediment samples collected in the immediate 

vicinity of the U-864 submarine as a function of depth is shown in Table 4-4. 

δ202Hg ranged from -0.62 to -0.15 ‰ within the depth profile (0 – 2.6 m). Figure 4-

4 shows the THg content (left y-axis) and δ202Hg value (right y-axis) as a function of 

depth. Interestingly, an opposite trend was found for the two parameters, i.e., the 

higher the THg concentration, the lower the δ202Hg and vice versa. In Figure 4-4, 

also the δ202Hg value (solid green line) ± SD (dashed green lines) for the metallic Hg 

from the submarine wreck has been indicated. As can be seen, the lowest δ202Hg 

sediment values are within the range for the metallic Hg. To further evaluate the 

correlation between concentration and isotopic composition, the δ202Hg results for 

all sediments and digestion replicates were plotted as a function of the THg 

concentration using a linear (Figure 4-6A) and a logarithmic abscissa scale (Figure 

4-6B). A strong negative correlation (r = 0.762, p = 0.000) was found between δ202Hg 

and log(THg), with δ202Hg values for sediment samples approaching that of the 

submarine Hg at high THg concentrations. This strongly suggests that the isotopic 

composition of sediments with the highest contamination levels are completely 

dominated by the isotopic composition of the metallic Hg from the U-864 (same 

isotopic signature).  

Also the extent of MIF is of interest from an environmental point of view. Figure 4-7 

shows three-isotope plots for δ199Hg vs δ202Hg (A), δ200Hg vs δ202Hg (B) and δ201Hg vs 

δ202Hg (C) for the sediment samples. As can be seen in Figure 4-7B (δ200Hg), the 

results plot perfectly on the theoretical mass-dependent fractionation line (absence 

of MIF for the even-numbered isotopes of Hg). In Figure 4-7A and 4-7C (with data 

for δ199Hg and δ201Hg, respectively), on the other hand, the values show a slight 

deviation from the fractionation line, suggesting that MIF has possibly affected the 

odd-numbered isotopes of Hg.  
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Figure 4-6. δ202Hg vs THg for sediment samples (all digestion replicates) collected in 

the immediate vicinity of the U-864 submarine using (A) a linear scale and (B) a 

logarithmic scale for the abscissa. The solid and dashed green lines show the δ202Hg 

(average  SD, n = 10) for metallic Hg salvaged from the submarine wreck.  
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Figure 4-7. Three-isotope plots δ199Hg vs δ202Hg (A), δ200Hg vs δ202Hg (B) and δ201Hg 

vs δ202Hg (C) for sediments samples (all digestion replicates, red circles) and metallic 

Hg (green triangles). Theoretical MDF-lines are shown in black. (D) Δ199Hg vs Δ201Hg 

for sediment samples and metallic Hg. 

 

The degree of MIF for sediments was reported as Δ199Hg and Δ201Hg (-0.05 ± 0.04 

and -0.04 ± 0.04 ‰, respectively – see Table 4-4) and they were plotted one versus 

another in Figure 4-7D. These results can be interpreted as low negative MIF or 

absence of MIF, which can be attributed to the low extent of photochemical 

reduction at 150 m depth, and is in agreement with results reported in previous 

studies for sediment samples.[19, 79] The results also agree with the degree of MIF 

reported for the metallic Hg from the U-864 submarine, thus also rendering MIF 

signatures a useful tool to track the source of Hg contamination.  

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

 

 

 Sediments

 Metallic Hg

 Theoretical MDF line


202

Hg (‰)


1
9
9
H

g
 (

‰
)

A

C D

B

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

-0.4

-0.3

-0.2

-0.1

0.0

 

 

 Sediments

 Metallic Hg

 Theoretical MDF line


202

Hg (‰)


2
0
0
H

g
 (

‰
)

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

 

 

 Sediments

 Metallic Hg

 Theoretical MDF line


202

Hg (‰)


2
0
1
H

g
 (

‰
)

-0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

 

 

 Sediments

Metallic Hg


201

Hg (‰)


1
9
9
H

g
 (

‰
)

 SD  SD

 SD  SD



Assessment of Hg pollution released from a WWII submarine wreck (U-864) by Hg isotopic 
analysis of sediments and Cancer pagurus tissues 

 

 

112 
 

4.3.5. Hg isotopic composition of crab tissue samples 

Isotope ratios of Hg in C. pagurus tissue samples are compiled in Table 4-5. These 

results, expressed as the average δ202Hg value as a function of location and tissue 

type, ranged from -0.13 to 0.07‰ for brown meat and from 0.34 to 0.41‰ for claw 

meat. Generally speaking, significant differences were found between the two 

tissues (texp = 10.17 > tcrit = 1.99), which is attributed to the smaller fraction of Hg 

present as MeHg (%) in brown meat compared to claw meat, due to the capacity of 

the latter as reservoir of MeHg.[80] Figure 4-8 (A, B and C) shows three-isotope 

plots of δ199Hg vs δ202Hg, δ200Hg vs δ202Hg and δ201Hg vs δ202Hg. The isotopic 

composition of Hg varies profoundly across the different sample types i.e., metallic 

Hg, sediments, brown meat and claw meat. Moreover, in contrast to metallic Hg and 

sediments, both tissue types demonstrate a clear effect of MIF on the odd-

numbered Hg isotopes, that is more remarkable for the claw meat than for the 

brown meat (vide infra). 

The δ202Hg values follow the trend: metallic Hg (-0.58 ± 0.06 ‰) < sediments (-0.45 

± 0.12 ‰) < brown meat (-0.01 ± 0.15 ‰) < claw meat (0.39 ± 0.20 ‰). Such 

differences in δ202Hg between sediments and aquatic biota have already been 

reported in the literature, and sediments have been suggested as the dominant 

source of Hg in the aquatic food web.[13, 14, 41, 55] This Hg isotopic variation 

seems to be related with the differences in isotopic composition between MeHg and 

IHg, and the different extent of MeHg bioaccumulation across the trophic chain. 

This is related to MDF accompanying equilibrium sorption of the aqueous Hg 

species,[77] microbial Hg methylation and demethylation [30, 81, 82] and abiotic 

redox reactions,[76] prior to trophic transfer across the food web. Gehrke et al.[14] 

and Kwon et al.[55] reported δ202Hg offsets of 0.73 ± 0.16 ‰ and 0.64 ± 0.38 ‰ 

between sediments and aquatic biota, i.e. forage fish and green crab, respectively. 

In this work, δ202Hg offsets of 0.44 ± 0.10 and 0.84 ± 0.04 ‰ were observed 

between the sediment and the two tissue types i.e. brown and claw meat, 

respectively.  
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 Figure 4-8. Three-isotope plots δ199Hg vs δ202Hg (A), δ200Hg vs δ202Hg (B) and δ201Hg 

vs δ202Hg (C) for metallic Hg from the U-864 wreck (green, n = 10), sediments from 

the wreck location (grey field, n = 14) and  C. pagurus tissues – averages for brown 

(brown field) and claw meat (pink field) , n = 78 in total – from the three sampling 

zones: north (blue), south (black) and wreck (red). The error bars indicate the SD for 

each group of samples. Figure 4-8D shows the three-isotope plot δ200Hg vs δ202Hg 

for the brown meat from the three locations (one point per individual, n = 39) and 

the average values for sediment samples (n = 33) and the metallic Hg from the U-

864 wreck (n = 10).  

 

These differences are related with the extent of IHg and MeHg in both tissues. A 

significant correlation (r = 0.679, p = 0.000) was observed between %MeHg and 

δ202Hg within the entire data set (n = 78), which is in good agreement with the 

values reported in previous works. Thus, we hypothesize that also in the context of 
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contribution of other sources of MeHg with a different isotopic composition cannot 

be ruled out. However, as a result of the massive presence of elemental Hg in the 

unusual context of this work and the high Hg heterogeneity observed in the 

sediments, this tentative conclusion has to be handled with care.  

An in-depth evaluation of the isotopic signature for both crab tissues at the three 

locations studied shows the following results. For claw meat, ANOVA indicates no 

significant variations within the three sampling zones (Fexp = 0.50 < Fcrit = 3.26). 

However, the isotopic composition of the brown meat (the main reservoir of IHg), 

seems to be a better vector for tracking Hg pollution coming from a specific 

contamination source as significant differences were found between the three 

sampling zones (Fexp = 9.54 > Fcrit = 3.26). Figure 4-8D shows δ200Hg as a function 

of δ202Hg for the complete brown meat data set. As can be seen, no significant 

differences were found between the locations north and south of the wreck (texp = 

0.95 < tcrit = 2.06), whereas statistically significant differences were observed 

between these two locations on the one hand and the wreck location on the other 

(texp = 3.03 > tcrit = 2.06 and texp = 4.07 > tcrit = 2.06 for north-of-wreck and south-of-

wreck, respectively). Also, it is clearly shown that the isotopic signatures of brown 

tissue for the individual crabs collected at the wreck location are shifted in the 

direction of that of the submarine Hg and the sediments (see Figure 4-8D), which 

suggests that they are affected by metallic Hg from the U-864. Due to the feeding 

habits of this crab species (see experimental section),[48] we hypothesize that this 

difference most likely stems from the direct intake of metallic Hg by C. Pagurus, 

demonstrating that the determination of Hg isotopic signatures of visceral organs 

from C. pagurus is a valuable tool for tracking Hg pollution in the marine ecosystem 

studied and for evaluating the corresponding environmental risk.  

As previously indicated, the isotopic composition of Hg in the crab tissue samples 

testify of MIF (expressed as ΔxxxHg notation). Figure 4-9 shows the Δ199Hg (A) and 

Δ201Hg (B) vs δ202Hg. Significant differences were found between the two tissue types 

(texp = 8.64 > tcrit = 1.99), with Δ199Hg values ranging from 0.22 to 0.25 ‰ for brown 

meat and from 0.40 to 0.44 ‰ for claw meat (average Δ199Hg as a function of 

location and tissue type). 
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Figure 4-9. Δ199Hg (A) and Δ201Hg (B) vs δ202Hg for both C. pagurus tissues for the 

three locations studied: north (blue), south (black) and wreck (red). The error bars 

indicate the SD for n = 13. 

 

These differences are also related with the MeHg fraction (%) and a significant 

correlation (r = 0.707, p = 0.000) was found between %MeHg and Δ199Hg within the 

entire data set (n = 78). However, in contrast to δ202Hg, for Δ199Hg ANOVA indicates 

no significant variation between the three sampling zones (Fexp = 0.34 < Fcrit = 3.26 

and Fexp = 0.55 < Fcrit = 3.26, for brown and claw meat, respectively). Δ199Hg has 

been used in many studies to discern specific processes, such as photochemical 

reduction of Hg(II) and MeHg,[19] and to study biogeochemical transformations of 

the bioavailable pools of Hg.[14] Das et al.[42] suggested that MIF in fish from the 

first two trophic levels might occur during the bioaccumulation and 

biomagnification of Hg. However, several works to date reported on the 

photochemical reactions involving Hg(II) and MeHg as the only processes yielding 

MIF in aquatic organisms.[38, 40, 55, 57] Next to the NVE, the other mechanism 

for explaining MIF of Hg isotopes is the magnetic isotope effect (MIE). Bergquist and 

Blum[38] came to the conclusion that photochemical reduction of aqueous Hg(II) 

and of MeHg is most likely accompanied by MIE, and that the participation of either 

Hg(II) or MeHg can be distinguished based on the slope of the straight line obtained 

by plotting Δ199Hg versus Δ201Hg (slopes of 1.0 and 1.3 for Hg(II) and MeHg 

photoreduction, respectively). In this work, Δ199Hg is plotted as a function of Δ201Hg 

in Figure 4-10 for the complete data set. A regression line (R2 = 0.83) with a slope 

of 1.02 ± 0.05 was obtained. This value is not significantly different from that for 
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photochemical reduction of Hg(II), suggesting that the MIF evidenced in crab tissue 

samples can be mainly attributed to MIE accompanying photoreduction of the IHg 

in the aquatic ecosystem studied.  

 

Figure 4-10. Δ199Hg vs Δ201Hg for the complete C. pagurus data set for both tissues 

from the three locations studied: north (blue), south (black) and wreck (red). The 

black solid line is the best-fitting straight line through the experimental data and its 

slope (1.02 ± 0.05) serves as an indicator of the type of mass-independent 

fractionation (MIF): the black dashed lines represent the slopes calculated by 

Bergquist and Blum [38] for MeHg (1.3) and Hg2+ photoreduction (1.0) 

  

4.3.6. Environmental impact 

Overall, the data obtained in this work provide an expected, but now undeniable 

link between the Hg pollution in the sediments and the metallic Hg leaking from the 

U-864 wreck. Due to the low content of organic matter in the sediments, there is 

little microbial methylation activity at the wreck location, suggesting that the Hg 

pollution from the U-864 submarine may predominantly remain in the form of 
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metallic Hg, which is characterized by a lower bioavailability than other Hg species. 

We hypothesize that the feeding habits of Cancer pagurus may allow for direct 

ingestion of this metallic Hg, and that the presence of metallic Hg in the digestive 

system (and thus, in the brown meat) of this crab species is most likely the 

responsible for the differences observed at the wreck place. However, except for this 

variation, the Hg isotope ratio results do not offer any proof for the introduction of 

the submarine Hg into the marine food chain.  
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5.1. Introduction 

Mercury (Hg) is one of the most important global pollutants and both wildlife and 

humans are exposed to the harmful effects of this highly toxic heavy metal and its 

compounds. Methylmercury (MeHg) is the most toxic Hg species and it can be 

biomagnified and bioaccumulated across food chains,[1] making seafood 

consumption the prime source of human Hg intake. Norway is the world’s second 

largest exporter of seafood and the related industry is one of the most important 

pillars of the country’s economy.[2] Given its toxicity, there is increasing attention 

for Hg contamination in seafood, an issue requiring proper attention from the 

health and food safety authorities. Different monitoring programs, aiming at 

documenting the Hg levels in different Norwegian marine ecosystems and at 

identifying the main sources of Hg are being carried out. Nowadays, anthropogenic 

Hg emissions, resulting from a variety of processes, such as coal combustion, metal 

refining and manufacturing, cement production and waste incineration, are the 

main contributors to the increasing Hg levels around the world. However, also 

natural sources, such as volcanic activity and hydrothermal systems, can strongly 

affect the biogeochemical Hg cycle.[3] Hg can undergo various processes, and direct 

atmospheric emission, atmospheric transport, deposition to land and aquatic 

media, and re-volatilization occur, while also chemical transformations, based on 

oxidation, reduction, methylation and demethylation complicate the biogeochemical 

behavior of Hg.[4] It is this complexity of the Hg cycle in combination with the 

aforementioned toxicity that necessitates the development of new tools for 

monitoring Hg exposure with the final aim of minimizing the risks associated with 

seafood consumption.  

Several aquatic/marine species, in different trophic positions, have been used over 

the years for tracing Hg pollution and for improving the understanding of the 

different pathways of Hg across aquatic/marine food chains.[5] A group of special 

interest comprises common seafood species that do not migrate over large 

distances. Tusk (Brosme brosme) is such a type of species. It is a benthic gadoid 

fish species that is distributed widely in Norwegian waters, both in fjords, along the 

coast and in open ocean areas. It can be found at depths ranging from 100 to 1000 

m. In 2016, the catch of the Norwegian fisheries amounted to approximately two 

million tons of fish, 14,800 tons of which being tusk.[6, 7]  It has been reported 

that this fish species tends to accumulate higher Hg levels than other fish species 
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living in the same area, e.g., cod.[8, 9] As a result, tusk may be considered as a key 

species for present and future Hg monitoring programs.[10] In order to control Hg 

levels in marine ecosystems, the identification of the contributing Hg sources and 

the unraveling of the exposure pathways is of the utmost importance. Therefore, in 

addition to elemental and speciation analysis, also Hg isotopic analysis can 

contribute to an improved insight into the biogeochemical Hg cycle.[11] It has been 

demonstrated that the isotopic composition of Hg varies between different sources, 

and that different physical and/or (bio)chemical processes are accompanied by Hg 

isotope fractionation.[12] Mass-dependent fractionation (MDF) was shown to 

accompany various environmentally relevant processes, such as sorption,[13, 14] 

equilibrium evaporation,[15, 16] microbial methylation and demethylation,[17, 18] 

and photochemical reduction.[19-21] In addition to MDF, the isotopic composition 

of Hg can also be affected by mass-independent fractionation (MIF), exhibited 

primarily by the odd-numbered Hg isotopes (199Hg and 201Hg). MIF has been 

explained by the nuclear volume effect (NVE) and the magnetic isotope effect 

(MIE).[22, 23] The photoreduction of Hg(II) and the photodegradation of MeHg have 

been considered as the main processes yielding “odd-MIF”.[19] However, MIF 

affecting the even-numbered Hg isotopes has recently also been observed and was 

attributed to an atmospheric photo-initiated oxidation of Hg(0) in the 

tropopause.[24, 25] As both MDF and MIF of Hg isotopes occur, Hg isotopic 

analysis provides a “multi-dimensional” tracer and a powerful tool for enhancing 

our understanding of the biogeochemical Hg cycle. 

In this work, the possibility of using tusk as a widely consumed deep-water marine 

fish species for tracing Hg pollution along the Norwegian coast has been assessed 

by means of the determination, speciation and isotopic analysis of Hg in its liver 

and muscle tissues.  

 

5.2. Materials and methods 

5.2.1. Sample collection and sample preparation 

A total of 137 tusk fish (Brosme brosme) were caught at eight different locations 

along the Norwegian coast by various fishermen on behalf of the National Institute 

of Nutrition and Seafood Research (NIFES), during various sampling campaigns 
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between September 2013 and June 2016 (see Figure 5-1 and Table 5-1 for further 

information on the sampling zones). Three of the locations are located in fjords: 

Sørfjord (7 fish), Steinstøberget (25 fish) and Lusterfjord (14 fish). The remaining 

five locations are spread along the Norwegian coast (south to north): Ryvingen fyr 

(25 fish), U-864 (6 fish), Nordøyan (25 fish), Landegode (25 fish) and Lofoten (7 fish). 

“U-864” refers to a location where a WWII submarine wreck carrying 70 tons of 

metallic Hg has contaminated the local bottom sediment.[26] The fish was caught 

with long-lines, deep-sea pots or gillnets.  

 
Figure 5-1. Map of Western Norway showing the sampling locations where the 

tusks (Brosme brosme) were collected. Fjords: Sørfjord, Steinstøberget and 

Lusterfjorden. Coastal locations: Ryvingen fyr, U-864, Nordøyan, Landegode and 

Lofoten. The star marks the location of the Zn smelter in Odda. 
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From each fish, liver and muscle tissues were manually separated and homogenized 

(thus resulting in 274 samples). For the Sørfjord and U-864 locations, the tissues of 

the individual fish (i.e. 26 tissue samples) were measured separately (both for 

elemental and isotopic analysis). For the other 6 locations, samples of liver and 

muscle of individual fish were analyzed for total Hg and MeHg, but for the isotopic 

analysis the liver samples or muscle samples from each location were homogenized 

as to obtain 12 pooled samples. After processing, all samples were stored frozen (< -

20 °C) until analysis. 

Prior to elemental and isotopic analysis, 0.5 – 1.2 g of sample or certified reference 

material (CRM) were acid-digested with a 3:1 mixture of 7 M HNO3 and 9.8 M H2O2 

in closed microwave vessels using a Milestone (Italy) Ethos One High-Performance 

Microwave Digestion System. The following microwave program was used: step 1: 

room temperature to 90 °C, 10 min; step 2: 90 °C, 5 min; step 3: 90 °C to 120 °C, 

10 min; step 4: 120 °C, 5 min; step 5: 120 °C to 150 °C, 10 min; step 6: 150 °C, 10 

min. After complete mineralization, the resulting solutions were appropriately 

diluted for ICP-MS measurement. 

 

5.2.2. Reagents and standards 

Pro-analysis 14 M HNO3 and 12 M HCl (ChemLab, Belgium), further purified by 

sub-boiling distillation in PFA equipment, 9.8 M H2O2 (Fluka, Belgium) and high-

purity water obtained from a Milli-Q Element water purification system (Millipore, 

France) were used for sample digestion and subsequent dilution. 

Appropriate dilutions of 1000 mg L-1 stock solutions of As, Cd, Cr, Cu, In, Ni, Pb, 

Rh, Se and Zn (Inorganic Ventures, The Netherlands) were used as calibration 

standards for elemental analysis. For isotopic analysis, a standard solution of the 

Hg isotopic reference material NIST SRM 3133 and one of the NIST SRM 997 Tl 

isotopic reference material were used for mass bias correction. An in-house 

standard solution with well-characterized Hg isotopic composition (Inorganic 

Ventures, The Netherlands) was used for quality control purposes. 

Analyte introduction was accomplished via a Teledyne Cetac Technologies (US) 

HGX-200 cold vapor and hydride generation unit, whereby Hg2+ was reduced into 

elemental Hg by selective reaction with SnCl2 in a reaction vessel. Pro-analysis 

SnCl2.2H2O (Sigma-Aldrich, UK) was prepared freshly every measurement day (3% 
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SnCl2 in 1.2 M HCl) and the resultant solution was bubbled with purified Ar during 

approximately thirty minutes to avoid possible Hg contamination. The elemental Hg 

produced in the reaction vessel was carried into the ICP using an Ar carrier gas.[27]  

Three CRMs – BCR CRM 464 tuna fish, NRC-CNRC DORM-4 fish protein and 

TORT-3 lobster hepatopancreas – with a matrix composition similar to that of the 

samples of interest were used to validate the analytical procedure.  

 

5.2.3. Elemental analysis 

A ThermoScientific (Germany) Element XR single-collector sector-field ICP-MS 

instrument (SF-ICP-MS) equipped with a 100 µL min-1 concentric nebulizer 

mounted onto a cyclonic spray chamber was used for elemental analysis. As, Cd, 

Cr, Cu, Hg, Ni, Pb, Se and Zn were quantified relying on external calibration 

(calibration curves with concentrations ranging from 0 to 25 µg L-1) with In and Rh 

as internal standards correcting for potential matrix effects and instrumental 

instability. The ICP-MS instrument was operated at different resolution modes (see 

Table 5-2 for a description of the instrument settings) and it was tuned prior to 

every measurement session, aiming at obtaining maximum sensitivity without 

compromising the interference-free conditions for each of the target nuclides. 

In addition, MeHg speciation was performed at NIFES via isotope dilution gas 

chromatography ICP-MS (GC-ICP-IDMS) using an Agilent (Santa Clara, CA) 6890N 

gas chromatograph coupled to an Agilent Technologies (Japan) 7500a ICP-MS 

instrument, following the procedure described by Valdersnes et al.[28] 

The results obtained upon elemental analysis are expressed as their average ± 

standard deviation in the case of the pooled samples. For the Sørfjord and U-864 

locations (for which individual fish were measured instead of pooled samples), 

however, median and minimum and maximum concentrations are reported 

throughout the manuscript. 
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Table 5-2. Instrument settings and data acquisition parameters for the Thermo 

Element XR high resolution sector field ICP-MS (HR-SF-ICP-MS) instrument. 

Element XR SF-ICP-MS 

Instrument settings  

RF power (W) 1250 

Cool gas flow rate (L min-1) 15 

Auxiliary gas flow rate (L min-1) 0.85 

Nebulizer gas flow rate (L min-1) 0.97 – 1.05 

Resolution Low, medium, high 

Scan type EScan 

Data acquisition parameters  

Mass window (%) 150 

Search window (%) 150 

Integration window (%) 80 

Sample time (s) 0.01 

Samples/peak 30 

Total analysis time/sample (s) 90 

Nuclides monitored 

   Low resolution 

   Medium resolution 

   High resolution 

 

82Se,103Rh, 114Cd, 202Hg, 208Pb 

52Cr, 60Ni, 63Cu, 66Zn, 115In 

75As, 115In 

 

 

5.2.4. Hg isotopic analysis 

A ThermoScientific (Germany) Neptune multi-collector ICP-MS (MC-ICP-MS) 

instrument equipped with nine Faraday cups was used for Hg isotopic analysis 

(instrument settings are described in Table 5-3). A combination of cold vapor 

generation (CVG) by using an HGX-200 cold vapor & hydride generation unit 

(Teledyne Cetac Technologies, US) and pneumatic nebulization (PN) by using a 100 

µL min-1 concentric nebulizer mounted onto a dual (cyclonic and Scott-type) spray 
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chamber was used for the introduction of Hg and Tl, respectively (this setup is 

described in detail in Rua-Ibarz et al.).[27] Hg(0) is generated via the reduction of 

Hg2+ with 3% of SnCl2.2H2O in 1.2 M HCl in the gas liquid separator (GLS) of the 

CVG unit and is mixed in a ‘T’ piece with the wet aerosol of Tl coming from the 

spray chamber prior to introduction into the plasma.  

 

Table 5-3. Cup configuration, instrument settings and data acquisition parameters 

for the Thermo Scientific Neptune multi-collector ICP-MS (MC-ICP-MS) instrument. 

Neptune MC-ICP-MS 

Cup configuration 

L3 L2 L1 C H1 H2 H3 

198 Hg 199Hg 200Hg 201Hg 202Hg 203Tl 205Tl 

Instrument settings 

RF power (W) 1300 

Cool gas flow rate (L min-1) 13.00 – 14.00 

Auxiliary gas flow rate (L min-1) 0.65 – 0.75 

Nebulizer gas flow rate (L min-1) 0.65 – 0.70 

Carrier gas flow rate (L min-1) 0.19 – 0.21 

Additional gas flow rate (L min-1) 0.03 – 0.04 

Sampling cone Ni 

Skimmer cone Ni, H-type 

Resolution Low resolution 

Mode Static mode 

Data acquisition parameters 

Integration time (s) 4 

Blocks 5 

Cycles/block 10 

Total cycles 50 
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Instrumental mass discrimination was corrected for by using the combination of the 

‘Baxter approach’ – using Tl (NIST SRM 997) as an internal standard – and external 

correction in a sample-standard bracketing (SSB) approach using the Hg isotopic 

reference material NIST SRM 3133.[27, 29] Standard and sample solutions were 

matrix-matched within  10%. No blank correction was done as the influence of the 

blank on the final isotope ratio data is negligible within the precision attainable (< 

0.01‰).[27] An in-house standard solution of Hg with a well-characterized Hg 

isotopic composition and the aforementioned CRMs with similar matrix composition 

were included in every measurement session (one such solution approximately 

every 3 – 5 sample measurements) for quality control and validation purposes, as 

described in previous works.[26, 27] 

Mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) are 

reported in delta (δxxxHg ‰ – Equation 5-1) and capital delta (ΔxxxHg ‰ – Equation 

5-2 –5-4) notation, respectively. 

 

𝜕 𝐻𝑔 (‰) =  (
( 𝐻𝑔𝑥𝑥𝑥 𝐻𝑔198⁄ )

𝑠𝑎𝑚𝑝𝑙𝑒

( 𝐻𝑔𝑥𝑥𝑥 𝐻𝑔198⁄ )
𝑁𝐼𝑆𝑇 𝑆𝑅𝑀 3133

− 1)𝑥𝑥𝑥 ∗ 1000          (Equation 5-1) 

 

where xxx = 199, 200, 201 or 202. 

∆ 𝐻𝑔 =  𝜕 𝐻𝑔 −  (𝜕 𝐻𝑔202 ∗  0.2520)         199199 (Equation 5-2) 

∆ 𝐻𝑔 =  𝜕 𝐻𝑔 − (𝜕 𝐻𝑔202 ∗  0.5024)200200          (Equation 5-3) 

∆ 𝐻𝑔 =  𝜕 𝐻𝑔 − (𝜕 𝐻𝑔202 ∗  0.7520)201201          (Equation 5-4) 

 

5.3. Results and discussion 

5.3.1. Hg and MeHg in tusk 

Concentrations of THg and MeHg in liver and muscle tissues of tusks collected 

along the Norwegian coast are shown in Table 5-4 and Figure 5-2. Total Hg (THg) 

concentrations ranged from 0.11 (Lofoten) to 27 (Sørfjord) mg Kg-1 in liver tissue 

and from 0.20 (Lofoten) to 2.6 (Sørfjord) mg Kg-1 in muscle tissue. There was a 

strong positive correlation between the Hg levels in both tissue types, although a 

clear deviation from the general behavior is observed for the Sørfjord location i.e., 

the most polluted area, for which liver concentrations were particularly high 
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compared to the muscle concentrations (Spearman’s correlation excluding the 

Sørfjord data point, ρ = 0.964, p = 0.000 – Figure 5-3A). Overall, liver and muscle 

tissues of tusk collected in the fjords show higher THg concentrations than those 

from coastal locations. This observation can most likely be attributed to the higher 

effect of local anthropogenic Hg sources on fjord ecosystems and/or the poorer 

water circulation in comparison to open ocean areas. The specific morphology of the 

fjords gives rise to higher accumulation of pollutants, such as Hg and other heavy 

metals, that can potentially be trapped at great depths and for longer periods within 

the fjord.[30]  

 

 

Figure 5-2. THg (A) and MeHg (B) concentrations in liver and muscle tissues of tusk 

for the eight locations studied. The results are expressed as average ± SD in the 

case of pooled samples and as median in the case of measurements of individual 

tusk fish (Sørfjord and U-864 locations). 
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Additionally, THg concentrations were found to be significantly higher in liver than 

in the corresponding muscle tissue for tusk from the three fjord locations 

(THgliver/THgmuscle ratio ranging from 1.8 to 4.3), while for tusk from the coastal 

locations, the THg concentrations in muscle were rather similar to or higher than in 

liver (THgliver/THgmuscle ratio ranging from 0.55 to 1.4). The THg concentrations 

observed in the fjords may indicate an unusually high Hg intake for this fish 

species, greatly affecting the liver owing to the key metabolic role of this organ in, 

e.g., excretion and/or detoxification mechanisms.[31] 

For both tissue types, the highest THg concentrations were found in the Sørfjord 

(inner part of the Hardangenfjord), while the lowest THg concentrations were 

observed in Lofoten (the northernmost coastal location). The European maximum 

level for THg in most fish species is established at 0.5 mg Kg-1 (w.w.).[32] The level 

of THg in tusk muscle tissue (the edible part) exceeded the maximum level in five of 

the eight locations studied in this work, i.e. in all of the fjord locations and in two of 

the five coastal locations (Ryvingen fyr and Landegode). For U-864, Nørdøyan and 

Lofoten, the THg concentrations were below the maximum level. The elevated 

concentrations of Hg in the three fjords could be attributed to the fjord topography 

and the possible contribution of local anthropogenic sources of Hg, as indicated 

above. Previously, high Hg concentrations have already been reported for the 

Sørfjord location.[33, 34] These previous observations are in good agreement with 

the high Hg levels found in liver and muscle tissues of tusk in this work. This high 

Hg pollution has mainly been attributed to the impact of the Zn smelter located in 

Odda, a small town situated at the southern end of the Sørfjord. Hg contamination 

may stem from ore roasting (atmospheric emission and subsequent deposition) 

and/or (accidental) release of contamination into the fjord water, e.g., during 

unloading of Zn ore material at the dock.[35-38] Elevated concentrations of Hg have 

been reported in fish and soils from the vicinity of and further away from the Odda 

Zn smelter.[8, 39, 40] In the case of Steinstøberget (outer part of the 

Hardangenfjord), the relatively high Hg concentrations could be related to the 

strong pollution observed in the Sørfjord, but elemental analysis of Hg does not 

enable one to distinguish different sources (see section 3.3 for isotopic analysis of 

Hg).  
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Figure 5-3. Relationship between THg concentrations (A) and MeHg concentrations 

(B) in tusk liver and muscle, respectively, for all locations studied. The data for 

Sørfjord are indicated in red. 
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a result of geographical constraints, limiting the circulation of water and hampering 

the removal of discharged waste (see Figure 5-1). 

It needs to be pointed out that one of the three areas studied that did not show a 

high level of Hg pollution is the U-864 location. The U-864 is a German submarine 

that was carrying 67 tons of metallic Hg in its keel when it was torpedoed and sunk 

in the proximity of Bergen (Norway) at the end of World War II.[26, 41] However, 

although the U-864 Hg has contaminated the surrounding sediments with metallic 

Hg,[42] the Hg concentrations measured in tusk collected in this area were not 

found to be elevated compared to tusk sampled in other areas along the west coast 

of Norway.[8, 9]  

In addition to the THg concentration, the speciation of Hg is of special relevance due 

to the higher toxicity of MeHg and its high capacity for bioaccumulation. In this 

work, MeHg concentrations ranged from 0.050 (Lofoten) to 3.5 (Sørfjord) mg Kg-1 in 

liver tissue and from 0.18 (Lofoten) to 1.6 (Sørfjord) mg Kg-1 in muscle tissue (see 

Table 5-4 and Figure 5-2B). MeHg concentrations in liver and muscle tissues 

correlated with the corresponding THg concentrations (Spearman’s correlation, ρ = 

0.976 and 0.970, p = 0.000 for liver and muscle, respectively – Figure 5-4). 

Approximately 100% of the Hg in muscle tissue of tusk was in the form of 

MeHg,[31] while in liver only 14 to 52% of the Hg was in the form of MeHg. Similarly 

to the situation described above for the THg concentration, a clear correlation was 

also established between MeHg concentrations in liver and muscle tissue for tusk 

from the different locations studied. However, the data point for the Sørfjord 

location clearly deviates from this general trend (Spearman’s correlation excluding 

the Sørfjord data point, ρ = 0.955, p = 0.001 – see Figure 5-3B), as was also the 

case for the THg concentration (see Figure 5-3A). This could be attributed to a 

significant Hg pollution at this location, as the low % MeHg in liver tissues (14%) 

could point to anthropogenic Hg present as iHg. In addition, it needs to be noted 

that the highest % MeHg in liver tissue of tusk was found for Lofoten, the least 

polluted area. Thus, the % MeHg in liver tissues of tusk individuals appears to be a 

good indicator of anthropogenic iHg contamination and it seems to be more 

sensitive than muscle tissue to input from anthropogenic Hg (see section 3.3).  

Although THg and MeHg levels already provide valuable information on 

anthropogenic Hg exposure, isotopic analysis of Hg can provide added value aiding 

an enhanced understanding of the biogeochemical Hg cycle. 
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Figure 5-4. MeHg concentration vs THg concentration for tusk liver (A) and muscle 

(B) for all locations studied. 
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several elements by organizations such as the European Food Safety Authority 

(EFSA) and/or the Joint FAO/WHO Expert Committee on Food Additives 

(JECFA).[43, 44] 

Overall, significant differences were found between both tissue types, with liver 

tissue generally showing much higher concentrations than muscle tissue (with only 

a few exceptions in the case of As, Cr and Ni at some of the locations studied). 

Additionally, for the majority of the target elements, the concentrations were found 

to be higher in tusk from the fjords than in those from coastal waters.  

Cu, Ni and Se levels were significantly higher in tusk from the Sørfjord and the 

Lusterfjord (both inner parts of a fjord), which are also characterized by higher Hg 

concentrations. This finding is especially interesting for Se, as it has been 

demonstrated that this element plays an important role in Hg detoxification due the 

well-known antagonistic Hg-Se effect.[45] However, it needs to be noted that Hg-Se 

interactions are of high complexity, as they are affected by the specific Se- and Hg-

containing compounds involved, the Se/Hg elemental ratio, etc (see Chapter 6 for 

further information on Hg detoxification as a result of Hg-Se interaction).[46-48] 

For Zn, very similar concentrations were observed for all locations, with the 

exception of the Sørfjord, where the concentration was found to be approximately 

two-fold higher. This higher Zn concentration is likely due to discharge from the Zn 

smelter located in Odda, which supports the hypothesis that the Hg pollution 

within the Sørfjord may also be linked to the Zn smelter. 

None of the muscle tissues (i.e. tusk fillet) analyzed in this work showed a Cd or Pb 

level exceeding the European maximum levels of 0.05 and 0.3 mg Kg-1, 

respectively.[32, 49] However, significant concentrations of these toxic elements 

were found in the liver tissue of tusk, which could serve as an indicator of metal 

contamination.  

The levels of As, Cd and Pb did not seem to correlate with those of Hg in liver and 

muscle tissues of tusk, although previous works reported on in literature have 

suggested the possibility of such a relation in liver tissues, e.g., Hg-Cd.[8] For the 

Sørfjord, tusk livers showed significantly higher concentrations of Pb than for the 

other locations (5 – 10-fold higher), illustrating the anthropogenic pollution affecting 

this area. In the case of As, the concentrations in liver and muscle tissues of tusk 
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were found to be similar in most of the locations, and even higher in muscle than in 

liver tissue in the areas with the highest levels. Suñer et al.[50] reported higher  

 

 

Figure 5-5. Concentrations of other environmentally relevant metals: As, Cd, Cu, 

Cr, Pb, Ni, Se and Zn in tusk liver (red) and muscle (black) for all locations studied.  
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concentrations of As in fish liver compared to muscle due to the occurrence of 

detoxification mechanisms taking place mainly in the liver, similarly as in 

mammals. However, De Gieter et al.[51] did not support this hypothesis, as in half 

of the cases studied, As concentrations were higher in muscle than in liver of North 

Sea fish, which is in better agreement with the results obtained in this work. 

However, As in tusk is not to be considered as a food safety issue, as it has 

previously been shown that only a very low portion of the As present in muscle 

tissue of tusk is in the form of inorganic As, the most toxic As species.[52]  

 

5.3.3. Hg isotopic analysis in tusk 

5.3.3.1. Mass-dependent fractionation (MDF) of Hg isotopes 

The isotopic compositions (δ199,200,201,202Hg and Δ199,200,201Hg) of Hg in tissues of tusk 

collected from different locations along the Norwegian coast have been summarized 

in Table 5-5. In addition, Figure 5-6 shows the three-isotope plots (δ199Hg, δ200Hg, 

and δ201Hg vs δ202Hg) obtained for all locations and tissue types. The results 

indicate a clear deviation from the theoretical MDF line in the case of δ199Hg and 

δ201Hg, thus indicating that the isotopic composition of Hg was affected by MIF for 

the odd-numbered isotopes.[53] The extent of MIF and the corresponding 

conclusions that can be derived from this observation will be discussed below (see 

section 3.3.2).  

Figure 5-7 shows how δ202Hg varied between the different locations and between 

the two tissue types, with values ranging from -1.32 to 0.17 ‰ for liver tissue 

(average of -0.65 ‰) and from -0.54 to 1.00 ‰ for muscle tissue (average of 0.35 

‰). Overall, significant variations were observed between the different locations 

studied in this work, with liver tissue always showing a more negative δ202Hg (a 

lighter isotopic composition of Hg) than the corresponding muscle tissue. In earlier 

literature, the differences in Hg isotopic composition between liver and muscle 

tissues have been linked to a difference in Hg speciation between the two tissue 

types.[54] Inorganic Hg and MeHg are the two Hg species present in organisms and 

these two species show a different Hg isotopic composition. Therefore, the 

speciation of Hg in both tissue types affect the corresponding bulk Hg isotopic 

signatures.  
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Figure 5-6. Three isotope plots – δ199Hg vs δ202Hg (A), δ200Hg vs δ202Hg (B), and 

δ201Hg vs δ202Hg (C) – for liver (L) and muscle (M) tissues of tusk (Brosme brosme) 

from different locations along the Norwegian coast. 
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Figure 5-7. δ202Hg values (‰) for liver (squares) and muscle (circles) tissues of tusk 

(Brosme brosme) for the different locations studied in this work.  
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where it is finally accumulated, and/or it is excreted.[55] Thus, the liver is more 

sensitive to immediate changes in Hg intake due to local anthropogenic Hg 

emissions, while the muscle may reflect the Hg accumulated over a longer period of 

exposure.  

As indicated above, two well-established anthropogenic Hg sources were considered 

of special relevance in the context of this work. On the one hand, the high Hg 

concentrations reported for different environmental compartments of the Sørfjord 

have been confirmed for tusk collected at this location (see section 3.1). The 

particularities of a fjord ecosystem and the possible influence of the Zn smelter 

located in Odda merit further study using Hg isotopic analysis. Hg isotopic 

signatures of liver and muscle tissues of tusk from the Sørfjord are the result of 

mixing of Hg from multiple sources, such as direct release of pollution into the 

seawater, atmospheric deposition and freshwater runoff.  

During Zn ore roasting, Hg present in the ore is fractionated, resulting in local 

atmospheric deposition of Hg characterized by a light isotopic composition or low 

δ202Hg value. This is in good agreement with the results obtained in this work for 

the Sørfjord location.[56] Additionally, the same Hg isotopic signature has been 

imprinted in tusk located in Steinstøberget, which most likely can be attributed to 

the water current going from the inner to the outer part of the Hardangerfjord and 

to the predominant winds going from south to north in this area (i.e. following the 

direction of the fjord as shown in Figure 5-1).[40]  

The so-called U-864 location still remains a special area of concern for the 

Norwegian authorities owing to the large amount of metallic Hg released from the 

WWII U-864 submarine wreckage.[41] In previous work from the same authors,[26] 

Hg isotopic analysis of crab (Cancer pagurus) tissues showed that δ202Hg values in 

the brown meat (predominantly consisting of the digestive system and the gonads) 

of crabs from the wreck location were shifted towards the isotopic signature of the 

metallic Hg collected at the vicinity of the submarine wreckage, while such 

differences were not found for claw (muscle) meat. It was therefore hypothesized 

that the feeding habits of this crab species may allow for direct ingestion of metallic 

Hg, which could explain the difference in Hg isotopic composition in brown meat of 

crabs from the wreck location. It was further expected that the low bioavailability of 

metallic Hg and the absence of methylation of metallic Hg (due to the low level of 

microbial activity) did not allow for the introduction of the U-864 Hg into the marine 
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food chain.[26] The results obtained in this work seem to confirm this hypothesis, 

as no significant differences in δ202Hg were found between tusk from the U-864 

location and from Ryvingen fyr, the location further south in the North Sea, 

suggesting that, so far, the metallic Hg from the U-864 wreckage has not entered 

the food chain. Figure 5-8 contains the results obtained for both crab (Chapter 4) 

and tusk tissues from the U-864 location. Clear differences were found between the 

regression lines obtained on the basis of the Hg isotope ratio results for different 

tissues of the two species. In the case of crab, this regression line connects the 

isotopic signatures of both tissues with that of the sediments and, thus, the 

metallic Hg from the U-864 submarine, while the regression line obtained based on 

the isotopic signatures of the tusk tissues shows a different slope and does not 

include the data point for the sediments/submarine Hg (Figure 5-8A). In addition, 

the Δ199Hg values (see Figure 5-8B) obtained for liver and muscle tissue of tusk and 

claw meat from crabs are similar, while the Δ199Hg value for brown meat of crab is 

lower. The latter is attributed to the intake of Hg from various sources, mainly 

MeHg from the diet and metallic Hg from the U-864 submarine. These observations 

are in agreement with the assumed low bioavailability of metallic Hg from the U-864 

submarine.  

 

 

 

Figure 5-8. Comparison of the Hg isotopic compositions obtained for tissues of tusk 

(Brosme brosme) and brown crab (Cancer pagurus – Chapter 4) caught at the U-864 

location.  
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A further evaluation of the MDF Hg isotopic signatures of tusk from the different 

locations seems to indicate the occurrence of three groups with δ202Hg values 

increasing from south to north (see Figure 5-7). These groups correspond with the 

two locations of (i) the Hardangenfjorden (the Sørfjord and Steinstøberget), (ii) the 

two locations in the North Sea (U-864 and Ryvingen fyr) and (iii) the three locations 

in the Norwegian Sea (Nørdoyan, Landegode and Lofoten). In the case of the 

Lusterfjord, the δ202Hg values were not significantly different from those observed 

for the two locations from the North Sea. In addition, the δ202Hg values for muscle 

tissues were found to be more consistent within the same group than the δ202Hg 

values for the liver tissues, which is especially visible for the locations from the 

Norwegian Sea. This could be attributed to the more sensitive behavior of the liver 

towards sudden changes in Hg concentrations due to anthropogenic sources, as 

indicated above. The same is valid for the % MeHg, as muscle tissues are 

characterized by ~100% MeHg, while the % MeHg in liver tissues is more variable. 

Moreover, the differences in δ202Hg values between the two tissues (δ202Hgmuscle - 

δ202Hgliver) were not constant for all locations, with values ranging from 0.60 to 1.34 

‰. The difference between δ202Hgmuscle and δ202Hgliver showed a clear negative 

correlation with % MeHg in liver (Figure 5-9). This observation has already been 

reported on in the literature and is considered a result of a net positive MDF 

(fractionation in favor of the heavier Isotope) induced by different chemical and/or 

biological transformations, such as redox reactions, methylation and/or 

demethylation processes.[15, 17, 19, 57] 

It can be seen, however, that the results obtained for the fjord locations were found 

to deviate from the line defined by the values obtained for the coastal locations; and 

this deviation was particularly relevant for the two locations from the 

Hardangerfjord (i.e. the Sørfjord and Steinstøberget). When tracing the best fitting 

straight line through the data for the coastal locations only, i.e. excluding the data 

for the three fjords, an R2 coefficient of 0.9358 was obtained. This deviation from 

the trend at the fjord locations shows an unexpected behavior in comparison with 

tusk collected in coastal waters (see below).  
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Figure 5-9. δ202Hgmuscle - δ202Hgliver as a function of the % of MeHg for the eight 

locations studied in this work.  
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methylation occurs in tilapia fish intestine via bacterial activity, and that the newly 

formed MeHg, which is enriched in the lighter Hg isotopes, goes first to the vital 

organs (e.g., liver) from where it is distributed and finally deposited in the muscle. 

Additionally, a recent study of MeHg demethylation in marine fish [67] suggested 

that the intestine plays a predominant role in the in-vivo MeHg demethylation 

during MeHg exposure, pointing out that the intestine demethylation served as an 

important pathway for MeHg detoxification. The demethylation process leads to an 

enrichment of the iHg thus produced in lighter isotopes in comparison to the initial 

MeHg.  

The deviations observed for the two locations in the Hardangenfjord could be 

related to a more direct Hg exposure owing to the occurrence of an important Hg 

anthropogenic source, which can be attributed to the proximity of the Zn smelter. 

This could lead to a more specific source-related Hg isotopic composition and a 

different isotopic pattern in liver and muscle tissues, not following the behavior 

established for coastal locations. 

 

5.3.3.2. Mass-independent fractionation (MIF) of Hg isotopes 

As indicated above, the three-isotope plots (Figure 5-6) showed that additional MIF 

has affected the odd-numbered isotopes of Hg. MIF values, expressed as Δ199Hg as a 

function of location and tissue type, ranged from 0.12 to 0.77 ‰ in liver tissue and 

from 0.19 to 0.80 ‰ in muscle tissue (see Figure 5-10 and Table 5-5). The lowest 

Δ199Hg values were found in tusk from the Sørfjord and the highest in the two 

northernmost locations, Landegode and Lofoten. In contrast to MDF, only slight 

differences in Δ199Hg values between liver and muscle tissues were observed, barely 

affected by the location studied. However, the Δ199Hg value of muscle tissue was 

always found to be slightly higher than that of the corresponding liver tissue from 

the same area. The extents of MIF can be used to provide complementary 

information on physical and chemical transformations involved in the 

biogeochemical Hg cycle.[68] For biological processes, most of the studies 

conducted to date have concluded absence of in-vivo MIF,[59, 69-71] suggesting 

that the degree of MIF in fish species may reflect the MIF signature of Hg prior to its 

incorporation into the food web. Two tentative mechanisms have been proposed 

aiming at explaining the occurrence of MIF in the case of Hg, i.e. (i) the nuclear 
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volume effect (NVE) and (ii) the magnetic isotope effect (MIE).[22, 23] Moreover, it 

has been demonstrated that the MIE has a larger contribution than the NVE to the 

final extent of MIF.[19, 20] In aquatic organisms, the main processes yielding MIF 

are photo-mediated reactions, such as the photochemical reduction of Hg(II) and 

the photodegradation of MeHg in the presence of dissolved organic carbon (DOC), 

both specifically affecting the odd-mass numbered isotopes of Hg.[19]  

 
Figure 5-10. Δ199Hg values (‰) for liver (squares) and muscle (circles) tissues of 

tusk (Brosme brosme) for the different locations studied in this work. 
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respectively). MIF of Hg tends to be low in highly polluted areas owing to the large 

amount of anthropogenic iHg.[72] With the Zn smelter located in Odda as the main 

source of Hg pollution within the Hardangerfjord, tusk collected in the Sørfjord will 

most likely be affected to a higher extent due to the proximity of the contamination 

source and especially the Hg in the liver is thus indeed expected to display a lower 

level of MIF. In the case of Steinstøberget, MDF δ202Hg points to the high Hg 

contamination level in the Sørfjord as the main source of Hg in the outer part of the 

Hardangerfjord, then MIF may be higher because Hg has taken longer time to reach 

there and thus MIF may have taken place on the way. In addition, Hg MIF in 

marine ecosystems has also been found to be strongly affected by depth, with lower 

Δ199Hg values for shallower waters in comparison with deeper waters.[73] The effect 

of depth on the degree of MIF was found to be in good agreement with the different 

Δ199Hg between the Sørfjord (with depths of ~ 350 m) and Steinstøberget (with 

depths of ~150 m).  

For the coastal locations, however, Δ199Hg values do not show significant differences 

between different locations from the same sea, which is in good agreement with the 

aforementioned hypothesis based on the results obtained for MDF (δ202Hg). The 

highest extents of MIF (Δ199Hg) of Hg isotopes were found at Lofoten and Landegode 

(~0.8 ‰), both locations from the Norwegian Sea, showing significant differences 

with the locations from the North Sea (~0.4 ‰ for the U-864 and Ryvingen fyr). 

Based on the relatively constant degree of MIF in tusk of different locations from the 

same sea, the effect of oceanic currents and water conditions, and the distance 

from the sources of pollution, seem to be the most likely explanation for these 

differences. Previous laboratory experiments have reported different extent of MIF 

as a function of the pH, the ionic strength of the water and the concentration of 

total dissolved solids (TDS).[20] The geographical trend – south (North Sea) to north 

(Norwegian Sea) – could also explain the results obtained for Nordøyan (Δ199Hg = 

0.61 – 068 ‰). Nordøyan is located in the Norwegian Sea, but the degree of MIF 

was found to be slightly lower in comparison with the other locations from the same 

sea, which could be related with the influence of the North Sea displaying two-fold 

lower MIF of Hg isotopes in tusk compared to the Norwegian Sea.  
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Figure 5-11. Δ199Hg vs Δ201Hg (‰) for the complete data set of liver (squares) and 

muscle (circles) tissues of tusk (Brosme brosme). 
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to a slope of 1.15 ± 0.06. It needs to be pointed out, though, that slight differences 

were observed by separately plotting the data for both tissue types, thus obtaining 

slopes of 1.11 ± 0.09 for liver and 1.20 ± 0.09 for muscle tissue. This difference 

between tissues can be attributed to the higher % iHg in the liver in comparison 

with the muscle.  

Based on the assumption that MIF is mainly caused by processes that MeHg 

undergoes prior to its incorporation into the food web, the extent of MeHg loss via 

this MeHg photodegradation can be estimated according to the procedure described 

by Bergquist and Blum.[19] In this work, a MeHg photoreduction experiment was 

relied on for obtaining the relationship between the fraction of Hg remaining in 

solution and the Δ201Hg, following a Rayleigh distillation model outlined by Mariotti 

et al.[77] By using this approach, the fraction of MeHg remaining after 

photodegradation (f) can be calculated according to Equation 5-5, where S 

corresponds to the slope of the aforementioned relationship obtained by Bergquist 

and Blum and Δ201Hg values are those obtained in this work for each location. 

Thereafter, the % MeHg photodegradated prior to its incorporation into the food web 

can be calculated according to Equation 5-6.[19, 78] 

 

Ln(f) = [103 x ln (10-3 x Δ201Hg + 1)]/S      (Equation 5-5) 

% of MeHg photodegradated = 100 x (1 – exp[ln(f)])       (Equation 5-6) 

 

The values thus obtained were 6, 12, 16, 13, 11, 20, 22 and 24% for Sørfjord, 

Steinstøberget, Lusterfjord, Ryvingen fyr, U-864, Nordøyan, Landegode and Lofoten, 

respectively. These experimental results were found to be in good agreement (with 

the exception of the Sørfjord) with the values reported on in literature for coastal 

locations 10 – 34%.[76, 78] In the Sørfjord, however, the % MeHg loss was lower 

than the expected value (< 10%). Once more, this result points to the occurrence of 

an important anthropogenic Hg source greatly affecting the Sørfjord location and 

the surrounding marine ecosystem.  
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5.3.4. Environmental trends and perspectives 

At the Minamata Convention on Mercury, urgent measures to avoid and/or 

minimize the mercury threat were approved. Exposure to Hg is an issue of growing 

concern that requires major attention. Efforts should include the development of 

reliable methods for evaluating the level of Hg exposure on a short and long term 

basis. Therefore, providing novel tools to be introduced in new and/or currently 

existing monitoring programs is of the utmost importance for an appropriate follow-

up of the fate of Hg in nature. Fish consumption is the primary source of human Hg 

exposure. Monitoring Hg in appropriate seafood species may shed light onto the 

complex Hg cycle.  

In this work, clear differences in the Hg isotopic composition of tusk (Brosme 

brosme) tissues were found between fjords and coastal locations, pointing to specific 

Hg contamination sources (e.g., the Zn smelter located in Odda). Differences were 

also established between samples from (i) the fjords, from (ii) the North Sea and 

from (iii) the Norwegian Sea, respectively. This observation can most likely be 

attributed to different Hg contamination sources along the Norwegian coastal 

waters, thus demonstrating the potential of isotopic analysis of selected species for 

tracing Hg pollution in specific marine environments. In addition, isotopic analysis 

of different tissues (i.e., liver and muscle) was found to provide different and thus, 

complementary information at some locations, which stresses the necessity of 

taking into account potential metabolic processes accompanied by Hg isotope 

fractionation within the fish body. The use of Hg isotopic analysis for tracing Hg 

sources may be hampered by the occurrence of such in vivo metabolic processes as 

they affect the Hg isotopic signature of the original source. However, at the same 

time, the monitoring of Hg in different tissues (i.e. liver and muscle) is also a 

powerful approach to provide additional information, potentially enhancing our 

understanding of the metabolic routes of Hg and its detoxification pathways. 

Clearly, important knowledge gaps still remain in our understanding of the 

biogeochemical Hg cycle, but the combination of elemental, speciation and isotopic 

analysis of Hg in (i) different species collected at the same location, (ii) a given 

species collected at different locations and (iii) in different tissues of a selected 

species, offers a powerful approach for dealing with this important environmental 

and human threat.  
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6.1. Introduction 

Mercury (Hg) is a toxic heavy metal that is ubiquitously present in the environment. 

There are different forms of Hg, such as elemental (or metallic) Hg, inorganic Hg 

(iHg) and organic Hg compounds. Hg toxicity strongly depends on its chemical form, 

methylmercury (MeHg) being the most toxic Hg species.[1] Due to the high volatility 

of elemental Hg and other Hg compounds, Hg is globally distributed through the 

atmosphere, in which Hg has a residence time of up to 1 year.[2]  Atmospheric Hg is 

predominantly deposited in oceans, one of the major reservoirs of Hg on Earth; 

between 60,000 and 80,000 tons of Hg are present in the global ocean according to 

recent estimations.[3] In aquatic environments, inorganic Hg species are converted 

into the more toxic organic MeHg compound, a process that proceeds via biotic or 

abiotic methylation occurring in sediment and/or in the water column.[4, 5] MeHg 

exposure of aquatic biota occurs mainly via the diet, resulting in the 

bioaccumulation and biomagnification of MeHg across food webs. This leads to high 

Hg levels in predatory animals (this means that the Hg level in biota is a function of 

their position within the trophic chain), thus making the consumption of these 

species the primary source of human MeHg exposure. Thus, marine and/or aquatic 

ecosystems are considered of utmost relevance within the biogeochemical Hg cycle 

and their study is of high scientific interest. 

As predatory species located at the top of the aquatic food web and with a long 

lifespan, marine mammals accumulate high amounts of Hg in their tissues.[6-8] 

This is still an issue of great concern in terms of seafood safety, as despite of the 

potential health risks, these marine species are consumed by humans at some 

locations around the world. However, the study of marine mammals is even more 

relevant owing to the similarities these species share with humans in terms of 

metabolic pathways. Different studies carried out for marine mammals (and 

seabirds) have shown that despite of the high Hg concentrations present in their 

tissues, they do not show the toxic effects observed in humans, suggesting the 

existence or the development of effective Hg detoxification mechanisms.[9] Thus, the 

study of the Hg metabolic pathways (e.g., uptake, transport, distribution and 

excretion) in marine mammals may aid at improving our understanding of the 

behavior of Hg in humans and at developing new strategies aiming to avoid and/or 

minimize the toxic effects induced by Hg and its related compounds, such as 

neurological damage and cardiovascular problems.[10]  
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So far, some authors have reported a species-specific Hg distribution in different 

organs of marine mammals,[11] and have pointed out the high affinity of Hg for 

biomolecules containing Se, and thus, suggested the formation of less toxic or inert 

iHg-Se compounds, such as HgSe particles, as a possible Hg detoxification 

mechanism.[12, 13] However, important knowledge gaps remain in our 

understanding of the metabolic pathways of Hg in marine mammals, thus 

necessitating the development of novel tools aiming at elucidating the complex 

biochemistry of Hg.  

The measurement of Hg isotope ratios is to be considered a promising approach to 

shed light onto the biogeochemical Hg cycle in nature.[14-16] Hg is one of the few 

elements that display not only mass-dependent (MDF), but also mass-independent 

fractionation (MIF). As the Δ199Hg/Δ201Hg ratio provides additional information, Hg 

isotopic analysis constitutes a multi-dimensional approach.[17, 18] MDF has been 

documented for most of the transformations that Hg undergoes in the environment, 

such as methylation, demethylation, volatilization, liquid-vapor evaporation and 

reduction.[19-23] MIF, however, has only been observed in photomediated reactions 

and is affecting the odd-numbered Hg isotopes only.[24, 25] A low extent of MIF 

has been reported on in literature for the even-numbered Hg isotopes (Δ200Hg ≠ 0) 

also, but always in atmospheric samples.[26-28] In aquatic biota, MIF affects the 

odd-numbered Hg isotopes as a result of the photoreduction of Hg(II) and/or the 

photodegradation of MeHg in the presence of dissolved organic matter (DOM). These 

two photoreduction mechanisms can be distinguished based on the Δ199Hg/Δ201Hg 

ratio.[24] Additionally, the extent of this odd-MIF depends on (i) the pH, (ii) the ionic 

strength, (iii) the concentration of total dissolved solids (TDS) of the water, (iv) the 

ratios Hg/DOM, MeHg/DOM, and the type of Hg-DOM binding ligand, and (v) most 

likely, also on the intensity and wavelength of sunlight.[25, 29-32] Several 

laboratory experiments and field studies have indicated that Hg trophic transfer 

and most of the biological processes (e.g., excretion, transport between organs, 

methylation, demethylation,...) can produce in vivo-MDF. However, these processes 

have been characterized by the absence of in vivo-MIF, therefore suggesting that the 

MIF signatures of aquatic animals located at the top of the trophic chain may reflect 

the MIF of the residual Hg present in the water prior to its incorporation into the 

food web.[24, 33-37] 
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In this work, different tissues and biological fluids (liver, kidney, muscle, blood and 

milk) of stranded long-finned pilot whales have been analyzed for their THg 

concentration, MeHg content and Hg isotope ratios, aiming at obtaining a more 

profound insight into the metabolic processes that Hg undergoes in these marine 

mammals, such as uptake, storage, distribution, excretion, methylation and 

demethylation. 

 

6.2. Materials and methods 

6.2.1. Sample collection and sample preparation 

On the 12th of September 2012, 31 long-finned pilot whales (Globicephala melas) 

stranded on a beach between Ansturther and Pittenween in Scotland, United 

Kingdom (Figure 6-1). From the complete pod, 10 whales were refloated, while 21 

whales died at the stranding site, where the autopsy of each animal was carried out 

and their organs were dissected and stored for research purposes.[9] In the context 

of this work, 73 samples comprising 21 samples of liver, 20 samples of kidney, 15 

samples of muscle, 15 samples of blood and 2 samples of milk, were provided by 

the University of Aberdeen (Scotland). The age of the whales was determined by 

Gajdosechova et al.[9] following the method described by Lockyer.[38] Table 6-1 

provides the overall information (age, gender and length) of the set of animals 

analyzed in this work. 
 

 

Figure 6-1. Mass stranding event of long-finned pilot whales.[39] 

All tissue samples, biological fluids and certified reference materials (see section 

6.2.2. for a list of the CRMs measured in this work) were acid-digested (0.2 – 1.2 g) 
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in pre-cleaned closed microwave vessels using a Milestone (Italy) Ethos One High-

Performance Microwave Digestion System using a mixture of 7 M HNO3 and 9.8 M 

H2O2 (see section 6.2.2. for a list of reagents). The microwave program is given in 

Table 6-2. After digestion, the samples were kept at 3 – 5 °C until analysis. In 

addition, HgSe particles were extracted and isolated from some liver tissues 

following an enzymatic digestion, as described in Gajdosechova et al.[13] 

Table 6-1. Information on the pod of whales analyzed in this work 

Whale ID Age (years) Gender Length (cm) 

1 2.5 F 291 

2 25.5 F 420 

3 17 F** 389 

4 25* F** 420 
5 20 F** 411 

6 1* F 192 

7 1* F 191 

8 1* F 194 

9 6* M 333 

10 4 F 291 
11 29 F** 445 

12 3 F 315 

13 9 F 360 

14 2.5 M 296 

15 35.5 F 462 
16 4 M 318 

17 2 M 287 

18 25 F 440 

19 15 M 444 

20 28 F 435 

21 16 M 538 

*Age estimated based on body length 
**Lactating mothers 
 

6.2.2. Reagents and standards 

High-purity water (resistivity > 18.2 MΩ cm) obtained from a Milli-Q Element water 

purification system (Millipore, France), pro-analysis 14 M HNO3 and 12 M HCl 

(ChemLab, Belgium), further purified by sub-boiling distillation; and 9.8 M H2O2 

(Fluka, Belgium), were used for digestion and subsequent dilution prior to ICP-MS 

measurements. 

For quantification purposes, single-element standard solutions of Hg and Rh (1 gL-1, 

Instrument solutions, The Netherlands) were appropriately diluted with 0.35 M 



 

Chapter 6 – Materials and methods 
 

 

171 
 

HNO3. KBrO3 (1 mM in 0.12 M HCl) was prepared freshly every day from KBrO3 (≥ 

99%, Sigma Aldrich, USA). 

For isotopic analysis, NIST SRM 3133 (isotopic reference material of Hg) and NIST 

SRM 997 (isotopic reference material of Tl) were dissolved in a mixture of 0.7 M 

HNO3 and 0.6 M HCl, and in 0.35 M HNO3, respectively. Both isotopic reference 

materials were used for instrumental mass discrimination correction purposes. 

Additionally, an in-house standard solution of Hg (Inorganic Ventures, The 

Netherlands, Lot: F2-HG02105) with known Hg isotopic composition [40] was 

diluted in the same acid mixture as the Hg isotopic reference material, and it was 

used throughout the work for instrument optimization and quality control of the 

measurements.  

A solution of 3% SnCl2.2H2O in 1.2 M HCl was prepared freshly every day from pro-

analysis SnCl2.2H2O (≥ 98 %, Sigma Aldrich, USA) and it was bubbled with purified 

Ar during approximately 30 minutes before its use, aiming at removing possible 

traces of Hg.  

For validation of the entire analytical procedure, three CRMs with a similar matrix 

composition as those of the samples of interest in this work, were used: BCR CRM 

464 (tuna fish), NRC-CNRC DORM-4 (fish protein) and TORT-3 (lobster 

hepatopancreas).  

 

Table 6-2. Microwave program used for microwave-assisted acid digestion in a 

Milestone Ethos One High-Performance Microwave Digestion System. 

Step Temperature (°C) Time (min) 

1 Room temperature  to 70 5 

2 70 to 90 7 

3 90 5 

4 90 to 120 7 

5 120 5 
6 120 to 150 7 

7 150 5 

  

6.2.3. Elemental analysis 

The total Hg (THg) concentration was determined using a ThermoScientific 

(Germany) Element XR single-collector sector-field ICP-MS instrument (SF-ICP-MS) 

working at low resolution mode. The instrument was equipped with a 100 µL min-1 
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concentric nebulizer mounted onto a cyclonic spray chamber. The quantification of 

Hg was carried out relying on external calibration (calibration curve based on 

standard solutions with Hg concentrations of  0, 0.5, 1, 2.5 and 5 µg L-1) using Rh 

(1 µg L-1) as an internal standard to correct for instrument instability, signal drift 

and possible matrix effects. 1 mM KBrO3 in 0.12 M HCl was added to all samples, 

standards and wash solutions (final concentration of 0.01mM of KBrO3) to avoid Hg 

volatilization and to reduce memory effects. 

Additionally, Hg speciation was performed at the University of Aberdeen using a HP-

6890 GC-unit (Agilent Technologies, Japan) coupled to an Agilent 7500 ICP-MS 

instrument (Agilent Technologies, Japan), as was previously described by 

Gajdosechova et al.[9] 

 

6.2.4. Hg isotopic analysis 

Hg isotopic analysis was carried out using a ThermoScientific (Germany) Neptune 

multi-collector ICP-MS (MC-ICP-MS) instrument equipped with nine Faraday cups. 

Hg was introduced as Hg(0) generated via the reduction of Hg2+ with 3% SnCl2.2H2O 

in 1.2 M HCl in an HGX-200 cold vapor & hydride generation unit (Teledyne Cetac 

Technologies, US). The Hg(0)-loaded carrier gas coming from the CVG unit was 

admixed in a ‘T’ piece with a wet aerosol of Tl (used for internal mass discrimination 

correction purposes) generated by using a 100 µL min-1 concentric nebulizer 

mounted onto a dual (cyclonic and Scott-type) spray chamber. A complete 

description of this set-up can be found in a previous manuscript from the same 

authors and in Chapter 3.[40] 

For instrumental mass discrimination correction, a combination of internal 

correction using the “Baxter approach” (with NIST SRM 997 Tl as internal standard) 

and external correction in a sample standard bracketing (SSB) approach (with NIST 

SRM 3133 Hg as external standard) was relied upon.[40, 41]  

An in-house standard solution of Hg and the CRMs selected in this work were 

measured in-between the samples (approximately every five samples) for quality  

control of the measurements and validation of the entire analytical procedure (i.e., 

MW acid digestion, storage, dilution and subsequent MC-ICP-MS measurement). 
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The Hg concentration and acid content of all samples, standards and CRMs were 

matched within ± 10 % as to avoid inaccurate results. Moreover, no blank 

subtraction was applied because the effect of the blank was demonstrated to be 

negligible within the precision attainable in this work. 

The Hg isotopic composition is reported in delta (δxxxHg) and capital delta (ΔxxxHg) 

notation – in per mil units (‰) – for mass-dependent (MDF) and mass-independent 

(MIF) fractionation, respectively.[42] 

 

6.3. Results and discussion 

6.3.1. Hg and MeHg quantification in long-finned pilot whales 

THg concentrations and MeHg fractions (% MeHg) for all tissue samples analyzed in 

this work are provided in Table 6-3 (liver), 6-4 (kidney), and 6-5 (muscle). Overall, 

the highest Hg accumulation was found in the liver, with THg concentrations 

ranging between 0.98 to 608 mg kg-1. THg concentrations of kidney and muscle 

tissues ranged from 0.42 to 21.8 mg kg-1 and from 0.50 to 4.72 mg kg-1, 

respectively. A positive correlation was observed between the age of long-finned pilot 

whales and the THg concentrations in liver, kidney, and muscle (Spearman’s 

correlation r = 0.984, 0.947, 0.953, respectively), thus suggesting that Hg is 

accumulated in these tissues over the lifespan of the whales. The THg concentration 

trend observed for the different tissues of long-finned pilot whales (THgLiver > 

THgKidney > THgMuscle) was found to be in good agreement with previous data reported 

on in literature for marine mammal studies.[7, 9, 43]  

MeHg speciation indicates that in muscle tissue, Hg is predominantly present as 

MeHg i.e. the most toxic Hg species, with values ranging from 65.3 to 100 %. 

However, in liver and kidney, the majority of the Hg is present in its inorganic form 

(iHg), with % MeHg values ranging from 1.0 to 32.1 % and from 4.7 to 46.5 %, 

respectively. Analysis of the stomach content of the same long-finned pilot whales 

previously showed that their predominant prey species are cephalopods, and that 

Hg is mainly present as MeHg in these species.[9] Based on the assumption that 

the Hg intake by marine mammals occurs mainly from the diet, MeHg is expected to 

be the major Hg species in the different tissues and biological fluids of long-finned 

pilot whales. However, as indicated above, the major Hg species in liver and kidney 
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is iHg, thus suggesting that the MeHg  ingested via the diet must be demethylated 

in vivo and converted into the less toxic form iHg present in these organs, while the 

remaining MeHg is bioaccumulated in the muscle tissue, which acts as a reservoir 

of MeHg.  

It also needs to be noted that for all samples studied (i.e., liver, kidney and muscle), 

THg concentration values increase as a function of the age, while the MeHg fraction 

decreases (see Figure 6-2). In other words, the higher the THg concentrations, the 

higher the extent of demethylation. This trend was found to be more significant for 

the liver compared to kidney and muscle tissues, suggesting that liver could be a 

key organ for MeHg demethylation. In a recent study of in vivo Hg demethylation in 

marine fish,[44] the authors reported that the intestinal tract seems to be the major 

site for demethylation when the fish is directly exposed to MeHg, while during the 

depuration stage (i.e. no exposure to MeHg), the liver plays the major role.   

An in-depth evaluation of the concentrations of the Hg species in the liver shows a 

clearly more pronounced decrease of the MeHg fraction (% MeHg) at an early age, 

especially for individuals ranging from 1 to 5 years old. These results may be 

related with differences in diet and Hg metabolism between juvenile and adult long-

fined pilot whales. The Hg intake via the diet in juvenile marine mammals is 

expected to be strongly affected by lactation i.e., it depends on the mother's milk. In 

a previous study of bottlenose dolphins (Tursiops truncates), it was found that Hg 

concentrations in mother milk are higher than those in the prey fish of adult 

dolphins.[45] In addition, high MeHg concentrations have been reported for breast 

milk from lactating women exposed to MeHg via the diet,[46-48] and for rats and 

mice (Holtzman rat and Balb/c CUM mice) [49, 50] and dolphins (Stenella 

coeruleoalba and Sotalia guianensis) [51, 52] that were exposed to high MeHg 

amounts via the placenta. Thus, the high MeHg fraction shown in long-fined pilot 

whales at young age could most likely be attributed to MeHg intake via mother milk 

and/or in utero MeHg exposure.  

However, the development of detoxification mechanisms developed in an attempt to 

mitigate the toxic effects of Hg cannot be discarded as a potential explanation for 

the fast decrease in the MeHg fraction, i.e., in comparison with the increase in THg 

concentrations, as a function of age.  
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Figure 6-2. THg concentration (red) and % MeHg (blue) as a function of age for liver 

(A), kidney (B), and muscle (C) tissues of long-finned pilot whales. 
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It is well known that Se has a protective effect against Hg toxicity owing to the Hg-

Se antagonism, and thus, this element could play an important role in the MeHg 

demethylation processes.[53] Sakamoto et al.[54] reported a strong positive 

correlation between Hg and Se concentrations in muscle tissues of five different 

species of toothed whales. Moreover, this observation is in good agreement with the 

results obtained by Gajdosechova et al. based on elemental analysis of the same 

samples evaluated in this work,[9] for which also a strong positive correlation was 

found between Hg and Se in liver, kidney and muscle tissues. This correlation 

suggests that Se-mediated MeHg demethylation processes might take place in the 

liver, kidney and muscle of long-finned pilot whales. Additionally, in the work of 

Gajdosechova et al.,[13] an important fraction of the liver Hg was found to be 

present in the form of HgSe particles (tienmannite). The formation of these particles 

has been suggested as a potential Hg detoxification mechanism in marine 

mammals. Also the formation of HgS (cinnabar) has been proposed, but the affinity 

of Se for Hg is known to be higher than that of S.[55] The formation of the 

crystalline HgSe is mediated by Hg-metallothionein (Hg-MT) interaction and/or by 

the binding of Hg–Se complexes to high-molecular-weight substances.[56, 57] 

These mechanisms have been mainly observed in the liver of marine mammals, 

thus suggesting a key role of this organ in Se-mediated Hg detoxification. However, 

HgSe particles have also been found in other tissues, such as brain, kidney, lung, 

muscle, pancreas, pituitary and spleen.[13, 55, 58] Therefore, the so-called Hg-Se 

antagonistic effect might be responsible for the decrease of the MeHg fraction as a 

function of age, and for the increase in THg concentrations in liver, kidney and 

muscle tissues as a result of the formation of HgSe particles. 

It needs to be pointed out, though, that despite of the high level of Hg accumulation 

in liver tissues, marine mammals typically do not show evidence of toxic effects. We 

can therefore hypothesize that HgSe particles may be considered as inert Hg 

compounds. However, the increased presence of micro- and nanoparticles could 

induce organ malfunction owing to their ability to traverse cell boundaries, while a 

high MeHg dietary intake has a direct impact on the biosynthesis of Se-proteins, 

which compromises other metabolic processes.[13] Thus, the formation of HgSe 

particles needs to be rather regarded as a short-term solution to high Hg, and 

especially MeHg, exposure.  
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6.3.2. Hg isotopic analysis in long-finned pilot whales 

The results of Hg isotopic analysis (δ199,200,201,202Hg and Δ199,201Hg) of different 

tissues and biological fluids of long-finned pilot whales are displayed in Table 6-3 

(liver), 6-4 (kidney), 6-5 (muscle), and 6-6 (blood and milk). In addition, Figure 6-3 

shows the three-isotope plots of δ199Hg (A), δ200Hg (B) and δ201Hg (C) vs δ202Hg for all 

samples analyzed in this work. Overall, it needs to be stressed that the δ200Hg vs 

δ202Hg data fall along the theoretical mass-dependent fractionation (MDF) line, 

while the data for the odd-numbered Hg isotopes (199Hg and 201Hg) are clearly also 

influenced by additional mass-independent fractionation (MIF) (vide infra).  

From the complete data set of MDF-Hg data (see Figure 6-4), it is clear that 

negative δ202Hg values are found for liver (-1.23 to -0.15 ‰) and kidney (-1.10 to -

0.29 ‰) tissues, and positive ones for muscle tissue (0.20 to 1.31 ‰) and for 

biological fluids, i.e. blood (-0.18 to 1.2 ‰) and milk (0.12 to 0.91 ‰). Broadly 

speaking, δ202Hg values are similar for liver and kidney (lighter Hg isotopic 

compositions) and for muscle, blood and milk (heavier Hg isotopic compositions). 

These differences can be attributed to the species-specificity of the Hg isotopic 

signatures i.e., different Hg isotopic compositions of MeHg and iHg. As indicated in 

the previous section, liver and kidney tissues are characterized by a mixture of both 

Hg species (predominantly iHg), while a larger fraction of the Hg present in muscle 

and biological fluids is in the form of MeHg. The differences in Hg speciation and 

the corresponding variations in the isotopic composition of Hg for different tissues 

and biological fluids of long finned pilot whales may be the result of in vivo 

demethylation of organic MeHg and the corresponding MDF of Hg accompanying 

this process. It has been documented that abiotic and biotic processes preferentially 

demethylate MeHg compounds containing the lighter isotopes of Hg, resulting in 

higher δ202Hg values in the remaining MeHg fraction and in lower δ202Hg values in 

the iHg produced.[25, 59, 60] Based on the assumption that in vivo demethylation 

of ingested MeHg may induce similar MDF in long-finned pilot whales, the results 

obtained in this work for MDF-Hg in muscle (mainly MeHg), and in liver and kidney 

(mainly iHg), seem to be in good agreement with the MDF observed for Hg in abiotic 

and biotic processes.  
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Figure 6-3. Three-isotope plots: δ199Hg (A), δ200Hg (B) and δ201Hg (C) vs δ202Hg for all 

the samples analyzed in this work. 
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Figure 6-4. Overview of the MDF-Hg isotopic signatures (δ202Hg) of different tissues 

of long-finned pilot whales as a function of age. 

 

However, although the aforementioned behavior explains the Hg isotopic signatures 

of different tissues and biological fluids of long-finned pilot whales in general terms, 

some deviations are found when looking into more detail, thus providing additional 

information regarding specific Hg metabolic processes. Figure 6-5 shows the 

results of Hg isotopic analysis (δ202Hg) as a function of age for samples from female 

and male individuals (no gender-based differences were observed within the entire 

study). 

Muscle tissue is characterized by a high MeHg fraction, and, as a consequence (vide 

ante), by a Hg isotopic signature generally enriched in the heavier Hg isotopes (high 

δ202Hg values). It can be seen (Figure 6-5A) that for muscle tissues of juvenile 

whales i.e., ≤ 6 years old, the relation between δ202Hg values and the % MeHg is not 

clear. This could be related with the fact that the ages of younger individuals are 

subjected to a large uncertainty owing to the method used for estimation,[9] which 

could explain the random behavior at low ages. For adult whales ≥ 17 years old, 

W6-B  Blood from Liver

W5-Milk  Contaminated with blood

0 3 6 9 12 15 18 21 24 27 30 33 36 39

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 

 

 Liver

 Kidney

 Muscle

 Blood 

 Milk


2
0
2
H

g
 (

‰
)

Age (years)



 

Chapter 6 –Results and discussion 
 

 

183 
 

however, both δ202Hg and % of MeHg decrease systematically as a function of the 

individual’s age. This pattern is in agreement with the hypothesis that the lighter 

Hg isotopes are preferentially demethylated, i.e., the remaining MeHg is enriched in 

the heavier Hg isotopes, thus resulting in lower δ202Hg values accompanying the 

increase of the iHg fraction as a function of age. It needs to be noted that for the 

oldest whale for which muscle tissue was available (29 years old), δ202Hg is lowered 

by ~0.8‰ regarding to whale individuals with ages ≤17 years old, while the MeHg 

fraction decreased from ~90 to 65% MeHg. Therefore, the decrease in the MeHg 

fraction and in the δ202Hg value for muscle tissues of adult whales from certain ages 

may correspond with metabolic changes in the whale body. This may be attributed 

to the response towards a high Hg accumulation, thus increasing the extent of 

MeHg demethylation aiming to reduce the possible toxic effects of organic MeHg via 

conversion into less toxic iHg species.  

In contrast to muscle, Hg in liver tissues is mainly present as iHg. In Figure 6-5B, 

it can be seen that at low ages (≤ 6 years old), both δ202Hg and % of MeHg decrease 

following the same pattern, which is in agreement with the hypothesis that a 

decrease in the MeHg fraction is generally accompanied by an enrichment of the iHg 

fraction in the lighter Hg isotopes i.e., lower δ202Hg values. Interestingly, for whale 

individuals above 5 – 6 years old, an opposite trend between δ202Hg and % MeHg as 

a function of age is observed for liver tissue of both female and male long finned 

pilot whales. It is noteworthy that an increase in δ202Hg of ~1‰ was found between 

5 – 6 and 35.5 years old, while the MeHg fraction still decreases as a function of age 

(from 32 to 1% approximately). To the best of the author’s knowledge, this behavior 

has not been reported on in literature to date and cannot be explained by the 

preferential demethylation of lighter Hg isotopes. Thus, we hypothesize that the 

enrichment of the iHg fraction in the heavier Hg isotopes (higher δ202Hg values) 

must be related with the key role of the liver in the biochemistry of Hg within the 

whale body. Figure 6-6 shows the δ202Hg values as a function of the THg 

concentration (A) and of the MeHg fraction (B). Clearly, both figures point to 

different Hg sources and metabolic pathways for juvenile and adult whales, 

respectively, corresponding with an increase in THg concentration and with a 

decrease in the MeHg fraction for liver tissues.  
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Figure 6-5. δ202Hg (red – left y-axis) and MeHg fraction (% MeHg, blue – right y-axis) 

obtained for muscle (A), liver (B) and kidney (C) tissues as a function of age. 
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As was hypothesized in section 6.3.1, the high MeHg fraction in the liver of young 

long-finned pilot whales can be tentatively explained by a higher MeHg intake 

coming from the diet (ingestion of mother’s milk during lactation) and/or from the 

placenta (during gestation). It needs to be noted that MeHg from the mother can be 

easily transported into the placenta via the blood stream, and that the Hg isotopic 

composition in the liver and blood of adult whales is characterized by higher δ202Hg 

values. It needs to be stressed that constant and high δ202Hg values (~1‰) were 

observed for all blood samples, except in the case of blood coming from the liver 

(W6) that was characterized by having approximately the same Hg isotopic 

signature as the corresponding liver tissue from the same individual. In order to 

demonstrate the influence of mother’s milk on the Hg speciation and isotopic 

composition of young whales during lactation, milk samples from lactating whales 

were collected and analyzed for their Hg isotopic composition (see Table 6-6). 

Although it needs to be pointed out that the collection of milk during the autopsies 

of stranded long-finned pilot whales was found to be hampered by contamination 

issues with blood, two milk samples were finally obtained. One of the samples 

(whale ID 5) was found to be affected by blood contamination, which was reflected 

in its Hg isotopic composition i.e., approximately the same Hg isotopic compositions 

were established for milk and blood (see Figure 6-4). For the other sample (whale 

ID 11), however, a clean sample was obtained and subsequently characterized for 

its Hg isotopic composition, resulting in a δ202Hg value of 0.12 ± 0.03‰. This Hg 

isotopic signature was found to be significantly lower than that of the blood sample 

from the same whale, and similar to that of muscle tissue. Additionally, this Hg 

isotopic composition was found to be relatively close to those characteristic for the 

liver tissues of the youngest whales. 
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Therefore, based on these results, it seems reasonable to think that during the first 

years of life, the isotopic composition of Hg in the liver may be affected by a strong 

contribution of MeHg from the mother. The mixing of two sources of MeHg,  such as 

the direct intake via the placenta and via the mother’s milk, may be related with the 

anomalously higher δ202Hg in liver tissues of juvenile whales. MeHg from the 

placenta is mainly related with the mother’s blood i.e., high δ202Hg (~1‰), while the 

influence of MeHg from milk was demonstrated to be characterized by lower δ202Hg 

values (~0.10‰). The influence of MeHg from the placenta on the isotopic 

composition of Hg in the liver of young whales should be more relevant in the first 

period of their life and it should be progressively replaced by MeHg intake via 

mother’s milk. Together with the slow introduction of solid food in the diet, this may 

explain the trend observed for δ202Hg values in the liver tissues of juvenile long-

finned pilot whales.   

However, as indicated above, a clear change in the trend observed for juvenile 

whales was found at an age of approximately 6 years old. As of that age, the 

decrease in the MeHg fraction is accompanied by a progressive enrichment in the 

heavier isotopes. This intriguing trend cannot be explained by the aforementioned 

MeHg demethylation documented for biotic and abiotic processes; therefore, other 

mechanisms must be developed after certain ages, which are generally 

characterized by high Hg accumulation (see Figure 6-6). The development of Hg 

detoxification pathways aiming to avoid Hg poisoning can be the most likely 

explanation for this different behavior and for the Hg isotope fractionation towards 

higher δ202Hg values. In previous works based on different species, including fish 

and humans, it was observed that only a fraction of the iHg generated by MeHg 

demethylation processes accumulates in liver, while another fraction is excreted via 

the urine or feces.[61, 62] We suggest that excretion processes, characterized by 

preferential removal of lighter Hg isotopes, thus leading to higher δ202Hg values in 

the remaining iHg fraction in liver tissues of long-finned pilot whales, might be the 

responsible for the trend observed in adult whales.[63, 64] It needs to be noted that 

excretion could be used as a Hg detoxification mechanism by whales with a high Hg 

accumulation. The development of this mechanism could be related with the 

increase in Hg excretion rate as a function of THg concentrations, and hence, the 

whale’s age.  
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Figure 6-6. δ202Hg vs THg (A) and δ202Hg vs % MeHg (B) for liver tissues of long-

finned pilot whales. 
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species. However, the formation process of HgSe particles in liver tissues of marine 

mammals still remains poorly understood and important knowledge gaps, including 

the accompanying isotope fractionation, exist. However, based on the δ202Hg results 

obtained in this work for liver tissue of adult long-finned pilot whales, we 

hypothesize that the formation of HgSe particles leads to higher δ202Hg values in the 

accumulated particles, while the remaining iHg (enriched in the lighter Hg isotopes) 

is partially excreted. Therefore, the net effect of the overall process would be a liver 

tissue Hg isotopic composition enriched in the heavier Hg isotopes, owing to the 

accumulation of HgSe particles over the lifespan of these marine mammals. In order 

to further proof this hypothesis, HgSe particles were isolated from liver tissue of 5 

long-finned pilot whales and analyzed for their Hg isotopic composition. The results 

obtained are shown in Table 6.7. Figure 6.7 allows a comparison of the δ202Hg 

values obtained for the HgSe particles and those obtained for bulk liver tissue from 

the same animal. It can be seen that in all cases, an enrichment in the heavier Hg 

isotopes is observed for the HgSe particles, thus demonstrating that the formation 

of HgSe particles as a MeHg detoxification mechanism in the liver of long-fined pilot 

whales can most likely be responsible for the trend observed for δ202Hg in liver 

tissue as a function of age. 

 

Figure 6-7. δ202Hg vs age for five liver tissue and the corresponding isolated HgSe 

particles for 5 pilot whales.  

0 3 6 9 12 15 18 21 24 27 30

-1.0

-0.8

-0.6

-0.4

-0.2

0.0  
202

Hg liver tissue

 
202

Hg NPs

 


2

0
2
H

g
(‰

)

Age (years)



Unraveling Hg exposure of long-finned pilot whales (Globicephala melas) via isotopic 

analysis with multi-collector ICP-mass spectrometry 
 

 

190 
 

 

Table 6.7. Hg isotope ratio date obtained for the isolated HgSe particles extracted 

from liver tissues. 

Whale 
ID 

Age 
(years) 

δ199Hg 
(‰) 

δ200Hg 
(‰) 

δ201Hg 
(‰) 

δ202Hg 
(‰) 

Δ199Hg 
(‰) 

Δ201Hg 
(‰) 

14 2.5 0.68 ± 0.08 -0.38 ± 0.04 0.07 ± 0.03 -0.85 ± 0.05 0.89 ± 0.08 0.70 ± 0.02 

13 9 0.75 ± 0.08 -0.32 ± 0.05 0.20 ± 0.07 -0.74 ± 0.02 0.94 ± 0.07 0.76 ±0.05 

3 17 0.77 ± 0.10 -0.18 ± 0.07 0.38 ± 0.08 -0.43 ± 0.11 0.88 ± 0.08 0.71 ± 0.05 

2 25.5 0.87 ± 0.06 -0.05 ± 0.04 0.71 ± 0.03 -0.14 ± 0.09 0.91 ± 0.07  0.81 ± 0.08 

11 29 0.84 ± 0.06 -0.01 ± 0.06 0.70 ± 0.03 -0.09 ± 0.06 0.86 ± 0.06 0.76 ± 0.07 

 

Based on the hypothesis that Hg is detoxified via excretion processes (e.g., urine) 

and/or via the storage as HgSe particles in the liver, the kidney may also play an 

important role in the Hg metabolism within the whale body. Figure 6-5C shows the 

Hg isotopic composition and MeHg fraction as a function of age. Interestingly, the 

clear differences in tendency shown for δ202Hg in liver between juvenile and adult 

whales were not found in the case of δ202Hg in kidney, suggesting that liver indeed 

plays a major role compared to other organs in the Hg metabolism of marine 

mammals. However, it is important to note that until 17 years old, the variations of 

δ202Hg values in kidney were found to be accompanied by the corresponding 

changes in the MeHg fractions i.e., both δ202Hg and % MeHg changed in the same 

direction. These variations in the isotopic composition can thus be explained by 

differences in the Hg speciation, as indicated above. After 17 years old, however, an 

increase in δ202Hg values corresponded with a decrease in % MeHg and vice versa. 

As indicated in the case of liver, the development of Hg detoxification mechanisms 

may explain this different behavior as a function of age and THg concentration. 

Nevertheless, the “turning point” in the case of kidney seems to appear at a higher 

age in comparison with the liver, which could be tentatively explained by a higher 

rate of Hg elimination via excretion mechanisms at adult ages. Self-evidently, 

further investigation is required in order to elucidate the exact role of every 

organ/tissue in the development of Hg detoxification mechanisms. However, the use 

of δ202Hg values in different tissues of long-finned pilot whales shown in this work 

has shed some light onto the complex Hg metabolic routes of Hg in marine 

mammals.  
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MIF of Hg can provide additional information aiding the identification of the 

different transformations that Hg undergoes in nature. The three-isotope plots 

(δ199Hg (A), δ200Hg (B) and δ201Hg (C) vs δ202Hg) for all the samples analyzed in this 

work (Figure 6-3) showed that only the odd-numbered Hg isotopes (199Hg and 201Hg) 

were affected by MIF. This odd-MIF has been tentatively explained in terms of 

nuclear volume effects (NVE) and magnetic isotope effects (MIE).[65, 66] The NVE 

has been reported to accompany Hg0 liquid-vapor evaporation, Hg2+ abiotic 

reduction in the absence of light and distribution of Hg between dissolved Hg2+ and 

thiol-bound Hg,[21, 25, 67] while the MIE is the predominant effect accompanying 

reaction mechanisms involving radicals, such as photochemical reactions.[17, 68] 

Δ199Hg and Δ201Hg values obtained for the different tissues and biological fluids from 

the pod of long-finned pilot whales studied were found to be very constant, 

independent of the sample type (see Figure 6-8), with average values of 1.06 ± 0.06 

and 0.88 ± 0.05 ‰, respectively. 

 

Figure 6-8. Δ199Hg vs δ202Hg values obtained for all the samples analyzed in this 

work. 
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These values suggest that, after Hg intake, there is not in vivo MIF accompanying 

the different Hg metabolic processes within the whale body, such as methylation, 

demethylation, transport and excretion. The absence of in vivo MIF is in good 

agreement with the previous literature for aquatic ecosystems. In previous works, 

photochemical reactions were identified as the only processes inducing MIF,[24, 33] 

and it was concluded that MIF does not occur during trophic transfer in fish, 

marine mammals and humans.[36, 37, 61, 64, 69, 70]  

In addition, laboratory experiments carried out by Bergquist and Blum [24] 

indicated that photochemical reactions involving Hg2+ and MeHg can be 

distinguished based on the slope of the best-fitting straight line through the data 

points obtained by plotting Δ199Hg vs Δ201Hg. The values thus obtained correspond 

to 1.0 and 1.36 for the photoreduction of Hg2+ and the photodegradation of MeHg in 

the presence of dissolved organic carbon (DOC), respectively. Several works based 

on actual fish samples have shown that a slight difference exists between the slopes 

obtained for samples from fresh and marine waters (~1.3 and 1.2, respectively);[71-

73] these differences have been mainly attributed to the effect of water conditions, 

such as the amount of DOC.[25] However, in both cases, the values obtained are 

closer to that of the photodegradation of MeHg. This indicates that the main 

contributor to the Δ199Hg and Δ201Hg values in fish samples is the intake and 

further bioaccumulation of the remaining MeHg after photodegradation. The 

representation of the Δ199Hg vs Δ201Hg values (see Figure 6-9) obtained for the 

different tissues and biological fluids of long-finned pilot whales of this study, 

however, could not be considered as a representative slope owing to the small range 

of Δ199,201Hg values covered by the complete data set. Therefore, the Δ199Hg/Δ201Hg 

ratio has been calculated point by point and an average value of 1.21 ± 0.06 was 

obtained. This ratio is in agreement with previous works based on marine fish, 

marine mammals, and humans; and demonstrates that the main factor 

contributing to the MIF-Hg in long-finned pilot whales is due to the remaining MeHg 

after photodegradation prior to its incorporation into the base of the food web.[24, 

61] 
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Figure 6-9. Δ199Hg vs Δ201Hg values obtained for all the samples analyzed in this 

work. 
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Δ199Hg values obtained for the long-finned pilot whales of this work are comparable 

with those of deep-sea fish (>400 m) from the North Pacific Ocean, as reported in 

the aforementioned study (Figure 6-10 has been adapted from Blum et al.).[74] 

This is in agreement with the feeding habits of pilot whales that can even reach 

depths of 800 m during short dives. Therefore, the magnitude of the Δ199Hg and 

Δ201Hg values in long-finned pilot whales may also serve as an indicator to provide 
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insight about the feeding habits of marine mammals, which could be of high 

interest for further biological studies.[75, 76]   

 

Figure 6-10. ∆199Hg values (‰) obtained for pilot whales (black arrow) in this 

study, and nine species of marine fish that feed at different depths in the central 

North Pacific Ocean (adapted from Blum et al. 2013).[74] 

 

6.4. Conclusion 

In this work, THg quantification, MeHg speciation analysis, and Hg isotopic analysis 

have been carried out, aiming at obtaining a more profound insight into the Hg 

metabolism and possible detoxification mechanisms in long-finned pilot whales. It 

was found that Hg species accumulated differently and, to a different extent, as a 

function of (i) age and/or (ii) body compartment. Although the Hg isotopic 

signatures were found to be directly related with the Hg speciation (MeHg and iHg 

fractions), important deviations from a more general behavior were observed, and 

tentatively related to the development of Hg detoxification pathways. Interestingly, 

δ202Hg values in liver of juvenile whales showed a fast decrease towards lighter Hg 

isotopic signatures during the first years, and it was possible to establish a 
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hypothetical link between this trend and the MeHg intake via the placenta and/or 

mother’s milk. Most likely, a reversal in the trend observed for adult whales 

indicated the development of Hg detoxification mechanisms in order to avoid Hg 

poisoning. Hg excretion and the formation of Hg-Se particles in key organs, such as 

liver and kidney, have been proposed as hypotheses for explaining the 

aforementioned relation between δ202Hg values and MeHg fractions. In addition, the 

Δ199Hg and Δ201Hg values were found to be constant between organs, suggesting the 

absence of in vivo MIF. Therefore, these Δ199Hg and Δ201Hg values could be suitable 

for the identification of the feeding habits of marine mammals. 
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General conclusions  

This PhD dissertation focuses on Hg isotopic analysis as a powerful tool for 

shedding light onto the complex biogeochemical Hg cycle. For this purpose, an 

accurate and precise method for the high-precision isotopic analysis of Hg in 

different sample matrices using cold vapor generation-inductively coupled plasma-

mass spectrometry (CVG-MC-ICP-MS) has been successfully developed, validated 

and subsequently applied to various real-life study cases. In this context, Hg 

isotopic analysis has been used for studying the sources and fate of Hg in the 

environment and for unraveling the metabolic pathways of Hg in different marine 

species from different levels along the trophic chain. Aquatic ecosystems are 

considered of the utmost relevance, as they are the main site of MeHg production, 

bioaccumulation and biomagnification. In addition, fish and seafood consumption 

is the major source of human MeHg exposure.  

The first chapter of this PhD dissertation describes the importance of Hg in the 

environment. Due to its unique physical and chemical properties, Hg is considered 

as one of the most important global pollutants and its biogeochemical cycle is 

complex. Hg is a highly toxic heavy metal and exposure to it can produce harmful 

effects to wildlife and humans. The main health implications related with Hg are 

neurological problems derived to MeHg exposure, the most toxic Hg species, 

although also other health problems have been described. In addition, this chapter 

also reviews the most important processes inducing Hg isotope fractionation. Hg is 

one of the few elements that is affected by both mass-dependent and mass-

independent fractionation (MDF and MIF, respectively), and these fractionation 

processes accompany different processes, i.e. physical processes, methylation, 

reduction of Hg(II) and MeHg demethylation.  

In Chapter 2, the basic principles of inductively coupled plasma-mass spectrometry 

(ICP-MS) are described. In addition, the specific instrumentation used for Hg 

isotopic analysis is covered into more detail. Multi-collector ICP-MS (MC-ICP-MS) is 

the technique of choice for isotopic analysis of Hg owing to the high precision 

required to see the small variations in the isotopic composition of Hg. The use of 

cold vapor generation (CVG) as a means of sample introduction into MC-ICP-MS is 

also reviewed. Hg introduction via CVG improves the sensitivity and avoids and/or 

minimizes matrix effects owing to the quantitative an selective reduction of Hg2+ by 
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SnCl2. As a result of the separation of Hg from the concomitant matrix in the CVG 

unit, the usual chromatographic isolation of the analyte element prior to high-

precision MC-ICP-MS analysis can be avoided. This chapter also comprises a 

description of different mass discrimination correction approaches, focusing 

especially on that finally used throughout this work. 

Chapter 3 is focused on an in-depth evaluation of the accuracy and precision 

attainable in Hg isotopic analysis via pneumatic nebulization (PN) and cold vapor 

generation (CVG) MC-ICP-MS. This work was carried out in the context of the SIB-

09 “Elements” project, funded by the EMRP (European Metrology Research 

Programme of EURAMET) with the aim to provide National Metrology Institutes 

(NMIs) with sufficient information as to which approach to use in the 

characterization of future Hg isotopic reference materials. Therefore, the capabilities 

and limitations of these two different introduction systems, and the effect of (i) 

instrument settings and acquisition parameters, (ii) concentrations of Hg and Tl, 

and (iii) mass bias correction approaches on the accuracy and precision of Hg 

isotope ratio results were evaluated. It was shown that the use of CVG increase the 

sensitivity approximately 20-fold compared to PN, while it also removes the effect of 

the matrix composition on the extent of instrumental mass discrimination. In 

contrast to PN, CVG enables Hg isotopic analysis of samples with relatively low Hg 

concentration and without the necessity of prior chromatographic isolation of the 

analyte from the sample matrix. No significant differences in long-term precision (≤ 

0.006% RSD, N = 250, 18 months) were found between both introduction systems 

at similar signal intensities (approximately 1.2 V for 202Hg). In addition, 

instrumental mass discrimination was adequately corrected for by either external 

correction or a combination of internal and external correction, although the 

precision was observed to be slightly better with the latter. Therefore, the use of 

CVG-MC-ICP-MS with a combination of internal (Baxter approach) and external 

(sample standard bracketing – SSB – approach) mass discrimination correction was 

validated via comparison of the Hg isotope ratio results obtained for various 

reference materials with values reported on in literature. The suitability of the 

method developed in this work was demonstrated and subsequently, it was 

deployed for real-life applications. 
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The next chapters of this PhD dissertation describe real-life applications, relying on 

the method for accurate and precise isotopic analysis of Hg, as described in Chapter 

3.  

In Chapter 4, the assessment of the potential introduction of metallic Hg pollution 

released from a WWII submarine wreck (U-864), which transported 67 tons of Hg in 

its keel when it was torpedoed and sunk, into a marine food chain was carried out. 

Hg salvaged from the U-864 submarine, sediments from the wreck location, and 

Cancer pagurus tissues (brown and claw meat) from the wreck location, and 4 

nautic miles north and 4 nautic miles south of that location, were analyzed for their 

THg and MeHg concentrations, as well as for their Hg isotopic composition. The 

sediment pollution could be unequivocally linked with the metallic Hg transported 

in the submarine via the comparison of their Hg isotopic signatures. For the crab 

tissues, only the δ202Hg values obtained for the brown meat (i.e., mainly the 

hepatopancreas and gonads) of the individuals collected at the wreck location were 

shifted towards the isotopic signature of the sediments, and thus, the submarine 

Hg, suggesting that these individuals were affected by the metallic Hg released from 

the U-864 submarine. However, such differences were not found for the claw meat 

(i.e., muscle). Therefore, the isotope ratio results suggest direct ingestion of metallic 

Hg by Cancer pagurus, but do not offer any proof for methylation of the submarine 

Hg and/or its further introduction into the marine food chain. 

In Chapter 5, Brosme brosme (tusk fish) tissues from eight locations at the 

Norwegian coast, including fjords, were analyzed to identify the sources and fate of 

Hg in these marine ecosystems and to assess the suitability of using tusk in future 

monitoring programs. Tusks were also collected at the U-864 location, reported on 

in Chapter 4, and the results obtained confirmed the aforementioned hypothesis 

indicating that, so far, the metallic Hg from the submarine has not entered the food 

chain. The comparison of all locations studied in this work showed clear differences 

for THg concentrations and % MeHg values between different tissues and locations. 

At five of the eight locations, the Hg concentration in muscle tissue, i.e., the edible 

part, exceeded the maximum allowable level of 0.5 mg Kg-1 w.w.. δ202Hg values in 

both tissue types indicated that Hg speciation affects the bulk Hg isotopic 

signatures. Tusk liver seems to be more sensitive to immediate changes and to 

anthropogenic inorganic Hg, while the muscle rather reflects the Hg accumulated 

over a longer period of exposure. The δ202Hg values also enabled different sources 
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and exposure pathways to be distinguished (e.g., differences between fjords and 

locations from the North Sea and the Norwegian Sea). A clear correlation was found 

between δ202Hgmuscle - δ202Hgliver with the % MeHg in liver for tusks from the coastal 

waters, but not for the fjords, thus suggesting an important source of 

anthropogenic iHg. No significant differences in Δ199Hg values were found between 

both tissue types, indicating the absence of in vivo MIF. Δ199Hg values also 

confirmed the existence of different groups depending on the location, with the 

lowest value in the most polluted area. This work demonstrated the suitability of 

using tusk as fish species in future Hg monitoring programs, while the added value 

of separated analysis of muscle and liver tissue was demonstrated.  

Chapter 6 describes the Hg isotopic analysis of different tissues and biological fluids 

of long-finned pilot whales (Globicephala melas), a marine mammal located at the 

top of a marine trophic chain. It has been shown that, although these marine 

mammals accumulate high amounts of Hg over their lifespan, they do not show 

toxic effects, suggesting efficient Hg detoxification pathways, which is of high 

scientific interest. A pod of these whales stranded at a Scotland beach, and 

although a fraction could be refloated, 21 animals died on the stranding site. From 

the latter whales, different tissues (liver, kidney and muscle) and biological fluids 

(blood and milk) were analyzed for their THg concentration, MeHg speciation and 

Hg isotopic composition. The results obtained showed that Hg species accumulated 

differently and, to a different extent, as a function of age and/or body compartment. 

The Hg isotopic composition was linked with Hg speciation (levels of iHg and MeHg), 

although important deviations from the general behavior were observed. These 

differences were tentatively related with the occurrence of Hg detoxification 

pathways. The most striking trend was observed for liver tissue. δ202Hg values in 

the livers of juvenile whales showed a fast decrease towards lighter Hg isotopic 

signatures during the first years, while a reversal in the trend was observed for 

adult whales, suggesting the development of new and/or different Hg detoxification 

mechanisms for avoiding Hg poisoning due to the bioaccumulation of Hg over the 

years. The hypothesis suggested for explaining this observation was the 

fractionation occurring during Hg excretion and/or the formation of Hg-Se particles 

in key organs (such as liver and kidney). The absence of in vivo MIF enables the use 

of Δ199Hg an Δ201Hg values for the identification of the feeding habits of marine 

mammals. This study demonstrated that the combination of elemental, speciation 
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and isotopic analysis of Hg can be used to obtain a more profound insight into the 

Hg metabolism and possible detoxification mechanisms in marine mammals, and 

this knowledge might be further translated into other species, and possibly also 

humans.  

 

 

Overall, this PhD dissertation focuses on studying the fate of Hg in different 

environmentally relevant samples, with special attention to species from different 

levels within the aquatic food web. Aquatic ecosystems are of the utmost 

importance, as fish consumption is the main source of human MeHg exposure. In 

addition, the study of marine mammals may be considered of high relevance owing 

to the potential similarities with humans in terms of Hg detoxification mechanisms. 

In this work, the combination of  determination of the THg concentration, MeHg 

speciation and Hg isotopic analysis of different tissues of various marine species 

(i.e., brown crab, tusk fish and long-finned pilot whale) has been shown to be a 

powerful and versatile tool. It has been used for (i) both identifying the sources of 

Hg contamination and assessing their impact on the marine food chain, as well as 

for (ii) for elucidating in vivo Hg metabolic pathways. Suggestions has been made as 

to species that are suited for future monitoring campaigns and the use of different 

tissue types has been stressed.  
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Future perspectives 

In this PhD, an accurate and precise method for the high-precision isotopic analysis 

of Hg in different sample matrices by CVG-MC-ICP-MS has been successfully 

developed and it has been applied in the context of real-life cases. However, 

important knowledge gaps still remain in our understanding of the processes that 

Hg undergoes in nature. Therefore, in addition to the urgent implementation of the 

measures adopted in the last Minamata Convention on Hg, further research is 

necessary to deal with this important human threat. 

Clearly, THg quantification and speciation analysis, combined with isotopic analysis 

of Hg are capable of improving our understanding of the complex biogeochemical Hg 

cycle. Nevertheless, important efforts are still required in this context. Based on  the 

experience gained during this work, several points have been identified as crucial 

for the future development and evolution of Hg isotopic analysis as a key tool for the 

study of Hg. On the one hand, it is clear that the success of such studies depends 

on the involvement of experts from different fields, as this is the only way to obtain 

a sufficient level of expertise as to obtain reliable data and interpret the complex 

results obtained correctly when dealing in the context of real-life cases. Within this 

PhD, collaborations were therefore established with NIFES and the University of 

Aberdeen. On the other hand, future work on isotopic analysis of Hg has to 

overcome current limitations, such as the relatively high concentrations of Hg 

required for obtaining accurate and precise Hg isotope ratio results and/or the 

limitation to the measurement of the bulk Hg isotopic signatures only i.e., without 

species-specific Hg isotopic information. The use of off- and on-line pre-

concentration approaches have already been reported on in literature, although 

their use significantly increases the complexity of the analytical method and could 

compromise the accuracy and the precision of the Hg isotope ratio results. These 

strategies are generally also applicable to a few sample matrix types only, thus 

limiting the wide applicability of such approaches in real-life applications. In the 

case of species-specific isotopic analysis, the hyphenation of gas chromatography 

(GC) to MC-ICP-MS has been used for the isotopic analysis of iHg and MeHg, 

although this type of analysis poses additional analytical challenges, such as a 

more laborious and challenging sample preparation and/or the necessity of dealing 

with transient signals. It needs to be taken into account, though, that every 
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additional step in the Hg isotopic analysis protocol may lead to potential chemical 

transformations, Hg losses and/or isotope fractionation. 

Overall, it is clear that the isotopic analysis of Hg may aid our understanding of the 

complex biogeochemical Hg cycle, but there are still a number of pitfalls that need 

to be overcome. The required multidisciplinary character of such studies and the 

development of reliable approaches for pre-concentration and species-specific Hg 

isotopic analysis were already mentioned. In addition, the study of other 

environmental compartments, such as water and/or air, will shed further light onto 

the Hg biogeochemical cycle. However, the isotopic analysis of Hg in waters and/or 

in the atmosphere is still hampered by the very low concentrations of the target 

analyte and by the difficulty of sample collection, always taking into account the 

necessity of ensuring the traceability of the Hg isotopic signatures. Decreasing the 

minimum concentration required for successful Hg isotopic analysis will allow to 

study more species at a given location or more locations for a given species, thus 

providing a more comprehensive data set to evaluate. For metabolic studies, the 

analysis of different tissues and/or biological fluids of different species has 

demonstrated to be a key tool for understanding the biochemistry of Hg. Further 

research including those elements and/or biomolecules to which Hg binds can also 

provide additional insight of high scientific interest. 
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