
Approximation of CNC Part

Program within a Given

Tolerance Band

Min Qiao

Department of Mathematics

Justus-Liebig University Giessen

A thesis submitted for the degree of

Dr. rer. nat.

Erlangen, Oct. 2010

1. Reviewer: Prof. Dr. Tomas Sauer

2. Reviewer: Prof. Dr. Johannes Wallner

3. Reviewer: Prof. Dr. Wolfgang Papiernik

ii

Abstract

Freeform surfaces are widely used in various fields of engineering design such

as automotive, aerospace and mold and die industries. With the geometric

model designed by freeform surfaces in the CAD system, the tool path will

be next constructed and sampled by the CAM system according to the

predefined chordal deviation. The sequentially sampled short linear blocks

are stored in the file called the part program, which is later interpreted by

the CNC system to control the machine tool and mill the workpiece.

In order to deliver the desired motion smoothly and rapidly, the short linear

blocks in the part program will be approximated with smooth spline curves

within a specified tolerance band. With spline curves, which consist of

longer polynomial pieces, the attainable feed rate of the machine tool can

be greatly enhanced. In addition, with minimization of curvature variation,

velocity and acceleration jumps in the relevant machine axes and undesired

mechanical oscillation of the machine can be reduced significantly. This

allows higher traversing speeds and reduces the vibration of the machine,

thus improves the surface quality.

Acknowledgements

First, I want to express my sincere thanks to Prof. Tomas Sauer for his

patient guidance throughout my study. His profound knowledge and en-

thusiasm in research motivate me to solve the problems and the discussion

with him is always full of inspirations and ideas.

My deepest gratitude also goes to Prof. Wolfgang Papiernik. He offers

invaluable advice and suggestions whenever I need them. His expertise has

broadened my perspective on the practical aspects in the industry.

In particular, I want to convey my thanks to Dr. wolfgang Speth for his

generous support and constructive comments. Moreover, I would also like

to thank my colleagues and friends especially Marco, Paul, Loay, Dominik,

Florian and Philippe at Siemens for their advice and help.

Last but not least, I would like to thank my family who has supported me

from the very beginning.

Contents

List of Figures vii

1 Introduction 1

2 Theoretical background 7

2.1 Fundamental concepts . 7

2.2 Spline curves . 11

2.2.1 Bézier curves . 11

2.2.2 Basics about spline curves . 12

2.2.3 Derivatives of spline curves . 15

2.2.4 Integral of spline curves . 17

2.2.5 Knot insertion . 19

2.2.6 De Boor’s algorithm . 20

2.2.7 Knot removal . 21

2.2.8 Degree elevation . 22

2.2.9 Application of spline curves . 25

2.2.9.1 Parameter and knot sequence selection 25

2.2.9.2 Interpolation with splines 27

2.2.9.3 Least squares approximation with splines 28

2.3 Equality-constrained optimization scheme 30

3 Basic strategy 33

3.1 The problem . 33

3.2 Curve segmentation . 34

3.3 Knot selection . 36

3.3.1 Knot distribution based on curvature characteristics 36

v

CONTENTS

3.3.2 Curvature jump detection and multiple knots 40

3.3.3 Number of knots . 42

3.4 Approximation . 45

3.4.1 Comparison between two splines 46

3.4.2 Least squares approximation . 49

3.4.3 Smoothness . 49

3.4.4 Optimization problem . 52

3.5 Summary of the strategy . 53

4 Extended strategy 55

4.1 Preprocessing . 55

4.1.1 Cluster modifications . 55

4.1.2 Remove redundant points on a straight line 58

4.2 Localization . 60

4.2.1 Local knot modification . 60

4.2.2 Local smoothness . 64

4.3 Soft edge detection and quasi multiple knots 65

4.4 Curvature estimation methods . 67

4.4.1 Divided difference . 68

4.4.2 Area invariant and Connolly function for planar curves 70

4.4.3 Area invariant method vs circumcircle method 72

4.5 Reference curve and smoothness . 77

4.6 Complete methods . 79

5 Experimental results 81

5.1 Example 1: the influence of knot’s multiplicity 81

5.2 Example 2: the influence of knot distribution 83

5.3 Example 3: the influence of the smoothness term 84

5.4 The typical test workpieces . 84

6 Conclusions and remarks 93

Bibliography 97

vi

List of Figures

1.1 Process chain of CNC machining (Siemens) 2

1.2 Key components in numerical control kernel (NCK) (Siemens) 2

1.3 Compressor: approximate the linear blocks with smooth spline curves

within a tolerance band (Siemens) . 4

1.4 Spoiled surface caused by short linear blocks (left: ideal; middle: beveled

pattern; right: vibration) (Siemens) . 5

2.1 Cn continuity at the joint p . 8

2.2 The relation between derivatives with respect to s and u 10

2.3 A straight line which is G1 but not C1 continuous 10

2.4 A curve which is G1 but not C1 continuous 10

2.5 The shape of a curve is greatly influenced by parameter selection methods 27

2.6 Spline interpolation vs least squares approximation 29

3.1 Approximation within the tolerance band with a smooth spline curve . . 33

3.2 Oscillation or bulges caused by undetected sharp edges 34

3.3 Edge detection by angles between neighboring points 35

3.4 The relation between the block length and the curvature radius 37

3.5 Discrete curvature estimation by circumcircle through three neighboring

points . 39

3.6 Integral of square root of curvature for knot placement 39

3.7 Comparison between the approximating results with multiple knots and

simple knots . 41

3.8 Integral of square root of curvature for knot placement with multiple knots 42

3.9 Data points on the part program ’daimler’ 43

vii

LIST OF FIGURES

3.10 Curvature plot using the circumcirle method 43

3.11 Integral of square root of curvature . 44

3.12 The approximating spline curve and the corresponding polynomial pieces 44

3.13 Determine the initial number qk based on Nk 45

3.14 Control points before knot insertion and degree elevation 48

3.15 Control points after knot insertion and degree elevation 48

3.16 The deviation to arc length parametrization 51

4.1 Critical points (close clusters) in the part program ’beetle’ 56

4.2 A cluster of close points . 56

4.3 Flowchart of the cluster modification method 59

4.4 Detection of redundant points on a straight line 59

4.5 Map the violating intervals from T f to Tm 61

4.6 Overlapped violating intervals in Tm . 61

4.7 Local modification scheme . 63

4.8 Top: global knot placement; Bottom: local knot placement 64

4.9 Knot placement for a soft edge decision 66

4.10 Knot placement with quasi multiple knots 67

4.11 The relation between the knot distance d and opening angle � 68

4.12 Significant error when estimating curvature of noisy data using the cir-

cumcircle method . 69

4.13 Area invariant method for curvature estimation of planar curves 71

4.14 Connolly function . 72

4.15 Area invariant method for a non-smooth curve 73

4.16 Example 1(a): area invariant vs circumcircle method 74

4.17 Example 1(b): area invariant vs circumcircle method on noisy data . . . 75

4.18 Example 2: area invariant vs circumcircle method for curvature jump

detection . 75

4.19 Example 3: area invariant vs circumcircle method on workpiece ’beetle’ 76

5.1 Spline approximation with correct edge detection 82

5.2 Spline approximation with 4-fold knots at edges 82

5.3 Spline approximation with simple knots at edges 83

5.4 Error plot with different knot’s multiplicity at edges 86

viii

LIST OF FIGURES

5.5 One test path from the workpiece ’daimler’ 87

5.6 The approximation error with uniformly-distributed simple knots 87

5.7 The approximation error with knots based on curvature 88

5.8 The error to arc length parametrization 88

5.9 The milling result of the workpiece ’turm’ 89

5.10 Plot of discrete curvature . 89

5.11 Case 1: no smoothing (top); Case 2: min ∥f̈(s)∥2 (middle); Case 3:

min ∥
...
f (s)∥2 (down) . 90

5.12 The part program of the workpiece ’daimler’ 91

5.13 The spline approximation of the workpiece ’daimler’ 91

5.14 The curvature visualization of the workpiece ’daimler’ 92

5.15 The milling result of the workpiece ’daimler’ 92

ix

LIST OF FIGURES

x

1

Introduction

Freeform surfaces are widely used to describe the surface of complex 3D geometric ele-

ments such as turbine blades and car bodies in various fields of engineering design from

automotive, aerospace to mold and die industries. In modern industry, the process

starting from freeform surface modeling to surface finishing is highly automated, ben-

efiting from the integration of CAD/CAM (Computer Aided Design/Manufacturing)

system and CNC (Computerized Numerical Control) machine tools.

In this process as shown in Fig. 1.1, the geometric model of the workpiece will be

firstly designed by freeform surfaces of certain types within a CAD system. Given a

user specified cutting strategy, the tool path that the center point of the milling tool

has to follow will next be constructed with cutter radius compensation. The tool path

usually cannot be expressed in a closed mathematical form, therefore it will be sampled

by the CAM system according to the predefined chordal deviation. The sequentially

sampled short linear blocks together with their block number and other commands are

stored in the file called the part program. The CNC system interprets the part program

and then controls the machine tool to mill the workpiece.

The purpose of the NC machine is to generate workpieces of complex shapes rapidly

and precisely. The key functional components and task flow of the numerical control

kernel (NCK) are shown in Fig. 1.2. First, the interpreter parses the blocks in the part

program and stores the interpreted data in the block buffer. The compressor carries out

the task of converting the short linear blocks to C2 continuous (spline) curves. Next the

look ahead function ”looks ahead” for critical points such as singular points or regions

with extreme curvature and calculates maximal feasible feed rates within the maximal

1

1. INTRODUCTION

→ → →
CAD/CAM- Geometry Tool Path

System

→ → →
NC-Part Control and Tool- Workpiece

Program Drive machine

Figure 1.1: Process chain of CNC machining (Siemens)

allowable ranges for velocity, acceleration and jerk. Based on the preparation and

look ahead function, the motion control unit generates the profiles for path position,

path velocity and path acceleration, which are afterwards interpolated according to the

interpolation sampling grid to generate the setpoints for the path position, velocity

and acceleration. Subsequently, kinematic transformations are performed to map the

setpoints from the Cartesian coordinate to the machine coordinate system for position

control. The position controller issues velocity commands to the motor driving system

in order to minimize the position difference between the set position and the actual

position.

Figure 1.2: Key components in numerical control kernel (NCK) (Siemens)

Among the key components of the NCK, the compressor is the main subject of the

thesis. The task of a compressor is to approximate the short linear blocks by smooth

spline curves consisting of longer polynomial pieces within a specified tolerance band,

as illustrated in Fig. 1.3. The motivation to convert the linear blocks to smooth splines

2

is based on the following arguments:

∙ When the tool path is sampled in the CAM system, a small chordal error is

chosen to guarantee high approximation accuracy, which often results in short

linear blocks and thus large volumes of data. A part program that is larger than

10MB is quite common. The large volume of data demands larger storage space

and consumes longer transmission and processing power.

∙ On the other hand, the short linear blocks restrict the maximum feed rate. Since

the linear blocks are processed by the CNC system at a certain interpolation rate,

the cycle T of which is typically 1 to 10ms, the maximum feed rate for a block of

length l is given by

Fmax =
l

T
.

For example, if the block length l is 10 �m, the interpolation cycle T is 4 ms, then

the maximum feed rate is Fmax = l
T = 150mm

min , which is quite slow compared to

the typical range of values of the feed rate: 5000− 15000 mm/min.

∙ The short linear blocks can also lead to acceleration jumps in the machine axes at

the block transitions. If the machine tool travels the path at a constant velocity,

it results in Dirac pulses in the acceleration at the block transitions. Therefore

the path velocity must be reduced significantly around the block transitions in

order to avoid overloading the machine tool. Furthermore it can cause resonance

in the machine axes which will spoil the surface of the workpiece by chamfered

edges or by vibration as shown in Fig. 1.4.

Therefore, it is of great importance to approximate the linear blocks by smooth

spline curves in order to deliver the desired motion smoothly and rapidly. With spline

curves, which consist of longer polynomial pieces, the attainable feed rate of the ma-

chine tool can be greatly enhanced. In addition, with smooth C2 continuous curves,

velocity and acceleration jumps in the relevant machine axes and undesired mechanical

oscillation of the machine can be reduced significantly. This allows higher traversing

speeds and reduces the vibration of the machine, thus improves the surface quality.

The basic strategies to perform spline approximation within tolerance band and

least squares optimization are discussed and investigated in Chapter 3. Two principal

3

1. INTRODUCTION

Figure 1.3: Compressor: approximate the linear blocks with smooth spline curves within

a tolerance band (Siemens)

issues are the knot placement based on curvature characteristics and minimization

of curvature variation for smoother spline curves. The extended strategies such as

preprocessing, localization and soft edge detection methods are investigated in Chapter

4 to deal with some critical problems in the part program. The experimental results,

concerning the compression rate, curvature variation of the spline curve and the surface

quality are illustrated and evaluated in Chapter 5.

4

Figure 1.4: Spoiled surface caused by short linear blocks (left: ideal; middle: beveled

pattern; right: vibration) (Siemens)

5

1. INTRODUCTION

6

2

Theoretical background

2.1 Fundamental concepts

Parametric curves

Curves and surfaces can have explicit, implicit, and parametric representations, among

which parametric representations are most commonly used in computer graphics and

CAD.

An implicit function is a function in which the dependent variables have not been

given explicitly in terms of the independent variables. To give a function f explicitly

is to provide a prescription for determining the output value of the function y in terms

of the input value x:

y = f(x).

In contrast, the function is implicit if the value of y is defined relative to x by solving

an equation of the form:

R(x, y) = 0.

A parametric curve in space ℝ3 has the following form:

f(u) = (f(u), g(u), ℎ(u)), u ∈ [a, b] ⊂ ℝ,

where f , g and ℎ are real-valued functions. Thus, f(u) maps a real value u in the closed

interval [a, b] to a point in space ℝ3.

7

2. THEORETICAL BACKGROUND

Figure 2.1: Cn continuity at the joint p

Geometric and parametric continuity

Definition 1. A parametric curve C(u) is said to be Cn continuous, if it is n-times

continuously differentiable with respect to parameter u, which means the first to n-th

derivatives of the curve with respect to the parameter u are continuous.

For a piecewise curve consisting of two segments U(u), u ∈ [u0, u1] and V(v), v ∈
[v0, v1] (as shown in Fig. 2.1) connected with Cn continuity at the joint point p, this

requires
dkU

duk

∣∣∣∣
u1−

=
dkV

dvk

∣∣∣∣
v0+

, k = 0, . . . , n, (2.1)

where dkU
duk

∣∣∣
u1−

denotes the kth left-hand derivative at u1 and dkV
dvk

∣∣∣
v0+

denotes the kth

right-hand derivative at v0.

As the name implies, parametric continuity is dependent on the underlying parameter

and as we know, the parametrization for a curve is not unique. Distinguished from

parametric continuity, another measure for continuity based solely on geometric prop-

erties is referred to as geometric continuity, denoted as Gn continuity. In contrast to

parametric continuity, geometric continuity is intrinsic and parameter independent.

Definition 2. The curve is called Gn continuous if the curve is Cn continuous when

reparametrized with respect to the arc length s. For a curve C(u), u ∈ [a, b], the arc

length s(u) is defined as

s =

∫ u

a
∥C′(u)∥du. (2.2)

With specific n, Gn continuity is as follows:

∙ G0: The curve is continuous.

∙ G1: The curve is continuous and the curve has continuously varying unit tangent,

however left and right limit of the magnitude of the tangent vector may jump.

8

2.1 Fundamental concepts

∙ G2: The curve is at first G1 continuous and the curve has continuously varying

signed curvature.

The derivatives with respect to parameter u and arc length s are shown in Fig. 2.2.

Here we will illustrate the relation between geometric and parametric continuity by

means of two examples. As illustrated in Fig. 2.3, three points p1,p2 and p3 are

collinear and the straight line consisting of two segments U and V is parametrized in

the following form

U = p1 + (p2 − p1)u → dU

du
= p2 − p1 u ∈ [0, 1] (2.3)

V = p2 + (p3 − p2)v, →
dV

dv
= p3 − p2 v ∈ [0, 1] (2.4)

If p3−p2 ∕= p2−p1, the straight line is not C1 continuous. Therefore whether it is C1

or not depends on the parametrization, however it is G1 continuous, since p1,p2 and

p3 are collinear.

Another example is shown in Fig. 2.4 where the curve consists of two quarter arcs

joined at point p. The curve segments U and V are parametrized with respect to � in

the following way:

U =

[
r2 cos(�)
r2 sin(�) + r1 − r2

]
, � ∈ [�2 , �]

V =

[
r1 cos(�)
r1 sin(�)

]
, � ∈ [0, �2].

(2.5)

Since dU
d�

∣∣
�=�

2
= [−r2 0]T is not equal to dV

d�

∣∣
�=�

2
= [−r1 0]T , the curve is not C1

continuous at the joint p. Then we reparametrize the curve with respect to the arc

length s as follows:

U =

[
r2 cos(sr2 + �

2)

r2 sin(sr2 + �
2) + r1 − r2

]
, s ∈ [0, �r22]

V =

[
r1 cos(sr1)

r1 sin(sr1)

]
, s ∈ [0, �r12].

(2.6)

With the arc length parametrization it is easy to get that dU
ds

∣∣
s=0

= dV
ds

∣∣
s=

�r1
2

= [−1 0]T ,

therefore the curve is G1 continuous.

Geometric continuity can be taken as parametric continuity with respect to a very

special parametrization, the arc length parametrization. Parametric continuity of order

9

2. THEORETICAL BACKGROUND

Figure 2.2: The relation between derivatives with respect to s and u

Figure 2.3: A straight line which is G1 but not C1 continuous

Figure 2.4: A curve which is G1 but not C1 continuous

10

2.2 Spline curves

n implies geometric continuity of order n, but not vice-versa, therefore parametric con-

tinuity is the stronger condition. In the field of CAGD or computer graphics, geometric

continuity is usually adopted to evaluate the geometry or shape, since it it intrinsic and

parameter independent. While in some other applications, for instance considering mo-

tion along a curve, it is not enough for the path to be smooth, parametric continuity is

often investigated to guarantee the continuity of the velocity and acceleration vector.

2.2 Spline curves

The word spline originally comes from the ship building industry and describes a useful

tool used by draftsmen in laying out curved ship hull contours. Nowadays spline curves

are widely used in the fields of computer-aided geometric design, due to the following

advantages:

∙ Flexibility and ease to manipulate the shape.

∙ A spline curve can be broken into segments and modified locally.

∙ There are efficient and numerically stable algorithms to evaluate the spline curve.

2.2.1 Bézier curves

We first start with the Bézier curve, which is a particular case of the spline curve.

Definition 3. A Bézier curve of degree n is defined by n+1 control points d0,d1, . . . ,dn

as

f(u) =
n∑
i=0

diB
n
i (u), (2.7)

in which Bn
i (u) is referred to as Bézier basis function or Bernstein basis polynomial :

Bn
i (u) =

n!

i!(n− i)!
ui(1− u)n−i, (2.8)

satisfying the recursive formula:

Bn+1
i (u) = uBn

i−1(u) + (1− u)Bn
i (u), (2.9)

with Bn
−1 = Bn

n+1 = 0 and B0
0 = 1.

The Bernstein basis polynomials have the following property:

11

2. THEORETICAL BACKGROUND

∙ Non-negativity: all Bernstein basis polynomials Bn
i (u) are non-negative.

∙ Partition of unity: the sum of the Bernstein basis polynomials at any u is 1.

Derived from these properties of the Bernstein basis polynomials, we can get the fol-

lowing properties of a Bézier curve:

∙ Affine invariance: any point f(u) is an affine combination of the control points

since the Bernstein polynomials sum to 1. As a consequence, the Bézier curve is

affinely invariant.

∙ Convex hull property: the Bézier curve lies completely in the convex hull of the

control points since the Bernstein polynomials are non-negative.

When designing complex shapes, more control points are needed to increase the degree

of freedom. In consequence, the degree of the Bézier curve also gets higher, which is

undesirable since, as the degree increases, the computation complexity increases and

curves of high degree are more sensitive to round-off errors. An alternative solution is

to connect Bézier curve segments of lower degree smoothly to form a piecewise Bézier

curve. To combine the curves segments, the control points must be chosen appropriately

to satisfy a certain Cn continuity at the junctions. However, maintaining this Cn

(even C1) continuity condition may be tedious and difficult. This disadvantage can be

overcome by working with spline curves in a better representation. In addition, a spline

curve requires much fewer control points than a piecewise Bézier curve.

2.2.2 Basics about spline curves

Spline curves are piecewise polynomials which are joined together in a smooth fashion.

There are various representations of spline curves. Similar to the Bézier representation

of polynomial curves, it is desirable to write a spline curve as a linear combination of

basis functions called B-splines, in which the coefficients of B-splines are also known as

control points. Before specifying spline curves, we begin with the introduction of knot

sequences.

Definition 4. A knot sequence T = Tm,n = {t1, . . . , tm+n+1} of a spline curve of degree

m with n control points is a finite set of nondecreasing values, i.e. knots, satisfying

t1 ≤ ⋅ ⋅ ⋅ ≤ tn+m+1 and tj < tj+m+1, for j = 1, . . . , n.

12

2.2 Spline curves

Remark 1. Some comments on the knot sequence T :

∙ In order to facilitate the implementation in Matlab, we adopt indexing from 1.

∙ To be strictly formal, a knot sequence is really a multiset, which is a set with

repeated items. We do not really need that formalization here, so we use the knot

sequence, which is more intuitive.

∙ If tj−1 < tj = . . . = tj+k−1 < tj+k, for k > 0, the multiplicity of the knot(s)

tj = . . . = tj+k−1 is k and the knot tj is also called k-fold knot.

∙ The notation T ∗m,n is used in the thesis for the knot sequence Tm,n with m+1-fold

end knots, i.e. t1 = ⋅ ⋅ ⋅ = tm+1 and tn+1 = ⋅ ⋅ ⋅ = tn+m+1.

∙ If T is written as T = {bm1
1 , . . . bmss }, where bj , j = 1, . . . , s, are the distinct

elements in T sorted in ascending order and mj , j = 1, . . . , s, are the correspond-

ing multiplicities, then bj , j = 1, . . . , s, are called the break points of the knot

sequence and the spline curve consists of s− 1 polynomial pieces.

Definition 5. For u ∈ [tm+1, tn+1), the B-spline basis functions Nk
i (u) are given by

the following de Boor recursive formula:

∙ For k = 0:

N0
i (u) =

{
1 if ti ≤ u < ti+1,

0 otherwise,
i = 1, . . . , n+m (2.10)

∙ For k = 1, . . . ,m:

Nk
i (u) =

u− ti
ti+k − ti

Nk−1
i (u) +

ti+k+1 − u
ti+k+1 − ti+1

Nk−1
i+1 (u), i = 1, . . . , n+m− k.

(2.11)

Given the control points di ∈ ℝd, i = 1, . . . , n, (usually d = 2, 3) and the knot sequence

T = Tm,n, the spline curve Smd of degree m in B-spline representation is defined as:

Smd(u) =

n∑
i=1

diN
m
i (u∣T), (2.12)

in which Nm
i (u) is the i-th B-spline basis function of degree m.

The B-spline basis is well conditioned and has many nice properties which usu-

ally lead to stable and simple algorithms, see Schoenberg [28] and de Boor [5]. The

important properties are listed as follows:

13

2. THEORETICAL BACKGROUND

∙ Local support: Nm
i (u) = 0, u /∈ [ti, ti+m+1).

∙ Non-negativity: Nm
i (u) ≥ 0, u ∈ [t1, tm+n+1].

∙ Partition of unity:
∑�

i=�−mN
m
i (u) = 1, u ∈ [t�, t�+1).

As a consequence, the spline curve has the following important properties:

∙ Strong convex hull property: a spline curve is contained in the convex hull of

its control polygon. More specifically, if u lies in the knot interval [t�, t�+1),

then the curve Smd(u) is contained in the convex hull of the control points

d�−m,d�−m+1, . . . ,d�.

∙ Local modification property: the control point di only affects the curve Smd on

the interval [ti, ti+m+1).

∙ Differentiability and smoothness: the curve Smd(u) is at least Cm−k continuous

at a knot of multiplicity k.

∙ End interpolation: with m+ 1-fold knots at both ends, the spline curve Smd(u)

passes through the end control points d1 and dn. A curve with end points inter-

polation is often called a clamped spline curve.

∙ A Bézier curve of degreem can be taken as a special case of a spline curve of degree

m with the knot sequence T = {t1 = ⋅ ⋅ ⋅ = tm = tm+1 < tm+2 = ⋅ ⋅ ⋅ = t2m+2}.

The matrix representation of B-splines are described in the following theorem:

Theorem 1. [18] Let T = Tm,n be a knot sequence of degree m, let � be an integer

such that t� < t�+1 and m+ 1 ≤ � ≤ n. For each positive integer k with k ≤ m, define

the matrix R�
k(x) = Rk(x) ∈ ℝk×(k+1) by

Rk(x) =

⎛⎜⎜⎜⎜⎜⎝
t�+1−x

t�+1−t�+1−k

x−t�+1−k
t�+1−t�+1−k

0 ⋅ ⋅ ⋅ 0

0
t�+2−x

t�+2−t�+2−k

x−t�+2−k
t�+2−t�+2−k

⋅ ⋅ ⋅ 0
...

...
. . .

. . .
...

0 0 ⋅ ⋅ ⋅ t�+k−x
t�+k−t�

x−t�
t�+k−t�

⎞⎟⎟⎟⎟⎟⎠ (2.13)

14

2.2 Spline curves

Then for u in the interval [t�, t�+1), the m+1 B-splines {Nm
j (u∣T)}�j=�−m of degree

m that are nonzero on this interval can be written as

Nm = (Nm
�−m, N

m
�−m+1, . . . , N

m
�) = R1(u)R2(u) ⋅ ⋅ ⋅Rm(u). (2.14)

If u is restricted to the interval [t�, t�+1), then Smd(u) =

n∑
j=1

djN
m
j is given by

Smd(u) = R1(u)R2(u) ⋅ ⋅ ⋅Rm(u)dm, (2.15)

where the matrix dm ∈ ℝ(m+1)×d is given by dm = (d�−m,d�−m+1, . . . ,d�)T .

2.2.3 Derivatives of spline curves

To compute the derivatives of a spline curve, we first consider the derivatives of the

B-spline basis functions:

Lemma 2. Let T = Tm,n be a knot sequence and for u ∈ [t�, t�+1) satisfying t� < t�+1

and m+ 1 ≤ � ≤ n, we have

d

du
Nm
j (u) =

m

tj+m − tj
Nm−1
j (u)− m

tj+m+1 − tj+1
Nm−1
j+1 (u), j = 1, . . . , n. (2.16)

By inserting (2.16) into the definition of a spline curve (2.12), we get the derivative

of a spline curve:

dSmd(u)

du
=

n∑
j=1

dj

[
m

tj+m − tj
Nm−1
j (u)− m

tj+m+1 − tj+1
Nm−1
j+1 (u)

]

= m
n∑
j=1

dj
tj+m − tj

Nm−1
j (u)−m

n+1∑
j=2

dj−1
tj+m − tj

Nm−1
j (u)

= m
d1

tm+1 − t1
Nm−1

1 (u)︸ ︷︷ ︸
=0

+m

n∑
j=2

(dj − dj−1)

tj+m − tj
Nm−1
j (u)

−m dn
tn+m+1 − tn+1

Nm−1
n+1 (u)︸ ︷︷ ︸

=0

=

n−1∑
j=1

m(dj+1 − dj)

tj+m+1 − tj+1
Nm−1
j+1 (u). (2.17)

15

2. THEORETICAL BACKGROUND

Theorem 3. Let T = Tm,n be a knot sequence and for u ∈ [t�, t�+1) satisfying t� < t�+1

and m+ 1 ≤ � ≤ n, we have

dSmd(u)

du
=

n−1∑
j=1

d′jN
m−1
j+1 (u∣T), (2.18)

where

d′j =
m

tj+m+1 − tj+1
(dj+1 − dj). (2.19)

If T = T ∗m,n, then for u ∈ [tm+1, tn+1), N
m−1
j+1 (u∣T) evaluated on the original knot

sequence T = T ∗m,n is equal to Nm−1
j (u∣T ′) on the new knot sequence T ′ = T ∗m−1,n−1,

i.e. Nm−1
j+1 (u∣T) = Nm−1

j (u∣T ′). Therefore, on the new knot sequence T ′ the derivative

of a B-spline curve can be written as the following:

dSmd(u∣T)

du
=

n−1∑
j=1

d′jN
m−1
j (u∣T ′) = Sm−1d

′(u∣T ′). (2.20)

Therefore, the derivative of a spline curve is another spline curve of degree m− 1 with

a new set of control points {d′j}n−1j=1 and a knot sequence that discards one copy of the

first and last knot. In the following theorem, the r-th derivative of a spline curve in

matrix form is given.

Theorem 4. [18] Let T = Tm,n be a knot sequence for a spline curve of degree m and

let � be an integer such that t� < t�+1 and m+ 1 ≤ � ≤ n. For u ∈ (t�, t�+1), the r-th

(r ≤ m) derivative of the vector of B-splines Nm(u) = (Nm
�−m(u), . . . , Nm

� (u)) is given

by
dr

dur
Nm(u) =

m!

(m− r)!
Nm−r(u)Dm−r+1 ⋅ ⋅ ⋅Dm. (2.21)

Then the r-th derivative of Smd(u) =
n∑
i=1

diN
m
i (u) is given by

dr

dur
Smd(u) =

m!

(m− r)!
R1(u) ⋅ ⋅ ⋅Rm−r(u)Dm−r+1 ⋅ ⋅ ⋅Dmd

m, (2.22)

where Dk denotes the matrix obtained by differentiating each entry in Rk(x) with respect

to x,

Dk =
dRk(x)

dx
=

⎛⎜⎜⎝
−1

t�+1−t�+1−k
1

t�+1−t�+1−k
⋅ ⋅ ⋅ 0

...
. . .

. . .
...

0 ⋅ ⋅ ⋅ −1
t�+k−t�

1
t�+k−t�

⎞⎟⎟⎠ . (2.23)

16

2.2 Spline curves

2.2.4 Integral of spline curves

Derived from the differentiation formula in Lemma 2 and Theorem 3, the indefinite

integral of B-splines and spline curves can be given in explicit form, see [6] and [27]. In

our application, we often need to compute integrals of the type:∫
ℝ

∣∣∣∣ drdurSmd(u∣T)

∣∣∣∣2 du = dT
(∫

ℝ

(
N(r)

)T
N(r) du

)
d, (2.24)

in which N(r) =

(
dr

dur
Nm

1 (u∣T), ⋅ ⋅ ⋅ , d
r

dur
Nm
n (u∣T)

)
(r = 1, 2, 3),

and d = (d1, ⋅ ⋅ ⋅ ,dn)T ∈ ℝn×d,

in the context of least squares approximation. Since the integrand in (2.24) still con-

sists of piecewise polynomials, the integration problem can be solved numerically by

Gaussian quadrature.

Gaussian quadrature

An l-node Gaussian quadrature rule allows to integrate polynomials of order up to 2l−1

exactly. The quadrature rule has the form∫ a2

a1

f(x)w(x) dx =
l∑

k=1

wkf(xk).

If w(x) = 1 and [a1, a2] = [−1, 1], the quadrature rule is called Gauss-Legendre Quadra-

ture, where the nodes are the roots of Legendre polynomials. The approximate nodes

and weights up to l = 4 are listed in the table below.

l xk wk
1 0 2

2 ± 0.577350269 1

3 0 0.888888889
±0.774596669 0.555555556

4 ±0.861136312 0.347854845
±0.339981043 0.652145155

We then extend the quadrature for f(x) over [a1, a2]. With x =
a2 − a1

2
t+

a2 + a1
2

,

we get ∫ a2

a1

f(x) dx =

∫ 1

−1
f(
a2 − a1

2
t+

a2 + a1
2

)
a2 − a1

2
dt,

17

2. THEORETICAL BACKGROUND

therefore the nodes x̂k and weights ŵk over [a1, a2] are given as:

x̂k =
a2 − a1

2
xk +

a2 + a1
2

,

ŵk =
a2 − a1

2
wk.

Back to solving the problem (2.24), the product of two B-splines of degree m− r is

a piecewise polynomial function of degree 2(m− r). Thus the number of nodes needed

to compute (2.24) exactly is determined by 2l− 1 ≥ 2(m− r). Therefore l = m− r+ 1

is sufficient. The functional (2.24) can be written as:

dT

(
s−1∑
i=1

∫ bi+1

bi

N(r)(u)
T
N(r)(u) du

)
d

= dT

(
s−1∑
i=1

l∑
k=1

N(r)(x̂ik)
T
ŵikN

(r)(x̂ik)

)
d

=: dTMd,

where bi are the break points of the knots sequence, x̂ik =
bi+1 − bi

2
xk +

bi+1 + bi
2

and

ŵik =
bi+1 − bi

2
wk (i = 1, . . . , s − 1, k = 1, . . . , l), in which xk, wk are the nodes and

weights of l-node Gaussian quadrature over [−1, 1].

We can get M = CTWC, where C is the collocation matrix of the r-th derivatives:

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N
(r)
1 (x̂11) N

(r)
2 (x̂11) ⋅ ⋅ ⋅ N

(r)
n (x̂11)

N
(r)
1 (x̂12) N

(r)
2 (x̂12) ⋅ ⋅ ⋅ N

(r)
n (x̂12)

...

N
(r)
1 (x̂1l) N

(r)
2 (x̂1l) ⋅ ⋅ ⋅ N

(r)
n (x̂1l)

N
(r)
1 (x̂21) N

(r)
2 (x̂21) ⋅ ⋅ ⋅ N

(r)
n (x̂21)

N
(r)
1 (x̂22) N

(r)
2 (x̂22) ⋅ ⋅ ⋅ N

(r)
n (x̂22)

...

N
(r)
1 (x̂2l) N

(r)
2 (x̂2l) ⋅ ⋅ ⋅ N

(r)
n (x̂2l)

...

...

N
(r)
1 (x̂s′1) N

(r)
2 (x̂s′1) ⋅ ⋅ ⋅ N

(r)
n (x̂s′1)

N
(r)
1 (x̂s′2) N

(r)
2 (x̂s′2) ⋅ ⋅ ⋅ N

(r)
n (x̂s′2)

...

N
(r)
1 (x̂s′l) N

(r)
2 (x̂s′l) ⋅ ⋅ ⋅ N

(r)
n (x̂s′l)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, in which s′ = s− 1,

18

2.2 Spline curves

and W = diag(ŵ11, ŵ12, . . . , ŵ1l, ŵ21, ŵ22, . . . , ŵ2l, . . . , ŵs′1, ŵs′2, . . . , ŵs′l).

With Gaussian quadrature, the integral of spline curves can be reduced to the

problem of evaluating the spline curves at certain x̂ik.

2.2.5 Knot insertion

Knot insertion refers to the process of adding new knots into the existing knot sequence

without changing the curve’s shape.We first consider the case of inserting one knot at a

time and we can update the B-spline coefficients after each insertion via implementing

Boehm’s algorithm [2].

Algorithm 1. (Boehm’s algorithm) Let T = Tm,n be a given knot sequence and

T̃ = {t1, . . . , t�, t̃, t�+1, . . . , tn+m+1} be the knot sequence obtained by inserting a knot

t̃ in T in the interval [t�, t�+1).

If

Smd(u∣T) =

n∑
j=1

djN
m
j (u∣T) =

n+1∑
i=1

d̃iN
m
i (u∣T̃) = Smd̃(u∣T̃), (2.25)

then (d̃i)
n+1
i=1 can be expressed in terms of (dj)

n
j=1 through the formulas:

d̃i =

⎧⎨⎩
di if 1 ≤ i ≤ �−m,
t̃−ti

ti+m−tidi + ti+m−t̃
ti+m−tidi−1 if �−m+ 1 ≤ i ≤ �,

di−1 if �+ 1 ≤ i ≤ n+ 1.

(2.26)

By using linear algebra, the refined control points d̃ can be written as a product of

the knot insertion matrix A and the original control points d:

d̃ = A(t̃)d, A(t̃) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
1− ��−m+1 ��−m+1

. . .
. . .

1− �� ��
1

. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.27)

where d = (d1, . . . ,dn)T ∈ ℝn×d, d̃ = (d̃1, . . . , d̃n+1)
T ∈ ℝ(n+1)×d and

�i =
ti+m − t̃
ti+m − ti

, i = �−m+ 1, . . . , �.

19

2. THEORETICAL BACKGROUND

By applying Boehm’s algorithm repeatedly, we can compute the refined control

points after inserting a sequence of knots t̃1, . . . , t̃k:

d̃ = A(t̃1, . . . , t̃k)d, A(t̃1, . . . , t̃k) = A(t̃k) ⋅ ⋅ ⋅A(t̃1) ∈ ℝ(n+k)×n. (2.28)

Instead of inserting knots sequentially using Boehm’s algorithm, we can insert knots

simultaneously using the Oslo algorithm, which is based on the recurrence of discrete

B-splines [9, 18]. Especially when we insert a large number of knots, the Oslo algorithm

is more efficient.

Algorithm 2. [18] (Oslo algorithm I) Assume that the two knot sequences T = {t1, . . . ,
tn1+m+1} and T̃ = {t̃1, . . . , t̃n2+m+1} with common knots at the ends are given and

T ⊂ T̃ . To compute the knot insertion matrix Am(T, T̃) = (aj,m(i))n2,n1i,j=1 ∈ ℝn2×n1

from T to T̃ such that d̃ = Am(T, T̃)d, we perform the following steps:

For i = 1, . . . , n2,

1. Determine � such that t� ≤ t̃i < t�+1

2. Compute entries �−m, . . . , � of row i by evaluating

am(i) = (a�−m,m(i), . . . , a�,m(i)) = R1(t̃i+1) ⋅ ⋅ ⋅Rm(t̃i+m)

All other entries in row i are zero. The entry Rk(x) is defined in (2.13).

Knot insertion is a basic and important strategy for spline curves which can be

applied to decompose the spline curve to enable local control and to refine the knot

sequence to enhance the flexibility and increase the degrees of freedom. Knot insertion

can also be used to compare two spline curves with different knot sequences, which will

be further discussed in Section 3.4.1.

2.2.6 De Boor’s algorithm

De Boor’s algorithm provides a fast and numerically stable way to evaluate a spline

curve, which can also be realized via artificial knot insertion. If we want to evaluate

the spline curve Smd at the parameter value u, we can insert the knot u several times

to make its multiplicity m and the last generated new control point is the point on the

curve that corresponds to the parameter u.

20

2.2 Spline curves

Algorithm 3. (De Boor’s algorithm):

∙ Input: the parameter u

∙ Output: the point in the curve Smd(u)

∙ If u lies in [t�, t�+1) and u ∕= t�, then u is inserted m times. If u = t� and the

multiplicity of t� is m�, then u needs to be inserted m−m� times. The affected

control points d�−m� , . . . ,d�−m are renamed as d0
�−m� , . . . ,d

0
�−m.

for r = 1 to m−m� do

for i = �−m+ r to �−m� do

Let

�ri =
u− ti

ti+m−r+1 − ti
,

dri = (1− �ri)dr−1i−1 + �ri d
r−1
i .

end for

end for

d
m−m�
�−m� is Smd(u).

De Boor’s algorithm can also be used to subdivide a spline curve. Notice that the

running time of the algorithm depends only on the degree m rather than on the number

n of control points. After inserting the knots several times, making each of the interior

knot’s multiplicity m, the spline curve becomes a piecewise Bézier curve, which will be

further discussed in Section 2.2.8.

2.2.7 Knot removal

Knot removal is the inverse process of knot insertion. As we know, knot insertion is

a precise procedure, i.e. the spline curve after knot insertion is precisely the same as

the original one without shape change. However, knot removal usually produces only

an approximation of the original curve. The only exception occurs if the knot has

been inserted before, in other words, if the curve is of higher order of continuity than

Cm−k at a knot of multiplicity k. The strategies of knot removal to produce a good

approximation are discussed in a number of papers [16, 17, 29].

Given the spline curve Smd̃(u∣T̃), we consider the problem to determine the control

points d of the spline curve Smd(u∣T) after removing the knot t̃ from the knot sequence

21

2. THEORETICAL BACKGROUND

T̃ . To do so, we need minimize the error between the spline curves to determine the

control points d:

min
d
∥Smd(⋅∣T)− Smd̃(⋅∣T̃)∥. (2.29)

Since the minimization functional (2.29) is continuous and hard to evaluate, it is prefer-

able to minimize the error in a discrete form. There are various ways to choose the

minimization functional and the norm of the error function, but a simple choice is to

minimize the error between the control points d̃ and A(t̃)d in L2-norm:

min
d
∥A(t̃)d− d̃∥2 = min

d
dTATAd− 2d̃

T
Ad + d̃

T
d̃, (2.30)

which can be reduced to solving the normal equation:

ATAd = AT d̃ (2.31)

The implementation of knot removal in this thesis is restricted to remove the knots

inserted previously in the context of degree elevation. This can be performed precisely

and will be discussed in the next section.

2.2.8 Degree elevation

In some applications we require two spline curves to have the same degree to facilitate

combining curve segments or comparison between curves. Degree elevation of a spline

curve refers to the process of representing a spline curve using basis functions of a

higher degree. The spline curve after degree elevation has the same parametrization

and geometry as the original one. There are various methods to raise the degree of the

spline curve [24, 25, 4, 15] and here we discuss the algorithm introduced by Piegl and

Tiller [22].

Degree elevation of Bézier curves

We will first introduce the degree elevation of Bézier curves, since it is involved in

raising the degree of spline curves.

Assume that a Bézier curve of degree k defined by k+1 control points d
[k]
1 , . . . ,d

[k]
k+1

and we want to increase the degree of this curve to k+1. Since a Bézier curve of degree

k + 1 is defined by k + 2 control points, we need to find such a new set of control

22

2.2 Spline curves

points d
[k+1]
1 , . . . ,d

[k+1]
k+2 . The new control points after degree elevation are computed

as follows:

d[k+1] =

⎛⎜⎜⎜⎜⎜⎝
1
1

k+1
k
k+1
. . .

. . .
k
k+1

1
k+1

1

⎞⎟⎟⎟⎟⎟⎠d[k] =: Ekd
[k], (2.32)

in which d[k+1] =
(
d
[k+1]
1 , . . . ,d

[k+1]
k+2

)T
∈ ℝ(k+2)×d, d[k] =

(
d
[k]
1 , . . . ,d

[k]
k+1

)T
∈ ℝ(k+1)×d

and Ek ∈ ℝ(k+2)×(k+1).

With (2.32), we can derive that the control points d
[k]

=
(
d
[k]
1 , . . . ,d

[k]
lk+1

)T
∈

ℝ(lk+1)×d for a piecewise Bézier curve consisting of l pieces of Bézier segments of degree

k are updated as follows:

d
[k+1]

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

k+1
k
k+1
. . .

. . .
k
k+1

1
k+1

1
1

k+1
k
k+1
. . .

. . .
k
k+1

1
k+1

1
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

d
[k]

=: Ekd
[k]
, (2.33)

where d
[k+1]

=
(
d
[k+1]
1 , . . . ,d

[k+1]
lk+l+1

)T
∈ ℝ(lk+l+1)×d, Ek ∈ ℝ(lk+l+1)×(lk+1) and the

number of the repeated pattern in Ek is equal to the number of Bézier segments l.

Degree elevation of spline curves

Given a spline curve of degree m,

Smd(u∣T) =
n∑
i=1

diN
m
i (u∣T). (2.34)

To illustrate the variation of the knot sequence more clearly during degree elevation,

the knot sequence T is written in the following form:

T = {b1, . . . , b1︸ ︷︷ ︸
m1=m+1

, b2, . . . , b2︸ ︷︷ ︸
m2

, . . . , bs−1, . . . , bs−1︸ ︷︷ ︸
ms−1

, bs, . . . , bs︸ ︷︷ ︸
ms=m+1

}, (2.35)

23

2. THEORETICAL BACKGROUND

in which the end knots have multiplicity m+ 1 and interior break points bi have mul-

tiplicity mi. We raise the degree from m to m+ r and the curve after degree elevation

has the form

Sm+rd̃(u∣T̃) =

ñ∑
i=1

d̃iN
m+r
i (u∣T̃), (2.36)

with knot sequence

T̃ = {b1, . . . , b1︸ ︷︷ ︸
m+r+1

, b2, . . . , b2︸ ︷︷ ︸
m2+r

, . . . , bs−1, . . . , bs−1︸ ︷︷ ︸
ms−1+r

, bs, . . . , bs︸ ︷︷ ︸
m+r+1

} (2.37)

and ñ = n+ sr.

Degree elevation can be performed in the following steps:

1. Subdivide the spline curve into piecewise Bézier curves at the break points using

the Oslo or Boehm’s algorithm to increase the multiplicity of interior knots to m.

The piecewise Bézier curve of degree m after knot insertion can be written as

Smd̂(u∣T̂) =

n̂∑
i=1

d̂iN
m
i (u∣T̂), (2.38)

with knot sequence

T̂ = {b1, . . . , b1︸ ︷︷ ︸
m+1

, b2, . . . , b2︸ ︷︷ ︸
m

, . . . , bs−1, . . . , bs−1︸ ︷︷ ︸
m

, bs, . . . , bs︸ ︷︷ ︸
m+1

}. (2.39)

The control points of the piecewise Bézier curve are computed as

d̂ = M̂d, (2.40)

in which M̂ = Am(T, T̂) is the knot insertion matrix from T to T̂ .

2. Elevate the degree of the piecewise Bézier curve .

If we raise the degree of the piecewise Bézier curve Smd̂(u∣T̂) from m to m + r,

we obtain a spline curve

Sm+rd(u∣T) =
n∑
i=1

diN
m+r
i (u∣T), (2.41)

with knot sequence

T = {b1, . . . , b1︸ ︷︷ ︸
m+r+1

, b2, . . . , b2︸ ︷︷ ︸
m+r

, . . . , bs−1, . . . , bs−1︸ ︷︷ ︸
m+r

, bs, . . . , bs︸ ︷︷ ︸
m+r+1

}. (2.42)

24

2.2 Spline curves

The control points are updated by

d = Md̂, (2.43)

in which M = Em+r−1 ⋅ ⋅ ⋅Em.

3. Represent the piecewise Bézier curve as a spline curve with respect to the initial

knot distribution, which can be carried out via knot removal.

As mentioned before, a knot inserted previously can be removed precisely. From

the spline curve Sm+rd(u∣T), the target curve Sm+rd̃(u∣T̃) is obtained via knot

removal. Inversely we can get Sm+rd(u∣T) from the target curve Sm+rd̃(u∣T̃) by

artificial knot insertion, so we have:

d = Am+r(T̃ , T)d̃. (2.44)

For the sake of convenience, we simplify the knot insertion matrix Am+r(T̃ , T)

as Ã. Since Ã has full rank and Ã
T
Ã is non-singular, we get

d̃ = (Ã
T
Ã)−1Ã

T
d =: M̃d. (2.45)

If we summarize the above steps, the control points of the final spline curve are com-

puted as

d̃ = M̃MM̂d. (2.46)

2.2.9 Application of spline curves

A typical application of splines is to fit a curve to a given set of data points. Curve

fitting using spline curves consists of two main categories: spline interpolation and

spline approximation, which will be discussed in this section.

2.2.9.1 Parameter and knot sequence selection

Before considering spline interpolation and spline approximation, we first need to find

the corresponding parameters u1, . . . , un that can be assigned to the respective data

points p1, . . . ,pn. By choosing different parameters, the shape of the curve can be

influenced considerably, see [7]. Most commonly used parameter selection schemes are

listed below. For simplicity, we consider the parameters on a normalized interval [0, 1].

25

2. THEORETICAL BACKGROUND

∙ Uniformly spaced:

uk =
k − 1

n− 1
, k = 1, . . . , n.

∙ Chordal length:

Let L =
n∑
i=2

∥pi − pi−1∥ and Lk =

∑k
i=2 ∥pi − pi−1∥

L
,

then u1 = 0 and uk = Lk, k = 2, . . . , n.

∙ Centripetal:

Let L =

n∑
i=2

√
∥pi − pi−1∥ and Lk =

∑k
i=2

√
∥pi − pi−1∥
L

,

then u1 = 0 and uk = Lk, k = 2, . . . , n.

Although the uniformly spaced method is the simplest one to implement, it totally

ignores the geometry of the data points. The chordal length method is widely used

and usually performs well since it represents the distribution of the data points. For

motion control, it is convenient to specify the motion constraints if the curve is arc

length parametrized. However a lot of parametric curves, for instance the polynomial

curves (proved by R. Farouki [8]) cannot be parametrized to have unit speed, but the

chordal length method can be taken as an approximation to arc length parametrization.

Fig. 2.5 illustrates how the shape of the curve is affected by different methods. For the

chordal length method, a longer chord may sometimes cause its curve segment to have

a bulge bigger than necessary. This phenomenon can be reduced by the centripetal

method introduced by Lee [14], since the impact of a longer chord on the length of the

data polygon is reduced, meanwhile the impact of a shorter chord on the length of the

data polygon is increased. Because of this characteristic, the centripetal method can

handle the sharp turn in Fig. 2.5 better than the chord length method.

Knot selection is a key issue for spline interpolation and approximation and worth

to be investigated in depth. If the knots are located at the data points, the positions

of the knots can be chosen in the same way as the parameter selection, among which

uniformly spaced, chordal length and centripetal methods are the most basic and most

commonly used ones. However, how to choose optimal knots in general is difficult and

there are probably no ’optimal’ knots, which can fit all data sets well. Therefore a

multitude of heuristic knot selection schemes is introduced for specific applications.

To deal with our problem, we propose a knot placement scheme based on curvature

characteristics, which will be described in detail in Section 3.3.1.

26

2.2 Spline curves

Figure 2.5: The shape of a curve is greatly influenced by parameter selection methods

2.2.9.2 Interpolation with splines

With the techniques for parameter selection and knot generation, we can obtain the set

of parameter values and the knot sequence. In this section, we will discuss a general

interpolation problem to find a spline curve of degree m defined by n control points

that passes all n data points in the given order.

Problem 1. Given the data points p1, . . . ,pn, we need to find a spline curve Smd(u∣T)

of degree m with knot sequence T = Tm,n to interpolate the data points at the corre-

sponding parameters u1, . . . , un which are strictly increasing.

Smd(uj ∣T) =

n∑
i=1

diN
m
i (uj ∣T) = pj , for j = 1, . . . , n. (2.47)

The equations in (2.47) form a system of n equations and n unknowns. The linear

system of equations can be written in matrix form as:

Nd = p, (2.48)

where

N =

⎛⎜⎝ Nm
1 (u1) ⋅ ⋅ ⋅ Nm

n (u1)
...

. . .
...

Nm
1 (un) ⋅ ⋅ ⋅ Nm

n (un)

⎞⎟⎠ ∈ ℝn×n, d =

⎛⎜⎝ d1
...

dn

⎞⎟⎠ ∈ ℝn×d, p =

⎛⎜⎝ p1
...

pn

⎞⎟⎠ ∈ ℝn×d.

The matrix N is often referred to as B-spline collocation matrix. The necessary and

sufficient condition for the collocation matrix to be nonsigular is stated in the following

theorem.

27

2. THEORETICAL BACKGROUND

Theorem 5. The collocation matrix N with entries (Nm
j (ui))

n
i,j=1 is nonsingular if

and only if its diagonal elements are nonzero, i.e.

Nm
i (ui) ∕= 0, for i = 1, . . . , n. (2.49)

The condition that the diagonal elements of N should be nonzero is known as

Schoenberg-Whitney condition, i.e.

ti < ui < ti+m+1, i = 1, . . . , n. (2.50)

It is important to point out the fact that the collocation matrix N is totally positive

and is a banded matrix, with semi-bandwidth less than m+ 1 (i.e. Nm
i (uk) = 0, if ∣i−

k∣ > m), which means in any row of the matrix N, at most 2m+ 1 consecutive entries

are nonzero. Thus the linear equation system (2.48) can be solved safely by Gaussian

elimination without pivoting, see [5, Chap. XIII].

2.2.9.3 Least squares approximation with splines

In some applications, it may be sufficient and even better to find a curve which is

only close enough to the given data points rather than passing through all of them.

The curves obtained this way are referred to as approximating curves. As shown in

Fig. 2.6, the interpolating curve may wiggle strongly through all data points instead

of following the data polygon closely. The approximation technique can handle this

wiggling problem better with properly chosen knots by relaxing the strict condition that

the curve must pass through all the data points. Furthermore, approximation is more

flexible than interpolation and fewer polynomial pieces are needed for approximation

curves.

A measure of discrepancy which is mainly chosen to be minimized is the sum of

the squares of the distances between the data points and the curve at corresponding

parameters. This kind of approximation is called approximation in the sense of least

squares.

Problem 2. Given the data points p1, . . . ,pn, we need to find a spline curve Smd(u∣T)

of degree m with control points d1, . . . ,dl, l ≤ n, and an appropriate knot sequence

T = Tm,l to minimize the sum of the squares of the distances between the data points

and the curve at the corresponding parameters u1, . . . , un:

min
d

n∑
j=1

(Smd(uj ∣T)− pj)
2 = min

d

n∑
j=1

(
l∑

i=1

diN
m
i (uj)− pj)

2. (2.51)

28

2.2 Spline curves

data points	
least squares approximation
spline interpolation

Figure 2.6: Spline interpolation vs least squares approximation

Problem 2 is equivalent to the linear least squares problem:

min
d
∥Nd− p∥2, (2.52)

where

N =

⎛⎜⎝ Nm
1 (u1) ⋅ ⋅ ⋅ Nm

l (u1)
...

. . .
...

Nm
1 (un) ⋅ ⋅ ⋅ Nm

l (un)

⎞⎟⎠ ∈ ℝn×l, d =

⎛⎜⎝ d1
...

dl

⎞⎟⎠ ∈ ℝl×d, p =

⎛⎜⎝ p1
...

pn

⎞⎟⎠ ∈ ℝn×d.

Lemma 6. The linear least squares problem (2.52) always has a solution d∗ which can

be found by solving the linear set of equations, known as normal equations

NTNd∗ = NTp,

where the matrix NTN is symmetric and positive semidefinite.

An advantage of least squares approximation is the desired smoothing effect and less

oscillation compared to interpolation methods or other approximation schemes such as

the sup-norm. It is important to note that how much a curve is allowed to oscillate

also depends strongly on the knot sequence. The measure of discrepancy in (2.51) only

considers the errors at the data points, but the accuracy of the approximating curve to

29

2. THEORETICAL BACKGROUND

the entire data polygon cannot be guaranteed. In our application to approximate the

part programs, the spline curve is restricted to stay in the tolerance band around the

data polygon. Therefore, a measure of discrepancy which only considers the errors at

the data points is not sufficient. The fundamental problem to choose an appropriate

minimization function and a proper knot sequence for our specific application will be

discussed in detail in Chapter 3.

2.3 Equality-constrained optimization scheme

In this thesis, we will consider the equality-constrained optimization problem

min f(x), subject to c(x) = 0, (2.53)

where f : Rn → R and c : Rn → Rm are smooth functions.

The Lagrangian function for problem (2.53) is defined as Λ(x, �) = f(x)− �T c(x) and

� = [�1, �2, . . . , �m] is called Lagrange multiplier. We can search for solutions of the

equality-constrained problem by seeking stationary points of the Lagrangian function.

The first-order necessary condition for x∗ to be a local minimizer for the problem (2.53)

is defined in the following theorem.

Theorem 7. Suppose that x∗ is the local solution of (2.53), that the functions f and

c are continuously differentiable, and that the LICQ 1 holds at x∗. Then there is a

Lagrange multiplier vector �∗, such that the following conditions are satisfied at (x∗, �∗)

∇xΛ(x∗, �∗) = 0, (2.54)

c(x∗) = 0. (2.55)

The conditions are often known as the Karush-Kuhn-Tucker conditions [21], or the

KKT conditions for short. By using KKT conditions, we obtain a system of n + m

equations with n+m unknowns x and �:

F (x, �) =

(
∇xΛ(x, �)

c(x)

)
= 0, (2.56)

⇒
(
∇f(x)− J(x)T�

c(x)

)
= 0, (2.57)

1LICQ stands for linear independence constraint qualification which means the gradients of the

equality constraints are linearly independent at x∗.

30

2.3 Equality-constrained optimization scheme

where J(x) is the Jacobian matrix of the constraints, that is,

J(x)T = (∇c1(x),∇c2(x), . . . ,∇cm(x)).

To solve the nonlinear equations (2.57), Newton’s method [10] is usually employed. The

Jacobian of F (x, �) is given by(
∇2
xxΛ(x, �) ∇2

x�Λ(x, �)

∇xc(x) ∇�c(x)

)
=

(
H(x, �) −J(x)T

J(x) 0

)
, (2.58)

where H denotes the Hessian matrix of the Lagrangian function with respect to x. The

Newton iteration step (xk, �k) is given by(
xk+1

�k+1

)
=

(
xk
�k

)
+

(
pk
p�

)
, (2.59)

where pk and p� are computed by solving the KKT system:(
Hk −JTk
Jk 0

)(
pk
p�

)
=

(
−∇fk + JTk �k

−ck

)
. (2.60)

31

2. THEORETICAL BACKGROUND

32

3

Basic strategy

3.1 The problem

A brief description of our problem is that we have to approximate the densely non-

uniformly sampled discrete points by smooth spline curves within a specified tolerance

band � as shown in Fig. 3.1. The following aspects must be taken into consideration:

∙ In order to achieve higher attainable feed rate and to reduce the storage of the

data, a smaller number of polynomials and therefore longer polynomial pieces are

desired to approximate the data with the specified accuracy.

∙ When the approximation accuracy is satisfied, the curve should be as smooth as

possible. How to evaluate the smoothness (fairness) of a curve is discussed in

detail in Section 3.4.3. With smoothing, undesired resonance of the machine tool

Figure 3.1: Approximation within the tolerance band with a smooth spline curve

33

3. BASIC STRATEGY

Figure 3.2: Oscillation or bulges caused by undetected sharp edges

can be avoided and velocity, acceleration and jerk capability can be made more

use of.

∙ During the approximation and smoothing, sharp edges represented by large open-

ing angles should be preserved.

∙ It is important to maintain consistency between the neighboring paths and en-

hance the milling result in consequence.

3.2 Curve segmentation

Since the part program consists of a large amount of discrete data, in some cases

up to millions of points, it is necessary to subdivide the data into small sets to

reduce the computation complexity for an online compressor. Therefore, break-

ing the curve at edges is a natural and reasonable way to do the partitioning.

In addition, when approximating the discrete data points in the part program,

we need to preserve and reproduce the desired edges in order to meet better ap-

proximation precision and to avoid undesired bulges or oscillations as shown in

Fig. 3.2. However it is a difficult task to identify if the edge is desired or not, in

particular when the data points are noisy or in some cases the edges are not so

manifest.

In this section, we only discuss what we call hard edge detection, which means only

one threshold �� is employed for the angle � between successive chords pi−1pi

and pipi+1 to determine between edge and non-edge.

34

3.2 Curve segmentation

Figure 3.3: Edge detection by angles between neighboring points

As shown in Fig. 3.3 , if

� = arccos
(pi − pi−1) ⋅ (pi+1 − pi)∥∥pi − pi−1

∥∥∥∥pi+1 − pi
∥∥ > ��,

the curve is broken into two segments at the point pi. Afterwards, we consider

the problem to approximate each of the curve segments with interpolating end

point conditions.

Given the discrete data points p1, . . . ,pN , which can be seen as a linear spline

with chordal length parametrization:

sl =
N∑
j=1

pjN
1
j (u ∣ T1), u ∈ [a1, a2],

where T1 = {b21, b12, . . . , b2N} in which a1 = b1 = 0, bj+1 = bj + ∥pj+1 − pj∥, j =

1, . . . , N − 1 and a2 =

N−1∑
j=1

∥pj+1 − pj∥.

We want to find a smooth spline curve of degree m within the tolerance band �

around the chords pjpj+1, j = 1, . . . , N − 1.⎧⎨⎩
f(u) =

n∑
j=1

djN
m
j (u ∣ Tm), u ∈ [a1, a2],

f(a1) = p1,
f(a2) = pN ,

(3.1)

35

3. BASIC STRATEGY

where the variables to be determined are the knot sequence Tm = {tm+1
1 , T ∗, tm+1

e }

and the control points dj , j = 1, . . . , n. The end knots in Tm have the same value

as in T1 except the multiplicity is m + 1, i.e. t1 = b1 = a1 and te = bN = a2.

The problem how to determine the interior knots T ∗ will be discussed in the next

section.

3.3 Knot selection

For spline approximation, a key and fundamental task is to select the proper knot se-

quence in order to achieve better approximation accuracy with a smaller number of

polynomial pieces. Other than the conventional methods for knot generation, we come

up with a novel scheme to construct the knot sequence based on curvature character-

istics. In the following, we will explain how to generate the knots from three aspects:

the positions of the knots, the multiplicity of the knots and the number of the knots.

3.3.1 Knot distribution based on curvature characteristics

Here we will discuss how to choose the appropriate knot positions. How well a curve can

be approximated by splines of a certain degree with a fixed number of knots depends

considerably on where the knots are placed. First we consider the distribution of simple

knots for an ideal curve without cusps such as edges or curvature jumps.

Curvature plays an extremely important role in capturing the essence of a curve

and it can be even taken as the signature of a curve. Therefore, the basic idea is

to distribute the knots according to curvature characteristics, which means that at

regions of higher curvature knots are placed more densely in order to achieve better

approximation accuracy. In addition, we want to find a knot distribution which can

well represent the distribution of the data points in the part program.

Since the tool path is discretized (sampled) by the CAM system according to a

specified chordal error, the block length between the neighboring sampled points is

determined by the curvature of the tool path. The relation between the chordal error

e, block length l and curvature � =
1

r
is illustrated in Fig. 3.4.

36

3.3 Knot selection

Figure 3.4: The relation between the block length and the curvature radius

r2 =

(
l

2

)2

+ (r − e)2, (3.2)

l =
√

8re− 4e2. (3.3)

Since usually e << l, we get l ≈
√

8e ⋅
√
r =

√
8e√
�

. Therefore, approximately the block

length is reciprocally proportional to the square root of curvature.

In order to well represent the distribution of the data points, the criterion we choose

is to distribute the knots to make the integral of the square root of the curvature in

each knot interval to be a constant C:∫ bi+1

bi

√
� du = C, bi : interior break point. (3.4)

Furthermore, by distributing the knots according to the square root of the curvature,

we can achieve better approximation accuracy, see the following theorem:

Theorem 8. [5, Chap. XII] Assume that the function f is continuous on [a1, a2] and is

k times continuously differentiable at all but finitely many points in [a1, a2] near which

Dkf is monotone and the k−th root of Dkf is integrable, i.e.
∫ a2
a1

∣∣Dkf(x)
∣∣1/k dx <∞.

If the break points b1, . . . , bs are chosen to make∫ bi+1

bi

∣∣∣Dkf(x)
∣∣∣1/k dx =

1

s− 1

∫ a2

a1

∣∣∣Dkf(x)
∣∣∣1/k dx, i = 1, . . . , s− 1, (3.5)

we have that

dist(f,Af) ≤ Ck(s− 1)−k
(∫ a2

a1

∣∣∣Dkf(x)
∣∣∣1/k dx)k , (3.6)

37

3. BASIC STRATEGY

where Af is an approximating spline curve to f , see the details in [5, Chap. XII].

If k is chosen to be 2 and the curve is approximately arc length parametrized, we

get from (3.5) that ∫ bi+1

bi

√
� du = C. (3.7)

Discrete curvature estimation

In order to distribute the knots based on curvature, we need first estimate the curvature.

Since the points pj , j = 1, . . . , N , stored in a part program, are discrete data, the

curvature �j (j = 2, . . . , N − 1) is also estimated at discrete parameter values uj ,

u1 = 0 and uj+1 − uj =
∥∥pj+1 − pj

∥∥, j = 1, . . . , N − 1. There are various ways to

estimate the discrete curvature [3, 11, 12], but in this section we only discuss a basic

method called circumcircle method.

The discrete curvature �j(uj) at the point pj , j = 2, . . . , N − 1, is determined

by the reciprocal of the radius Rj of the circle through the three neighboring points

pj−1,pj ,pj+1 as illustrated in Fig. 3.5. The circumcircle of a triangle (pj−1,pj ,pj+1)

with side of length a = ∥pj+1 − pj−1∥ and opposing angle � has radius

R =
a/2

sin(�)
=

a

2 sin(� − �)
, (3.8)

where

� − � = arccos
(pj+1 − pj) ⋅ (pj − pj−1)

∥pj+1 − pj∥∥pj − pj−1∥
. (3.9)

Since the circumcircle method is sensitive to noise, especially for dense points, some

other schemes to estimate the curvature will be considered in detail in Section 4.4. For

example, a locally interpolating quadratic polynomial [13] or Akima spline [1] can be

used to estimate the discrete curvature. A more sophisticated scheme based on area

invariant method, using the concept of integral instead of differentiation, is more robust

to noise.

To explain the knot distribution more intuitively, we plot f(x) =
∫ x
0

√
�(u) du, x ∈

[u1, uN], see Fig. 3.6. If we place q interior knots, then the axis of
∫ √

� du is first

divided into q + 1 segments. Horizontal lines are drawn from the axis of
∫ √

� du to

intersect the plot of the integral of the square root of curvature, then the intersections

are projected to the axis of parameter u to find the positions of the interior knots

38

3.3 Knot selection

j-1p

jp

1jp
a

R

α

β

Figure 3.5: Discrete curvature estimation by circumcircle through three neighboring

points

Figure 3.6: Integral of square root of curvature for knot placement

39

3. BASIC STRATEGY

ti. Since the curvature �(uj) is given at discrete parameters uj , j = 1, . . . , N , we can

approximate the integral of the square root of curvature by computing the cumulative

integral via the trapezoidal method or some other quadrature methods.

3.3.2 Curvature jump detection and multiple knots

In the previous section, we consider the distribution of simple knots for an ideal curve

without cusps. However, when approximating the part program which contains some

feature points such as sharp edges or curvature jumps, simple knots may be not suf-

ficient. Instead, by using multiple knots, we can represent the feature points more

precisely and can achieve better approximation accuracy as well. The rule to choose

the knot’s multiplicity is based on the property that the spline curve of degree m is at

least Cm−k continuous at the knots of multiplicity k. As we know, at the curvature

jumps, the curve can only be expected to be C1 continuous. According to the property

of the spline curve, the C1 continuity can be realized by a spline curve of degree m with

m−1-fold knots at the appropriate positions. Instead, if only simple knots are used, the

side effect of undesired undulations may be visible although the order of continuity is

higher, see Fig. 3.7. In the figure, the data points are extracted from the part program

’daimler’. For both approximating spline curves, the break points of the knot sequence

are chosen the same. The difference is that for the ’red’ spline, the multiplicity of the

knots at the curvature jumps is m− 1 and the ’blue’ spline has simple knots. With the

multiple knots, we can achieve much better approximation precision (approximation

error: 7�m) with the same number of polynomials, compared to the result with simple

knots (approximation error 50�m). In order to set the multiplicity of the knots accord-

ingly, we need to first detect the jumps of curvature. With the curvature estimation

method described before, a jump of curvature is detected if the curvature difference

between neighboring points is larger than a specified threshold ��. The indices J of the

curvature jumps are

J = {j ∣ ∣�j − �j−1∣ > ��}.

After detecting the curvature jumps, m−1-fold knots should be set correspondingly at

the points pj , j ∈ J, and meanwhile the m− 1-fold knots uj ,

{um−1j } ⊂ T ∗, j ∈ J,

40

3.3 Knot selection

data points
curvature jumps where m−1−fold knots are inserted
approximating spline with m−1−fold knots
approximating spline with simple knots

Figure 3.7: Comparison between the approximating results with multiple knots and

simple knots

are also determined.

Remark 2. Similar to curvature jumps, another way to handle the sharp edges is to

use a spline of degree m with m-fold knots at the edges. Considering the computation

complexity, we choose to break the curve into segments instead of using m-fold knots,

which is described in Section 3.2.

When the m−1-fold knots are fixed, the curve is divided into several curve segments

Ck, k = 1, . . . ,#(J) + 1 separated by the curvature jumps. In each curve segment, the

simple knots are distributed in the same way as described in (3.4). As shown in Fig. 3.8,

a curve is subdivided into three segments A-P, P-Q and Q-B separated by curvature

jumps at P and Q. For instance, the respective number of simple knots is qk = 7, 2 and 5

for the curve segments A-P, P-Q and Q-B. Then for each curve segment, the axis of∫ √
� is divided into qk + 1 segments. In the same way, we can get the positions of

the simple knots. And the simple and multiple knots are shown as black and red dots

respectively along the axis of parameter u.

We extract a path from the part program ’daimler’ to illustrate how to place the

knots based on curvature characteristics. The data points, the curvature and the in-

tegral of the square root of curvature are shown in Fig. 3.9, Fig. 3.10 and Fig. 3.11

41

3. BASIC STRATEGY

Figure 3.8: Integral of square root of curvature for knot placement with multiple knots

respectively. The approximating spline curve and the corresponding polynomial pieces

are illustrated in Fig. 3.12. From the figures we can see that the curvature is high in

the regions where the data points are densely sampled and dense knots are also placed

accordingly in the areas of high curvature.

3.3.3 Number of knots

Another important aspect for placing the knots is concerning the number of the knots.

On the one hand, we want to get a spline curve with fewer polynomial pieces and on

the other hand we still need to preserve some more degree of freedom for the smoothing

phase. In the implementation, the number of knots are updated iteratively until the

tolerance requirement is satisfied. In order to accelerate the iteration process, the initial

number of knots is chosen in a heuristic way instead of starting from 1.

The initial number qk of simple knots in each curve segment Ck is determined by

the number of data points Nk of the respective curve segment heuristically. Assume

that q = g(N), where the function g is a “compression function”. Since we want to get

a higher “compression rate” for a larger number of data points, the function g should

42

3.3 Knot selection

0 20 40 60 80 100 120 140 160 180 200
50

60

70

80

90

100

x

z

Figure 3.9: Data points on the part program ’daimler’

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

parameter u

κ

Figure 3.10: Curvature plot using the circumcirle method

43

3. BASIC STRATEGY

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

parameter u

∫κ
1/

2 du

Figure 3.11: Integral of square root of curvature

0 20 40 60 80 100 120 140 160 180 200
50

60

70

80

90

100

x

z

Figure 3.12: The approximating spline curve and the corresponding polynomial pieces

44

3.4 Approximation

Figure 3.13: Determine the initial number qk based on Nk

be chosen to be monotonically increasing with decreasing derivatives. The square root

of N is a good candidate:

qk = min
(⌊
!
√
Nk

⌋
, Nk

)
, (3.10)

in which ! is an integer and k = 1, . . . ,#(J) + 1. For ! = 2, the relation between

the the initial number of knots and the data points is presented in Fig. 3.13. To

determine an appropriate integer !, we should take into account the trade-off between

the final number of polynomials pieces and the iteration steps needed to satisfy the

approximation accuracy.

3.4 Approximation

In this section, we will discuss another key issue of the thesis: how to choose the proper

measure of discrepancy and the appropriate minimization functional.

45

3. BASIC STRATEGY

3.4.1 Comparison between two splines

In order to evaluate the distance between two splines and to control the approximation

error, we need to make the two splines comparable. This requires the two splines to

be defined on the same knot sequence and to be of the same degree, which means that

they have the same basis functions. If this condition is satisfied, the maximum error

between two splines s1 and s2 of the same basis functions is bounded by the maximum

error between the control points:

∥s1(u)− s2(u)∥ = ∥
L∑
j=1

ejN
m
j (u∣T)∥ ≤

L∑
j=1

∥ej∥Nm
j (u∣T) ≤ L

max
j=1
∥ej∥, (3.11)

where ej is the difference of control points between splines s1(u) and s2(u).

It is easy to prove (3.11) by using the property that the basis function Nm
j (u ∣ T) is

non-negative and the sum of all non-zero basis functions of degree m on span [ui, ui+1)

is 1.

However, in our case the two splines

sl =
N∑
j=1

pjN
1
j (u ∣ T1)

and

f =
n∑
j=1

djN
m
j (u ∣ Tm)

which we want to compare are not of the same degree and have different knot sequences

as well. Therefore, for the linear spline, we need to first elevate its degree to m:

sm =

n′∑
j=1

pmj N
m
j (u ∣ T2), then insert additional knots T ∗1 = {x∣x ∈ Tm and /∈ T2}

in succession. For the target spline curve f that we work for, we have to insert knot

sequence T ∗2 = {x∣x ∈ T2 and /∈ Tm}.

sl =
N∑
j=1

pjN
1
j (u ∣ T1)

degree elevation−→ sm =
n′∑
j=1

pmj N
m
j (u ∣ T2)

insert T ∗1−→ sf =
n′′∑
j=1

pfjN
m
j (u ∣ Tf)

f =

n∑
j=1

djN
m
j (u ∣ Tm)

insert T ∗2−→ ff =

n′′∑
j=1

dfjN
m
j (u ∣ Tf)

46

3.4 Approximation

Degree elevation

Since a linear spline sl =
N∑
j=1

pjN
1
j (u ∣ T1) is a piecewise Bézier curve, we can directly

use the degree elevation formula from (2.33), giving

pk+1 = Ekp
k, k = 1, . . . ,m− 1,

starting with p1 = p and the number of the repeated pattern in the degree rais-

ing matrix Ek is the number of Bézier curve segments, which in our case is N − 1.

After the degree elevation, the linear spline becomes a spline curve of degree m:

sm =
n′∑
j=1

pmj N
m
j (u ∣ T2), where n′ = (N − 1)m, pm = Em−1 ⋅ ⋅ ⋅E1p =: Ep and

T2 = {bm+1
1 , bm2 , . . . , b

m+1
N }.

Knot insertion

After the degree elevation, the splines sm and f are of the same degree. Since their

knot sequences are still different, we need to insert their complementary knots to each

of them to make them have the same basis functions.

sm =

n′∑
j=1

pmj N
m
j (u ∣ T2)

insert T ∗1−→ sf =

n′′∑
j=1

pfjN
m
j (u ∣ Tf),

f =

n∑
j=1

djN
m
j (u ∣ Tm)

insert T ∗2−→ ff =

n′′∑
j=1

dfjN
m
j (u ∣ Tf).

After knot insertion is performed, the two splines sf and ff we got have the same

knot sequence, the same basis functions and the same number of control points. Their

control points are determined by

pf = Am
1 (T2, Tf)pm = Am

1 (T2, Tf)Ep

and

df = Am
2 (Tm, Tf)d.

An example to show the change of the control points before and after the degree

elevation and knot insertion is illustrated in Fig. 3.14 and Fig. 3.15. From the figures,

47

3. BASIC STRATEGY

linear spline curve
upper tolerance polyline
lower tolerance polyline
approximation spline curve
control points of approximation spline curve

Figure 3.14: Control points before knot insertion and degree elevation

linear spline	
refined control points of linear spline	
approximation spline curve	
refined control points of approximation spline curve
upper tolerance polyline
lower tolerance polyline

Figure 3.15: Control points after knot insertion and degree elevation

48

3.4 Approximation

we can see that the number of the refined control points is increased considerably and

the refined control points move closer to the spline curve.

3.4.2 Least squares approximation

As mentioned in Section 2.2.9.3, the minimization of the discrete errors between the

data points and the curve at corresponding parameter values cannot guarantee global

accuracy to the data polygon. A better solution is to minimize the least squares error

between the refined control points pf and df , since the refined control points are closer

to their spline curves and we get much denser points to compare.

n′′∑
j=1

∥(Am
2 (Tm, Tf)d)j − (Am

1 (T2, Tf)Ep)j∥2 → min. (3.12)

Since this minimization problem is a quadratic one, the control points d can be deter-

mined by solving the normal equation:

AT
2 A2d = AT

2 A1Ep.

And the maximum error between two splines with the same basis functions is bounded

by the maximum error between the control points.

� := max
j
∥(A2d)j − (A1Ep)j∥

≥ max
u
∥

n∑
j=1

djN
m
j (u ∣ Tm)−

N∑
j=1

pjN
1
j (u ∣ T1)∥. (3.13)

Since the precise error between two spline curves is continuous and hard to compute,

(3.13) gives us a conservative bound of the maximum error by evaluating only the

discrete control points, which is a linear computation and more efficient. If � ≤ � , the

spline f can be guaranteed to lie within the tolerance band � around the linear spline

sl. Otherwise, the number of interior knots qk is increased by a factor
 > 1 iteratively

until the tolerance condition is satisfied.

3.4.3 Smoothness

After the approximating spline satisfying the tolerance band condition is found, the

next step is to make the approximating spline based on the same knot sequence as

49

3. BASIC STRATEGY

smooth as possible by regulating the control points. Intuitively, a curve possessing

less undesirable undulations such as bulges and wrinkles is smoother. The concept of

fairness is typically associated with the curvature characteristics of a curve, see [20, 26].

Here we will discuss two smoothness criteria based on curvature:

Strain Energy: The functional to be minimized is the integral of the square of the

curvature. Since the integral measures the strain energy accumulated in the bending

rod, this criterion is also referred to as strain energy criterion (SE).∫
∣̈f(s)∣2 ds→ min. (3.14)

In (3.14), s is the arc length and f̈(s) is equal to the curvature. For unified notation,

we use ḟ(s) to denote the derivative with respect to arc length, while f′(u) denotes the

derivative with respect to the underlying parameter.

Curvature Variation: The functional to be minimized is the integral of the square

of the curvature derivative. Physically, the criterion can be taken as minimization of

the shear force of the beam. With this criterion (CV), the curve has gradual varying

curvature with less curvature extrema and inflections.∫
∣
...
f (s)∣2 ds→ min. (3.15)

In the context of our application, the criterion CV is superior to the criterion SE due

to the following aspects:

∙ CV requires one order more of continuity and thus yields ”smoother” curves.

∙ CV demands to keep the curvature as constant as possible instead of as small as

possible to reduce undesired inflections and sign changes in curvature.

∙ From the point of view of dynamics and the concept of ’look ahead’, SE is relevant

to the acceleration f′′(t) while CV leads to a reduced jerk f′′′(t) of the machine,

as shown in the following equations:

f′(t) = ḟ(s)
ds

dt
,

f′′(t) = ḟ(s)
d2s

dt2
+ f̈(s)(

ds

dt
)2,

f′′′(t) = ḟ(s)
d3s

dt3
+ 3f̈(s)

ds

dt

d2s

dt2
+

...
f (s)(

ds

dt
)3.

50

3.4 Approximation

Figure 3.16: The deviation to arc length parametrization

In the following discussion, we will adopt the criterion to minimize the curvature

variation. The functional to be minimized is:∫
∣�̇(s)∣2 ds =

∫
∣�′(u)∣2

∥f′(u)∥
du→ min, �(u) = f̈(s) =

f′(u)× f′′(u)

∥f′(u)∥3
,

which is complicated and highly nonlinear. If the curve is assumed to be approximately

parametrized by its arc length, the CV functional can be simplified as:∫
∣f′′′(u)∣2 du→ min, (3.16)

where u is an approximation to the arc length s.

The assumption that the spline curve can be taken as approximately arc length

parametrized is well justified, if ∥f′(u)∥ ≈ 1. As shown in Fig. 3.16, ∣∥f′(u)∥ − 1∣
is evaluated on the approximating spline of a test workpiece and we found that the

deviation to the arc length parametrization is quite small.

If we substitute the B-spline representation f(u) =
n∑
j=1

djN
m
j (u∣Tm) into the func-

tion (3.16), it can be reduced to quadratic form:

V1(d) :=

∫ ∣∣∣∣∣∣
n∑
j=1

dj(N
m
j)′′′(u∣Tm)

∣∣∣∣∣∣
2

du =: dTMd, (3.17)

where

M =

[∫
(Nm

j)′′′(Nm
k)′′′ : j, k

]
,

which can be computed by Gaussian quadrature, see Section 2.2.4.

51

3. BASIC STRATEGY

3.4.4 Optimization problem

To integrate smoothness into the approximation term, we derive the final optimization

problem:

∙ Approximation term:

V0(d) :=

n′′∑
j=1

∥(A2d)j − (A1Ep)j∥2.

∙ Smoothness term:

V1(d) :=

∫ ∣∣∣∣∣∣
n∑
j=1

dj(N
m
j)′′′(u∣Tm)

∣∣∣∣∣∣
2

du

=: dTMd.

∙ Optimization problem:

min V (d), V (d) := V0(d) + �V1(d),

where � is used to regulate the weight of the smoothness term.

∙ Equality constraint (endpoint interpolation at the transitions of successive path

segments):

Qeqd = peq,

with

Qeq =

[
N1(t1∣Tm) ⋅ ⋅ ⋅ Nn(t1∣Tm)
N1(te∣Tm) ⋅ ⋅ ⋅ Nn(te∣Tm)

]
and

peq =

[
p1

pN

]
The optimization problem is a quadratic one:

V (d) = (A2d−A1Ep)T (A2d−A1Ep) + �dTMd

= dT (AT
2 A2 + �M)d− 2(A1Ep)TA2d + (A1Ep)T (A1Ep),

hence of the form

min
x

1

2
xTGx+ pTx+ b, x ∈ ℝ3, (3.18)

52

3.5 Summary of the strategy

with the equality constraint Qeqd− peq = 0.

By means of Lagrange multipliers �, we need to solve the following system of equations:

2(AT
2 A2 + �M)d− 2AT

2 (A1Ep) + QT
eq� = 0,

Qeqd− peq = 0,

that can be written in matrix form as:[
2(AT

2 A2 + �M) QT
eq

Qeq 0

] [
d
�

]
=

[
2(A1Ep)TA2

peq

]
. (3.19)

The control points of the final smooth spline curve are determined by solving the

equation. To find the smoothest curve within the tolerance band, the smoothing factor

� is updated iteratively and a bisection method is employed to find the largest possible

smoothing factor.

3.5 Summary of the strategy

Approximation to the part program has two principal issues: to control the approxima-

tion error within the specified tolerance � and to achieve a curve as smooth as possible.

It will be solved in two basic steps: first find a spline curve within the tolerance band,

which consists of a small number of polynomials and then improve the smoothness of

the curve as long as the tolerance requirement is satisfied. The general strategy to find

the approximating spline curve with smoothing is stated as follows:

1. Find a spline curve staying within the tolerance band � without smoothing. The

essential idea in this step is to find a proper knot sequence Tm, which consists of

a small number of knots and meanwhile better approximation precision can be

achieved with an appropriate knot distribution based on curvature characteristics.

(a) Determine the initial knot sequence which involves

i. curvature jump detection;

ii. determination of the initial number of simple knots;

iii. distribution of the simple knots based on curvature characteristics.

(b) Determine the control points d by least squares approximation, which is

reduced to solve (3.19) with � = 0.

53

3. BASIC STRATEGY

(c) Estimate the maximum error � (3.13).

(d) While � ≥ �

i. Update the knot sequence by increasing the number of simple knots;

ii. Determine the control points by solving (3.19) with the updated knots

and the updated knot insertion matrix.

2. Find the smoothest spline based on the knot sequence obtained in step 1 without

violating the tolerance band condition.

The essential task in this step is to adjust the control points by updating the

weighting factor � until we find the largest possible value for �.

(a) Initialize � to be a sufficiently large number.

(b) Optimization problem to solve (3.19).

(c) Estimate the maximum error � (3.13).

(d) Use bisection method to update �,

repeat steps 2((b)-(c)) until 0 < � − � < � is satisfied (� is a very small

number).

In the next chapter we will proceed to discuss some extended strategies to cope

with the specific problems in the part programs.

54

4

Extended strategy

4.1 Preprocessing

When the tool path is sampled in the CAM system with a certain tolerance, the discrete

data points in the part program are usually not ideally distributed on the tool path

according to the curvature characteristics and in some cases, the sampled points are

even very critical. For example, as shown in Fig. 4.1 which is a part extracted from the

workpiece ’beetle’, there exist clusters of very close points where the distances between

the neighboring points are even less than the tolerance of the compressor. Besides,

there may exist a lot of redundant data points in the part program, which are of no use

and can create problems. To solve such problems, a preprocessing step is necessary in

order to deal with the artifacts in the part program.

4.1.1 Cluster modifications

The first part of the preprocessing step is to treat the critical points where the distances

between the neighboring points are smaller than the compressor tolerance �. In addi-

tion, the close points are even more critical when they are noisy, since these close and

noisy data can result in incorrect estimation of discrete curvature and consequently,

significant overestimation of curvature jumps.

Before describing the strategy to remove the critical points, some notations are first

defined and illustrated as follows:

Note 3. 1. The close points usually appear as clusters in the part program. Here

the cluster of critical points is defined as the set of points where the distances

55

4. EXTENDED STRATEGY

Figure 4.1: Critical points (close clusters) in the part program ’beetle’

Figure 4.2: A cluster of close points

56

4.1 Preprocessing

between two successive points are not larger than �. As shown in Fig. 4.2, the set

of points [pm, . . . ,pn] is recognized as a cluster of critical points if⎧⎨⎩
∥∥pi+1 − pi

∥∥ ≤ �, i = m, . . . , n− 1,∥∥pm − pm−1
∥∥ > �,∥∥pn+1 − pn
∥∥ > �.

2. ℒ(pj ,pk) is defined as the accumulated distance between the points pj and pk.

ℒ(pj ,pk) =

k−1∑
i=j

∥∥pi+1 − pi
∥∥

3. The point p∗ on the piecewise linear curve from pm to pn is said to bisect the

cluster if ℒ(pm,p
∗) = ℒ(p∗,pn).

4. A cluster C can be subdivided into two bisecting sub-clusters S1 and S2 separated

by p∗.

a) If p∗ is one of the critical points, i.e. p∗ = pl,

=⇒ S1 = [pm, . . . ,pl] and S2 = [pl, . . . ,pn].

b) If p∗ is between two critical points pl and pl+1,

=⇒ S1 = [pm, . . . ,pl] and S2 = [pl+1, . . . ,pn].

The idea of the strategy is to extract the critical clusters and then recursively bisect

the clusters until the sub-clusters could be replaced by their midpoints, if the distance

between the end points of the cluster is smaller than the tolerance � or all the points

in the cluster are contained in the circle of radius � around the midpoint. The method

is direction neutral, which means the results are the same whether we approach the

paths from one direction or the other.

Algorithm 4. Remove the cluster of close points:

1. Extract the critical clusters.

2. Process the clusters:

∙ a) If ℒ(ps,pe) ≤ �, where ps,pe are the start and end points of the cluster re-

spectively, the cluster is replaced by its midpoint pa =
1

e− s+ 1
(ps + ⋅ ⋅ ⋅+ pe).

∙ b) If all the points are contained in a circle of radius � around the midpoint,

then the cluster is replaced by its midpoint.

57

4. EXTENDED STRATEGY

∙ c) Otherwise, the cluster is broken into two bisecting sub-clusters separated

by p∗ and the procedure is applied recursively.

The flowchart of the strategy is illustrated in Fig. 4.3.

4.1.2 Remove redundant points on a straight line

Only two points are necessary to define a unique straight line. However in the CAM

system, more than two points are often sampled along a straight line. These redundant

points will result in an overestimation of the initial number of polynomial pieces for the

approximating spline. In this section, a strategy to remove the redundant points along

a straight line will be discussed. The basic idea is that if l (l ≥ 3) points are detected

to be collinear, we go on checking l + 1 points until C2 in the following assumption is

not satisfied.

Definition 6. We say that l + 1 points pi, . . . ,pi+l (l ≥ 2) are approximately on a

straight line if

∙ (C1) l points pi, . . . ,pi+l−1 are on a straight line,

∙ (C2) the distances djil of the interior points pj , j = i+1, . . . , i+ l−1 to the chord

pipi+l is smaller than the compressor tolerance �.

Algorithm 5. Remove collinear points:

Given are the updated points p1, . . . ,pn after clusters modification.

Initialize i = 1 and l = l0 = 2

while i < n− 2 do

Compute di+1
il0

if di+1
il0
≥ � then

i = i+ 1

else

while djil < � (j = i+ 1, . . . , i+ l − 1) & i < n− l do

l = l + 1

Compute updated djil (j = i+ 1, . . . , i+ l − 1)

end while

Remove the interior redundant points pi+1, . . . ,pi+l−1

Let i = i+ l and l = 2

end if

end while

58

4.1 Preprocessing

Figure 4.3: Flowchart of the cluster modification method

Figure 4.4: Detection of redundant points on a straight line

59

4. EXTENDED STRATEGY

4.2 Localization

4.2.1 Local knot modification

In Section 3.3, a global knot placement strategy based on curvature is discussed. When

the tolerance condition is not satisfied, i.e. the error of the refined control points

between the degree elevated linear spline and the knot-inserted approximating spline

� := max
j
∥(A2d)j − (A1Ep)j∥ is larger than the tolerance �, the interior knots are

updated globally with an increased number of knots. The weak point of the global

strategy is that lots of redundant knots are placed at the regions where the tolerance

requirement is already satisfied and the positions of the simple knots are changed

completely. To overcome the weakness of the global strategy, a local knot modification

scheme is employed to insert additional knots only at the regions where the tolerance

condition is violated.

The local modification scheme is based on the local support property of spline

curves. Due to this property, spline curves can be broken into segments and inves-

tigated and modified locally. The idea of our scheme is to modify the knots locally

instead of really splitting the curve into segments. The specific scheme is as follows:

We estimate the errors between the linear spline curve and the target spline curve by

evaluating the errors between the refined control points ej = ∥((A2d)j−(A1Ep)j∥, j =

1, . . . , n′′ and the corresponding violating knot interval is constructed from the refined

knots Tf = {tf1 , . . . , t
f
n′′+m+1}. We first find the indices

J = {j : ∥(A2d)j − (A1Ep)j∥ > �},

where the errors between the refined control points exceed the tolerance. We call J

the set of violating indices of the refined control points. Now only the curve region

affected by the corresponding violating control points should be modified to satisfy

the tolerance band condition. For example, if ej is larger than the tolerance �, only

the curve region between the knots tfj and tfj+m+1 should be modified, which means

that the knot density of the target spline f in the corresponding violating knot interval

Ifj := [tfj , t
f
j+m+1], j ∈ J, should be increased. In the implementation, the following

points must be taken into consideration:

60

4.2 Localization

Figure 4.5: Map the violating intervals from T f to Tm

Figure 4.6: Overlapped violating intervals in Tm

1. Given the violating indices j ∈ J of the refined control points, we first find all

the corresponding violating knot intervals Ifj in the refined knot sequence Tf

influenced by the violating control points. If neighboring elements j and j′ ∈ J
are too close to each other, say

j′ − j ≤ m+ 1, i.e. Ifj ∩ I
f
j′ ∕= ∅,

we connect the overlapped violating knot intervals by replacing Ifj by (Ifj ∪ I
f
j′) =

[tfj , t
f
j′+m+1] and removing j′ from the violating indices J .

2. Since the knot sequence to be modified is Tm = {t1, . . . , tn+m+1} of the target

spline curve f, the violating knot intervals in the refined knot sequence must be

mapped to those in the knot sequence Tm of the target spline curve. For each

j ∈ J , we need to find a smallest violating knot interval Imj := [t, t∗] in Tm

satisfying Ifj ⊆ Imj , in other words, t and t∗ are the largest possible knot and

smallest possible knot respectively in Tm such that Ifj ⊆ [t, t∗]. If the neighboring

violating knot intervals Imj and Imj′ get overlapped as shown in Fig. 4.6, one union

violating interval Imj ∪ Imj′ is again used to replace these two overlapped blocks.

61

4. EXTENDED STRATEGY

The knots in the violating knot intervals Imj are distributed according to the same

rule as in Section 3.3 with increased number of interior knots. The other knots lying

outside the violating blocks are kept the same. In each iteration step, the violating

knot intervals are updated and the knots are locally modified in the corresponding

spans until the tolerance requirement is satisfied for the whole curve.

Algorithm 6. Local knot modification scheme: modify Tm locally to satisfy the tol-

erance condition.

1. Evaluate the errors between the refined control points ej = ∥((A2d)j−(A1Ep)j∥, j =

1, . . . , n′′ to find the violating indices

J = {j : ∥(A2d)j − (A1Ep)j∥ > �}.

If J is empty, then break.

2. Generate the violating knot intervals Ifj , j ∈ J in T f .

3. Map the violating knot intervals Ifj from the refined knot sequence Tf to the

violating intervals Imj of the target knot sequence Tm.

4. Update the knots locally in the violating knot intervals Imj by placing an increased

number of interior knots according to the same knot distribution rule based on

curvature characteristics.

5. Apply the procedure iteratively until the tolerance condition is satisfied.

The Fig. 4.7 gives an example to illustrate the local knot modification scheme. The

data points are extracted from the workpiece ’turm’ and tolerance is chosen to be 3�m.

The curve segments between the markers ’square’ is the region where the tolerance

condition is violated. In each iteration step, an additional knot is inserted locally in

the corresponding region until the tolerance requirement is satisfied and the rest of the

knots are kept the same.

The comparison between global knot placement and local knot placement is illus-

trated in Fig. 4.8. Compared to the global knot placement strategy, we can reduce the

number of polynomial pieces significantly by local knot placement while maintaining

the same quality of approximation.

62

4.2 Localization

data points
spline curve
polynomial pieces
violating blocks

data points
spline curve
polynomial pieces

Figure 4.7: Local modification scheme

63

4. EXTENDED STRATEGY

Figure 4.8: Top: global knot placement; Bottom: local knot placement

4.2.2 Local smoothness

In order to achieve more flexibility in the smoothness of the spline curve, we try setting

the smoothing weights locally according to the respective knot intervals of the spline

curve instead of a global smoothing weight for the whole spline curve. For instance, we

may want to obtain stronger smoothing effect in the regions with higher/lower curvature

or higher/lower curvature variation. The local smoothness term to be minimized is as

follows:

�
n∑
i=1

∫ bi+1

bi

ci∣f′′′(u)∣2 du, (4.1)

where bi, i = 1, . . . , n+ 1 are the breaks of the knot sequence and we tried setting the

weight ci in three different ways:

1. ci = 1/(bi+1 − bi),

(ci is reciprocal to the knot intervals, which can be taken as approximately pro-

portional to the curvature.)

64

4.3 Soft edge detection and quasi multiple knots

2. ci = ∥f′′′(u)∥ , u = (bi + bi+1)/2,

(ci can be taken as approximately proportional to the curvature variation.)

3. ci = 1/(C + ∥f′′′(u)∥), u = (bi + bi+1)/2.

(ci can be taken as approximately reciprocal to the curvature variation.)

The functional (4.1) can be written as:

dT

(
n∑
i=1

ci

∫ bi+1

bi

N
′′′

(u)
T
N
′′′

(u) du

)
d

= dT

(
n∑
i=1

ci

l∑
k=1

N
′′′

(x̂ik)
T
ŵikN

′′′
(x̂ik)

)
d

=: dTMd,

which can be computed the same way as in Section 2.2.4 except with modified W =

diag(c1ŵ11, c1ŵ12, . . . , c1ŵ1l, c2ŵ21, c2ŵ22, . . . , c2ŵ2l, . . . , cnŵn1, cnŵn2, . . . , cnŵnl).

When we compare these three local smoothness methods and the global smoothness

method, we cannot find obvious difference in the curvature plot of the resulting spline

curves, given a specified tolerance condition. The difference is the value of the weight �

(with normalized ci) needed to obtain the smoothest spline curve within the tolerance

band. The phenomenon �2 < �1 < �global < �3 can imply that the second local

smoothness method may have stronger smoothing effect than the others.

4.3 Soft edge detection and quasi multiple knots

In Section 3.2, we discussed the scheme of hard edge detection, where only one threshold

is set for the opening angle to determine whether it is an edge or not. The hard decision

scheme will run into problems, especially when the opening angles from path to path

swing back and forth around the threshold. Even though the opening angles of two

neighboring paths are quite close to each other, i.e. one is slightly above the threshold

and the other is slightly below the threshold, there exists a clear cut between edges

and non-edges, which will result in non-smooth and inconsistent transitions from path

to path and thus spoil the milling result. That is why soft edge detection method is

considered.

The basic idea is to use two thresholds to obtain a soft decision:

65

4. EXTENDED STRATEGY

∙ If the opening angle is larger than the upper threshold �1, we call it a definite edge

or a sharp edge. Then we do curve segmentation similar to hard edge detection

and break the path here as separate curve segments.

∙ If the opening angle is smaller than the lower threshold �0, then there is no edge

here. Therefore we need not place additional knots at this position.

∙ If the opening angle is between �0 and �1, it is ambiguous to identify if it as an

edge or not. Accordingly we place the so-called quasi m-fold knots as shown in

Fig. 4.9, which are m − 2-fold knots in the middle and two simple knots at two

sides. Since the side knots are quite close to the middle knots, they can generate a

fake edge which is in effect a short curve segment with high curvature to imitate a

definite edge. When the knot interval d gets smaller, then the quasi m-fold knots

converge to the m-fold knots and there appears a definite edge. In addition, the

quasi m-fold knots are symmetric, therefore the scheme is independent of the

processing direction of the path.

Figure 4.9: Knot placement for a soft edge decision

66

4.4 Curvature estimation methods

Fig. 4.10 illustrates the knot placement scheme when both m− 1-fold knots and quasi

m-fold knots are present and the simple knots are distributed in the same way based on

curvature characteristics, see Section 3.3. If the opening angle is between two thresholds

and meanwhile a curvature jump is also detected at the same position, then we choose

placing quasi m-fold knots instead of m− 1-fold knots.

Figure 4.10: Knot placement with quasi multiple knots

The knot interval d is not a fixed value but defined as a decreasing function of the

opening angle �. The simplest choice is a linear function as illustrated in Fig. 4.11:

f(�) =
�1 − �0
�1 − �0

(�− �0) + �0.

If �1 is set to be zero, then the fake edge can converge to a definite edge. However in

the implementation, �1 is often chosen as the smallest tolerable length rather than zero,

since too tiny pieces limit the feed rate significantly, which is explained in Chapter 1.

4.4 Curvature estimation methods

There are various ways to estimate the discrete curvature. In Section 3.3.1, the ba-

sic method called circumcircle is described and in this section we will discuss some

alternative methods.

67

4. EXTENDED STRATEGY

Figure 4.11: The relation between the knot distance d and opening angle �

4.4.1 Divided difference

For a smooth curve f, which is at least C2 continuous, the curvature is defined as the

second derivative of f with respect to the arc length s

� = f̈(s).

In the discrete case, the unit tangent vector is calculated approximately as

qi ≈
pi − pi−1∥∥pi − pi−1

∥∥ and qi+1 ≈
pi+1 − pi∥∥pi+1 − pi

∥∥ .
For a coarse estimation, the curvature is approximated by a second divided difference:

� ≈
qi+1 − qi

1
2(
∥∥pi − pi−1

∥∥+
∥∥pi+1 − pi

∥∥)

Both the circumcircle method and the divided difference method utilize particular con-

cepts of discrete differential geometry that are very sensitive to noise. A minor per-

turbation in the discrete data can result in great error in the curvature estimation.

As shown in Fig. 4.12, the original data points po are sampled on a circle of radius 5

and the noisy points pn are generated randomly on circles of radius 0.05 around the

respective original points

pn = po + 0.05

[
cos(�)
sin(�)

]
,

68

4.4 Curvature estimation methods

Figure 4.12: Significant error when estimating curvature of noisy data using the circum-

circle method

where � is chosen randomly between 0 and 2�. From the figure, we can see that

even with minor errors added to the original data, the curvature estimation deviates

significantly from the accurate curvature value 0.2.

Now we will investigate how the curvature estimation using the circumcircle method

is affected by a perturbation of the data. The curvature estimated by the circumcircle

method is

� =
2
√

1− x2
∥pj+1 − pj−1∥

, where x =
(pj+1 − pj) ⋅ (pj − pj−1)

∥pj+1 − pj∥∥pj − pj−1∥
. (4.2)

Let (pj+1−pj) ⋅ (pj−pj−1) =: a and ∥pj+1−pj∥∥pj−pj−1∥ =: c. Even if we consider

the simple case of a perturbation & added only to the middle point pj , we get

â = (pj+1 − (pj + �)) ⋅ (pj + � − pj−1)

= (pj+1 − pj) ⋅ (pj − pj−1) + �(pj+1 − 2pj + pj−1)− ∥�∥2

69

4. EXTENDED STRATEGY

and

ĉ = ∥pj+1 − (pj + �)∥∥(pj + �)− pj−1∥

≥ (∥pj+1 − pj∥ − ∥�∥)(∥pj − pj−1∥ − ∥�∥)

= ∥pj+1 − pj∥∥pj − pj−1∥(1−
∥�∥

∥pj+1 − pj∥
)(1− ∥�∥

∥pj − pj−1∥
).

Therefore

e = x̂− x =
â

ĉ
− x

≤
(pj+1 − pj) ⋅ (pj − pj−1) + � ⋅ (pj+1 − 2pj + pj−1)− ∥�∥2

∥pj+1 − pj∥∥pj − pj−1∥(1−
∥�∥

∥pj+1−pj∥
)(1− ∥�∥

∥pj−pj−1∥
)
−

(pj+1 − pj) ⋅ (pj − pj−1)

∥pj+1 − pj∥∥pj − pj−1∥
.

(4.3)

From (4.3) we can see that if the noise � is significantly smaller than the distances

between the points and especially when the noise vector is perpendicular to the vector

(pj+1 − 2pj + pj−1), the additional term in x̂ compared to x is neglectable and the

circumcirle method can give a relatively precise estimation. In contrary, if the data

points are so dense that the distances between them are almost comparable with the

noise, the term (1− ∥�∥
∥pj+1 − pj∥

)(1− ∥�∥
∥pj − pj−1∥

) can become close to zero and the

error e may deviate from zero considerably.

Since curvature estimation based on discrete differential geometry is very sensitive

to noise, a different approach to use integral rather than differentiation to estimate

curvature will be taken into consideration in the next subsection.

4.4.2 Area invariant and Connolly function for planar curves

The area invariant method is a special case of integral invariant methods, which was

first introduced by Manay et al. in [19] and further investigated in [23]. The idea is to

estimate the curvature of a curve C at a point p via computing the area Ar(p), defined

as the intersection between the circle of radius r and the curve C, see Fig. 4.13. The

relation between Ar(p) and the curvature is

Ar =
�

2
r2 +

�

3
r3 +O(r4), (4.4)

where r is the radius of the checking circle, � is the estimated curvature and Ar is the

area of intersection of the curve and the checking circle.

70

4.4 Curvature estimation methods

Figure 4.13: Area invariant method for curvature estimation of planar curves

In order to derive (4.4), the so-called Connolly function will be first introduced. Let

C be a smooth arc length s parametrized curve in ℝ2. As shown in Fig. 4.14, the circle

of radius �, centered at point
(s) intersects the curve C at two points
(t−(s)) and

(t+(s)) with t−(s) < s < t+(s). The angles between the tangent vector
′(s) and the

vector
(s)
(t+(s)),
(t−(s))
(s) are denoted by �+(s) and �−(s) respectively.

Definition 7. The Connolly function is defined as the arc length between two inter-

sections t−(s) and t+(s) normalized by �, which is equivalent to the angle

Φ(s) = � + �+(s) + �−(s). (4.5)

Lemma 9. For a fixed arc length s, one has:

t(s, �) = s+ �� + o(�2), � = +1 or − 1 (4.6)

�′(s, �) =
∂�

∂s
(s, �) =

1

2

d�

ds
(s)� +O(�2). (4.7)

According to Lemma 9, we can get the Connolly function: Φ = � + �� +O(�2).

Given the Connolly function, the arc length between the intersections is Φ�:

L� = �� + ��2 +O(�3). (4.8)

The area is computed by integrating (4.8) over �:

Ar =

∫ r

0
L� d� =

�

2
r2 +

�

3
r3 +O(r4). (4.9)

71

4. EXTENDED STRATEGY

Figure 4.14: Connolly function

The function (4.4) is only suitable for estimating curvature for smooth curve, which

means tangentially continuous here. If the curve C is not smooth but consists of two

curvature continuous pieces joined at p as shown in Fig. 4.15, the left and right limit

curvature �− and �+ can be computed by a ’semicircle method’:

Ar
+ =

�

4
r2 +

�+

6
r3 +O(r4),

Ar
− =

�

4
r2 +

�−

6
r3 +O(r4).

Then,

Ar = Ar
+ +Ar

− + �
2 r

2

= �
2 r

2 + �−�
2 r2 + �++�−

6 r3 +O(r4)

= 2�−�
2 r2 + �++�−

6 r3 +O(r4)

(4.10)

When the curve is not smooth, (4.10) instead of (4.9) is used to estimate the mean

curvature at the curvature discontinuous point.

4.4.3 Area invariant method vs circumcircle method

One important property of the integral invariant method is its robustness against noise,

since the area invariant method, being principally based on integration, has a smoothing

72

4.4 Curvature estimation methods

Figure 4.15: Area invariant method for a non-smooth curve

effect. Another advantage is that we can get to know the multi-scale behavior when we

choose different checking radii for the estimation.

(4.4) gives an estimate of the curvature at scale r. With various radii r, we can

exploit the behavior of the curve at different scales. However, how to choose appropriate

checking radii is not an easy task. With larger checking circles, the curvature estimate

is smoother and more robust to noise, while with smaller checking circles, the curvature

estimate is relatively more accurate but more sensitive to noise. In our implementation,

three checking circles are chosen heuristically to estimate the curvature. The smallest

radius r1 is chosen according to the smallest distance between the sampled points. And

the checking radii r2 and r3 are twice and three times the smallest radius r1 respectively.

The least squares result with respect to the three different radii can then be taken as

the final estimate of the curvature.⎡⎣ r31
r32
r33

⎤⎦ (
�

3
) =

⎡⎣ Ar1 − �
2 r

2
1

Ar2 − �
2 r

2
2

Ar3 − �
2 r

2
3

⎤⎦ . (4.11)

The multi-scale property of the area invariant method and a comparison with cir-

cumcirle method are illustrated in the following examples. As shown in Fig. 4.16, 25

points were sampled uniformly on a semicircle of radius 5. Both the circumcircle method

and least squares solution of the area invariant method can give a precise estimate of

the curvature.

In Fig. 4.17 minor noise of magnitude 0.05 was imposed to the points in Fig. 4.16

and we can see that least squares solution of the area invariant method is more robust

73

4. EXTENDED STRATEGY

−6 −4 −2 0 2 4 6
0

1

2

3

4

5
sampled points

sampled points
estimated points

−4 −3 −2 −1 0 1 2 3 4
0.19

0.2

0.21

0.22

0.23

0.24

0.25
curvature plot

r−smallest
twice r−smallest
triple r−smallest
least squares
circumcircle

Figure 4.16: Example 1(a): area invariant vs circumcircle method

to noise than the circumcircle method. For the area invariant method at different scales

r, the curvature estimate becomes more robust to noise with increasing checking radii,

since the smoothing effect becomes stronger with larger r.

The next example in Fig. 4.18 is to show if the area invariant method can detect the

curvature jumps at the junction of the arc and straight line correctly, since the integral

method may encounter underdetection with large checking radii. In the Fig. 4.18,

a sharp jump can be detected with a relatively small radius. With increasing radii,

the curvature gets smoothed out, which may result in underdetection of the curvature

jumps, while the circumcircle method can estimate the jumps more precisely in such a

case.

In the third example, the curvature estimate is performed on real world data (work-

piece of ’beetle’). From Fig. 4.19, we can see that the curvature plot with the area

invariant method is much smoother than the one obtained by the circumcircle method.

In summary, the area invariant method exhibits two important properties:

∙ Robustness with respect to noise with appropriate checking radii,

74

4.4 Curvature estimation methods

−6 −4 −2 0 2 4 6
0

1

2

3

4

5
sampled points with noise

sampled points
noisy points
estimated points

−4 −3 −2 −1 0 1 2 3 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
curvature plot

r−smallest
twice r−smallest
triple r−smallest
least squares
circumcircle

Figure 4.17: Example 1(b): area invariant vs circumcircle method on noisy data

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

1

2

3

4

5

sampled points

sampled points
estimated points

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
curvature plot

r−smallest
twice r−smallest
triple r−smallest
least squares
circumcircle

Figure 4.18: Example 2: area invariant vs circumcircle method for curvature jump de-

tection

75

4. EXTENDED STRATEGY

Figure 4.19: Example 3: area invariant vs circumcircle method on workpiece ’beetle’

76

4.5 Reference curve and smoothness

circumcircle method area invariant method

- sensitive to noise + robust to noise

- overdetection of - underdetection of

curvature jumps curvature jumps

+ lower computational complexity - higher computational complexity

Table 4.1: Comparison between circumcircle and area invariant method

∙ Multi-scale behavior.

Meanwhile we cannot ignore the weakness of it:

∙ Higher computational effort,

∙ Underdetection of curvature jumps with too large checking radius,

∙ Wrong estimation if edges (tangent jumps) are not detected correctly in advance,

∙ Difficulty to choose appropriate checking radii.

The positive and negative points of the circumcircle and area invariant method are

listed in Table 4.1. Due to the promising advantages, the area invariant method is

worthwhile being investigated, while the circumcircle method is chosen as standard

routine for curvature estimation because of efficiency.

4.5 Reference curve and smoothness

One inherent problem is how to get a better balance between approximation and

smoothness, since over-smoothing will result in inconsistency between the neighbor-

ing paths and visible artifacts in the milling result. To achieve a better compromise

between smoothness and consistency between the neighboring paths, we divide the

tolerance band � into two ’sub-bands’ �1 and �2 with �1 + �2 = � .

77

4. EXTENDED STRATEGY

1. Find the reference curve sr =

n∑
j=1

drjN
m
j (u∣Tm) without a smoothness term which

lies in the band �1 around the linear spline curve.

2. Find a target curve f as smooth as possible that lies in the band �2 around

the reference curve. And it is obvious that the target curve is restricted in the

tolerance band � around the linear spline curve.

We keep the knots of the target curve f =
n∑
j=1

dfjN
m
j (u∣Tm) the same as the knots of

the reference curve and minimize the functional:∫
∥sr − f∥2 du+ �

∫
∣f′′′ ∣2 du. (4.12)

Since we get a reference curve to compare with, we can minimize the continuous error

between the target spline curve and the reference spline curve instead of the discrete

errors between the refined control points as discussed in (3.12). The functional (4.12)

can be written in matrix form as:∫
(Ndr −Ndf)T (Ndr −Ndf) du+ �

∫
(N
′′′

df)2 du

=

∫ (
dTf NTNdf − 2dTr NTNdf + �dTf N

′′′T
N
′′′

df

)
du+ C

= dTf

((∫
NTN du

)
+ �

(∫
N
′′′T

N
′′′
du

))
df − 2dTr

(∫
NTN du

)
df + C

=: dTf

(
M + �M

′′′
)

df − 2dTr Mdf + C,

where M =
∫

NTN du and M
′′′

=
∫

N
′′′T

N
′′′
du can be calculated by Gaussian quadra-

ture.

The minimization problem:

min
df

dTf (M + �M
′′′

)df − 2dTr Mdf

78

4.6 Complete methods

can again be reduced to solving the normal equation:

(M + �M
′′′

)df = Mdr.

4.6 Complete methods

As the specific schemes are discussed in the previous sections, the complete methods

are summarized in this section.

∙ Preprocessing, see Section 4.1.

∙ Curve segmentation, see Section 3.2.

∙ Process each curve segment.

– Find the approximating spline in the tolerance band without smoothness

term.

∗ Knot generation.

⋅ Curvature estimation, see Section 3.3.1 and 4.4.

⋅ Knot distribution based on curvature characteristics (global/local),

see Section 3.3, 4.2.1 and 4.3.

∗ Least squares approximation to compute the control points, see Sec-

tion 3.4.2.

∗ Error evaluation, see Section 3.4.1.

– Find the smoothest curve within the tolerance band.

∗ Least squares approximation with smoothness term, see Section 3.4.3

and 3.4.4.

∗ Error evaluation.

79

4. EXTENDED STRATEGY

80

5

Experimental results

In this chapter, some experimental results will be presented to illustrate the influence

of three important factors: the distribution of knots; the knot’s multiplicity and the

smoothness term. The spline approximation routine has been implemented in Matlab.

As inputs it needs a standard CNC part program loaded as ASCII data, a threshold for

edge detection, a threshold for curvature jump detection and a tolerance specification.

The output spline curves written in Sinumerik 840D native format can be visualized

and analyzed by Visutool.

5.1 Example 1: the influence of knot’s multiplicity

In the first experiment, we consider one path extracted from the workpiece ’daimler’,

where hard edges are present. The purpose of this experiment is to illustrate how

significantly the knot’s multiplicity will affect the approximation precision.

In the first case as shown in Fig. 5.1, the hard edges are detected correctly when an

appropriate threshold is set for edge detection. We can achieve very accurate approxi-

mation at a high compression rate, for instance, we can obtain an axis error less than

6�m by using only 26 polynomial pieces to approximate 220 linear segments.

In the second case as shown in Fig. 5.2, We assume the hard edges are not detected

due to a falsely set threshold for edge detection. Instead, the edges are detected as cur-

vature jumps, if we set the threshold for curvature jump detection properly. Therefore

4-fold knots instead of 5-fold knots are placed at curvature jumps and meanwhile other

knots are kept the same as in the first case. With 4-fold knots, the spline curve is at

81

5. EXPERIMENTAL RESULTS

0 20 40 60 80 100 120 140 160 180 200
50

60

70

80

90

100

110

120

x−axis (mm)

z−
ax

is
 (

m
m

)

data points
positions of 4−fold knots
positions of 5−fold knots
spline approximation
polynomial pieces

Figure 5.1: Spline approximation with correct edge detection

least C1 continuous. However, the approximation error goes from 6�m up to 500�m as

shown in Fig. 5.4.

0 20 40 60 80 100 120 140 160 180 200
50

60

70

80

90

100

110

120

x−axis (mm)

z−
ax

is
 (

m
m

)

data points
positions of 4−fold knots
spline approximation
polynomial pieces

Figure 5.2: Spline approximation with 4-fold knots at edges

In the worst case as shown in Fig. 5.3, only simple knots are placed at the edges.

The spline curve is now C4 continuous at the edges, but it deviates radically from the

linear segments and the approximation error is up to 1.5mm.

82

5.2 Example 2: the influence of knot distribution

0 20 40 60 80 100 120 140 160 180 200
50

60

70

80

90

100

110

120

x−axis (mm)

z−
ax

is
 (

m
m

)

data points
positions of 4−fold knots
spline approximation
polynomial pieces

Figure 5.3: Spline approximation with simple knots at edges

5.2 Example 2: the influence of knot distribution

In this experiment, we use another path from workpiece ’daimler’ for testing spline

approximation with different knot distribution methods. From Fig. 5.5, we can observe

that the sampled data points are distributed relevant to the curvature characteristics

rather than equally spaced. One approach is to use a knot sequence with uniform

simple knots for approximation, as illustrated in Fig. 5.6. For comparison, we employ a

knot sequence (see Fig. 5.7) for spline approximation with the same multiple knots and

the same number of polynomial pieces, but the breaks are more reasonably distributed

cohering with the curvature of the underlying curve. As is evident from the results

shown in Fig. 5.6 and Fig. 5.7, we can achieve much better approximation accuracy

with the maximum approximation error being 10�m by using knots based on curvature,

in contrast to that being 16�m by using uniform knots. Particularly in the linear region

A, the approximation error is also greatly reduced with the denser knots in region B

due to the compact support property of splines.

As discussed in Section 3.4.3, if a spline curve is nearly arc length parametrized, the

variation of curvature can be simplified as the third derivative of the curve. As a by-

product, Fig. 5.8 shows the deviation to arc length parametrization of both methods,

which is evaluated by ∥f ′(u)∥ − 1. The comparison indicates that with knots based on

curvature, the resultant spline curve is much closer to being arc length parametrized,

especially in the area of higher curvature.

83

5. EXPERIMENTAL RESULTS

5.3 Example 3: the influence of the smoothness term

In Section 3.4.3, two smoothness criteria strain energy and curvature variation have

been discussed. In this section, we will give the experimental results to present and

analyze the performance of these two methods. The test data we use is a workpiece

called ’turm’, shown in Fig. 5.9. Fig. 5.10 illustrates the discrete curvature of the part

program, evaluated with circumcircle method. The curvature and ’torsion’ plots of the

output spline curves in three different cases such as approximation without smoothing

term, with SE minimization and with CV minimization are presented and compared in

Fig. 5.11. Notice that the ’torsion’ plot in Visutool visualizes, in effect, the variation

of curvature rather than the actual torsion as defined in differential geometry.

Compared to the discrete curvature of the part program, the curvature plot of the

spline curve even without smoothing (Case 1) is smoother and contains less curvature

extrema since the spline curve itself has the built-in smoothing effect. From Fig. 5.11

we can clearly see that the curvature plots of the spline curves with both SE and CV

methods are considerably smoothed out in contrast to that without smoothness term.

Comparing the curvature between case 2 and case 3, we can observe that with CV

minimization, the curvature varies even more gradually and homogeneously and the

’torsion’ plot contains less extrema which indicates that the jerk of the machine can

be further reduced. The obvious difference between the marked area in Fig. 5.11 well

represents and agrees with the argument that CV demands to keep the curvature as

constant as possible while SE requires to keep the curvature as small as possible.

5.4 The typical test workpieces

We have tested our spline approximation routine on the test suites and the simulations

exhibit satisfactory results. Here we only represent the performance on the typical

workpiece ’daimler’ and investigate the results in three aspects: the surface quality,

compression rate and the curvature plot of the resulting spline curves.

The original part program is shown in Fig. 5.12 and the discrete data points are

displayed as green dots. Fig. 5.13 illustrates the compressor output given a tolerance of

10�m. The transitions between the polynomial pieces are highlighted with green dots

and it is obvious that the number of polynomial pieces is reduced significantly, espe-

cially in the translational surface. Another strength is that we can obtain a consistent

84

5.4 The typical test workpieces

distribution of knots (polynomial pieces) in the neighboring paths of the translational

surface even with irregularly distributed data points in the part program. The curva-

ture plot of the spline curves in Fig. 5.14 is smooth and contains no distinct curvature

extrema which enables high cutting speed of the machine tool. The milling result of

the compressor output shown in Fig. 5.15 is also of satisfactory quality without visible

artifacts or roughness.

85

5. EXPERIMENTAL RESULTS

0 50 100 150 200 250 300
−6

−4

−2

0

2

4

6
x 10

−3

parameter u (mm)

pa
ra

m
et

ric
 e

rr
or

 (
m

m
)

error in x−axis
error in y−axis

5-fold knots at edges

0 50 100 150 200 250 300
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

parameter u (mm)

pa
ra

m
et

ric
 e

rr
or

 (
m

m
)

error in x−axis
error in z−axis

4-fold knots at edges

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1

1.5

parameter u (mm)

pa
ra

m
et

ric
 e

rr
or

 (
m

m
)

error in x−axis
error in z−axis

simple knots at edges

Figure 5.4: Error plot with different knot’s multiplicity at edges

86

5.4 The typical test workpieces

Figure 5.5: One test path from the workpiece ’daimler’

0 50 100 150 200 250
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

parameter u (mm)

pa
ra

m
et

ric
 e

rr
or

 (
m

m
)

simple knots
4−fold knots
6−fold knots
error in x−axis
error in z−axis

Figure 5.6: The approximation error with uniformly-distributed simple knots

87

5. EXPERIMENTAL RESULTS

0 50 100 150 200 250
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

parameter u (mm)

pa
ra

m
et

ric
 e

rr
or

 (
m

m
)

simple knots
4−fold knots
6−fold knots
error in x−axis
error in z−axis

Figure 5.7: The approximation error with knots based on curvature

0 50 100 150 200 250
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

parameter u

er
ro

r
to

 a
rc

 le
ng

th
 p

ar
am

et
riz

at
io

n
||f

’(u
)|

|−
1

uniform knots T

1

knots based on curvature T
2

Figure 5.8: The error to arc length parametrization

88

5.4 The typical test workpieces

Figure 5.9: The milling result of the workpiece ’turm’

Figure 5.10: Plot of discrete curvature

89

5. EXPERIMENTAL RESULTS

curvature plot ’torsion’ plot

Figure 5.11: Case 1: no smoothing (top); Case 2: min ∥f̈(s)∥2 (middle); Case 3:

min ∥
...
f (s)∥2 (down)

90

5.4 The typical test workpieces

Figure 5.12: The part program of the workpiece ’daimler’

Figure 5.13: The spline approximation of the workpiece ’daimler’

91

5. EXPERIMENTAL RESULTS

Figure 5.14: The curvature visualization of the workpiece ’daimler’

Figure 5.15: The milling result of the workpiece ’daimler’

92

6

Conclusions and remarks

The thesis is concerning a key component in the NC kernel called compressor, the

essential task of which is to approximate the short linear blocks in the CNC part pro-

gram using smooth spline curves within a specified tolerance band. The approximating

spline curves should consist of minimal number of polynomials and achieve maximal

smoothness while satisfying the tolerance condition. Two fundamental issues are the

placement of the knots and the choice of appropriate smoothness measures.

From the study, we found the distribution of the knots plays a key role in spline ap-

proximation. In the thesis, a knot placement strategy based on curvature characteristics

is considered and implemented. With this knot placement strategy, better approxima-

tion accuracy can be achieved with fewer number of polynomials. Another advantage

is that we can achieve very consistent distribution of the polynomial pieces for the

neighboring paths in the translational surface. In addition, a local knot placement

scheme is implemented to modify the knot sequence locally only at the regions where

the tolerance is violated. To obtain accurate and robust estimation of the curvature,

various discrete curvature estimation schemes are also investigated and compared.

Concerning the smoothness of the curve, we have discussed the fairness measures

based on minimizing the variation of curvature that can produce spline curves of supe-

rior quality and hence lead to reduced acceleration and jerk of the machine tool. In order

to dramatically reduce the computational complexity, the minimization of the highly

non-linear functional is simplified to a quadratic optimization problem, based on the

reasonable assumption that the spline curve is approximately arc length parametrized.

93

6. CONCLUSIONS AND REMARKS

Together with some extended strategies to deal with some critical problems in the

part program, we can achieve satisfying compressor output concerning the compression

rate, curvature variation of the spline curve and the surface quality.

94

List of symbols

Parametric curves

s arc length

� curvture

ḟ(s) tangent vector

f̈(s) curvature vector

Cn n-th order parametric continuity

Gn n-th order geometric continuity

Spline curves

m the degree of a spline curve

di the i-th control point of a spline curve

Tm,n a knot sequence of a spline curve of degree m with n control points

Bn
i the Bézier basis function of degree n

Nm
i the spline basis function of degree m

Smd a spline curve of degree m with control points d

Am(T1, T2) knot insertion matrix from knot sequence T1 to T2 of spline curves of
degree m

Ek degree elevation matrix from degree k to k + 1

Spline approximation and optimization

� the specified tolerance for spline approximation

Λ Lagrangian function

� Lagrange multiplier

J Jacobian matrix

H Hessian matrix

� the smoothing factor

95

6. CONCLUSIONS AND REMARKS

96

Bibliography

[1] Hiroshi Akima. A new method of interpolation and smooth curve fitting based on

local procedures. Journal of the ACM (JACM), 17(4):589 – 602, 1970. 38

[2] Wolfgang Boehm. Inserting new knots into B-spline curves. Computer Aided

Design, 12:199–201, 1980. 19

[3] David Coeurjolly, Serge Miguet, and Laure Tougne. Discrete curvature based on

osculating circle estimation. In IWVF-4: Proceedings of the 4th International

Workshop on Visual Form, pages 303–312, London, UK, 2001. Springer-Verlag.

38

[4] Elaine Cohen, Tom Lyche, and Larry L. Schumaker. Algorithms for degree-raising

of splines. ACM Trans. Graph., 4(3):171–181, 1985. 22

[5] Carl de Boor. A Practical Guide to Splines. Springer-Verlag, 1978. 13, 28, 37, 38

[6] Paul Dierckx. Curve and Surface Fitting with Splines, page 9. Clarendon Press,

Oxford, 1995. 17

[7] Gerald Farin. Curves and Surfaces for CAGD. Morgan Kaufmann, 2001. 25

[8] Rida T. Farouki and Takis Sakkalis. Real rational curves are not “unit speed”.

Comput. Aided Geom. Des., 8(2):151–157, 1991. 26

[9] Ron Goldman and Tom Lyche. Knot Insertion and Deletion Algorithms for B-

spline Curves and Surfaces. Philadelphia: Society for Industrial and Applied

Mathematics, 1993. 20

[10] Eugene Isaacson and Herbert Bishop Keller. Analysis of Numerical Methods. Dover

Publications, 1994. 31

97

BIBLIOGRAPHY

[11] B. Kerautret and J. Lachaud. Curvature estimation along noisy digital contours

by approximate global optimization. Pattern Recognition, 42(10):2265–2278, 2009.

38

[12] B. Kerautret, J. Lachaud, and B. Naegel. Comparison of discrete curvature esti-

mators and application to corner detection. In Proceedings of the 4th International

Symposium on Advances in Visual Computing, pages 710 – 719, Las Vegas, NV,

2008. Springer-Verlag, Berlin, Heidelberg. 38

[13] Hyoungsoek Kim and Jarek Rossignac. Parabola-based discrete curvature estima-

tion. technical report, 2005. 38

[14] E. T. Y. Lee. Choosing nodes in parametric curve interpolation. Comput. Aided

Des., 21(6):363–370, 1989. 26

[15] Wayne Liu. A simple, efficient degree raising algorithm for B-spline curves. Com-

put. Aided Geom. Des., 14(7):693–698, 1997. 22

[16] Tom Lyche and Knut Mørken. Knot removal for parametric B-spline curves and

surfaces. CAGD, 4:217–230, 1987. 21

[17] Tom Lyche and Knut Mørken. A data-reduction strategy for splines with applica-

tions to the approximation of functions and data. Journal of Numerical Analysis,

8:185–208, 1988. 21

[18] Tom Lyche and Knut Mørken. Spline Methods, chapter 2. 2008. 14, 16, 20

[19] S. Manay, A. J. Yezzi, B. W. Hong, and S. Soatto. Integral invariant signatures.

In Proc. of the Eur. Conf. on Comp. Vision, 2004. 70

[20] Henry P. Moreton. Functional optimization for fair surface design. In Proceedings

of the 19th Annual Conference on Computer Graphics and Interactive Techniques,

volume 26, pages 167–176, 1992. 50

[21] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, August

1999. 30

[22] L. Piegl and W. Tiller. The NURBS Book(2. Edition). Springer-Verlag, 1997. 22

98

BIBLIOGRAPHY

[23] Helmut Pottmann, Johannes Wallner, Qixing Huang, and Yong-Liang Yang. In-

tegral invariants for robust geometry processing. Comput. Aided Geom. Design,

26:37–60, 2009. 70

[24] Hartmut Prautzsch. Degree elevation of B-spline curves. Computer Aided Geo-

metric Design, 1(2):193–198, 1984. 22

[25] Hartmut Prautzsch and Bruce Piper. A fast algorithm to raise the degree of spline

curves. Comput. Aided Geom. Des., 8(4):253–265, 1991. 22

[26] Nickolas S. Sapidis. Designing Fair Curves and Surfaces: Shape Quality in Geo-

metric Modeling and Computer-Aided Design. ASIM, 1987. 50

[27] Tomas Sauer. Splinekurven und -flaechen in CAGD. Vorlesung, 2003. 17

[28] I. J. Schoenberg. On spline functions. In O. Shisha, editor, ”Inequalities” Sympo-

sium at Wright-Patterson Air Force Base, pages 255–291, 1967. 13

[29] Larry L. Schumaker and Sonya Stanley. Shape-preserving knot removal. Comput.

Aided Geom. Des., 13(9):851–872, 1996. 21

99

Declaration

I hereby declare that I have written this paper without the prohibited as-

sistance of third parties and without making use of assistance other than

those specified. This paper has not been presented previously in identical

or similar form to any other German or foreign examination boards.

Erlangen, Oct. 2010

	List of Figures
	1 Introduction
	2 Theoretical background
	2.1 Fundamental concepts
	2.2 Spline curves
	2.2.1 Bézier curves
	2.2.2 Basics about spline curves
	2.2.3 Derivatives of spline curves
	2.2.4 Integral of spline curves
	2.2.5 Knot insertion
	2.2.6 De Boor's algorithm
	2.2.7 Knot removal
	2.2.8 Degree elevation
	2.2.9 Application of spline curves
	2.2.9.1 Parameter and knot sequence selection
	2.2.9.2 Interpolation with splines
	2.2.9.3 Least squares approximation with splines

	2.3 Equality-constrained optimization scheme

	3 Basic strategy
	3.1 The problem
	3.2 Curve segmentation
	3.3 Knot selection
	3.3.1 Knot distribution based on curvature characteristics
	3.3.2 Curvature jump detection and multiple knots
	3.3.3 Number of knots

	3.4 Approximation
	3.4.1 Comparison between two splines
	3.4.2 Least squares approximation
	3.4.3 Smoothness
	3.4.4 Optimization problem

	3.5 Summary of the strategy

	4 Extended strategy
	4.1 Preprocessing
	4.1.1 Cluster modifications
	4.1.2 Remove redundant points on a straight line

	4.2 Localization
	4.2.1 Local knot modification
	4.2.2 Local smoothness

	4.3 Soft edge detection and quasi multiple knots
	4.4 Curvature estimation methods
	4.4.1 Divided difference
	4.4.2 Area invariant and Connolly function for planar curves
	4.4.3 Area invariant method vs circumcircle method

	4.5 Reference curve and smoothness
	4.6 Complete methods

	5 Experimental results
	5.1 Example 1: the influence of knot's multiplicity
	5.2 Example 2: the influence of knot distribution
	5.3 Example 3: the influence of the smoothness term
	5.4 The typical test workpieces

	6 Conclusions and remarks
	Bibliography

