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A B S T R A C T

This work presents the method and numerical program along with graphical user interface (GUI) for calculating
the standard parameters necessary to evaluate luminescence ratiometric thermometers – the thermometric
parameter Δ, absolute sensitivity S ,a and relative sensitivity Sr . Despite the high interest in temperature sensing
materials, to the best of our knowledge, no such tool has been reported up to date. This is currently usually done
by researchers using a trial and error method and is a rather laborious task, with high risk of errors. The
undoubtful benefit of employing an optimization technique lies in the very fast and precise determination of the
parameters employing different models. The thermometric parameters Δ, Sa and Sr are calculated based on the
luminescence emission spectra measured over a certain temperature range. Using the TeSen tool the thermo-
metric parameters Δ can be calculated based both on the peak maxima and integrated surface areas under the
peaks. The tool also allows testing the ratio of multiple peaks, different peak ranges, and different temperature
ranges in a very convenient way. In this work TeSen tool was used to study several new sensor materials,
presenting new cases of single and dual center luminescent ratiometric theremometers.

1. Introduction

The very precise measurement of temperature is becoming pro-
gressively important in scientific research and development as well as
in technological applications relying on feedback from sensor thermo-
meters [1]. Recent advances in technologies have generated a need for
sensing and measuring temperature at the nanoscale (for applications in
nanoelectronics, nanophotonics, chemical reactors, and others) [2].
Yet, traditional temperature sensors have many intrinsic constraints
and they are not suitable for temperature measurements of objects at
the submicron scale as well as fast-moving objects. A wide range of
optical methods have been researched for use in new types of ther-
mometers, such as thermography, Raman scattering, thermal reflection
and luminescence [3]. Among them luminescence-based thermometry
is proving to be a very promising alternative. The luminescence-based
thermometry method exploits the relationship between temperature
and luminescence behavior in a material. In general, due to the Boltz-
mann distribution, at exalted temperatures higher energy excited states
are thermally occupied and this makes luminescence of all materials
temperature-dependent [4]. There is a large variety of temperature-
dependent luminescence phenomena that can be used for temperature
sensing. The most basic phenomenon that can be used is thermal

quenching of the luminescence. The rate of non-radiative transitions
(knrt) is related to T via the Arrhenius equation:

∼ −k e
E

k Tnrt
( Δ )

B (1)

where EΔ is the energy gap between the lowest excited state and a
crossing point to a non-radiatively decaying state, and kB is the Boltz-
mann constant. The non-radiative transition rate increases at higher T.

In the last 10–15 years a lot of attention has been given to the re-
search topic of temperature sensors, which has resulted in a numerous
amount of very interesting and useful data [5–29]. There are several
different parameters for accessing the temperature change of a mate-
rial: band intensity, spectral position, band-shape, polarization, lifetime
and bandwidth. Among these parameters the most often selected is
recording the steady state intensity of (a) transition(s). It was observed
early on, that sensing measurements based on a single transition band
can be affected by many factors such as for example alignment, opto-
electronic drift of the excitation source and detectors, or quenching
processes [1]. In that regard luminescence thermometers based on the
intensity ratio of two transitions, so called ratiometric thermometers,
were developed. Many of the currently reported ratiometric thermo-
meters involve lanthanide materials (or mixed d–f materials), such as
lanthanide Metal Organic Frameworks (LnMOFs), lanthanide inorganic
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phosphors, lanthanide complexes, glass ceramics and others
[26,29–31]. Other reported materials include Mn2+ doped quantum
dots (QDs) and nanopartilces, organic dyes or organic nano-gels
[4,32,33].

The TeSen Calculator tool can be used to calculate thermometric
parameters for any kind of ratiometric sensor material based on the
steady state intensity change of two transition peaks. The examples
studied in this work are based on various lanthanide materials, pre-
senting different lanthanide systems. The choice of lanthanide materials
for testing is linked to the research work carried out by some of the
authors of the papers, yet does not limit the TeSen Calculator tool in
any way only to this class of thermometric materials.

There are different strategies to design ratiometric luminescence
thermometers: 1) luminescence can be generated from two independent
emitting centers; as the two luminescent centers are electronically in-
dependent and there is no energy transfer between them, the changes in
luminescence intensities arise from the different thermal quenching
behavior of each luminescent center; 2) dual emissions can be obtained
from two closely related luminescent centers in which one (donor)
sensitizes the other (acceptor) via energy transfer; 3) dual emissions can
arise from the two thermally coupled energy levels of a single lumi-
nescent center [1]. Different systems have been tested using the TeSen
Calculator tool.

Materials showing temperature sensor behavior are of very high
interest, which is supported by the large number of publications and
reviews published on this topic in the last years, some of them men-
tioned in the earlier referred papers and reviews. To the best of our
knowledge there is no existing widely available tool for calculating the
thermometric parameters of luminescence thermometers. This is
usually currently done by researchers using a trial and error method
and is a rather laborious task, with high risk of errors. An easy to use
program, such as the proposed TeSen Calculator tool allows quick
analysis of the data when taking into consideration both the peak
maxima as well as the surface areas under the peak, as well as testing
the ratio of multiple peaks, different peak ranges, and different tem-
perature ranges. The tool enables using simultaneously the different Δ
equations for identification of model parameters that guarantee the best
fit to experimental data and comparing the results (including R2 errors),
and calculating the absolute sensitivity Sa and relative sensitivity Sr

values. The Sr indicates the relative change of the thermometric para-
meter per degree of temperature change (% K−1). Compared with Sa, Sr

has the important advantage of being independent of the nature of the
thermometer and allows direct and quantitative comparison to different
materials. Although usually it is recommended to calculate the ratio
between the integrated surface areas under the peaks, in some cases e.g.
when peaks overlap, using the peak maxima is very useful. As the
Matlab environment was used to write the program, emission maps and
graphs for Δ, Sa and Sr are generated by Matlab and can be easily
customized to a chosen style available in the Matlab software.

In this work the TeSen Calculator tool was tested, its use described
in detail and discussed showing its usefulness and relevance for re-
searchers working in the field of luminescent temperature sensors. The
TeSen tool can be downloaded free of charge from the following web-
site: http://www.tesen.ugent.be. We ask that this publicaton be cited
when using our TeSen software.

2. Discussion

2.1. Assumptions

It was assumed that for a material considered as a ratiometric op-
tical sensor experimental data of luminescence emission spectra over a
certain temperature range and constant temperature increment are
given. The calculator, which enables determining thermometric para-
meters, should facilitate a simple windowing of two data sets related to
peaks of emission spectra for the whole range of temperature. For each

temperature it calculates thermometric parameters Δ based on the ratio
of the maximum values of peaks (indicated by a user) and the ratio of
values of the integrated surface areas under the windowed peaks, Δmax,
Δint, respectively. Three models for the thermometric parameter Δ as
the function of temperature T are considered:
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where α, …. are the unknown model parameters. The model para-
meters, which guarantee the best fit of the models (2)–(4) to experi-
mentally determined dependencies Δmax and Δint are found using nu-
merical optimization in the minimum mean square root sense.
Corresponding goodness of fits are calculated. Sensitivity parameters Sa
and Sr are evaluated for the whole range of temperature and the
maximum values, along with corresponding values of temperatures are
found. Each step of the program is controlled from the GUI and a
complete visualization of the results is ensured.

2.2. TeSen tool and GUI description

The Matlab environment (Version 7.11) was used to write the TeSen
Calculator program for determining the thermometric parameters (Δ, Sa
and Sr) based on emission intensity changes at different temperatures.
The program includes a GUI (see Fig. 1), which is intuitive and easy to
use even for users who are not familiar with the tool. The best fit of the
three models to experimental data is found using lsqnonlin function
from Matlab’s Optimization toolbox.

In order to calculate the thermometric parameters the compiled
emission spectra, measured over a certain temperature range, are re-
quired. The temperature minimum and temperature maximum, as well
as step size need to first be inserted into the “Input Data” section (see
field 1 in the GUI). Next, the “upload emission spectra” button (field 2
in GUI) is pressed to select the correct data file. One txt file consisting of
the compiled emission spectra, with no headers at the top of document,
needs to be uploaded. Once this has been done Figs. 1 and 2 im-
mediately pop up (Fig. 2 in this paper). Figs. 1 and 2 are two different
emission maps over the measured temperature range showing a change
in the intensity of the emission peaks. Next, the user moves on to field 3
in the GUI. Here, the peaks, which the user wants to use for the de-
termination of the thermometric parameters, are selected. After
pressing the button “Peak 1” the first peak is selected – first the area
range for calculating the integrated surface area under the peaks is
selected with a cursor, and last the peak maximum. The same is done
for peak 2 after selecting the “Peak 2” button (Figs. 3–5 in the program,
see Fig. 3 in this paper). TeSen calculates the ratio between “Peak 1”/
”Peak 2”. After the peak range and maxima have been selected Figs. 6
and 7 appear (Fig. 4 in this paper). The Δ data points (experimental
Δ=Peak 1/Peak 2) are presented as a function of 1/T (Fig. 6) and T
(Fig. 7). The Δ data points are shown for both the integrated surface
areas under the peaks and peak maxima. The experimental Δ data
points can next be fitted using one of the 3 available models “Finding
Fitting Parameters”. In the TeSen Calculator, due to limitations in the
formation of the GUI in Matlab environment, the Greek letters Δ and α
have been substituted with D and a/A, respectively. Also for simplifi-
cation E

k
Δ

B
is refereed to as e/E in the equation (small letters are used in

model 1 and capital letters in models 2 and 3). The data fit with one of
the models can be selected in field 4 in the GUI (circled for model 1).
The user presses the “Fit” button under the selected equation and the a/
A and e/E parameters as well as R2

fit show up on the screen, calculated
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for peak maxima (“for D_max”) and for integrated surface area under
the peaks (“for D_int”). Additionally in the Command Window
RMSE_max and RMSE_int can be found, but are not included in the
interface of the program. The choice of the model is mostly based on the
users knowledge about thermometer materials. If a single luminescent
center material is considered model 1 is selected, if two luminescent
centers are available either model 2 or 3 can be used depending on the
amount of deactivation energies in the material; this can be evaluated
based on knowledge of the material and on the goodness of fit between
the Δ data points and the equation. After this step Figs. 8 and 9 are
obtained (Fig. 5 in this paper). Fig. 8 shows the Δ data points as a
function of 1/T fitted with the chosen equation. Fig. 9 shows the Δ data
points as a function of T fitted with the chosen equation. Last, the user
moves on to calculating the “Sensitivity Parameters” – the absolute
sensitivity Sa and relative sensitivity Sr . There the “Calculate” button
under the correct model is selected. As marked in field 5 in the GUI the
maximum values of Sa and Sr (indicated for which temperature the
maximum values are reached) are given “for D_max” and “for D_int”.
Fig. 10 presents the absolute sensitivity Sa [1/K] values as a function of
T. Fig. 11 presents the relative sensitivity Sr [%/K] values as a function
of T (Fig. 6 in this paper). In field 6 in the GUI one can choose to “close
figures with fits and S”, “close figures with data & D” or “close

program”. One can also go back to field 4 of the GUI and chose to fit the
Δ data points with a different model or go back to field 3 to select other
peaks or peaks windows.

In order to verify the TeSen Calculator independent codes were
written for each of the DELTA models (Eqs. (2)–(4)), which generated
synthetic data files. The data files included a number of mimicking
emission spectra composed of two families of Gaussian peaks pre-
defined by the user. The independent variable (vector) of the Gaussian
peaks, corresponding to wavelength, was selected arbitrary and had no
influence on the results. The maximum values of the peaks were defined
in such a way that their ratio depended on the specified vector of
temperature and parameters present in one of the Eqs. (2)–(4). The
TeSen Calculator was tested using the synthetic data for different
models and range of model parameters.

2.3. Example

In order to present the usefulness of the TeSen Calculator tool we
demonstrate and discuss below a step by step analysis of a 5%Dy:YVO4

material prepared in the Luminescent Lanthanide Lab (L3) at Ghent
University. The structure and morphology of the YVO4 microparticles
and Ln:YVO4 have been pulished in one of our previous works [34].

Fig. 1. GUI of the TeSen Calculator. The numbers referring to the particular fields of the GUI are described in the text.

Fig. 2. Emission maps obtained in the TeSen Calculator tool for the 5%Dy:YVO4 material.
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Dy3+ materials are very interesting as they show efficient emission in
the blue/green spectral region, where the contribution from black body
radiation at elevated temperature is minimal. In Dy3+ materials two
thermally coupled energy levels 4F9/2 and 4I15/2, and therefore two
emission peaks 4I15/2 → 6H15/2 and 4F9/2 → 6H15/2 can be monitored for
temperature sensor applications [35,36]. With temperature increase,
the higher energy level (4I15/2) becomes populated and hence its
emission intensity increases gradually. This is at the expense of the
population of the lower state (4F9/2), which gradually decreases in
emission intensity. The energy difference between the barycenters of
the two states is around 900–1000 cm−1, which is small enough to
reach thermal coupling between the states, yet large enough to ensure
well-resolved emission peaks and good sensitivity of temperature
measurements in a higher temperature range [37]. Analysis of two
other systems, consisting of different lanthanides, is discussed in detail
in the Supporting Information of the paper.

We studied the temperature-dependent luminescence properties of
the 5%Dy:YVO4 material in the 310–380 K range, with a step size of
10 K. This information is first inserted into the “Input data” (field 1 in
GUI): Tmin=310, Tmax= 380, Tstep= 10. Next, the compiled
emission spectra are uploaded (“Upload emission spectra”, field 2).
Figs. 1 and 2 are obtained (see Fig. 2 in this paper). These emission map
figures can be easily tuned (color, rotation, font size, etc.) with various
tools available in the Matlab environment. When the buttons “Peak 1”
and “Peak 2” (field 3 in GUI) are selected the specific peaks, which will
be used for the calculations, and their exact range and maxima, are
chosen (Figs. 3–5 in TeSen Calculator). Selecting the range and max-
imum of “Peak 1” has been shown in Fig. 3 in this paper. After the peak
range for both peaks have been selected the TeSen Calculator calculates

the experimental Δ points for each temperature.
The Δ data points are presented as a function of 1/T (Fig. 6) and T

(Fig. 7), see Fig. 4 in this paper. The experimental Δ data points are next
fitted using one of the 3 available models under “Finding Fitting
Parameters”. For this material, as we are dealing with a single lumi-
nescent center material, it is appropriate to use model 1 for the fitting.
The user presses the “Fit” button under the selected model 1 to obtain
Figs. 8 and 9 showing the fit of the Δ data points with Eq. (2) (see Fig. 5
in this paper).

Using this tool we calculated the Δ data points along with the fit for
model 1 taking into consideration both the ratio of the peak maxima as
well as the ratio of the surface areas under the peaks. Both approaches
can be found in literature, but as already mentioned in the introduction
usually it is recommended to use the surface areas under the transition
peaks. Only in cases, where for example the peaks overlap, this might
be a very useful approach (for example in Yb3+/Tm3+ co-doped up-
conversion materials, where the 1G4/3 → 3F4 and 3F2,3 → 3H6 Tm3+

transitions partially overlap or in Yb3+/Ho3+/Tm3+ co-doped samples
where the 5F3 → 5I8 transition peak of Ho3+ overlaps with the 1G4 →
3H6 transition peak of Tm3+). For this material there is no peak overlap,
that is why exploiting the results obtained for surface areas under the
peaks in recommended. For both cases we calculated ΔE, for D_max
ΔE=1174.6 cm−1 and for D_int ΔE=996.9 cm−1. The ΔEint is closer
to the theoretical calculated value (energy difference between 4F9/2 and
4I15/2 energy levels), which is 900–1000 cm−1. This confirms the ap-
propriatness of using the ratio of the integrated surface areas under the
two peaks for this thermometer material.

After this the sensitivity parameters (Sa and Sr) are calculated. In
field 5 of the GUI the “Calculate” button is pressed under model 1. This

Fig. 3. The range and peak maxima selection presented for “Peak 1” for the 5%Dy:YVO4 material.

Fig. 4. The graphs present the experimental Δ data points for each measured temperature (for peak maxima – round blue dot andintegrated surface areas under the
peaks – red stars). The data points are presented as a function of 1/T [1/K] in Fig. 6 and as a function of T [K] in Fig. 7 in the TeSen Calculator. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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results in Figs. 10 and 11 popping up as well as the maximum Sa and Sr

showing up in the calculator window (for appropriate temperature); see
Fig. 6 in this paper. The maxima Sa and Sr values are indicated on the
graphs. For D_max the maximum value of Sa =0.000439 (at 380 K) and
the maximum value of Sr =1.7586 (at 310 K). For D_int the maximum
value of Sa =0.000314 (at 380 K) and the maximum value of
Sr =1.5264 (at 310 K). Fig. 7 presents the GUI with the imputed data
and calculated thermometric parameters. Fig. 8 presents a snap shot of
the command window where additionally RMSE values can be found.

3. Conclusions

Here we have presented a developed method along with a GUI for
finding the thermometric parameters for ratiometric luminescent ther-
mometers. This program allows simple and very fast determination of
Δ, Sa and Sr based on emission intensity change at different tempera-
tures. Currently no such tool, which would be widely available, exists.
Therefore, such calculations need to be done manually (trial and error
method), which is a laborious process, prone for errors. The undoubtful
benefit of employing an optimization technique lies in the very fast and
precise determination of the parameters of different models. The

program allows calculating the thermometric parameters based on the
peak maxima as well as integrated surface areas under the peaks. Also it
is possible to quickly test the ratio of multiple peaks, different peak
ranges, and different temperature ranges and compare the results. This
is a very strenuous task in the trial and error method. Very importantly
it also allows comparing the thermometric parameters when selecting
different models. The program provides graphs, which can be used in
their current form, or customized with all the available tools in the
Matlab environment. Due to the large interest in ratiometric lumines-
cent thermometers, we strongly believe this will be a very useful tool
for many scientists (e.g. chemists, physicist and engineers) working in
this field of luminescent ratiometric thermometers. The TeSen tool can
be downloaded free of charge from the following website: http://www.
tesen.ugent.be. We ask that this publicaton be cited when using our
TeSen software.
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