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Abstract

Given a computable ordinal Λ, the transfinite provability logic GLPΛ has
for each ξ < Λ a modality [ξ] intended to represent a provability predicate
within a chain of increasing strength. One possibility is to read [ξ]φ as φ is
provable in T using ω-rules of depth at most ξ, where T is a second-order
theory extending ACA0.

In this paper we will formalize such iterations of ω-rules in second-order
arithmetic and show how it is a special case of what we call uniform prov-
ability predicates. Uniform provability predicates are similar to Ignatiev’s
strong provability predicates except that they can be iterated transfinitely.
Finally, we show that GLPΛ is sound and complete for any uniform provability
predicate.

Keywords: provability logic, arithmetic interpretation, iterated provability

1. Introduction

One compelling and particularly successful interpretation of modal logic
is to think of �φ as the sentence φ is provable, where provability is under-
stood within a formal theory T capable of coding syntax. This was suggested
by Gödel; indeed, if we use ♦φ as shorthand for ¬�¬φ, the Second Incom-
pleteness Theorem could be written as ♦> → ¬�♦>. It took some time,
however, for a complete set of axioms to be assembled, namely until Löb
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showed �(�φ→ φ)→ �φ to be valid; the resulting modal logic is called GL
(for Gödel-Löb). It took longer still for GL to be proven complete by Solovay
[34].

Later, Japaridze [27] enriched the language of GL by adding a sequence of
provability modalities [n] for n < ω. The modality [0] is now used as before
to state that φ is derivable within some fixed formal theory T , while higher
modalities represent provability in stronger and stronger theories.

There are many arithmetic interpretations for Japaridze’s logic, and one
of them also stems from an idea of Gödel, who introduced the notion of a
theory T being ω-consistent: T is ω-consistent whenever for any formula φ,
if T ` φ(n) for all n ∈ N, then T 0 ∃x¬φ(x). Dually to this notion one can
define ω-provability: φ is ω-provable in T whenever T +¬φ is ω-inconsistent.

One may then interpret [1]φ as φ is ω-provable; a detailed discussion of
this is given by Boolos [14]. The higher modalities may then be interpreted
by using iterated ω-rules. This idea was already explored by Japaridze in [27]
and gives an interpretation for which the polymodal logic GLPω is sound and
complete; Ignatiev [26] and Beklemishev [9] later improved on this result.

The logic GLPω is much more powerful than GL, and indeed Beklemishev
has shown how it can be used to perform an ordinal analysis of Peano Arith-
metic and its natural subtheories, gauging their proof-strength with respect
to Π0

1 sentences [6]. Boolos also considers a stronger provability predicate
in second-order arithmetic which allows unbounded uses of the ω-rule and
proves that GLP2 is sound and complete when the modality [1] is interpreted
in this way [13].

Our proof-theoretic interpretation is a straightforward extension of Ja-
paridze’s, based on second-order arithmetic. We read [α]Tφ as The sentence
φ is derivable in T using ω-rules of nesting depth at most α; we shall make
this precise later. In order to do this we consider a computable well-ordering
Λ = 〈|Λ|, <Λ〉 on the natural numbers and consider the logic GLPΛ, already
studied by the authors and Beklemishev [7, 21], with the sole difference that
we shall represent ordinals as natural numbers rather than appending them
as external entities.

Our main result is that GLPΛ is sound and complete for arithmetical in-
terpretations on ‘suitable’ theories T ; we will mainly work with extensions of
ACA0, but as we shall discuss later, it is possible to work over a weaker theory.
It is our hope and expectation that this paper will further the applicability
of the transfinite polymodal provability logics GLPΛ to the above-mentioned
program of Π0

1 ordinal analysis. A discussion on how we think the paper
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contributes to the program is included in Appendix B.

Plan of the paper. Section 2 gives a brief review of second-order arithmetic,
used in Section 3 to formalize the notion of iterated ω-provability. Section
4 then discusses some of the basic properties of iterated provability classes
that can be established in ACA0. Iterated provability is defined using a ∆1

1

formula, which we will present in its Π1
1 form. Section 5 briefly discusses an

alternative Σ1
1 presentation.

Iterated ω-provability is most naturally interpreted in introspective theo-
ries, introduced in Section 6. Section 7 reviews the logics GLPΛ and proves
that they are sound for their ω-rule interpretation, and more generally for
any Λ-uniform provability predicate.

In order to prove completeness, Section 8 gives a brief review of the modal
logic J, which is used in the completeness proof provided in Sections 9, 10
and 11. Finally, Appendix A discusses possible variations on the notion
of iterated ω-provability and Appendix B discusses the choice of our base
theory.

2. Second-order arithmetic

In this section we briefly review the subsystems of second-order arithmetic
we will use and establish some basic conventions.

2.1. Syntax

Aside from the modal language LΛ, we will work mainly in the language
of monadic second-order arithmetic with signature

{0, 1,+, ·, exp,=, <,∈}

so that we have symbols for addition, multiplication and exponentiation;
note that = denotes first-order equality, and we in general do not use an
equality symbol between sets. As is customary, we use ∆0

0 to denote the
set of all formulas (possibly with set parameters) where all quantifiers are
bounded, that is, of the form ∀x<t(~y) φ or ∃x<t(~y) φ, where t(~y) is some
term in our language and x is not among the variables ~y. We simultaneously
define Σ0

0 = Π0
0 = ∆0

0 and Σ0
n+1 to be the set of all formulas of the form

∃x0 . . . ∃xmφ with φ ∈ Π0
n, and similarly Π0

n+1 to be the set of all formulas
of the form ∀x0 . . . ∀xmφ with φ ∈ Σ0

n. We denote by Π0
ω the union of all

Π0
n; these are the arithmetic formulas.
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The classes Σ1
n,Π

1
n and Π1

ω are defined analogously but using second-
order quantifiers and setting Σ1

0 = Π1
0 = ∆1

0 = Π0
ω. It is well-known that

every second-order formula is equivalent on the standard model to another
formula in one of the above forms. We use lightface to indicate that no set
variables appear free (Πn

m,Σ
n
m,∆

n
m). Formulas without free variables (either

first or second-order) are sentences, and the set of all Π1
ω sentences will be

denoted S1
ω.

We may also wish to add certain formulas to the above-defined classes.
If θ is any formula, we define Πm

n (θ),Σm
n (θ), etc. as before, except that we

add any first-order substitution instance of θ as an atomic formula. If θ is of
the form x ∈ Y , we may write Γ(Y ) instead of Γ(θ).

We fix some natural Gödel numbering, mapping a formula ψ ∈ Π1
ω to its

corresponding Gödel number pψq, and similarly for terms and sequences of
formulas (used to represent derivations). A required property of our Gödel
numbering is that the code of substrings never exceed the code of the entire
string. Moreover, we require that various simple syntactical operations cor-
respond to operations on the Gödel numbers that are elementarily definable
in such a way that the basic properties are readily provable. By elementary
we mean ∆0

0-definable, recalling that we have included exp in our language.
In particular, we fix some set of numerals, which are closed terms such that
each natural number n is denoted by exactly one numeral written as n, where
the function n 7→ pnq is elementary. Since we will be working mainly inside
theories of arithmetic, we will often identify ψ with pψq.

To simplify notation we use pseudo-terms, where an expression ϕ(t(~x))
should be seen as shorthand for ∃ y< s(~x) (ψ(~x, y) ∧ ϕ(y)), with ψ a ∆0

0

formula defining the graph of the intended interpretation of t and s a standard
term bounding the values of t(~x). We mention explicitly the use of the
following pseudo-terms:

1. A pseudo-term 〈x, y〉 which returns a code of the ordered pair formed
by x and y; for simplicity of exposition, we will assume 〈·, ·〉 to be a
bijection such that always x ≤ 〈x, y〉 and y ≤ 〈x, y〉. We will overload
the notation 〈. . .〉 and also use it for codes of n-tuples, defined (for
example) by recursively setting 〈〉 = 〈0, 0〉 and

〈x0, . . . , xn+1〉 = 〈〈〈x0, . . . , xn〉, xn+1〉, n+ 1〉.

2. A pseudo-term x[y/z] which, when x codes a formula φ, y a variable v
and z a term t, returns the code of the result of subsituting t for v in φ
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while avoiding variable clashes. Otherwise, its value is unspecified, for
example it could be the default p⊥q. We shall often just write φ(t) for
this term if the context allows us to.

3. A pseudo-term x → y which, when x, y are codes for φ, ψ, returns a
code of φ→ ψ, and similarly for other Boolean operators or quantifiers.
The context should always clarify if we use the symbol → as a part of
a term or as a logical connective.

4. A pseudo-term x mapping a natural number to the code of its numeral.

5. For every formula φ and variables x0, . . . , xm, a pseudo-term
φ(ẋ0, . . . , ẋm) which, given natural numbers n0, . . . , nm, returns the
code of the outcome of φ[~x/~n], i.e., the code of φ(n0, . . . , nm).

The only purpose of using these pseudo-terms is to shorten complex for-
mulas for the sake of legibility. Note that the graphs, ranges and inverses
of all these pseudo-terms are elementarily definable. We will assume some
of their simple properties without further comment whenever their universal
forms are provable over a weak enough base theory.

2.2. Elementarily representable theories

We will say a theory T is elementarily representable or simply repre-
sentable if it contains classical predicate logic, is closed under Generalization
and Modus Ponens, and there is a ∆0

0 formula AxiomsT (x) which holds if
and only if x is the code of an axiom of T . Subsequently, ProofT (x, y) will
denote the ∆0

0 formula stating that x codes a derivation in T of a formula
coded by y in the usual way. We will be assuming all theories in the text to
be representable. Of course, using Craig’s trick, any theory with a c.e. set of
axioms is deductively equivalent to a representable one.

We may also assume without loss of generality that any derivation d is
a derivation of a unique formula φ, for example by representing d as a finite
sequence of formulas whose last element is φ (as is done, for example, in
[24]). Also, we assume that every formula that is derivable has arbitrarily
large derivations; this is generally true of standard proof systems, for example
one may add many copies of an unused axiom or many redundant cuts.

Whenever it does not lead to confusion we will work directly with codes
rather than syntactical objects; for example, if φ is a natural number (sup-
posedly coding a formula) we use �Tφ as shorthand for ∃y ProofT (y, φ). We
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write �Tφ(ẋ0, . . . , ẋn) as short for ∃ψ (ψ = φ(ẋ0, . . . , ẋn)∧�Tψ) and adhere
to the same convention for other notions of provability.

2.3. Induction and comprehension

It is important in this paper to keep track of the second-order principles
that are used; below we describe the most important ones. We use < to
denote the standard ordering on the natural numbers and Γ to denote a set
of formulas:

Γ-CA ∃X∀x
(
x ∈ X ↔ φ(x)

)
,

where φ ∈ Γ and X does not appear free in φ;

IΓ φ(0) ∧ ∀x
(
φ(x)→ φ(x+ 1)

)
→ ∀xφ(x),

where φ ∈ Γ;

Ind ∀x
(
(∀ y<x y ∈ X)→ x ∈ X

)
→ ∀x (x∈X).

We assume that all second-order theories extend two-sorted, classical first-
order logic, so that they include Modus Ponens, Generalization, etc., as well
as Robinson Arithmetic extended with the axioms for exp, which we denote
Q+. However, we will only use a first-order equality symbol. The axioms
of Robinson Arithmetic are essentially those of PA without induction; see
e.g. [24] for a precise description, and [33] for explicit definitions of PA and
its second order equivalent, ACA0. Elementary arithmetic is the first-order
theory1 EA = Q+ + I∆0

0.
Although not exactly an instance of Γ-CA, the following axiom is closely

related:

∆0
1-CA ∀x

(
φ(x)↔ ψ(x)

)
→ ∃X∀x

(
x ∈ X ↔ φ(x)

)
,

where φ ∈ Π0
1, ψ ∈ Σ0

1 and X does not appear free in φ or ψ.
Another principle that will be relevant to us is transfinite recursion, but

this is a bit more elaborate to describe. It will be convenient to establish a

1Elementary arithmetic is often presented in a language without exponentiation as
Q++I∆0

0+Exp, where Exp is an axiom asserting that the graph of the exponential function
is total. We do not need this additional axiom because we assume that our language
includes exponentiation; this difference is innocuous, however, since our presentation is
conservative over the other.
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few conventions for working with binary relations in second-order arithmetic.
First, let us write f is a function:

funct(f) = ∀x∃!y(〈x, y〉 ∈ f).

Here, ∃! is the standard abbreviation for there exists a unique.
Also for simplicity, we may write n R m if R represents a relation and

〈n,m〉 ∈ R as well as n 6R m for ¬(〈n,m〉 ∈ R), or n = f(m) if 〈m,n〉 ∈ f
and f is meant to be interpreted as a function. Rather than working with a
second-order equality symbol (which would require an additional extension-
ality axiom), it suffices to define X ≡ Y by ∀x (x ∈ X ↔ x ∈ Y ). We also
define X ⊆ Y in the standard way by ∀x (x ∈ X → x ∈ Y ).

2.4. Computable well-orders

Computable ordinals can be coded in the language of second-order arith-
metic. We represent a linear order Λ by a pair of formulas 〈x < Λ, x <Λ y〉;
the set of numbers such that x < Λ is the domain of Λ and written |Λ|, so
that we may simply write Λ = 〈|Λ|, <Λ〉. Exceptionally, we will also simply
consider a linear order as a set parameter that codes the domain |Λ| and
the pairs 〈x, y〉 that stand in the <Λ ordering, but we will make this explicit
when it is the case.

We will need to express Λ is a linear order and Λ is a well-order, as fol-
lows:

linear(Λ) :

∀x<Λ
(
¬(x <Λ x) ∧ ∀ y<Λ (x <Λ y ∨ y <Λ x ∨ y = x)

)
∧ ∀x, y, z<Λ (x <Λ y ∧ y <Λ z → x <Λ z);

wo(Λ) :

linear(Λ) ∧ ∀X ⊆ |Λ|
(
∃x (x ∈ X)

→ ∃ y∈X ∀z
(
z <Λ y → z /∈ X

))
.

We will use Greek letters for natural numbers when viewed as ordered under
<Λ. In informal discussions we may use natural numbers to represent finite
ordinals, so that, for example, 0 is the least element under <Λ, independently
of whether it truly corresponds to the natural number zero. We should
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remark, however, that even if zero is the least element under ≤Λ, this fact is
not necessarily provable in our formal theory T ; that is, we may have that
T 6` ∀ξ (0 ≤Λ ξ).

We say that Λ is computable if x < Λ is a ∆0
0 formula2 and both x <Λ y

and x 6<Λ y are Σ0
1. If Λ is computable, we obtain

ξ <Λ ζ → �T (ξ <Λ ζ)

by formalized Σ0
1 completeness (see e.g. [14]):

Lemma 2.1. Let T be some representable arithmetic theory with induction
for all ∆0

0 formulas (with exponential). Let σ be a Σ0
1 formula with free

variables x1, . . . , xn for some n ∈ ω. Then,

T ` σ(x1, . . . , xn)→ �Tσ(ẋ1, . . . , ẋn).

In applications, one might wish to work with notations that have further
desirable properties, for example by working with paths within Kleene’s O
or by explicitly requiring that <Λ satisfies various basic desirable properties
in that it can be used to interpret some theory of natural well-orderings like
NWO from [5]. Nevertheless, for our purposes we only need the following
standing assumptions:

1. We assume that all our (well-)orders are computable and, moreover,
that linearity is provable in any theory containing induction for all ∆0

0

formulas.

2. For simplicity, we will henceforth assume that |Λ| = N, and thus write,
for example, ∀λ φ(λ) instead of ∀λ<Λ φ(λ).

However, it is important to note that all our results can easily be adjusted
for any ∆0

0-definable |Λ| ( N. This is particularly relevant when we wish for
Λ to be a finite well-order.

2We will assume that x < Λ is ∆0
0 for simplicity, but more generally, one could allow

x < Λ to be ∆0
1. However, this would require a bit more care, as one would have to keep

track of whether our formal theories can prove that it is ∆0
1.
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2.5. Transfinite induction and recursion

Transfinite recursion is the principle that sets may be defined by iterating
a formula along a well-order. To formalize this, let us consider a set X whose
elements are of the form 〈ξ, x〉. Write Xξ for {x | 〈ξ, x〉 ∈ X} and X<Λξ for
{〈ζ, x〉 ∈ X | ζ<Λξ }. Then, given a set of formulas Γ, we define

TR-Γ ∀Λ
(
wo(Λ)→ ∃X∀ξ∀x

(
x ∈ Xξ ↔ φ(x,X<Λξ)

))
for φ ∈ Γ

(note that Λ is a set-variable here). With this, we may define the following
systems of arithmetic:

RCA0 := Q+ + IΣ0
1 + ∆0

1-CA
ACA0 := Q+ + Ind + Π0

ω-CA
ATR0 := ACA0 + Ind + TR-Π0

ω.

We list these from weakest to strongest, but remark that in the realm of
second-order arithmetics there are important systems much stronger than
ATR0. For convenience we will work mainly in ACA0, but in Appendix B
will discuss how our techniques could be pushed down even below RCA0, at
the cost of slightly stronger transfinite induction.

The system ATR0 is relevant because we will define iterated provability by
recursion over the well-order Λ. However, as we shall see, we require much
less than the full power of arithmetic transfinite recursion for the present
work.

In various proofs we wish to reason by transfinite induction. By TI(Λ, φ)
we denote the transfinite induction axiom for φ along the ordering Λ given
by

TI(Λ, φ) := ∀ξ<Λ
((
∀ ζ<Λξ φ(ζ)

)
→ φ(ξ)

)
→ ∀ξ<Λ φ(ξ),

and if Γ is a set of formulas, TI(Λ,Γ) denotes the scheme {TI(Λ, φ) | φ ∈ Γ}.
The following lemma tells us that comprehension gives us access to transfinite
induction for formulas of the right complexity:

Lemma 2.2. In any second order arithmetic theory T we can prove

wo(Λ) ∧ {¬φ}-CA→ TI(Λ, φ).
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Proof. Reason in T and assume wo(Λ) ∧ {¬φ}-CA. We prove TI(Λ, φ) by
contraposition. Thus, suppose that ∃λ¬φ(λ). As {ξ | ¬φ(ξ)} is a non-empty
set, we can apply wo(Λ) to obtain the <Λ-minimal such λ. Clearly for this
minimal λ we do not have

(
∀ ζ<Λλ φ(ζ)

)
→ φ(λ).

3. Nested ω-rules

In this section we shall formalize the notion of iterated ω-rules inside
second-order arithmetic. An application of the ω-rule allows us to conclude
` σ whenever for some formula φ we have both ∀n ` φ(n) and ` ∀xφ(x)→ σ.
In Boolos ([14]) it is noted that multiple parallel applications of the ω-rule
do not add extra strength. For example, the rule that allows us to conclude
σ from

∀n ` ψ(n)
∀m ` ∀xψ(x)→ φ(m) (†)

` ∀xφ(x) → σ

can actually be derived by a single application of the ω rule. It is the nesting
depth that gives extra strength and not the number of applications, where
‘nesting’ refers to lying on the same branch in the derivation tree.

When we admit slightly less uniformity in this last rule (†) by allowing
ψ to depend on m, and changing the premises to ∀m∀n ` ψm(n) and
∀m ` ∀xψm(x) → φ(m) respectively, we get our notion of 2-provability as
we shall define in more detail below.

More generally, we may iterate this process to generate a hierarchy of
increasingly powerful notions of provability with ξ-fold nesting/iteration of
the ω-rule, for a computable ordinal ξ.

We will use [λ]ΛTφ to denote our representation of The formula φ is prov-
able in T using one application of an ω-rule of depth λ (according to Λ). The
desired recursion for such a sequence of provability predicates is given by the
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following equivalence.3

[λ]ΛTφ ↔
(
�Tφ ∨ ∃ψ ∃ ξ<Λλ

(
∀n [ξ]ΛTψ(ṅ) ∧ �T (∀xψ(x)→ φ)

))
(1)

As a first step towards formalizing this, we will use a set X as an ‘iterated
provability class’, or IPC for short. Its elements are codes of pairs 〈λ, φ〉,
with λ a code for an ordinal and φ a code for a formula; we use [λ]Xφ as
shorthand for 〈λ, φ〉 ∈ X and 〈λ〉Xφ for 〈λ,¬φ〉 6∈ X.

An IPC will collect exactly those pairs of numbers 〈λ, φ〉 so that (1) is
satisfied. As such, any IPC will depend on a parameter Λ whose intended
interpretation is a well-ordering on the natural numbers. We will define a
formula IPCΛ

T (X) as a formalization of:

[λ]Xφ if and only if

1. �Tφ, or

2. there is a formula ψ(x) and an ordinal ξ <Λ λ such that

(a) for each n < ω, [ξ]Xψ(n), and

(b) �T (∀xψ(x)→ φ).

We read IPCΛ
T (X) as “X is an iterated provability class”. Let us enter

into a bit more detail:

Definition 3.1. Define RuleΛ
T (d, ξ, λ, ψ, φ | X) to be the formula4

ξ <Λ λ ∧ ∀n [ξ]Xψ(ṅ) ∧ ProofT (d,∀xψ(x)→ φ),

3There are other natural ways of defining this recursion, which may or may not give
equivalent notions of iterated provability. One particularly appealing variant is to set

[λ]ΛTφ ↔
(
�Tφ ∨ ∃ψ ∃ ξ<Λλ

(
∀n [ξ]ΛTψ(ṅ) ∧ [ξ]ΛT (∀xψ(x)→ φ)

))
;

but surprisingly this would give an equivalent iterated provability predicate. In Appendix
A, we shall discuss this and other possible alternatives in more detail.

4As a general convention, we will use a bar to separate parameters that are meant to
be “quantified away”; in Definition 4.7 we will define a related formula RuleΛ

T (d, ξ, λ, ψ, φ)
which is independent of X.
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ProofΛ
T (c, λ, φ | X) to be

∃d∃ξ∃ψ
(
c = 〈d, ξ, ψ〉 ∧

(
ProofT (d, φ) ∨ RuleΛ

T (d, ξ, λ, ψ, φ | X)
))
,

and let IPCΛ
T (X) be the formula

∀λ∀φ

(
〈λ, φ〉 ∈ X ↔ ∃c ProofΛ

T (c, λ, φ | X)

)
.

Then, [λ]ΛTφ is the Π1
1-formula5 ∀X(IPCΛ

T (X)→ [λ]Xφ).

Since we assume that our ordering <Λ is provably transitive, the following
lemma becomes a simple observation:

Lemma 3.2. Let Λ be a computable well-order, T be a representable theory,
and U extend RCA0. Then, we have that

1. U ` η ≤Λ λ ∧ RuleΛ
T (d, ξ, η, ψ, φ | X) → RuleΛ

T (d, ξ, λ, ψ, φ | X);

2. U ` η ≤Λ λ ∧ ProofΛ
T (c, η, φ | X) → ProofΛ

T (c, λ, φ | X).

We place no restrictions on ψ and φ; they may have free first- or second-
order quantifiers or variables. Note that the formulas [λ]Xφ and 〈λ〉Xφ are
independent of T and of Λ and are merely of complexity ∆0

0. Note also that
since we work with computable well-orders, for r.e. theories T we have that
ProofΛ

T (c, λ, φ | X) is equivalent to a Σ0
2-formula in classical predicate logic,

whence IPCΛ
T (X) is equivalent to a Π0

3-formula.
The notion of λ-provability that we have defined naturally compares to

the existing literature; in particular, for natural well-orderings Λ and under
the assumption that iterated provability classes exist, we have for n < ω that
[n]ΛT coincides with the provability notions discussed in e.g. [27, 29, 30]. Full
ω-logic (i.e., the closure of a theory T under unbounded applications of the
ω-rule) has also been formalized in second-order arithmetic [1, 22], and leads
to another interpretation of GL, studied in [13] and [14, Chapter 14]. This
provability operator is a natural upper bound for all [λ]ΛT .

5The formula is Π1
1 if we consider Λ as a set parameter. In case when Λ is a decidable

ordering the complexity is simply Π1
1. Similar remarks hold for the complexity estimates

that follow.
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It will be convenient to mention two results that fall somewhat outside
the scope of this paper, but nevertheless provide motivation for studying
the ω-rule interpretation. Both are discussed, for example, in [31] (or see
[23, 32]).

Theorem 3.3. If Λ is any computable well-order, T is a sound, representable
theory, λ is a natural number and φ ∈ S1

ω, then [λ]ΛTφ implies that N |= φ.

Theorem 3.4. If φ is any Π1
1-sentence such that N |= φ, then there exists a

computable well-order Λ and a natural number λ such that [λ]ΛTφ.

The proof of Theorem 3.3 follows from a straightforward induction on
λ using the fact that the ω-rule preserves truth; however, it cannot be for-
malized directly within second-order arithmetic as it would require an un-
restricted truth predicate. Theorem 3.4 may be seen as a motivation to
restrict our attention to computable well-orders. It should also be noted
that additional machinery would have to be developed if one were to extend
the current work to non-computable orders.

4. Iterated provability classes

Transfinite induction is required in order to prove most of the properties
of our iterated provability classes. As an exception, we may infer a weak
form of the K-axiom for modal logic (Axiom 2 from Definition 7.1) directly
from the definitions:

Lemma 4.1. Given theories U, T where U extends RCA0 and T is repre-
sentable, we have that

1. U ` ∀φ ∀ψ
(
�T (φ→ ψ)→ ([λ]ΛTφ→ [λ]ΛTψ)

)
;

2. U ` ∀φ ∀ψ
(
[λ]ΛT (φ→ ψ)→ (�Tφ→ [λ]ΛTψ)

)
.

Proof. For the first claim, assume that X is an IPC and that �T (φ → ψ)
and [λ]ΛTφ both hold; let us prove [λ]Xψ. From [λ]ΛTφ and IPCΛ

T (X) we obtain
[λ]Xφ, which means that either �Tφ or there are a formula θ and an ordinal
ξ <Λ λ such that ∀n[ξ]Xθ(ṅ) and �T (∀xθ(x)→ φ) both hold.

If �Tφ is the case, then by Modus Ponens we have that �Tψ and thus
[λ]Xψ. Otherwise, from �T (∀xθ(x) → φ) we obtain �T (∀xθ(x) → ψ) and
thus by one ω-rule we also have [λ]Xψ. In either case, [λ]Xψ, and since X
was an arbitrary IPC we conclude that [λ]ΛTψ.

The proof of the second claim is similar.
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In fact, even the full RCA0 is not needed for this argument, and in Ap-
pendix B we will discuss weaker suitable base-theories. However, for the
sake of simplicity we will not consider theories below RCA0 at this point.

Since [λ]ΛTφ is given by a Π1
1-formula, it may at first sight seem that one

cannot prove properties of our predicate within ACA0 when this requires
induction. Fortunately, this turns out not to be the case. This is based
on the observation that if an IPC exists, then it must be unique. Let us
abbreviate

∀X∀Y
(
φ(X) ∧ φ(Y )→ X ≡ Y

)
by ∃≤1X φ(X).

Lemma 4.2. Let T be representable. Then, we have that

RCA0 + wo(Λ) ` ∃≤1X IPCΛ
T (X).

Proof. The proof proceeds by a straightforward transfinite induction over Λ,
which is available in view of Lemma 2.2, as the formula x ∈ X ↔ x ∈ Y
is ∆0

0; recall that by ∃≤1X IPCΛ
T (X) we denote merely uniqueness, and not

existence, of an IPC.

Let θ(X) be any Π1
ω formula. We denote by Π1

ω � θ the fragment of
Π1
ω where all second-order quantifiers are of the form ∀X (θ(X) → φ) or
∃X (θ(X) ∧ φ). This is the fragment of Π1

ω protected by θ. Of particular
interest is when θ defines a single set, or more generally, at most one set.

Theorem 4.3. Given a formula θ(X) ∈ Π1
ω,

ACA0 ` ∀Λ
(
∃≤1X θ(X) ∧ wo(Λ)→ TI(Λ,Π1

ω � θ)
)
.

Proof. For simplicity, let us assume that all second-order quantifiers are of
the form ∀X. Reasoning within ACA0 and assuming wo(Λ), we consider two
cases.

First assume that ∀X¬θ(X). Then we have that, for any formula ψ,
∀X (θ(X) → ψ) is true. For a formula φ ∈ Π1

ω � θ, define φ> to be the
result of replacing every occurrence of ∀X (θ(X) → φ) by >. Then clearly,
ACA0 ` ∀X¬θ(X) → (φ ↔ φ>), and in particular, TI(Λ, ψ) is equivalent
to TI(Λ, ψ>). But the latter is an instance of induction for an arithmetic
formula, which is derivable in ACA0 under the assumption that wo(Λ), using
Lemma 2.2 (see also e.g. [33]).
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Now assume that ∃Xθ(X). Let X0 be any set satisfying θ(X0). Then,
clearly, ∀X (θ(X) → ψ(X)) is equivalent to ψ(X0).6 More generally, let φ̌
be the result of replacing every subformula of the form ∀X (θ(X)→ ψ(X))
by ψ(X0). Then, for every formula φ,

ACA0 ` θ(X0) ∧ ∃≤1Xθ(X)→ (φ↔ φ̌).

In particular, TI(Λ, φ) is equivalent to TI(Λ, φ̌) under these assumptions; but
φ̌ is arithmetic, hence as before we see that TI(Λ, φ̌) is derivable in ACA0.

As an immediate corollary we obtain the following very useful result which
will allow us to do a substantial deal of induction.

Corollary 4.4. If T is any representable theory,

ACA0 ` ∀Λ
(
wo(Λ)→ TI

(
Λ,Π1

ω � IPC
Λ
T (X)

))
.

This will be very convenient in subsequent sections for reasoning about
iterated provability, but it is not the only nice consequence of Lemma 4.2.
For example, uniqueness allows us to speak of codes of derivations much as
with ordinary provability. To this end, let us say a few words about the
parameter c in ProofΛ

T (c, λ, φ | X). This parameter plays the role of a proof
code, much as the parameter d does in ProofT (d, φ).

Definition 4.5. A natural number c is a λ-proof of φ if it satisfies the for-
mula [c : λ]ΛTφ defined by

[c : λ]ΛTφ = ∀X
(
IPCΛ

T (X)→ ProofΛ
T (c, λ, φ | X)

)
.

As usual, we define 〈c : λ〉ΛTφ = ¬[c : λ]ΛT¬φ. The following shows that
indeed a λ-proof plays a similar role as a standard derivation:

Lemma 4.6. Given theories U, T where U extends ACA0 and T is repre-
sentable, we have that

1. U ` ∀λ∀φ
(
∃c [c : λ]ΛTφ→ [λ]ΛTφ

)
;

2. U + wo(Λ) ` ∀λ∀φ
(
∃c [c : λ]ΛTφ↔ [λ]ΛTφ

)
.

6Here we remind the reader that we are working in a language without set-equality;
otherwise, this step would require extensionality.
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Proof. Reason within U . Let λ be a natural number and φ a formula. For the
first item, assume that [c : λ]ΛTφ. Then, if X is any IPC, ProofΛ

T (c, λ, φ | X)
holds, so that by definition of an IPC, [λ]Xφ. Since X was arbitrary, [λ]ΛTφ.

For the second, it only remains to prove the right-to-left implication.
Suppose that [λ]ΛTφ holds. Consider two cases. If ¬∃X IPCΛ

T (X), then we
may choose c = 0 and observe that both sides of the implication are vacuously
true.

Otherwise, ∃X IPCΛ
T (X) holds. Let X be an IPC. By the assumption

that [λ]ΛTφ is true, we have that [λ]Xφ. By IPCΛ
T (X), there must exist c such

that ProofΛ
T (c, λ, φ | X) holds. Now, if Y is any IPC, by Lemma 4.2, X ≡ Y ,

so we also have ProofΛ
T (c, λ, φ | Y ). Since Y was arbitrary, we conclude that

[c : λ]ΛTφ, as claimed.

We may similarly characterize proof codes in terms of provability.

Definition 4.7. Define RuleΛ
T (d, ξ, λ, ψ, φ) by

ξ <Λ λ ∧ ∀n[ξ]ΛTψ(ṅ) ∧ ProofT (d,∀xψ(x)→ φ).

Lemma 4.8. Given theories U, T where U extends ACA0 and T is repre-
sentable, we have that

1. U ` ∀c∀λ∀φ
(

∃ d, ξ, ψ
(
c=〈d, ξ, ψ〉 ∧

(
ProofT (d, φ) ∨ RuleΛ

T (d, ξ, λ, ψ, φ)
))

→ [c : λ]ΛTφ

)
,

2. U + wo(Λ) + ∃X IPCΛ
T (X) ` ∀c∀λ∀φ

(
[c : λ]ΛTφ

↔ ∃d∃ξ∃ψ
(
c = 〈d, ξ, ψ〉 ∧

(
ProofT (d, φ) ∨ RuleΛ

T (d, ξ, λ, ψ, φ)
)))

.

Proof. The proof of the first item is simple and may be carried out entirely
within two-sorted predicate logic.

For the remaining implication of the second item, let X0 be an IPC. By
the assumption that [c : λ]ΛTφ we obtain

∃d∃ξ∃ψ
(
c = 〈d, ξ, ψ〉 ∧

(
ProofT (d, φ) ∨ RuleΛ

T (d, ξ, λ, ψ, φ|X0)
))
.
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Recalling that

RuleΛ
T (d, ξ, λ, ψ, φ|X0) = ξ <Λ λ ∧ ∀n[ξ]X0ψ(ṅ) ∧ ProofT (d,∀xψ(x)→ φ),

we use Lemma 4.2 to see that ∀n[ξ]X0ψ(ṅ) implies ∀n[ξ]ΛTψ(ṅ), thus obtaining

RuleΛ
T (d, ξ, λ, ψ, φ|X0)→ RuleΛ

T (d, ξ, λ, ψ, φ).

The claim follows.

Note that RuleΛ
T may refer to Definition 3.1 as well as to Definition 4.7 and

the two will be distinguished by whether or not a set-parameter is displayed.

5. The existential interpretation

Observe that we defined [λ]ΛTφ by quantifying universally over all IPCs,
but given the uniqueness of an IPC, we could instead have used an existential
quantifier. While the two versions are provably equivalent over a strong
enough theory, this is not the case for weaker theories. Because of this, it
will sometimes be convenient to pass from one interpretation to the other in
some proofs, most notably that of Lemma 7.6. The existential interpretation
of [λ] is as follows.

Definition 5.1. Given a formula φ, a linear order Λ and λ < Λ, we define

[̂λ]ΛTφ = ∃X
(
IPCΛ

T (X) ∧ [λ]Xφ
)
,

and 〈̂λ〉ΛTφ = ¬[̂λ]ΛT¬φ.

As it turns out, [λ]ΛTφ and [̂λ]ΛTφ are equivalent when Λ is a well-order,
although to prove this equivalence we need transfinite induction and the
existence of an IPC.

Lemma 5.2. If T is any representable theory and U extends ACA0,

1. U + wo(Λ) ` [̂λ]ΛTφ→ [λ]ΛTφ;

2. U + ∃XIPCΛ
T (X) ` [λ]ΛTφ→ [̂λ]ΛTφ.

Proof. The first claim is an immediate consequence of Lemma 4.2, which
states that there can be at most one IPC, and the second is straightforward
and may be carried out within two-sorted predicate logic.
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One may similarly define a variant of [c : λ]ΛTφ:

Definition 5.3. Given a formula φ, an order Λ and λ < Λ, define

[̂c : λ]ΛTφ = ∃X
(
IPCΛ

T (X) ∧ ProofΛ
T (c, λ, φ | X)

)
and 〈̂c : λ〉ΛTφ = ¬[̂c : λ]ΛT¬φ.

The analogue of Lemma 5.2 holds for [̂c : λ]ΛTφ and [c : λ]ΛTφ:

Lemma 5.4. If T is any representable theory, U extends ACA0, and Λ a
well-order, then

1. U + wo(Λ) ` ∀c ∀λ
(
[̂c : λ]ΛTφ→ [c : λ]ΛTφ

)
;

2. U + ∃XIPCΛ
T (X) ` ∀c ∀λ

(
[c : λ]ΛTφ→ [̂c : λ]ΛTφ

)
.

Note that [̂λ]ΛTφ is Σ1
1 rather than Π1

1, and this will allow us to give a
simplified analogue of Lemma 4.6:

Lemma 5.5. Given theories U, T where U extends ACA0 and T is repre-
sentable, we have that

U ` ∀λ∀φ
(
∃c [̂c : λ]ΛTφ↔ [̂λ]ΛTφ

)
.

Proof. Reason within U . Let λ be a natural number and φ a formula, and

assume that ∃c[̂c : λ]ΛTφ. Then, there are an IPC X and a natural number c
such that ProofΛ

T (c, λ, φ | X) holds, which implies that [λ]Xφ. Using X as a

witness, we conclude that [̂λ]ΛTφ.
The other direction is similar and we skip it.

Lemma 5.6. Let U, T be theories where U extends ACA0 and T is repre-
sentable. Define a formula ρ = ρ(d, ξ, λ, ψ, φ) by

ξ <Λ λ ∧ ∀n[̂ξ]ΛTψ(ṅ) ∧ ProofT (d,∀xψ(x)→ φ).

Then, it is provable in U that for all λ, φ, c, d, ξ and ψ,(
c = 〈d, ξ, ψ〉 ∧ [̂c : λ]ΛTφ

)
→
(
ProofT (d, φ) ∨ ρ

)
.
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Proof. We omit the proof, which is straightforward and may be carried out
in two-sorted predicate logic. Observe that ρ is the analogue of the formula

RuleΛ
T (d, ξ, λ, ψ, φ), albeit replacing [ξ]ΛTψ(ṅ) by [̂ξ]ΛTψ(ṅ).

Thus as we have seen, [λ]ΛTφ and [̂λ]ΛTφ are in principle equivalent, but we
need to be able to establish wo(Λ) and the existence of an IPC to prove this.
Because of this, it will often be convenient to work with theories that include
this assumption, and we will turn our attention to such theories in the next
section.

6. Introspective theories

Our notion of ξ-provability, [ξ]ΛT , is a very weak one as it quantifies uni-
versally over all iterated provability classes X and it may be the case that
there are no such classes. Dually, the notion of consistency 〈ξ〉ΛT is very strong
as it in particular asserts the existence of an IPC. In particular, we always
provably have

�Tφ→ [0]ΛTφ. (2)

However, we cannot always prove [0]ΛTφ → �Tφ. Nevertheless, the two no-
tions of provability coincide under the assumption that an iterated provability
class exists:

Lemma 6.1. Given a representable theory T and a theory U that extends
ACA0, we have that

1. U ` ∀φ ∀λ (�Tφ → [λ]ΛTφ);

2. U + ∃XIPCΛ
T (X) ` ∀φ ∀µ

(
∀ξ (µ ≤Λ ξ)→ (�Tφ ↔ [µ]ΛTφ)

)
.

Proof. The proofs are straightforward and are left to the reader.

Corollary 6.2. Let U extend ACA0 and T be representable. If T ` φ, then
U ` ∀λ [λ]ΛTφ.

Proof. If T ` φ, then �Tφ is a true Σ0
1 sentence, whence U ` �Tφ, and thus

U ` ∀λ [λ]ΛTφ by Lemma 6.1.1.

For a theory T to be able to reason about non-trivial facts of iterated
provability at all, it is often necessary for it to at least “believe” that such a
notion exists. For strong theories this is not an issue, but there is no reason
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to assume that ACA0 or any weaker theory is capable of proving that we
have IPCs for non-trivial order types. Hence we shall pay attention to those
theories that do prove this, and we shall call them introspective theories.

Definition 6.3 (Introspective theory). Given a linear order Λ, we say that
an arithmetic theory T is Λ-introspective if T ` ∃X IPCΛ

T (X).

We defined iterated provability classes by transfinite recursion, and as
such it should be no surprise that ATR0 is Λ-introspective for provable well-
orders Λ:

Lemma 6.4. Given an elementarily representable theory T ,

ATR0 ` wo(Λ)→ ∃X IPCΛ
T (X).

In particular, ATR0 is Λ-introspective whenever ATR0 ` wo(Λ).

However, we wish to work over much weaker theories than ATR0, which
may not always be Λ-introspective. Our strategy will be to consider some
sort of an “introspective closure”, but we do not wish for it to become much
stronger than the original theory. Fortunately, this is not too difficult to
achieve.

Definition 6.5. We define the Λ-introspective closure of T as the theory T
given by T + ∃X IPCΛ

T (X).

Below, we use the term “Gödelian” somewhat informally as being sus-
ceptible to Gödel’s second incompleteness theorem; for example, it could be
taken to mean sound, representable and extending RCA0.

Lemma 6.6. T is equiconsistent in elementary arithmetic with T , provided
T is Gödelian.

Proof. Clearly the consistency of T implies the consistency of T . For the
other direction we use that if T is Gödelian, then T is equiconsistent with
T ′ := T +�T⊥. We claim that T ′ ` ∃X IPCΛ

T (X) so that T ′ ⊇ T whence

Con(T ) ⇒ Con(T ′)
⇒ Con(T ).

Indeed, reasoning within T , if T were inconsistent, then �Tφ for every
formula φ. It follows that if X is an iterated provability class, then [λ]Xφ for
all λ and φ; hence the trivial set consisting of all pairs 〈λ, φ〉 is an iterated
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provability class, and by ∆0
0 comprehension, it forms a set. Note that this

reasoning can be readily formalized in elementary arithmetic.

There is still a danger of sliding down a slippery-slope, where T is itself
not Λ-introspective, thus needing to generate a sequence of theories where
each theory is “introspective over the previous”. Fortunately, this is not the
case. In order to show this we need a technical lemma which will tell us, in
particular, that introspection is preserved under taking finite extensions.

Definition 6.7. Let X be a set of pairs of formulas and ordinals and θ a
Π1
ω-formula. We define the set X given θ, which we denote by JX|θK, by

〈λ, φ〉 ∈ JX|θK :⇐⇒ 〈λ, θ → φ〉 ∈ X.

Lemma 6.8. Let U be a theory containing ∆0
0 comprehension, let T be rep-

resentable and θ be any sentence. Then

U ` IPCΛ
T (Y )→ IPCΛ

T+θ(JY |θK).

Proof. We reason in U and assume IPCΛ
T (Y ). By ∆0

0 comprehension we see
that JY |θK is a set. We need to show that [λ]JY |θKφ holds if and only if
either �T+θφ holds or there are ψ and ξ <Λ λ such that ∀n[ξ]JY |θKψ(ṅ) and
�T+θ(∀xψ(x)→ φ).

If [λ]JY |θKφ holds then [λ]Y (θ → φ), which means that either �T (θ → φ)
and thus �T+θφ, or else for some ψ and ξ <Λ λ we have ∀n[ξ]Y ψ(ṅ) and
�T
(
∀xψ(x)→ (θ → φ)

)
. But using Lemma 4.1 we obtain ∀n[ξ]Y (θ → ψ(ṅ))

and thus ∀n[ξ]JY |θKψ(ṅ). Meanwhile, using the tautology(
∀xψ(x)→ (θ → φ)

)
↔

(
θ → (∀xψ(x)→ φ)

)
we obtain �T+θ(∀xψ(x)→ φ), as needed.

For the other direction, assume first that �T+θφ. Then by the deduction
theorem we have �T (θ → φ), and hence [λ]Y (θ → φ), yielding [λ]JY |θKφ. Oth-
erwise, for some ψ and ξ <Λ λ we have ∀n[ξ]JY |θKψ(ṅ) and �T+θ(∀xψ(x) →
φ). The first gives us ∀n[ξ]Y

(
θ → ψ(ṅ)

)
. Meanwhile, by the Deduction

Theorem we obtain �T
(
θ → (∀xψ(x)→ φ)

)
, and using the tautology(

θ → (∀xψ(x)→ φ)
)
↔

(
∀x (θ → ψ(x))→ (θ → φ)

)
this implies that �T

(
∀x (θ → ψ(x)) → (θ → φ)

)
, so that [λ]Y (θ → φ) and

therefore [λ]JY |θKφ, as needed.
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Note that in general we may not expect for U to prove ∃X IPCΛ
T+θ(X)→

∃X IPCΛ
T (X) since for θ = ⊥ the antecedent always holds (recall the proof of

Lemma 6.6). This will be relevant in the proof of the following result, which
is a version of the Deduction Theorem for iterated ω-rules.

Corollary 6.9. Let U be a theory containing ACA0 and let T be repre-
sentable. We have that

1. U ` [λ]ΛT+θφ→ [λ]ΛT (θ → φ)

2. U + wo(Λ) + ∃XIPCΛ
T (X) ` [λ]ΛT+θφ↔ [λ]ΛT (θ → φ).

Proof. Reason within U . For the first claim, assume [λ]ΛT+θφ and let X
satisfy IPCΛ

T (X). Then, Y = JX|θK is an IPC for T + θ, hence we have [λ]Y φ.
But by definition, this means that [λ]X(θ → φ), and since X was arbitrary,
[λ]ΛT (θ → φ).

For the other direction we also need ∃XIPCΛ
T (X). Assume [λ]ΛT (θ → φ)

and let X be an IPC for T . Then, Y = JX|θK is an IPC for T + θ, and by
Lemma 4.2 it is the only IPC. As we have by definition that [λ]Y φ, it follows
that [λ]ΛT+θφ, as needed.

As another direct consequence of Lemma 6.8 we see that the Λ-introspective
closure of a theory is indeed itself Λ-introspective.

Lemma 6.10. If T is representable and contains ∆0
0 comprehension then T

is Λ-introspective.

Proof. By the above Lemma 6.8, if Y is an iterated provability class for T ,
then JY |∃XIPCΛ

T (X)K is an iterated provability class for T . Moreover, by ∆0
0

comprehension, it forms a set according to T .

We conclude that working with Λ-introspective theories is not too restric-
tive, as far as consistency strength is concerned:

Corollary 6.11. Given a linear order Λ, any Gödelian theory T is equicon-
sistent over any theory that extends elementary arithmetic and contains ∆0

0-
comprehension with a Λ-introspective theory T .

A problem that T has is that it introduces a Σ1
1 axiom, possibly increasing

its logical complexity. Although not needed for this text, let us briefly discuss
a way to avoid this, using explicitly Λ-introspective theories:
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Definition 6.12. Given a formal theory T , we define T P over our second
order language of arithmetic augmented with P which is a new set-constant
and T P = T + IPCΛ

T (P ).

Much as with T , T P is Λ-introspective, provided T contains ∆0
0(P ) com-

prehension (that is, P is allowed within comprehension instances). In fact,
we can do a bit better in this case. Recall that the ∆0

0(P ) formulas are those
bounded formulas where the only set parameter which may appear is P .

Lemma 6.13. If T is Gödelian and contains ∆0
0(P ) comprehension and Λ

is any linear order, then T P is Λ-introspective.

The proof proceeds as before and we omit it. Comprehension for formulas
without second-order parameters is very convenient in that it does not “blow
up”, as it cannot be iterated; for example, Π0

1 comprehension with set param-
eters is equivalent to full arithmetic comprehension, but Π0

1 comprehension
is not.

Now that we have shown that Λ-introspective theories are not such a bad
thing to work with, we will employ them freely in the next sections. Intro-
spective theories are capable of reasoning about their own iterated provabil-
ity; for example, we may prove the desired recursion as stated in (1), as can
be seen by putting U = T in the next lemma.

Lemma 6.14. Let U be a theory that extends ACA0 and T be representable.
Then, we have that

1. U proves that(
�Tφ ∨ ∃ψ ∃ ξ<Λλ

(
∀n [ξ]ΛTψ(ṅ) ∧ �T (∀xψ(x)→ φ)

))
→ [λ]ΛTφ;

2. U + wo(Λ) + ∃XIPCΛ
T (X) proves that(

�Tφ ∨ ∃ψ ∃ ξ<Λλ
(
∀n [ξ]ΛTψ(ṅ) ∧ �T (∀xψ(x)→ φ)

))
↔ [λ]ΛTφ.

Proof. In the first item, we reason in U and need to prove [λ]ΛTφ under the
assumption of the antecedent. To this end, we assume IPCΛ

T (X) and show
[λ]Xφ. However, this follows directly from the definition of X being an
IPC since we can in particular replace ∀n [ξ]ΛTψ(ṅ) in the antecedent by
∀n [ξ]Xψ(ṅ).
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For the remaining implication, we assume that [λ]ΛTφ and use the assump-
tion that ∃XIPCΛ

T (X) to fix an IPC X. Then, from [λ]ΛTφ we in particular
obtain [λ]Xφ, which gives us either �Tφ or ∀n[ξ]Xψ(ṅ) ∧ �T (∀xψ(x) → φ)
for some formula ψ and some ξ <Λ λ. But by Lemma 4.2, ∀n[ξ]Xψ(ṅ) implies
that ∀n[ξ]ΛTψ(ṅ). Thus we have that

�Tφ ∨ ∃ψ ∃ ξ<Λλ
(
∀n [ξ]ΛTψ(ṅ) ∧ �T (∀xψ(x)→ φ)

)
,

as needed.

7. Soundness

Given a linear order Λ with |Λ| ⊆ N, one may define a logic GLPΛ with
modalities [λ] for each λ < Λ, generalizing Japaridze’s GLPω as was first
done in [7]. For this, fix a countable set P of propositional variables. The
formulas of the language LΛ are built from ⊥ and variables p ∈ P using
Boolean connectives ¬,∧ and a modality [ξ] for each ξ < Λ. We use 〈ξ〉 as
shorthand for ¬[ξ]¬.

Definition 7.1. The logic GLPΛ is given by the following rules and axioms:

1. all propositional tautologies,

2. [ξ](φ→ ψ)→ ([ξ]φ→ [ξ]ψ) for all ξ < Λ,

3. [ξ]([ξ]φ→ φ)→ [ξ]φ for all ξ < Λ,

4. 〈ζ〉φ→ 〈ξ〉φ for ξ <Λ ζ < Λ,

5. 〈ξ〉φ→ [ζ] 〈ξ〉φ for ξ <Λ ζ < Λ,

6. Modus Ponens, Substitution and Necessitation:
φ

[ξ]φ
for ξ < Λ.

We will normally be interested in the case where Λ is a well-order. In
particular, under this notation, the standard unimodal GL becomes GLP1.
Note that that 〈ξ〉> is consistent with GLPΛ for all ξ < Λ, although it is not
derivable [10].

In this section we shall see that indeed GLPΛ is sound for our ω-rule inter-
pretation. While proving soundness, we shall keep a clear distinction between
the theory (denoted T below) and the meta-theory (denoted U below), since
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they play essentially different roles and hence have different requirements.
Also, separating these theories is needed if the logics GLPΛ are to be em-
ployed for Π0

1 ordinal analysis, as discussed in Appendix B.
We begin the soundness proof by showing the monotonicity of our oper-

ators:

Lemma 7.2. Given theories U, T where U extends ACA0 and T is repre-
sentable, we have that

U ` ∀φ ∀ξ ∀ζ
(
(ξ ≤Λ ζ)→ ([ξ]ΛTφ→ [ζ]ΛTφ)

)
.

Proof. This is immediate from Lemma 3.2 after unpacking the definition of
[ξ]ΛTφ.

To prove that the remaining axioms of GLPΛ hold we will need transfinite
induction over Λ. To this end we define, given a second-order theory T , a
new theory TΛ by

TΛ := T + wo(Λ).

For ease of exposition we will reason within theories that extend ACA0, al-
though in Appendix B we shall discuss this choice. Since introspection is

closed under taking finite extensions, both T
Λ

and TΛ are Λ-introspective
(though not necessarily equivalent); for all our arguments below it is irrele-
vant which one we use.

Lemma 7.3. Given theories U, T where U extends ACA0 and T is repre-
sentable, then

UΛ ` ∀λ ∀φ1∀φ2

(
[λ]ΛT (φ1 → φ2)→ ([λ]ΛTφ1 → [λ]ΛTφ2)

)
.

Proof. We reason within U and proceed by transfinite induction on λ. Ob-
serve that this induction is available over ACA0 (and hence over U) given
Corollary 4.4.

Without loss of generality we may assume the existence of an IPC –
since otherwise the consequent is trivially true– and with this have access to
Lemma 6.14.2. So, we assume that [λ]ΛTφ1 ∧ [λ]ΛT (φ1 → φ2).

If either �Tφ1 or �T (φ1 → φ2) holds we may use Lemma 4.1. Otherwise,
¬�Tφ1 and ¬�T (φ1 → φ2) hold. Then, there must be ψ1, ψ2 such that

1. for each i = 1, 2 there is ξi <Λ λ such that for all n < ω, [ξi]
Λ
Tψi(n),

2. �T (∀xψ1(x)→ φ1),
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3. �T (∀xψ2(x)→ (φ1 → φ2)).

By first-order logic we see that

�T (∀x(ψ1(x) ∧ ψ2(x))→ φ2). (3)

Let ξ = max{ξ1, ξ2}. By induction on ξ <Λ λ and several uses of Modus
Ponens inside [ξ]ΛT we obtain for each n that [ξ]ΛT (ψ1(n) ∧ ψ2(n)). This shows
in combination with (3) that [λ]ΛTφ2 and by transfinite induction on λ, we
conclude the claim.

Close inspection of the proof of Lemma 7.3 reveals that, by Lemma 2.2,
we actually only need Σ0

1 comprehension (with set parameters) to have access
to the transfinite induction. And actually the set-parameter is only needed
to plug in an iterated provability class. Thus, if our language had a constant
P for such a provability class, then Σ0

1(P ) comprehension (without additional
set-parameters) would suffice. The same holds for the other proofs in this
section and we shall no longer explicitly observe this everywhere. In Ap-
pendix B we shall see that the amount of comprehension required can often
be lowered farther still.

So far we have shown that some of the axioms of GLPΛ are sound for
our omega-rule interpretation; Löb’s axiom and the “negative introspection”
axiom remain to be checked. For the former, the following lemma will be
quite useful.

Lemma 7.4. Extend GL with a new operator � and the following axioms for
all formulas φ, and ψ:

1. ` �φ→ �φ,

2. ` �(φ→ ψ)→ (�φ→ �ψ) and,

3. ` �φ→ ��φ,

and call the resulting system GL�.
Then for all φ,

GL� ` �(�φ→ φ)→ �φ.

Proof. It is well-known that GL is equivalent to K4 plus the Löb Rule [14]:

�φ→ φ

φ
.
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Thus it suffices to check that this rule holds for �. But indeed, assume that
GL� ` �φ → φ. Then, using �φ → �φ we obtain �φ → φ, and by Löb’s
rule (for �) we see that GL� ` φ, as desired.

Thus the following result implies that [λ]ΛT is Löbian for all λ:

Lemma 7.5. Given an order Λ and theories U, T extending ACA0 such that
T is representable, we have that

1. UΛ ` ∀c∀λ∀φ
(

[c : λ]ΛTφ→ [λ]ΛT [ċ : λ̇]ΛT φ̇
)

;

2. UΛ ` ∀φ∀λ
(

[λ]ΛTφ→ [λ]ΛT [λ̇]ΛT φ̇
)

.

Proof. Reason within UΛ. We will prove both claims simultaneously by in-
duction on λ; as before, Corollary 4.4 allows us to carry out this induction
within ACA0. Without loss of generality we may assume that there is an
IPC for if not, the lemma trivially holds.

We begin by proving the first claim. Suppose that φ is a formula and c, λ
satisfy [c : λ]ΛTφ, so that by Lemma 4.8, c = 〈d, ξ, ψ〉 and either ProofT (d, φ)
or RuleΛ

T (d, ξ, λ, ψ, φ) holds. By provable Σ0
1-completeness, we have that

�T
(
c = 〈d, ξ, ψ〉

)
. Similarly, if ProofT (d, φ) holds then �TProofT (d, φ), and

thus in this case we obtain [λ]ΛT [c : λ]ΛTφ.
On the other hand, if RuleΛ

T (d, ξ, λ, ψ, φ) holds, then ξ <Λ λ and, once
again by Σ0

1-completeness, [λ]ΛT (ξ <Λ λ). Moreover, we have that ∀n[ξ]ΛTψ(ṅ)
holds, so that applying the second claim inductively to ξ <Λ λ, ∀n[ξ]ΛT [ξ]ΛTψ(ṅ)
holds as well. By one ω-rule this gives us [λ]ΛT∀n[ξ]ΛTψ(ṅ). Meanwhile, once
again by Σ0

1-completeness we have �TProofT
(
d,∀xψ(x) → φ

)
, and hence

[λ]ΛTRule
Λ
T (d, ξ, λ, ψ, φ). Once again by Lemma 4.8.1 (within T ),

�T
(
c = 〈d, ξ, ψ〉 ∧ RuleΛ

T (d, ξ, λ, ψ, φ)→ [c : λ]ΛTφ
)
,

and we may use Lemma 4.1 to conclude that [λ]ΛT [c : λ]ΛTφ.
For the second claim, if [λ]ΛTφ holds, by Lemma 4.6.2 there is c such that

[c : λ]ΛTφ holds, hence by the previous item, [λ]ΛT [c : λ]ΛTφ. Using Lemma 4.6.1
within T , this implies that [λ]ΛT [λ]ΛTφ.

It remains to check that the axiom 〈ξ〉φ → [λ]〈ξ〉φ for ξ <Λ λ is valid.
Here we will need for the first and only time the assumption that T is Λ-
introspective.
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Lemma 7.6. If U, T are theories extending ACA0, Λ is computable and T
is representable and Λ-introspective, then

1. UΛ ` ∀λ∀φ∀c
(
〈c : λ〉ΛTφ→ [λ]ΛT 〈ċ : λ̇〉ΛT φ̇

)
;

2. UΛ ` ∀λ∀φ ∀ ξ<Λλ
(
〈ξ〉ΛTφ→ [λ]ΛT 〈ξ̇〉ΛT φ̇

)
.

Proof. Reason within UΛ. Instead of the original claims, we will prove that,
for all λ and φ,

∀c
(
〈c : λ〉ΛTφ→ [λ]ΛT 〈̂ċ : λ̇〉ΛT φ̇

)
; (4)

∀ξ <Λ λ
(
〈ξ〉ΛTφ→ [λ]ΛT 〈̂ξ̇〉ΛT φ̇

)
. (5)

The lemma immediately follows, since T is Λ-introspective, so that by Lemma
5.4.2 we have that

�T
(
〈̂c : λ〉ΛTφ→ 〈c : λ〉ΛTφ

)
,

and similarly by Lemma 5.2.2, �T ∀c ∀λ
(
〈̂λ〉ΛTφ→ 〈λ〉ΛTφ

)
.

We proceed to prove (4) and (5) simultaneously by transfinite induction
on λ. We begin by proving (5).

Assume that ξ <Λ λ is such that 〈ξ〉ΛTφ holds. By Lemma 4.6.2, this
is provably equivalent in UΛ to ∀c 〈c : ξ〉ΛTφ. By the induction hypothesis

applied to (4), this implies that ∀c [ξ]ΛT 〈̂ċ : ξ〉ΛTφ. By one application of the

ω-rule, this yields [λ]ΛT∀c 〈̂c : ξ〉ΛTφ, and by Lemma 5.5 this gives us [λ]ΛT 〈̂ξ〉ΛTφ,
as needed.

To prove (4), fix an arbitrary c. Since the pairing function is bijective,
we may uniquely write c = 〈d, ξ, ψ〉. By provable Σ0

1-completeness, this gives
us [λ]ΛT

(
c = 〈d, ξ, ψ〉

)
.

If 〈c : λ〉ΛTφ holds, by Lemma 4.8.1 we have that both ¬ProofT (d,¬φ)
and ¬RuleΛ

T (d, ξ, λ, ψ,¬φ) hold. By Σ0
1-completeness and Lemma 6.1.1 we

also have [λ]ΛT¬ProofT (d,¬φ).
Since ¬RuleΛ

T (d, ξ, λ, ψ,¬φ) is true, this means that at least one of ξ ≥Λ λ,
¬ProofT (d,∀xψ(x)→ ¬φ), or ∃n 〈ξ〉ΛT¬ψ(ṅ) holds. If

ξ ≥Λ λ ∨ ¬ProofT (d,∀xψ(x)→ ¬φ)
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is the case, then as this is a Σ0
1-formula we also have

[λ]ΛT
(
ξ ≥Λ λ ∨ ¬ProofT (d,∀xψ(x)→ ¬φ)

)
.

If instead we have that ∃n〈ξ〉ΛT¬ψ(ṅ), choose such an n. By (5), we have

that [λ]ΛT 〈̂ξ〉ΛT¬ψ(n).
Setting

ρ = ξ <Λ λ ∧ ∃n[̂ξ]ΛTψ(ṅ) ∧ ProofT
(
d,∀xψ(x)→ ¬φ

)
,

we see that in both cases [λ]ΛT¬ρ holds. Since we also had [λ]ΛT¬ProofT (d,¬φ),
we obtain

[λ]ΛT
(
c = 〈d, ξ, ψ〉 ∧ ¬ProofT (d,¬φ) ∧ ¬ρ

)
,

so that by the contrapositive of Lemma 5.6 we have that [λ]ΛT 〈̂c : λ〉ΛTφ, as
desired.

We have essentially proven that GLPΛ is sound for its omega-rule interpre-
tation. However, it will be convenient to cast this soundness result in a more
general setting, so we introduce the notion of uniform provability predicates
which will be central in our completeness proof further on.

Definition 7.7. Let T be representable and Λ a linear order. Given a formula
π(c, λ, φ), we introduce the notation [c : λ]πφ = π(c, λ, φ), as well as [λ]πφ =
∃c[c : λ]πφ.

A Λ-uniform proof predicate over T is a formula π(c, λ, φ) (with all free
variables shown) satisfying

1. T ` IΣ0
1(π);

2. T ` ∀λ∀φ (�Tφ→ [λ]πφ);

3. T ` ∀λ∀φ∀ψ
(

[λ]π(ψ → φ) ∧ [λ]πψ → [λ]πφ
)

;

4. T ` ∀c ∀λ∀ξ≤Λλ∀φ
(

[c : ξ]πφ→ [c : λ]πφ
)

;

5. T ` ∀c ∀λ∀φ
(

[c : λ]πφ→ [λ]π[ċ : λ̇]πφ̇
)

;

6. T ` ∀c∀λ∀φ
(
〈c : λ〉πφ→ [λ]π〈ċ : λ̇〉πφ̇

)
;
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7. T ` ∀λ∀ ξ<Λλ∀φ
(
〈ξ〉πφ→ [λ]π〈ξ̇〉πφ̇

)
.

We say π is sound7 if, moreover, N |= ∀λ∀φ ([λ]πφ→ φ).
A formula π̂ is a Λ-uniform provability predicate over T if T ` π̂ ↔ ∃c π,

where π is a Λ-uniform proof predicate.

Note that in general we do not require [0]πφ→ �Tφ to hold. Our ω-rule
interpretation gives an example of a uniform provability predicate:

Lemma 7.8. If Λ is a well-order and T is a sound, representable, Λ-introspective
theory extending ACA0 and such that T ` wo(Λ), then [λ]ΛTφ is a sound, Λ-
uniform provability predicate with proof predicate [c : λ]ΛTφ.

Proof. By Lemma 4.6.2, we have that [λ]ΛTφ is provably equivalent to ∃c [c :
λ]ΛTφ, so it remains to check that [c : λ]ΛTφ is a sound, Λ-uniform proof
predicate. Property 1 follows from Corollary 4.4, Property 2 is Lemma 6.1.1,
Property 4 is Lemma 3.2, Property 3 is Lemma 7.3, Property 5 is Lemma
7.5.1 and Properties 6 and 7 are Lemma 7.6. Soundness is Theorem 3.3.

Definition 7.9. An arithmetic interpretation is a function8 f : P→ S1
ω.

If π is a Λ-uniform proof predicate over T , we denote by fπ the unique
extension of f such that fπ(p) = f(p) for every propositional variable p,
fπ(⊥) = ⊥, fπ commutes with Booleans and fπ([λ]φ) = [λ]πfπ(φ).

Lemma 7.10. If Λ is any computable linear order on the natural numbers,
T is a representable theory extending ACA0, π is a Λ-uniform proof predicate
over T and GLPΛ ` φ, then T ` fπ(φ) for every arithmetic interpretation f .

Proof. By an easy induction on the length of a GLPΛ-proof of φ, using the
fact that each of the axioms is derivable. Necessitation uses Σ0

1-completeness
and Property 2.

Theorem 7.11 (Soundness). Let Λ be any computable well-order on the
natural numbers, T a representable, Λ-introspective theory extending ACA0

such that T ` wo(Λ) and fΛ
T = fProofΛ

T
. Then, if GLPΛ ` φ it follows that

T ` fΛ
T (φ) for every arithmetic interpretation f .

Proof. Immediate from Lemmas 7.8 and 7.10.

7Observe that for π to be sound, we must have that T itself was already sound.
8Recall that P is the set of propositional variables and S1

ω the set of Π1
ω sentences.
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Now that we have proven that GLPΛ is sound, our main objective will be
to prove the converse of Theorem 7.11, that is, the completeness of GLPΛ.
For this, let us first review the modal logic J.

8. The logic J

Kripke semantics are often a useful tool for studying modal logics, and the
logic GLP1 is sound and complete for the class of finite, well-founded trees.
However, the logic GLPΛ is not sound and complete for any class of Kripke
frames whenever Λ > 1. In order to remedy this situation, Beklemishev,
improving on an idea of Ignatiev [26], has proposed the weaker logic J in [8].
This logic J is very similar to GLPω, except that we replace Axiom 4 of GLPω
by the two axioms

6. [n]φ→ [m][n]φ, for n ≤ m and

7. [n]φ→ [n][m]φ, for n < m.

We will denote by JN the fragment of J which only contains modalities less
than N .

For our purposes, a Kripke frame is a structure F =
〈
W, 〈Rn〉n<N

〉
, where

W is a set, N a natural number and 〈Rn〉n<N a family of binary relations on
W . A valuation on F is a function J·K : LN → P(W ) such that

J⊥K = ∅ J¬φK = W \ JφK
Jφ ∧ ψK = JφK ∩ JψK J〈n〉φK = R−1

n JφK ,

where for X ⊆ W , we define R−1
n X = {w ∈ W : ∃v ∈ X wRnv}.

A Kripke model is a Kripke frame equipped with a valuation J·K; note that
propositional variables may be assigned arbitrary subsets of W . Clearly,
a valuation is uniquely determined once we have fixed its values for the
propositional variables. As usual, φ is satisfied on 〈F, J·K〉 if JφK 6= ∅, and
valid on 〈F, J·K〉 if JφK = W . Often we will write F, x  ψ instead of x ∈ JψK,
and write F  ψ if ψ is valid on F. It is well-known that [n] obeys GL
whenever R−1

n is well-founded and transitive, in which case we write R−1
n as

<n.9

9Note that this strays from convention in that v <n w means that v is n-accessible
from w, and not vice-versa. There are several reasons why we prefer this presentation;
for example, some of the most natural models of GLPΛ come from ordinals, where the
“possible worlds” from ξ are all less than ξ [11, 18, 20, 25].
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Unlike GLPN , the logics JN are proven in [8, 10] to be sound and complete
for a class of Kripke frames, defined as follows:

Definition 8.1. A JN -frame is a structure W = 〈W, 〈>n〉n<N〉, where W is
a finite set and

1. the relations <n are transitive and well-founded,

2. if n < m and w <m v then <n(w) = <n(v) (where <n(w) = {u : u <n

w}), and

3. if n < m then w <m v <n u implies that w <n u.

It will also be convenient to define some auxiliary relations on the JN -
frame W. Say that:

• w �n v if for some m ≥ n, w <m v. We will use �n to denote the
reflexive closure of �n.

• w≪n v if there is u ∈ W such that w �n u �n+1 v.

We will also use ≈n to denote the symmetric, reflexive, transitive clo-
sure of �n, and [w]n to denote the equivalence class of w under ≈n. Write
[w]n+1 <n [v]n+1 if there exist w′ ∈ [w]n+1, v′ ∈ [v]n+1 such that w′ <n v

′.
Next, let us state some useful properties of J-frames:

Lemma 8.2. Let W = 〈W, 〈>n〉n<N〉 be any JN -frame. Then,

1. If v <m w and v <n w then m = n.

2. If u <m v <n w then u <min{m,n} w.

3. The relation �n is transitive and well-founded.

4. If w ≈m v and n < m, then <n(w) = <n(v).

Proof. For the first item, assume that v <m w and v <n w. Towards a
contradiction, assume that m 6= n; without loss of generality, we may assume
n < m. Then, by the J-frame condition 2, <n(w) = <n(v), which means in
particular that v <n v. But this contradicts the well-foundedness of <n,
according to the J-frame condition 1.

For the second, if n < m, by the J-frame condition 3, we have that u <n w.
If m = n, then u <m w by transitivity (J-frame condition 1). Finally, if
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Figure 1: A stratified J3-frame; dotted arrows represent <0, dashed arrows <1 and solid
arrows <2; accodringly, dashed boxes represent ≈1 and solid ones ≈2. Note that per our
convention, a dotted arrow from w to v means that v <0 w. The frame may be seen as
a partial ordering <0 whose nodes are the ≈1-equivalence classes. Each of these classes
is, in turn, a tree-like J-frame but now only with relations <1, <2, and each of whose
nodes, in turn, is a J-frame on <2. It is helpful to think of the equivalence classes [w]n as
lower-dimensional “sheets”, as depicted in the figure.

m < n, then by the J-frame condition 2, we have that <m(v) = <m(w), and
in particular u <m w.

For the third, we begin by establishing transitivity. Assume that u �n

v �n w, so that there are m, k ≥ n with u <m v <k w. Then, by the previous
item, u <min{m,k} w, and hence u�n w. For well-foundedness, observe that,
since W is assumed finite and �n is transitive, it suffices to check that �n

is irreflexive. But, if w �n w, this means that w <m w for some m ≥ n,
contradicting the well-foundedness of <m.

The fourth claim follows by an easy induction using condition 2.

A JN -frame W is said to be stratified if whenever [w]n+1 <n [v]n+1, it
follows that w <n v. This means that w <n v and w <m u implies u <n v
whenever m > n. Strictly speaking, stratification is not needed for any of
our proofs, but stratified frames are particularly easy to visualize (see Figure
1). We say W is rooted if there is a world 0 such that for all w ∈ W , w �0 0,
in which case 0 is its root.

With this we may state the following completeness result:
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Theorem 8.3. Given φ ∈ LN , φ is JN -consistent if and only if φ can be
satisfied at the root of a stratified JN -frame.

This result is proven for the full logic J in [8] and for the fragments JN in
[10], where it is shown that, in fact, J is conservative over JN . Thus if we can
reduce GLPω to J, we will be able to work with finite well-behaved Kripke
models. For this, given a formula φ whose maximum modality is N , define

M(φ) =
∧

[n]ψ∈sub(φ)
n<m≤N

(
[n]ψ → [m]ψ

)
.

Then we set M+(φ) = M(φ) ∧
∧
n≤N [n]M(φ).

The formulas M(φ) make expressions of the form [n]ψ become much
stronger.

Lemma 8.4. Let W = W = 〈W, 〈>n〉n<N J·K〉 be a JN -model and φ ∈ LN be
such that W  M(φ). Suppose that [n]ψ ∈ sub(φ) and w ∈ W are such that
W, w  [n]ψ.

Then, whenever v≪n w, it follows that W, v  ψ.

Proof. Suppose that W, w  [n]ψ and [n]ψ ∈ sub(φ). If v≪n w, then there
is u ∈ W such that v �n u �n+1 w; note that u ≈n+1 w, so by Lemma
8.2.4, <n(u) = <n(w), from which it follows that W, u  [n]ψ. Moreover,
v <m u for some m with n ≤ m < N , so that from the assumption that
W  M(φ) we obtain W  [n]ψ → [m]ψ, hence W, u  [m]ψ. In particular,
it follows that W, v  ψ, as claimed.

Moreover, the formulas M+(φ) provide a reduction from GLPω to J, as
proven in [8]:

Lemma 8.5. For any formula φ ∈ LΛ with modalities less than N , GLPω ` φ
if and only if JN `M+(φ)→ φ.

Once again, the result is established for J in [8] and for JN in [10]. Com-
bining this with Theorem 8.3, we see that if φ ∈ LN is GLPω-consistent, then
φ is satisfiable on some rooted JN -model W. Moreover, since W is rooted
and the root satisfies M+(φ), it is easy to see that W M(φ). Nevertheless,
we often want a model where ♦φ, rather than φ, is satisfied. We can obtain
such a model as follows.
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Lemma 8.6. Let W = 〈W, 〈>n〉n<N , J·K〉 be a JN -model with 0 6∈ W , and
consider a new structure

W′ = 〈W ′, 〈>′n〉n<N , J·K
′〉,

where

(i) W ′ = W ∪ {0},

(ii) >′0 = >0 ∪
(
{0} ×W

)
and if n < N , >′n = >n;

(iii) JpK′ = JpK for any propositional variable p.

Then, for any φ ∈ LN :

1. W′ is a rooted JN -model with root 0;

2. if W is stratified, then W′ is stratified;

3. if w ∈ W then W′, w  φ if and only if W, w  φ;

4. if 1 ∈ W is such that W, 1  φ, then W′, 0  ♦φ, and

5. if W M(φ), then W′ M(φ).

Proof. Items 1 and 2 are proven by checking each of the required conditions.
For example, we show that if u <′m v <′n w then u <′min{m,n} w. If u, v, w are
all different from 0, then we already had u <m v <n w, so that u <min{m,n} w,
and hence u <′min{m,n} w. Otherwise, it is easy to see from the definition that

only w can be 0, and thus 0 = n = min{m,n}. But then, we have that
u <′0 0 by definition.

For item 3, we observe that W is generated in W′, i.e. if w ∈ W and
w >n v it follows that v ∈ W as well. By standard modal theory [15] (or,
alternately, by a straightforward structural induction on φ), we see that for
any w ∈ W , W, w  φ if and only if W′, w  φ. Item 4 is then immediate,
since in particular we obtain that W′, 1  φ, hence W, 0  φ.

Finally, for item 5, assume that W  M(φ). By item 3, for all w ∈ W ,
W′, w M(φ). Hence it remains to check that W′, 0 M(φ). Observe that
W′, 0  [m]ψ whenever m > 0 independently of ψ, simply because there is
no w such that w <′m 0. Moreover, if n < m we forcibly have m > 0, thus
W′, 0  [n]ψ → [m]ψ for any ψ. Recalling the definition of M(φ), it readily
follows that W′, 0 M(φ).
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Let us put all of these results together into the form that will be useful
to us.

Lemma 8.7. If N < ω and φ ∈ LN is GLPω-consistent, then there is a finite,
stratified JN -model W with root 0 such that

1. W, 0  ♦ψ, and

2. W M(φ).

Proof. If φ ∈ LN is GLPω-consistent, by Lemma 8.5, M+(φ) ∧ φ is JN -
consistent, so that by Theorem 8.3, M+(φ) ∧ φ is satisfied on the root of
some stratified JN -model W. Note that since the root of W satisfies M+(φ),
it readily follows that W M(φ). Thus using Lemma 8.6, we see that there
is a finite, rooted, stratified JN -model W′ with root 0 such that W′, 0  〈0〉φ
and W′ M(φ), as needed.

We shall use this result in the next section in order to prove arithmetical
completeness by “piggybacking” on the completeness of JN for finite frames.

9. On arithmetical completeness

In the following sections we want to prove that GLPΛ is complete with
respect to T for any sound uniform proof predicate π over T , and in partic-
ular for its ω-rule interpretation. This means that, given a GLPΛ-consistent
formula φ, there is an arithmetic interpretation f such that ¬fπ(φ) is not
derivable in T (we will make this claim precise in Theorem 10.2).

There are many proofs of completeness of GL and GLPω, and it is possible
to go back to an existing proof and adjust it to prove completeness in our
setting. Because of this, we should say a few words about our choice of
including a full proof in this paper. There are essentially two reasons.

The first is that, while our result follows to a certain degree from known
proofs, it does not follow from known results; even then, there would be
several technical issues in adjusting known arguments to our setting, as they
make assumptions that are not available to us.

The second is that the argument we propose carries some simplifications
over previous proofs that could also be applied to standard interpretations
of GLPω, thus contributing to an ongoing effort to find simpler arguments for
this celebrated completeness result.
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There have been early completeness proofs of transfinite provability logics
(see [3, 4], where the latter has completeness proofs with respect to progres-
sions within or through Kleene’s universal notation system O), although the
interpretations considered yield modal logics that are very different from
GLPΛ. For GLPΛ itself there are at least seven arithmetical completeness
results in the literature, all with Λ ≤ ω:

1. Solovay originally constructed a function h with domain ω of a self-referen-
tial nature and used statements about h to prove the completeness theorem
for the unimodal GLP1 in [34]. The proof used the recursion theorem.

2. Boolos introduced in [12] a modification of Solovay’s original proof using
the fixpoint theorem instead of the recursion theorem, where the function h
is simulated via finite sequences that represent computations.

3. Japaridze proved in [27] the completeness of GLPω for a first-order version
of the ω-rule interpretation we are presenting here.

4. De Jongh, Jumelet and Montagna gave in [17] a more elementary con-
struction of the fixpoints using the simultaneous fixpoint theorem. Moreover,
the reasoning about these simultaneous fixpoints could be largely formalized
within a modal logic incorporating witness comparison statements (essen-
tially Guaspari-Solovay’s logic R−).

5. Ignatiev generalized Japaridze’s result in [26] to a large family of “strong
provability predicates”.

6. Boolos provides in [13] a completeness proof for GLP2 where the modality
[1] is interpreted in second-order arithmetic as provable by any number of
applications of the omega-rule. Both this paper and Japaridze’s [27] work
with Solovay-style functions that are defined on a finite initial segment of ω.

7. Beklemishev gave in [9] a simplified argument using the logic J, which
is very well-behaved. This proof considers a family of N Solovay functions
hn with domain ω, where N is the number of modal operators appearing in
our “target formula” φ and where each hn+1(0) is defined to be the limit of
the previous hn function. In a sense, these hn thus glue together to a global
Solovay function on ω ·N .
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Despite Ignatiev’s provability predicates being quite general, they do not
include our interpretation, as for example it is assumed that they are of in-
creasing syntactical complexity whereas our iterated provability classes are
all given by a single Π1

1 formula. Although we do not have a syntactical
difference between [λ]ΛTφ and [µ]ΛTφ for λ < µ, it is clear that in extension
the formulas do increase in complexity; that is, the complexity of the hyper-
arithmetical sets of formulas provable using the different predicates increases
with the ordinals (see e.g. [2]).

Thus we will instead work with uniform provability predicates. For the
proof to go smoothly, we need a technical assumption on such predicates:

Definition 9.1. Let π be a Λ-uniform proof predicate over a theory T . We
say that π is normalized if it is provable in T that for every λ we have that
every λ-derivable formula has infinitely many λ-derivations and, whenever
[c : λ]πφ and [c : λ]πψ, it follows that φ = ψ; in other words, every derivation
must be a derivation of a single formula.

Observe that if π is a Λ-uniform proof predicate such that [c : ξ]πφ and
[c : λ]πψ, it also follows that φ = ψ. For, without loss of generality, we may
assume that ξ ≤Λ λ, and thus by Definition 7.7.4, [c : λ]πφ as well, so that
ψ = φ.

As mentioned in Section 2, there are natural ways of obtaining normalized
proof predicates, for example letting c be a sequence of formulas which are
taken to prove only the last formula and allowing for redundant steps in
proofs. But we may also enforce this condition in an ad-hoc way:

Lemma 9.2. Given a Λ-uniform proof predicate π for a theory T , there is a
normalized proof predicate π′ such that RCA0 ` ∀λ∀φ([λ]πφ↔ [λ]π′φ).

Proof. Define π′(c, λ, φ) if and only if there are c′ and m such that c =
〈c′, φ,m〉 and π(c′, λ, φ). Note that the parameter m works as “padding” to
lengthen proofs.

Thus we may freely restrict our attention to normalized proof predicates.

10. Arithmetical completeness of GLPΛ

The completeness proof we present here is the first that considers well-
orders beyond ω (excluding [3, 4], which as we mentioned apply to different
modal logics) and combines ideas from [17] and [9] by considering finite paths
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over a polymodal J-frame. We do so by introducing an additional trick, which
is to work with all modalities simultaneously, where our path makes a λn-
step whenever appropriate. Readers familiar with known proofs might find it
surprising that this is not problematic, but indeed it isn’t and otherwise the
argument proceeds as in other settings. As always, we will mimic a Kripke
structure using arithmetic formulas and define our arithmetic interpretation
based on them.

Since GLPΛ is Kripke-incomplete, we will resort to J-models instead.
These models are related to GLPω as described in Section 8. The step from
GLPΛ to GLPω is provided by the following easy lemma which is also given
in [10].

Lemma 10.1. Let φ be a GLPΛ formula and λ0 <Λ . . . <Λ λN−1 be all the
elements of Λ appearing in φ. By φc we denote the condensation of φ that
arises by simultaneously replacing each occurrence of [λi] by [i]. Then, we
have that

GLPω ` φc =⇒ GLPΛ ` φ.

Proof. Given a GLPω-derivation d of φc we may replace every occurrence of
[n] in d by [λn], thus obtaining a derivation of φ.

With this lemma at hand we may give an outline of the proof of our
completess theorem, which reads as follows.

Theorem 10.2. If Λ is a computable linear order, T is any sound, repre-
sentable theory extending RCA0, π is a sound, normalized, Λ-uniform proof
predicate over T and φ is any LΛ-formula, GLPΛ ` φ if and only if, for every
arithmetic interpretation f , T ` fπ(φ).

Proof plan. One direction is soundness and has already been established in
Lemma 7.10.

For the other, if φ is GLPΛ-consistent then by Lemma 10.1, φc is GLPω-
consistent. Let N be the number of modalities appearing in φ. By Lemma
8.7, there is a finite JN -model

W = 〈W, 〈>n〉n<N , J·K〉

with root 0 such that W, 0  〈0〉φc (so that W, 1  φc for some world 1 6= 0)
and W  M(φc). We will assign to each w ∈ W an arithmetic sentence σw
so that the formulas σ = 〈σw〉w∈W are a “snapshot” of W. We will make this
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precise in Definition 10.4, but let us outline the essential properties that we
need from σ.

First, we need for the arithmetic interpretation f that sends a proposi-
tional variable p to f(p) :=

∨
w∈JpK σw to have the properties that

W, w  ψc ⇐⇒ T ` σw → fπ(ψ) (6)

W, w 6 ψc ⇐⇒ T ` σw → ¬fπ(ψ)

for each w ∈ W \ {0} and each subformula ψ of φ. In particular, we have
that T ` σ1 → ¬fπ(φ) from which we obtain

T ` ♦Tσ1 → ¬�Tfπ(φ). (7)

Our desired result will follow if the formulas σ satisfy two more properties:
the first is that

T ` σ0 → ♦Tσ1,

and the second, that N |= σ0. By the assumption that T is sound we conclude
that N |= ¬�Tfπ(φ). Hence, fπ(φ) is not provable in T which is what was to
be shown.

Before we proceed to give the details needed to complete the proof we
state as an easy consequence of our arithmetic completeness theorem the
following corollary, which was also proven by purely modal means in [10].

Corollary 10.3. Given a computable well-order Λ and an LΛ-formula φ we
have that

GLPΛ ` φ ⇐⇒ GLPω ` φc.

Proof. One direction is Lemma 10.1. For the other direction, suppose GLPω 0
φc. By Theorem 10.2, we find an arithmetic interpretation f so that ACA0

Λ 0
fΛ
T (φ). By the soundness theorem (Theorem 7.11), we conclude that GLPΛ 0
φ.

Before entering into further detail, we first say what it means for a col-
lection of sentences σ = 〈σw〉w∈W to be a snapshot of a Kripke structure
inside a theory. Generally speaking, this means that each world w will be
associated with an arithmetic sentence σw so that this sentence carries all
the necessary information in terms of accessible worlds. Below, recall that
all JN -frames are assumed finite.
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Definition 10.4. Given a computable linear order Λ, a sequence

λ = λ0 <Λ λ1 <Λ . . . <Λ λN−1,

a JN -frame W = 〈W, 〈>n〉n<N〉 with root 0, and a Λ-uniform proof predicate
π for some formal theory T , a family of sentences σ = 〈σw〉w∈W is a λ-
snapshot of W over π if

1. T `
∧

w 6=v∈W

¬(σw ∧ σv);

2. T + σw ` 〈λn〉πσv for all w ∈ W , n < N and v <n w;

3. for all n < N and for each world w 6= 0,

T + σw ` [λn]π
∨

v≪nw

σv;

4. N |= σ0.

If W, σ, λ, T are as above we will write σ : W
λ

↪→ π.

The following result is proven in [9].

Lemma 10.5. Suppose that σ : W
λ

↪→ π, φ is an LΛ-formula with modalities
amongst λ such that W M(φc), and f(p) :=

∨
w∈JpK σw.

Then, for all 0 6= w ∈ W and every subformula ψ of φ,

1. if w ∈ Jψc K then T + σw ` fπ(ψ);

2. if w 6∈ Jψc K then T + σw ` ¬fπ(ψ).

Proof. By induction on the complexity of ψ. The cases for propositional
variables and Booleans are straightforward, so we focus on ψ = [λn]θ.

First we prove item 2. Suppose that w 6∈ J ([n]θ)c K. Then, there is v ∈ W
such that v <n w and v 6∈ JθcK. By the induction hypothesis, T+σv ` ¬fπ(θ),
hence by contrapositive, T ` fπ(θ)→ ¬σv. By Definition 7.7.3, we have that
T ` [λn]πfπ(θ) → [λn]π¬σv; once again by contrapositive, T ` 〈λn〉πσv →
¬[λn]πfπ(θ). It follows by Definition 10.4.2 that T + σw ` ¬[λn]πfπ(θ), and
the latter is equal to ¬fπ(ψ).
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Item 1 is similar, but we use Lemma 8.4. If w ∈ J ([n]θ)c K, then we also
have that v ∈ J θc K for all v ≪n w. By the induction hypothesis we have
that T + σv ` fπ(θ) for all v ≪n w, and using Definition 10.4.3 we easily
obtain T + σw ` fπ(ψ).

In the next section, we shall mainly see how to produce snapshots of
a given Kripke model W over a uniform proof predicate π. We define the
corresponding sentences σw for w ∈ W in a standard way as limit statements
about certain Solovay functions.

11. Solovay sequences and snapshots of Kripke models

In our presentation, the JN -frame W = 〈W, 〈>n〉n<N〉 will be externally
given and fixed beforehand. When reasoning within a formal theory, x <n y
will be understood as shorthand for

∨
v<nw

(x = v ∧ y = w), and similarly for
the relations ≈n,�n, etc. We will simulate quantifiers over W with (finite)
conjunctions and disjunctions. We will usually write these conjunctions or
disjunctions over W explicitly, but when this becomes impractical, a quan-
tifier over W should be understood as an abbreviation (e.g. ∃!w ∈ W θ(w)
should be understood to be described using conjunctions and disjunctions).
An alternative presentation (which we will not pursue) is to use quantifiers,
which would first require describing the frame W within T .

A central notion to our proof is what we call a Solovay sequence or path;
these sequences are given by a recursion based on a uniform provability pred-
icate which depends on a parameter φ. Later we will choose an appropriate
value of φ via a fixpoint construction. We shall use the following notation:
Seq(x) is a ∆0

0 formula stating that x codes a finite sequence of numbers,
last(x) is a term that picks out the last element of x if it is non-empty (we
may set last(〈〉) = 0), x v y is a ∆0

0 formula that states that the sequence
x is an initial segment of y, |x| gives the length of x and xy is a term which
picks the y-coordinate of x. As in previous sections, it is not necessary to
have these terms available in our language, as we can define their graphs and
replace them by pseudo-terms, but we shall write them as such for simplicity
of exposition.

Recall that throughout this paper we assume that we work with well-
behaved implementations of our syntactical operations. In particular, we
assume that all the basic properties will be provable in EA.

We will now define a formula Lim stating that the paths satsifying φ
“converge” to w:
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Definition 11.1. Let φ be a formula with a single free number variable.
Define

Limφ(w) := ∃s
(
Seq(s) ∧ φ(s) ∧ ∀s′ w s

(
φ(s′)→ last(s′) = w

))
.

We shall use these formulas to define our recursive paths.

Definition 11.2. Using the notation of Definition 7.7, for a formula φ with
a single free number variable, we define a formula Sol(s|φ) by

Sol(s|φ) := Seq(s) ∧ s0 = 0

∧ ∀x<|s|−1
∧
w∈W

(
sx = w

→
((( ∧

n<N

∧
v<nw

〈x : λn〉πLimφ(v)
)
→ sx+1 = w

)
∧
∧
n<N

∧
v<nw

((
[x : λn]π¬Limφ(v)

)
→ sx+1 = v

)))
.

With this we can say what it means to be a Solovay path.

Definition 11.3 (Solovay path). Using the fixpoint theorem on the parameter
φ in Sol(s|φ), we define Sol(s) to be a formula satisfying

RCA0 ` ∀x
(
Sol(x)↔ Sol(x|pSol(s)q)

)
.

We say s is a Solovay path if Sol(s) holds. Further, we say w is a Solovay
value at i if there is a Solovay path s with si = w, and formalize this by

sol(i) = w := ∃s (Sol(s) ∧ |s| > i ∧ si = w) .

Finally, say that w is a limit Solovay value if every Solovay path that is long
enough has w as its last value, formalized by

Lim(w) := LimSol(w).

Below we list some derivable properties of Solovay paths. Intuitively,
item 1 states that Solovay paths are linearly ordered by v, item 2 that there
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are arbitrarily long Solovay paths, item 3 that Solovay values are uniquely
determined, item 4 that Solovay paths are�0-decreasing and, more generally,
Item 5 states that Solovay paths are �n-decreasing if whenever m < n and
u <m v, it is λm-consistent that u is the Solovay limit.

Lemma 11.4. Under the assumptions of Theorem 10.2, it is derivable in T
that

1. ∀s∀s′(Sol(s) ∧ Sol(s′)→ s v s′ ∨ s′ v s);

2. ∀i∃s ( Sol(s) ∧ |s| > i);

3. ∀i∃!w ∈ W sol(i) = w;

4.
∧
w,v∈W ∀i ∀ j<i

(
sol(j) = v ∧ sol(i) = w → w �0 v

)
;

5.
∧
w,v∈W ∀i ∀ j<i

((
sol(j) = v ∧ sol(i) = w

∧
∧
m<n

∧
u<mv
〈λm〉π Lim(u)

)
→ w �n v

)
.

6.
∧
w≈nv

∀i ∀ j<i
((

sol(j) = v ∧ sol(i) = w
)
→ w �n v

)
.

Proof.

1. Clearly it suffices to prove that(
Sol(s) ∧ Sol(s′) ∧ i < |s| ∧ i < |s′|

)
→ si = s′i,

for then if s, s′ are any two paths and, say, |s| ≤ |s′|, it follows that si = s′i
for all i < |s| and thus s v s′. Moreover, this formula is ∆0

0(π) and hence, in
view of Definition 7.7.1, we may proceed by induction on i.

The base case is trivial since s0 = s′0 = 0. For the inductive step, we
assume w = si = s′i. Then, we must have that either [i : λn]π¬Lim(v)
holds for some n, v <n w, or it does not. If it does, then the value of v is
uniquely determined (as i is the code of a derivation of at most one formula)
and thus si+1 = s′i+1 = v. Otherwise,

∧
n

∧
v<nw
〈x : λn〉πLim(v) holds and

si+1 = s′i+1 = w.

2. The proof follows the above structure; here we observe that if s is a
Solovay path, we may always add one extra element to s depending on which
condition is met.
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3. This is immediate from items 1 and 2.

4. By the recursive definition of a Solovay path, if s is a Solovay path with
k+ 1 < |s|, it is always the case that sk+1 �0 sk. Since�0 is transitive, this
implies inductively that si �0 sj whenever j < i, and this induction can be
easily formalized in T .

5. This is a simple generalization of the previous item. Let s be a Solovay
path such that j < |s|. The assumption that

∧
m<n

∧
u<mv
〈λm〉πLim(u) im-

plies that any possible first step in s away from sj is to a world sk �n sj.
Moreover, the same holds for possible further steps since �n is transitive
(Lemma 8.2.3), and since u <m sk �n sj implies u <m sj (Lemma 8.2.4).
Again, by induction we obtain that si �n sj whenever j < i.

6. This follows a similar induction as the previous item. Assume that sj ≈n
si, and towards a contradiction suppose that si �n sj fails. By the tran-
sitivity of �n, this can only be if sk+1 <m sk for some k ∈ [j, i) and some
m < n. Moreover, we may assume that k is minimal, so that sk �n sj, and
thus sk ≈n si. By Lemma 8.2.4, sk+1 <m si and thus sk+1 �0 si, but by
item 4, we also have that si �0 sk+1, contradicting the irreflexivity of �0.
We conclude that there can be no such k, and hence si �n sj.

It should be remarked that ACA0 proves that all pairs 〈i, w〉 such that
sol(i) = w form a set, provided π is comprehensible. However, in this section
we do not assume that T extends ACA0, so we will work directly with the
Σ0

1 formula sol(i) = w. It will be useful to note that its complexity can be
lowered somewhat.

Corollary 11.5. Under the assumptions of Theorem 10.2, it is provable in
T that ∧

w∈W

(
sol(i) = w ↔ ∀s (Sol(s) ∧ |s| > i→ si = w)

)
.

Proof. Immediate from Lemma 11.4.2.

Thus, sol(i) = w is provably ∆0
1(π). In fact, we can do better than this:

since we only need to exhibit a path s such that Sol(s)∧|s| > i holds, we can
assume, under standard assumptions on the coding of sequences, that such
a sequence is bounded elementarily in i+ |W |. Thus, the quantification over
s can be bounded in sol(i) = w, and we can write it as a ∆0

0(π) formula.
However, the ∆0

1(π) presentation will suffice for our purposes.
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Lemma 11.6. Under the assumptions of Theorem 10.2, it is derivable in T
that

1. A Solovay limit exists: ∨
w∈W

Lim(w).

2. More specifically, that if w ∈ W is a Solovay value, then there is v �0 w
such that v is a Solovay limit:∧

w∈W

∀i
(
sol(i) = w →

∨
v�0w

Lim(v)
)
.

Proof. The first item follows from the second, if we observe that sol(0) = 0
trivially holds since 〈0〉 is a Solovay path (of length one). Thus we focus on
the second.

Here, we proceed by external induction on �0; to be precise, let w ∈ W
and suppose that

T ` ∀i
(
sol(i) = u→

∨
v�0u

Lim(v)
)

whenever u�0 w.
Suppose that w is a Solovay value, so that for some i we have that sol(i) =

w, and let s be a Solovay path with |s| > i and si = w. Observe that, by
Lemma 11.4.4, we have that whenever j > i and sol(j) = v holds, then
v �0 w.

Here we consider two cases. First assume that there are s′ w s, j > i
and u 6= w such that s′j = u; since u 6= w we have that u �0 w, and by our
induction hypothesis

∨
v�0u

Lim(v), which implies
∨
v�0w

Lim(v).
Now assume that there is no such s′. But this means that whenever s′ w s

we must have last(s′) = w, i.e. Lim(w) holds, and once again this implies∨
v�0w

Lim(v), as desired.

Lemma 11.7. Under the assumptions of Theorem 10.2, if w ∈ W and n <
N , then:

1. T `
∧
w∈W

∀k
(
sol(k) = w → [λn]πsol(k̇) ≈n+1 w

)
;
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2. if m ≤ n and v >m w,

T `
∧

w,v∈W

∀k
(
sol(k) = v ∧ sol(k + 1) = w → [λn]π sol(k̇ + 1) = w

)
.

Proof. Reasoning within T , we will prove claim 1 by induction on k; notice
that [λ]πφ is Σ0

1(π) and sol(x) = y is ∆0
1(π), and hence the induction formula

is Σ0
1(π). The case k = 0 is trivial, as s = 〈0〉 is a Solovay path with s0 = 0.

For the inductive step, assume that the claim is true for k and let s be a
Solovay path with |s| > k + 1 and sk+1 = w. Meanwhile, for v = sk, by our
induction hypothesis

[λn]π∀x(Sol(x) ∧ |x| > k → xk ≈n+1 v). (8)

Consider two cases.

Case 1. Suppose that sk+1 <m sk for some m ≤ n. Note that this m is
unique since the accessibility relations are disjoint, so we must have that
[k : λm]π¬Lim(w) holds, and by Properties 4 and 5 of Definition 7.7, we also
have [λn]π[k : λm]π¬Lim(w).

Then, w <m v implies that w <m u whenever u ≈n+1 v by the J-frame
Condition 2 and the definition of a Solovay path. Thus, reasoning within
[λn]π, since

∨
u≈n+1v

xk = u holds for any sufficiently long Solovay path x, we
must have that w <m xk, so that

[λn]π∀x
(
Sol(x) ∧ |x| > k + 1→ xk+1 = w

)
.

The claim immediately follows from the facts that w ≈n+1 w and that x was
arbitrary.

Case 2. Suppose that for no m ≤ n do we have that sk+1 <m sk. Recall that
v = sk, so that according to the Solovay recursion, 〈k : λm〉πLim(u) holds
whenever u <m v.

Now, reason within [λn]π, and let x be such that Sol(x) ∧ |x| > i. Let
m ≤ n and u ∈ W . If u 6<m v, from xk ≈n+1 v we obtain u 6<m xk as in case
1, while if u <m v we see using the assumption that π is a uniform provability
predicate (Definition 7.7.6) that 〈k : λm〉πLim(u) is derivable. It follows by
the Solovay recursion that xk+1 = xk or xk+1 <j xk for some j > n, so that
in either case xk+1 �n+1 xk.
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Thus,

xk+1 �n+1 xk
IH
≈n+1 sk �n+1 sk+1.

This implies that xk+1 ≈n+1 sk+1. Since sk+1 = w and this reasoning was
realized within [λn]π, we conclude that

[λn]π∀x
(
Sol(x) ∧ |x| > k + 1→ xk+1 ≈n+1 w

)
,

from which the first claim clearly follows.

Claim 2 is a direct consequence of claim 1. Suppose that m ≤ n, v >m w,
sol(k) = v and sol(k+ 1) = w. Then, by Claim 1, [λn]πsol(k) ≈n+1 v, and
by Properties 4 and 5 of Definition 7.7, [λn]π[k : λm]π¬Lim(w).

Let x be a Solovay path with |x| > k+1. Recall that we have set w = sk+1.
Then, w <m v together with xk ≈n+1 v imply that w <m xk by Lemma 8.2.4,
and thus using the definition of a Solovay path, xk+1 = w. Formalizing this
within [λn]π we obtain

[λn]π∀x
(
Sol(x) ∧ |x| > k + 1→ xk+1 = w

)
.

By Lemma 11.4.2, there provably exists a Solovay path x with |x| > k + 1,
so that [λn]πsol(k + 1) = w, as claimed.

From here on, it remains to show that the formulas Lim(w) give a snapshot
of our Kripke model.

Lemma 11.8. Under the assumptions of Theorem 10.2, if n < N and v <n

w, then
T + Lim(w) ` 〈λn〉π Lim(v).

Proof. Reason within T +Lim(w) and, towards a contradiction, suppose that
[λn]π¬Lim(v), so that there exists some i which satisfies [i : λn]π¬Lim(v).
Now, by assumption, Lim(w) holds, and hence we may choose s such that
last(s′) = w for all Solovay paths s′ w s. Since π is normalized, every
derivable formula has arbitrarily large derivations, and thus we may pick
j > |s| such that [j : λn]π¬Lim(v) holds and, in view of Lemma 11.4.2, a
Solovay path s′ with |s′| > j + 1. Then, s′j = s′j+1 = w, but by the Solovay
recursion we should have s′j+1 = v, a contradiction.
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Lemma 11.9. Under the assumptions of Theorem 10.2, if w 6= 0 and n < N ,
then

T + Lim(w) ` [λn]π
∨

v≪nw

Lim(v).

Proof. We reason in T + Lim(w). Let s be a Solovay path with w = last(s).
Let k∗ < |s| be the greatest value such that sk∗ 6≈n+1 w; note that k∗ is well-
defined since s0 = 0 6≈n+1 w and sk = w for k large enough. Note also that
sk∗+1 <m∗ sk∗ for some m∗ ≤ n (otherwise sk∗+1 ≈n+1 sk∗ and k∗ would not
be maximal), and that by Lemma 11.4.6, w �n+1 sk∗+1.

By Lemma 11.7.2,

[λn]π∀x
(
Sol(x) ∧ |x| > k∗ + 1 → xk∗+1 = sk∗+1

)
. (9)

Let m < n and v <m sk∗+1. Since sk∗+1 ≈n+1 w, we also have v <m w, so
that 〈λm〉π Lim(v) holds by Lemma 11.8. By Definition 7.7.7 we also have

[λn]π
∧
m<n

∧
v<msk∗+1

〈λm〉πLim(v).

By Lemma 11.4.5 this implies that

[λn]π∀x∀j
(
k∗ + 1 < j ∧ Sol(x) ∧ |x| > j → xj �n xk∗+1

)
. (10)

Putting (9) and (10) together, along with the fact that if Sol(x) and |x| >
k∗ + 1 then last(x)�n sk∗+1 �n+1 w, we see that

[λn]π ∀x
(
Sol(x) ∧ |x| > k∗ + 1→ (last(x)≪n w ∨ last(x) = sk∗+1)

)
.

We now claim that this implies

[λn]π

(
Lim(sk∗+1) ∨

∨
v≪nw

Lim(v)
)
. (11)

By Lemma 11.6.1, Lim(v∗) holds for some v∗, so we can pick a Solovay path
r whose last element is v∗ and such that r′ w r implies that last(r′) = v∗ for
any Solovay path r′. In particular we can choose r′ such that |r′| > k∗ + 1
using Lemma 11.4.2, so that either last(r′) ≪n w or last(r′) = sk∗+1. It
follows that v∗≪n w or v∗ = sk∗+1, and formalizing this within T we obtain
(11).

It remains to show that [λn]π¬Lim(sk∗+1). But in view of the Solovay
recursion we must have that [k∗ : λm∗ ]π¬Lim(sk∗+1). In view of Prop-
erty 4 of Definition 7.7 and the fact that λm∗ ≤Λ λn this implies that
[λn]π ¬Lim(sk∗+1), as required.
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We are now ready to prove that the formulas Lim(w) provide a snapshot
of our J-model.

Lemma 11.10. Under the assumptions of Theorem 10.2, define

−→
Lim = 〈Lim(w) : w ∈ W 〉 .

Then,
−→
Lim is a λ-snapshot of W over π, that is,

−→
Lim : W

λ

↪→ π.

Proof. We must check each of the conditions of Definition 10.4.

1. For the first, reasoning within T , suppose that Lim(w) and Lim(v) hold.
In view of Lim(w), pick a Solovay path s such that any extension of s has
last element w and similarly s′ such that any extension of s′ has last element
v. By Lemma 11.4.1, either s w s′ or s′ w s; in either case, it follows by
Lim(w) ∧ Lim(v) that w = v.

2-3. The second condition is Lemma 11.8 and the third, Lemma 11.9.

4. For the fourth, we must use the fact that [λ]π is sound for all λ. Towards
a contradiction, suppose that Lim(w) holds for some w 6= 0 and let s be a
Solovay path with last(s) = w. Then, there exist k such that sk 6= w but
sk+1 = w. This implies that [k : λn]π¬Lim(w) for some n < N . But by
soundness we conclude that ¬Lim(w), a contradiction.

We may finally prove our main completeness result.

Proof of Theorem 10.2. We have already seen that GLPΛ is sound for its
arithmetic interpretation. For the other direction, if φ is consistent over
GLPΛ, then by Lemma 8.5, φc is consistent over GLPω and thus by Lemma
8.7, there is a finite JN -model W with root 0 such that W, 0  ♦φc and
W M(φc), so that W, 1  φc for some world 1 6= 0. Let λ be the modalities
appearing in φ. By Lemma 11.10,

−→
Lim : W

λ

↪→ π,

so that by Lemma 10.5.1, T + Lim(1) ` fπ(φ). Hence, by Items 2 and 4 of
Definition 10.4, N |= ♦Tfπ(φ), i.e. fπ(φ) is consistent with T .
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Appendix A. Alternative provability predicates

We have already discussed how the provability predicate [λ]ΛT may be

replaced by its ‘existential’ counterpart [̂λ]ΛT . In this section we shall briefly
consider some more possible variants of our provability predicates. We do
so in an informal setting and in particular shall refer to defining recursions
rather than formalizations in second-order arithmetic. Moreover, we shall
not be too concerned about the amount of transfinite induction needed in
the arguments. Also, we shall assume that Λ is sufficiently well-behaved
by, for example, demanding it satisfies a theory of natural of well-orderings
within T , such as NWO from [5].

Appendix A.1. A wider notion of iterated provability

We could consider an apparently slightly more liberal notion of α-provability
– let us write [α]Λ,wT – defined by the following recursion:

[α]Λ,wT φ :⇔ �Tφ ∨ ∃ψ ∃ β<Λα(∀n [β]Λ,wT ψ(n) ∧ [β]Λ,wT (∀xψ(x)→ φ)).

However, it is easy to see by transfinite induction that [α]Λ,wT φ ⇔ [α]ΛTφ.
The ⇐ direction is obvious. For the other direction we assume that we
can formalize the notion of [α]Λ,wT just like [α]ΛT and prove all the necessary
lemmata like monotonicity, distribution axioms, etc. Suppose that

∀n [β]Λ,wT ψ(n) ∧ [β]Λ,wT (∀xψ(x)→ φ)

for some formula ψ and ordinal β <Λ α. Then, clearly also

∀n [β]Λ,wT

(
ψ(n) ∧ (∀xψ(x)→ φ)

)
.

But, as

[0]ΛT

(
∀x (ψ(x) ∧ (∀xψ(x)→ φ))→ φ

)
,

we get

∀n [β]Λ,wT

(
ψ(n) ∧ (∀xψ(x)→ φ)

)
∧�T

(
∀x (ψ(x) ∧ (∀xψ(x)→ φ))→ φ

)
,

which by the induction hypothesis for β implies [α]ΛTφ.
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Appendix A.2. Diagonializing at limits

Note that in our definition of [α]ΛT there is still some uniformity present
in that we choose one particular β <Λ α with [β]ΛTψ(n) for all numbers
n. We can make this β also dependent on n. In a sense, this boils down
to diagonalizing at limit ordinals. Thus, we define our notion of [α]Λ,dT as
follows:

[α]Λ,dT φ :⇔ �Tφ ∨ ∃ψ
(
∀n∃βn<Λα [βn]Λ,dT ψ(n) ∧ �T (∀xψ(x)→ φ)

)
.

By an argument similar as before, we see that, also in this notion we can
replace the �(∀xψ(x)→ φ) by ∃ γ<Λα [γ]Λ,dT (∀xψ(x)→ φ) without gaining
any strength. This new notion of provability is related to [α]ΛT in a simple
fashion as is expressed in Lemma Appendix A.2 below. Again, we assume
that we can formalize the notion [α]Λ,dT in a suitable way so that the basic
properties are provable. We first state a simple but useful observation.

Lemma Appendix A.1.

1. [α + 1]ΛTφ ⇔ ∃ψ
(
∀n [α]ΛTψ(n) ∧ �(∀xψ(x)→ φ)

)
2. [α + 1]Λ,dT φ ⇔ ∃ψ

(
∀n [α]Λ,dT ψ(n) ∧ �(∀xψ(x)→ φ)

)
.

Proof. This follows directly from the definition and monotonicity.

Lemma Appendix A.2.

1. [n]ΛTφ ⇔ [n]Λ,dT φ for n ∈ ω;

2. [α + 1]ΛTφ ⇔ [α]Λ,dT φ for α ≥Λ ω, and

3. [λ]ΛTφ ⇔ ∃γ < λ [γ]Λ,dT φ for limit λ.

Proof. The proofs proceed by induction on n and α, respectively, and we
omit them.

As can be seen, there is a fair amount of freedom in defining transfinite
iterations of the ω-rule. We chose the current paper’s presentation both for
the sake of simplicity and because a more refined hierarchy is in general terms
more convenient; after all, it is easy to remove intermediate operators later if
they are not needed. We also suspect it will be the appropriate notion useful
later for a Π0

1-ordinal analysis of second-order arithmetics, a goal which now
seems within our reach.
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Appendix A.3. Restricting iterated provability classes

While we have treated the parameter Λ as constant, we may also vary it in
our provability predicates. This can be especially useful when our base theory
does not establish ∃XIPCΛ

T (X) but it does prove ∃XIPCΞ
T (X) whenever Ξ is

a proper initial segment of Λ.
In such a case, we may define a ‘restricted’ version of our uniform prov-

ability predicate as follows. First, for λ < Λ define Λ � λ by restricting Λ to
{ξ : ξ <Λ λ}. Then, set

[λ]Λ,rT φ = [λ]Λ�λ+1
T φ.

We have chosen to work with [λ]ΛT rather than [λ]Λ,rT for the sake of simplicity,
but our results and techniques may readily be modified to work directly with
[λ]Λ,rT instead. This may be useful, for example, in defining a predicate chain
of length Γ0 in ATR0, which is Λ-introspective for all Λ < Γ0 but cannot
prove that Γ0 is well-ordered.

Appendix A.4. Provability by ω-trees

Finally, we mention an entirely different approach can be taken to iterated
provability, as found in e.g. [1, 22]. There, derivability with the ω-rule is
formalized by the existence of an (infinite) derivation tree. An ω-tree is a
tree S such that each node has at most countably many daughters. A labeled
ω-tree is a pair 〈S, L〉 such that S is an ω-tree and L : S → N.

Given a theory T , a preproof for T is a labeled ω-tree 〈S, L〉 such that for
every s ∈ S, L(s) is a formula in the language of T , and s is of one of two
types:

(a) s is a leaf of S and �TL(s) holds, or

(b) there is a formula ψ(x) such that one daughter of s is labeled by
∀x
(
ψ(x) → L(s)

)
, while for each n ∈ N, s has a daughter labeled

by ψ(n).

If S is well-founded, we will say that 〈S, L〉 is an ω-proof. The depth of 〈S, L〉
is the depth of S as a tree (with the leaves at depth 0).

Then, we can define [λ]Λ,tT φ as a formalization of There exists an ω-proof
of φ of depth at most λ. Here we will not go into further detail, and instead
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refer the reader to [1, 22].10 Nevertheless, in [19] we compare the operators
[λ]Λ,tT and [λ]ΛT , in particular showing that provability in the two senses is
equivalent over ATR0, although over weaker theories this is generally not the
case.

Appendix B. An afterword on the choice of base theory

In this paper we have shown that the logic GLPΛ is sound and complete
for the interpretation where each modality [ξ] is interpreted as “provable
in ACA0 using at most ξ nested applications of the omega-rule”. The main
application we have in mind with this result is to provide Π0

1 ordinal analyses
of theories much stronger than PA in the style of Beklemishev [6]. However,
for the mere soundness of the logic there were quite some strong principles
needed: the existence of an iterated provability class, plus a certain amount
of transfinite induction. We shall discuss here how these principles fit into
the intended application to ordinal analysis.

A consistency proof for a theory S in a finitary base theory U plus
TI(Ω,Π0

1) (with Ω a large enough well-order) is closely related to the Π0
1

ordinal analysis of S and we shall focus our discussion on such a consistency
proof.

Beklemishev has shown how such a consistency proof for Peano Arith-
metic can be performed almost entirely within the modal logic GLPω. There
are three theories involved in such an analysis. First, there is a strong target
theory S whose consistency one wishes to prove (PA in Beklemishev’s analy-
sis). Second, there is a finitary base theory U in which the consistency proof
will be formalized, together with transfinite induction up to an appropriately
large computable ordinal. In Beklemishev’s analysis, U = EA+, i.e., EA to-
gether with an axiom asserting that the superexponential is total. Finally,
there is a theory T which works as a ‘consistency unit’, in this case EA. If we
let 〈n〉TrueEA φ denote ‘φ is derivable in T from a true Πn formula’, Beklemishev
then uses the fact that PA ≡ EA + {〈n〉TrueEA >}n<ω to realize a consistency
proof for PA using EA+ and transfinite induction up to ε0 [6]. Note that in
this analysis, Λ = ω and Ω = ε0, and in general one expects Λ ≤ Ω.

10Note, however, that our ‘accounting’ is somewhat different since these authors count
the applications of all deduction rules when computing the height of a derivation, whereas
we only count the nesting depth of ω-rules.
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Thus, it is important that all the modal reasoning is available in the
base theory U . This translates to the requirement that soundness of the
modal logic should be provable in the base theory, and for this purpose it
was important to separate the consistency unit T from the meta-theory U
throughout this paper. With this in mind, we could have added standing
assumptions on U and T throughout; however, we have chosen to state the
assumptions on U and T in a case-by-case fashion since over weaker systems
one might get logics different from GLPΛ; the corresponding logics might be
of interest, and it would be good to know how much of the reasoning in this
paper carries over and how much does not.

Consistency proofs within a finitary base theory U plus TI(Ω,Π0
1) can

be seen as partial realizations of Hilbert’s program in the sense that over
finitsitic mathematics one can prove the consistency of a strong theory with
just one additional non-finitist ingredient. As such, one could say that S is
safeguarded by this method. If one accepts this method of safeguarding it
makes sense to use S itself as new base theory to safeguard even stronger
theories by the same method. It is in this perspective that having ACA0 as
our base theory is not a bad thing since ACA0 has already been safeguarded
over EA using some amount of transfinite induction. However, there are
reasons why it might be desirable to dispense with such an intermediate
step.

In [28] it is noted that it is soundness rather than completeness of GLPΛ

that is involved in a consistency proof. But also in the soundness proof
presented in this paper, we needed transfinite induction as well as resorting
to the Λ-introspective closure of a theory. As we have seen in Corollary 6.11,
as concerns consistency strength, it does not matter whether we consider
either a theory or its Λ-introspective closure, as both theories are provably
equiconsistent. Thus the key issue is the amount of transfinite induction
needed in our soundness proof for GLPΛ.

First of all, let us note that our soundness proof for GLPΛ uses11 at most
TI(Λ,Π0

1). In a sense, this is not bad at all, because it is exactly this ingre-
dient (in parameter-free form) that is added to our base theory U to perform
a consistency proof for our target theory. So, by adding this amount of

11The referee most kindly pointed out that it would be desirable to use transfinite
induction for initial segments of Λ in the the soundness proof of GLPΛ, rather than all of
Λ. Indeed, this is sufficient to prove each instance of the axioms rather than their universal
closure as we have done in this paper.
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transfinite induction (with parameters) to U , we get access to exactly the
soundness of GLPΛ needed to perform this consistency proof, although our
base theory was taken to be ACA0, not EA+. This choice of U has been
mainly to simplify our exposition, but the needed amount of arithmetic can
be pushed down a lot farther.

In Beklemishev’s analysis, the ‘base theory’ U (EA+) is an extension of
the ‘consistency unit’ T (EA). However, rather than an actual extension, it
is only necessary that U prove the consistency of T . In this sense, working
with T or with its introspective closure does not make much difference, since
T is provably equiconsistent to T +�T⊥ (see Lemma 6.6).

Finally, we observed that to prove TI(Λ,Π0
1) over EAΛ + Ind we need Σ0

1

comprehension, but Σ0
1 comprehension with second order parameters already

proves ACA0.
However, we can do better still in the sense that we need less compre-

hension by allowing slightly stronger well-ordering assumptions, as we shall
see in the next lemma. Let us fix some computable well-order Λ, and let <
denote the usual ordering on the natural numbers. Using a bijective pairing
function we define a new computable well-order ωΛ with |ωΛ| = N× |Λ| and

〈n, ξ〉 <ωΛ 〈m, ζ〉 := ξ <Λ ζ ∨ (ξ = ζ ∧ n < m).

Clearly, ωΛ is a new well-order. We then have:

Lemma Appendix B.1. For any computable well-order Λ,

∆0
0-CA + wo(ωΛ) ` TI(Λ,Π0

1).

Proof. By the usual argument we see that ∆0
0-CA + wo(ω · Λ) ` TI(ωΛ,∆0

0).
Thus, we shall prove TI(Λ,Π0

1) using TI(ωΛ,∆0
0). Let φ(z, x) be some ∆0

0

formula possibly with further parameters, and assume

∀x (∀ y<Λx ∀zφ(z, y)→ ∀zφ(z, x)). (B.1)

If we assume that ∀ y<ωΛx φ(y0, y1), by the way we defined the relation <ωΛ,
we get ∀ y<Λx1 ∀z φ(z, y). Thus, using (B.1) we get ∀z φ(z, x1), so certainly
φ(x0, x1). Now, by TI(ωΛ,∆0

0) we obtain ∀x∀zφ(z, x).

Note that ωΛ is not much larger than Λ. In particular, if the last term
in Cantor normal form of Λ is at least ωω, we get that ωΛ = Λ. Thus,
for natural proof-theoretical ordinals we have this equation whence we get
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the extra induction for free. Consequently, the full ACA0 is not needed for
proving soundness of GLPΛ and performing a Π0

1 ordinal analysis as sketched
above; it may be entirely carried out in the theory ECA0 given by

ECA0 = ∆0
0-CA + Ind

(here it is important to recall that we assumed exponentiation was in our
language, which is needed for Σ0

1-completeness in Lemma 2.1). This theory
is conservative over Elementary Arithmetic [16], and thus perfect candidates
for our finitary base theory and consistency unit are U = ECA+

0 (i.e., ECA0

with superexponential) and T = ECA0, that is, its introspective closure. As
an alternative, one may take more familiar, but somewhat stronger, theories,
such as U = RCA0 and T = RCA∗0, where RCA∗0 is a weaker version of RCA0

[33].
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