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Abstract—Despite the use of state-of-the-art thermal
modeling tools in the design stage, the measured ther-
mal behavior of prototype electrical machines can differ
significantly from the modeled ones. This paper shows
how a thermal model, based on finite element method,
of an electric machine can be improved using inverse
modeling techniques. In a thorough study, a forward high
fidelity finite element thermal model of a 4 kW axial flux
PM machine is introduced and improved using inverse
modeling techniques via non-collocated thermal sensors.
Parametric model order reduction of the high fidelity finite
element thermal model based on moment matching method
is performed to make the recovery of the actual thermal
parameters characterizing the thermal behavior of the axial
flux PM machine tractable. Additionally, the same reduced
order model is used to identify the different power loss
components in the machine. Experimental results confirm
that the presented two-stage approach is capable to identify
the thermal parameters and losses with high accuracy.

Index Terms—Thermal sensors, Loss measurement, In-
verse problems, Reduced order systems

NOMENCLATURE

ρ Mass density.
Cp Specific heat capacity.
k Thermal conductivity.
h Convective heat flux coefficient.
Q Volumetric loss density.
.ep Epoxy resin parameter.
.cu Copper parameter.
.wi Winding parameter.
fwi Winding filling factor.

I. INTRODUCTION

OPTIMAL motor performance is a result of a multiphysics
design process including electromagnetic, thermal and

mechanical aspects [1]–[4]. Proper thermal design of an elec-
tric machine ensures that the cooling provisions are capable to
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handle the maximum continuous rating. Generally, the maxi-
mum continuous rating is determined by thermal constraints
rather than by electromagnetic ones [5]. From efficiency point
of view, proper thermal design includes effective cooling of
the motor winding as the resistivity of the copper windings
increases with temperature. Excessive temperatures or hot
spots are harmful for the winding insulation [6], [7] or can
irreversibly demagnetize permanent magnets [3]. On the other
hand proper thermal design is necessary to avoid excessive
safety margins. This becomes particularly important in size
and weight critical applications such as electric mobility
applications [8] . Improving the thermal design of an existing
electromagnetic design is used to decrease the motor size,
achieve higher output power for a given motor size, and
extend the motor operational life [9]. Therefore, high fidelity
thermal models are necessary for safe operation safeguarding
maximum efficiency.

High fidelity thermal models generally combine a finite
element thermal model with computational fluid dynamics for
the convective heat flux in the air gap and at the machine outer
boundaries [4], [10], [11]. Despite the high level of modeling
details, discrepancies between modeled and measured temper-
atures are still observed [12].

Common elements to explain these differences are numer-
ous [13]. Even in finite element modeling, the level of detail
is not up to the level of the different strands in the winding. In
many cases this even does not make sense since the individual
strands are distributed randomly when pressing the strands
into the slots [14]. Therefore, these finite element models
use homogenization techniques to approximate the strongly
anisotropic thermal conductivities of the motor windings in the
different directions [15]. Also the thermal contact resistance
at boundaries between different materials [14], [16], [17] is
indicated as a cause of modeling inaccuracies. Other authors
[18] observe a high impact of process parameters,e.g. injection
pressure used in the infiltration of the stator windings with
potting compound. Although these indicated possible causes
of temperature discrepancies, none has tried to correct their
thermal model making use of the temperature measurements
subsequently resulting in a thermal model with improved
accuracy.

Next to the accuracy of the thermal model itself, differ-
ences in modeled and measured temperatures are very often
caused by power losses which are different than the estimated
ones. Even if a direct loss measurement,i.e. power balance
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monitoring, is done, the subdivision of the total measured
loss over the different power loss components in the machine
remains uncertain. Very often iron losses are indicated as
underestimated in the design phase, as effects such as the
cutting process, mechanical stress, welding,etc. [19], [20]
during the manufacturing processes are known to increase the
iron losses significantly.

An approach to separate the different loss components in
electric machines is introduced by [21]. In this combined
experimental and numerical approach, different sets of direct
measurements of the total losses are compared to modeled
ones until the best fit is found.

This work aims at improving the accuracy of a high fidelity
thermal finite element model in a first stage by identifying the
thermal parmater values using inverse modeling. In a second
stage, we propose an indirect approach to estimate the different
loss components based on the corrected thermal model from
the first stage. Both stages are applied on a 4 kW axial flux
yokeless and segmented armature (YASA) PM machine. In
this machine, multiple temperature sensors have been inserted
at different parts during the manufacturing. These positions
were chosen independently of the parameters to estimate,cfr.
non-collocated thermal sensors. Captured data at these non-
collocated thermal sensors are then used to identify the thermal
parameters and losses for specified load cycles.

Inverse thermal modeling techniques have been introduced
in [22] to identify the lumped parameters in a simple thermal
model. In [23], the iron losses were measured by solving the
inverse heat source problem, and in [24] the losses sources
in a lumped parameter thermal model of an induction motor
were identified by inverse thermal modeling.

In contrast to [24] where the parameters of a simple lumped
parameter thermal network were identified, this work intro-
duces a high fidelity thermal finite element model including
anisotropic thermal material properties as the forward model.
The order of this model is then strongly reduced by applying a
parametric model order reduction based on moment matching
method in such a way that it becomes suitable in terms of
calculation effort and time for the required many iterations in
the inverse modeling step.

In Section II a short introduction to the used and proposed
methods is given and in Section III we present the experimen-
tal setup and measurement procedure. In the subsequent Sec-
tion IV we illustrate that an inverse thermal modeling approach
is capable to identify uncertain thermal parameter values such
as winding filling factors, thermal conductivity values and
convection coefficients. Based on the thermal model exhibiting
high fidelity due to the correction of the thermal parameter
values of the actual machine, results are provided in a second
stage on estimating the different loss components based on
the non-collocated thermal measurements and the improved
thermal model.

II. METHODOLOGY

A. Forward Finite Element Model

The aim of the forward model is to achieve high accuracy
in geometric details and thermal material modeling. Therefore,

a finite element thermal model is preferred over a lumped
parameter thermal network.

To identify the thermal parameters using the inverse model,
a full transient solution of the thermal problem needs to be
calculated by solving

ρCp

∂T

∂t
−∇ · (k∇T ) = Q (1)

in each of the material volumes. In this equation,ρ is the
mass density, Cp the specific heat capacity,k the thermal
conductivity andQ the power loss density in the material
volume.

B. State-Space Representation

A large-scale parametrized time-invariant state-space model
is extracted from the forward finite element model. The
dynamic and measurement equations are

dx(t)

dt
= A(p)x(t) +B(p)u(t) (2)

y(t) = C(p)x(t) (3)

respectively, where the state-space matricesA(p) ∈ R
n×n,

B(p) ∈ R
n×m and C(p) ∈ R

q×n are implicitly dependent
on a parameter vectorp ∈ R

d.
In the thermal model, the statesx correspond to the tem-

peratures in the domains in the discrete elements of the mesh,
the inputsu to the local power losses, andy being the tem-
peratures in the points of interest where local measurements
are obtained trough temperature sensors.

Since the numbers of sensorsy, cfr. subsection III-B, is
much lower than the number of statesx, and moreover,
the temperature sensorsy are not a direct measurement of
the power losses and can be located at a distance from the
power loss components,i.e. non-collocated, an inverse model
is required. The inverse model needs to estimate the thermal
parameters of interest starting from temperature measurements
by having correspondence between the model responsesy(t)
(simulated using model (6-7) and the temperature measure-
mentsymeas(t). This can be implemented by minimizing a
least-squares objective function

∫ t

0
‖ymeas(t) − y(t)‖2. This

objective function is evaluated in an iterative manner until
a minimum squared error over time is found. Unfortunately,
the statesx, and hence, the system matrices extracted from
the finite element model are of large order (103 - 105), so
multiple iterations result in prohibitively large computational
effort. In order to decrease this effort, parametric model order
reduction, more specifically moment matching method, was
implemented.

C. Parametric Model Order Reduction

The aim of the model order reduction is to reduce the
number of variables while preserving the input-output behavior
of the original system, resulting in a reduced state-space
system [25]

dx̃(t)

dt
= Ã(p)x̃(t) + B̃(p)u(t) (4)

y(t) = C̃(p)x̃(t) (5)
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where the state-space matricesÃ(p) ∈ R
k×k, B̃(p) ∈ R

k×m

andC̃(p) ∈ R
q×k, with k ≪ n.

Since the considered system is parametrized and this re-
lation must be conserved after order reduction, a parametric
model order reduction based on moment matching method as
proposed by [26], is applied.

Parameterization of the state-space matrices associated to
the dynamic equation result in

A(s1, s2, . . . , sd−1) = As1s1 +As2s2 + . . .

+Asd−1
sd−1

(6)

B(s1, s2, . . . , sd−1) = Bs1s1 +Bs2s2 + . . .

+Bsd−1
sd−1

(7)

with s being thed − 1 moments of the state space matrix.
Laplace transformation of (6) thus results in

[s1−A(s1, s2, . . . , sd−1)]x = B(s1, s2, . . . , sd−1)u (8)

Let us definesd = s and the right hand side of (12) is

E(s1, s2, . . . , sd−1) = sd1−A(s1, s2, . . . , sd−1) (9)

resulting in the following Laplace domain representation for
the states:x(s) = E−1(s)Bu(sd)

Subsequently, the statex is expanded into a Taylor series
at an expansion points0 = (s01, s

0
2, . . . s

0
d)

x(s) =x(s0) + ∆x(s)(s − s0)

=E−1(s0)Bu(sd)

+ [E−1(s)−E−1(s0)](s − s0)Bu(sd)

(10)

Using the following definitions and notations

Ẽ = E(s0) (11)

∆si = si − s0i (12)

Mi = E−1Ei (13)

BM = Ẽ−1B(s1, s2, . . . , sd−1) (14)

and the separation of the factor̃E−1Bu in equation (10)
results in

x(s) =[1− (∆s1M1 + . . .+∆sdMd)]
−1Ẽ−1Bu(sd) (15)

The Neumann series expansion(1−A)−1 =
∑

k A
k can be

applied

x(s) =

∞∑

k=0

[∆s1M1 + . . .+∆sdMd]
kBMu(sd) (16)

Expanding the summation results in

x(s) = BMu+ [∆s1M1 + . . .+∆sdMd]BMu

+ [∆s1M1 + . . .+∆sdMd]
2BMu

+ . . .

(17)

where a recursive relation between the coefficients can be
derived

G0 = BM (18)

G1 = [∆s1M1 + . . .+∆sdMd]BM

= [∆s1M1 + . . .+∆sdMd]G0 (19)

G2 = [∆s1M1 + . . .+∆sdMd]
2BM

= [∆s1M1 + . . .+∆sdMd]G1 (20)
...

From this relation a vector sequence with the coefficient
matrices is deduced

R0 = BM (21)

R1 = [M1R0,M2R0 . . . ,MdR0] (22)

R2 = [M1R1,M2R1 . . . ,MdR1] (23)
...

The termsRj are on one side the coefficient matrices of the
parameters in a series expansion and on the other side thejth

order moment vectors. These vectors span a subspaceK

K = span{R0,R1, . . . ,Rj} (24)

K is a Krylov subspace built, taking into consideration the
coefficient matrices of the separate system parameters.

Finally, mapping of the originaln-dimensional state-space
into the reducedk-dimensional state-space occurs by means
of multiplication withV, an orthogonal projection matrix that
satisfiesVTV = 1k:

x̃ = Vx (25)

Ã = VTAV (26)

B̃ = VTB (27)

C̃ = CV (28)

III. EXPERIMENTAL SETUP AND PROCEDURE

A. Axial Flux PM Machine

The thermal parameter identification and loss separation
based on inverse thermal modeling will be illustrated on the
stator of a yokeless and segmented armature (YASA) axial flux
PM machine. In Fig. 1 a cross section of the 4 kW, 2500 rpm
YASA-machine is illustrated, and the specifications are listed
in Table I.

A characteristic property of the YASA-machine is its modu-
lar stator construction [27], [28]. In Fig. 2 a cross section view
perpendicular to the shaft gives a view on the internal stator
construction. Fifteen identical stator modules, each consisting
of a laminated core, insulation and winding, are arranged into
a stator housing. To improve the thermal heat flux from the
modules to the stator outer surface, inward heat extraction fins
are introduced [29]. The remaining narrow spaces between the
different stator parts are filled with an epoxy resin [18].
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Fig. 1: Cross section view of the YASA AFPMSM. (1) lami-
nated stator housing, (2) concentrated winding, (3) laminated
core with six different profile shapes, (4) plastic end winding
plate, (5) rotor adaptor, (6) shaft, (7) bearing, (8) bearing
block, (9) rotor disc back-iron, (10) segmented permanent
magnet, (11) inward heat extraction fin.

B. Non-Collocated Thermal Measurements

During the construction of the stator, several resistance
temperature detectors (RTDs) have been integrated near the
different stator parts. Their positions are indicated in Fig. 3.
In the state space systems, the measurements in the different
points correspond to the measurement vectory in equation
(3). The positions of the RTDs are chosen such that they are
located in different parts of the machine but, as mentioned
previously, they are not a direct measurement of the thermal
parameters to identify.

During the thermal measurements, the air gap surfaces of
the stator are insulated by thermal covers (Fig. 4). To allow
heat flux from the stator modules to the stator housing surface
in radial direction, the stator outer surface remains uncovered.
An external fan is faced towards the stator to allow sufficient
cooling.

C. Measurement Procedure

The losses in the windings and the stator cores of the
AFPMSM are generated by a Spitzenberger PAS10000 ampli-
fier. By varying the applied voltage and frequency, different

TABLE I: Key specifications of the YASA AFPMSM

Parameter Value Unit
Rated output power 4000 W
Rated speed 2500 rpm
Rated torque 15 Nm
Rated current 10 A
Pole number 16 -
Slot/tooth number 15 -
Outer diameter housing 195 mm
Outer diameter (active) 148 mm
Inner diameter (active) 100 mm
Axial length stator 61 mm
Total mass 9 kg
Magnet thickness 4 mm
Magnet width segments 18/21/24 mm
Magnets NdFeB 40SH -
Stator core material M100-23P -
Rotor back iron thickness 8 mm
Air gap length (variable) 1≤5 mm
Slot width 11 mm
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Fig. 2: Cross section view of the inward heat extraction fins in
the YASA AFPMSM. (1) bearing block, (2) plastic end wind-
ing plate, (3) laminated core with six different profile shapes,
(4) inward heat extraction fin, (5) concentrated winding, (6)
laminated stator housing.

values for the iron and copper losses can be obtained. The
ingoing power is continuously monitored by a Tektronix
PA4000 power analyzer. To have uniform power losses over
the different stator segments, all windings, independent of the
phase, are put in series. This is possible because all wires of
the individual stator modules are brought to a terminal block
outside the AFPMSM stator, as can be seen in Fig. 4. To
compensate for the temperature dependency of the electrical
resistance of the windings, adjustments to the applied voltage
are necessary to maintain constant power losses over time.

The RTDs are connected to an amplifying circuit using a
four-wire connection. This limits the temperature-dependent
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Fig. 3: Positions of the RTDs referred in the quarter tooth
model.

Fig. 4: Experimental validation set-up for the stator thermal
model.

resistance of the RTD’s wire connections. The temperatures
captured by the RTDs are sampled synchronously every 5
seconds using a dSPACE 1104 platform.

IV. EXPERIMENTAL RESULTS

In this Section the fidelity of the forward thermal model
of the stator of an axial flux PM machine is improved by
recovering the values of the uncertain thermal parameters
based on actual experimental data of an axial flux PM machine.
In a second stage, based on the improved thermal model and
measurement data, iron and copper losses are separated.

A. Thermal Parameter Identification and Model Improve-
ment

As mentioned in subsection III-A, the different stator mod-
ules and housing are assembled using epoxy potting tech-
niques. As a consequence, the infiltration grade of the epoxy
resin strongly influences the thermal properties of the stator.
Bad infiltration grades result in air cavities reducing the overall
thermal conductivity. The stator winding is most sensitive to
the infiltration grade of the epoxy resin [15], [18]. A thermally
good conduction is found in the direction parallel to the strands
and a thermally bad conduction is found in the directions
perpendicular to the strands.

Even in the forward finite element model, including geom-
etry details up to the modeling of the individual laminations
or winding strands is not feasible. Therefore, bulky volumes
with homogenized material properties are used in this work.
As a result, the thermal conductivity in equation (1) becomes
a tensor instead of a scalar value. For an epoxy infiltrated
winding, the equivalent thermal conductivity in the thermally
good conduction direction is expressed by

k1,wi = fwikcu + (1− fwi)kep (29)

whereas in the thermally bad conduction direction, the equiv-
alent thermal conductivity is expressed by the Hasihn and
Shtrikman approximation [15]:

k2,wi = kep
(1 + fwi)kcu + fwikep

(1 − fwi)kcu + (2− fwi)kep
(30)

wherekep is the thermal conductivity of the epoxy resin,kcu
the thermal conductivity of copper andfwi is the winding
filling factor.

Equivalently, the specific heat capacity and mass density are
expressed as a function of the filling factor:

Cp,wi = fwiCp,cu + (1− fwi)Cp,ep (31)

ρwi = fwiρcu + (1 − fwi)ρep (32)

In Table II, the different material parameters and homoge-
nized material properties are listed.

In Fig. 5 the geometry of the forward finite element model
is presented. The epoxy resin material filling the empty space
between the different parts is not shown. For thermal symmetry
reasons, only one quarter of an equivalent stator module needs
to be modeled [30]. The thermal symmetry is imposed by
n · (k∇T ) = 0 on the boundaries of the reduced geometry,
except at the outer stator housing boundary. Here, convective
heat transfer is expressed through

n(k∇T ) = h(Tamb − T ) (33)

whereTamb is the ambient temperature.
The iron and copper losses are imposed uniformly over the

core and winding, respectively. This assumption is acceptable
for the core losses since the variable air gap results in a
uniform magnetic flux density over the different lamination
layers [31].

The validity of the material parameters is based on reference
data. Nevertheless, some parameters might differ from these
values. This is especially the case for the parameters of the
epoxy resin. Here, the specific heat capacity is not specified in
the datasheet. Its thermal conductivity might also be influenced
by the infiltration grade and air inclusions within the resin.
Relatively large amounts of air inclusions are expected in the
prototype stator since no vacuum was applied during the infil-
tration process. Furthermore, as the stator in the measurement
setup is only capable to evacuate heat by convection via the
stator housing, this uncertain parameter needs to be determined
as well. Inverse modeling will be engaged to characterize
the above-mentioned uncertain parameter values such that the
fidelity of the forward thermal model is increased. Therefore,
the inverse modeling technique will be used to characterize
these parameters, and consequently, improve the accuracy of
the forward thermal model.

The aim of this subsection is to identify the parameter vector
p in equation (2-3) consisting of the thermal conductivitykep
and specific heat capacityCp,ep of the epoxy compound and
the convective heat transfer coefficienth at the stator housing,
by means of inverse modeling.

To check the observability of the thermal parameter varia-
tions to the measured temperatures in the positions indicated
in Fig. 3, a sensitivity analysis was performed. In this anal-
ysis, the winding losses are rated at 40 W, and the thermal
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TABLE II: Thermal parameters of the relevant materials used in the stator. The initial values used in the forward thermal
model are notated in regular font, the ones determined though inverse modeling in(italic).

Bearing block Housing Winding Core
C45 Epoxy Aluminium Epoxy Copper Epoxy Steel

Fill factor 4 96 47 53 2 98
Mass density[kg/m3] 7850 1540 2712 1540 8890 1540 7850
ρeq 2665 5730 7708
Specific heat capacity[J/kg K] 480 600 (1698) 896 600(1698) 385 600(1698) 480
Cp,eq 884 (924) 480 (984) 483 (505)
Thermal conductivity [W/m K] 46 0.4 (0.23) 237 0.4(0.23) 385 0.4(0.23) 46
k1,eq 160 (160) 221 (196) 45 (45)
k2,eq 18 (11) 1.5 (0.7) 25 (17)
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Fig. 5: Geometry modeled in the quarter of a stator module FEM, epoxy potting material is not shown. (1) bearing block, (2)
plastic end winding plate, (3) laminated core with six different profile shapes, (4) inward heat extraction fin, (5) concentrated
winding, (6) laminated stator housing.

parameters have the values indicated in Table II. A change in
the value of the convective heat transfer coefficienth shows
a good variation over its practical limits as indicated in Fig.
6c and mainly determines the steady-state temperatures. In
contrast, as illustrated in Fig. 6b, the specific heat capacity
Cp,ep value mainly influences the temperature transient, while
the steady-state remains the same in each sensor. For both
h and Cp,ep a sufficiently large variation is observed in all
sensors. For the thermal conductivity of the epoxy resinkep
in Fig. 6a, only the temperature sensors T3 and T4 show a
detectable variation. Moreover the sensitivity is less visible
for higher values ofkep. This is inherent to the construction
of the stator (Fig. 5): the thin layer of epoxy resin insulates the
stator core and winding from the rest of the stator. Therefore,
the highest variation is expected in the stator core (T3) and
the stator winding (T4).

Fig.7 illustrates the implemented algorithm based on the
forward model and inverse model earlier discussed. To safe-
guard accuracy of the reduced order model used in the inverse
modeling step, a model convergence check was performed. In
this way, the order of the model was reduced from 79331 in
the high fidelity thermal finite element model to 119 in the
state-space system equation (4).

The measurement data, which is the input of the inverse
model, is generated by a specified input cycle. In this ex-
periment the individual stator modules are all put in series
and a specified DC-current is imposed by the power source.
The DC-current was chosen to mitigate Eddy currents, of

which the magnitude and location in the machine might be
unpredictable. As a consequence, only resistive losses in the
windings are present. During the experiment, 40W of copper
loss in the stator windings was maintained over time, and was
constantly monitored by a power-analyzer. The copper loss
in the machine were kept constant until steady-state behavior
was observed after about eight hours. The current was then
powered off and the stator started to cool down. During the
cooling process, data is still collected for four more hours.
To enforce the convective heat transfer at the stator boundary
surface, a external fan is faced towards te measurement setup.

Fig. 8 depicts the temperatures measured at the different
sensor positions indicated in Fig. 3. A comparison with the
simulation results from the forward model using the initial
thermal parameters, presented in Fig. 9, shows some signifi-
cant differences. The first major difference is the difference in
steady-state temperature due to underestimating the thermal
conductivity of the epoxy compoundkep or the convective
heat transfer coefficienth at the stator housing in the forward
model. A second major difference is the transient in the heating
and cooling phase. Temperatures in the forward model react
much faster, which might be caused by an underestimation of
the specific heat capacityCp,ep of the epoxy compound.

Execution of the inverse modeling algorithm (see Fig. 7)
results in a parameter set that approximates closer the actual
values. In agreement with the comparison of the differences
between measurements and forward model with the initial
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(a) Sensitivity ofkep: 0.1 (–), 0.30 (- -), and 0.5 (-·) W/(m K)

0 2 4 6 8 10 12

Time [h]

20

30

40

50

60

70

80

90

T
em

pe
ra

tu
re

 [°
C

]

T2
T3
T4
T5
T6

(b) Sensitivity ofCep: 200 (–), 1100 (- -), and 2000 (-·) J/(kg K)
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(c) Sensitivity ofh: 10 (–), 30 (- -), and 50 (-·) W/(m2 K)T

Fig. 6: Sensitivity analysis of the thermal parameters to the
measured temperatures in the positions indicated in Fig. 3
using the forward model.

parameter set, the convective heat transfer coefficienth at the
stator housing increases from 15 to 18.47 W/(m2 K) and the
specific heat capacityCp,ep of the epoxy compound increases
from 600 to 1698 J/(kg K). On the other hand, the thermal
conductivity kep decreases from the initial 0.4 W/(m K) to
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Fig. 7: Scheme of the inverse modeling algorithm.
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Fig. 8: Measured temperatures. Positions of the temperature
sensors according to Fig. 3

0.23 W/(m K). As earlier discussed, this decrease might be
the result of air inclusions and bad infiltration grades during
the epoxy infiltration process.

Replacement of the initial parameter set by the one found
through inverse thermal modeling, results in the simulated
temperatures illustrated in Fig. 10. As can be noticed the
steady-state temperatures as well as the temperature transients
are in close agreement with the measurements. Temperature
sensor T2 indicates a bigger difference with the sensors T3
and T4 than for the initial parameter set, and is in better
agreement with the measurements. The smaller value for the
thermal conductivitykep of the epoxy compound, insulates
the core and winding (T3 and T4) better from the inward heat
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Fig. 9: Simulated temperatures calculated by the forward
model using the initial set of parameters:kep=0.4 W/(m K),
Cp,ep=600 J/(kg K) andh=15 W/(m2 K). Positions of the
temperature sensors according to Fig. 3

extraction fin (T2). This results in a higher temperature drop
as experimentally observed.
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Fig. 10: Simulated temperatures calculated by the forward
model using the improved set of parameters:kep=0.23
W/(m K), Cp,ep=1698 J/(kg K) andh=18.47 W/(m2 K). Po-
sitions of the temperature sensors according to Fig. 3

After the improvement of the indicated parameter set, the
forward model is sufficiently accurate.

B. Iron and Copper Losses Separation

The corrected high fidelity thermal finite element model
will be used in this paragraph through reduction to separate
the iron and core losses in the stator of the axial flux PM
machine. The same measurement setupcfr. Fig. 4 is used in
this experiment. Different from the first experiment, an AC-
current with a frequency of 200 Hz is imposed. This will result
in both copper and iron losses. The total ingoing power is
monitored with a power-analyzer and is maintained constant
at 40 W.

Despite the high applied frequency of 200 Hz, the absence
of the rotors in the measurement setup results in a particular

low flux density of 0.2 T in the stator cores, and therefore,
a very limited loss of about 6 W is imposed in the stator
cores. This 6 W iron loss is based on finite element analysis
of the magnetic flux density in the stator cores and material
characterization based on Epstein frame measurements as
described in [31].

Despite the core losses are only rated at 15% of the
total loss, the sensitivity analysis in Fig.11 indicates that
this variation is detectable using the temperature sensor T3
indicated in Fig. 3. This sensitivity analysis reveals that the
sensor collocated to the stator core is required to separate the
core losses from the other loss components.
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Fig. 11: Sensitivity analysis of the iron loss to the measured
temperatures in the positions indicated in Fig. 3 using the
forward model. A total loss of 40 W is assumed, simulations
for 0 W (–), 20 W (- -), and 40 W (-·) iron loss.

In the algorithm presented in Fig. 7 the linearization process
in the parameters is not required as the iron and copper losses
are a direct input of the state-space model. In the optimization
process the constraint is added that the sum of the losses
should be less or equal to the total measured losses. This
algorithm gives a best fit for 33.25 W copper losses in the
winding and 6.75 W of iron losses in the stator cores.

The proposed approach accurately estimates the different
loss components in the machine. It has to be noticed that the
reduced order model of the forward model with the initial set
of parameters was not capable to predict the loss component
accurately. Also the order of the reduced model was increased
from 119 to 605 as a result of the model convergence check in
Fig. 7. This was a result of the increased number of inputsi.e.
copper and iron losses instead of only copper losses. Moreover,
according to Fig. 11, there is only limited sensitivity in one
sensor (T3) while the thermal parameter identification state-
space model showed an overall good sensitivity in all sensors.
Therefore, it can be concluded that the loss separation requires
a thermal model with higher accuracy compared to the one
used to identify the thermal parameters.

V. CONCLUSION

In this work, a set of parameters of a high fidelity ther-
mal finite element model of an axial flux PM machine was
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improved by inverse thermal modeling via non-collocated
thermal sensors integrated in the stator of the machine during
the construction. To achieve a tractable inverse modeling step
and associated reduction of the computational effort, a model
order reduction based on moment matching performance was
carried out.

Different uncertain thermal parameter values including the
thermal conductivitykep and specific heat capacityCp,ep

of the epoxy compound and the convective heat transfer
coefficienth at the stator housing, were in a first stage all
accurately determined by the inverse thermal modeling. This
resulted in an improved high fidelity thermal finite element
model of an axial flux PM machine.

In a second stage, it was proven that a reduced model of the
forward model with the improved set of thermal parameters
was capable to separate the copper from the core losses in
the stator of the axial flux PM machine. In this identification
process, the recovered set of thermal parameter values was
used and it was necessary to increase the order of the reduced
model in order to obtain accurate loss estimations.
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