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ABSTRACT 
Fine motor skill is indispensable for a dentist. As in many other medical fields of 

study, the traditional surgical master apprentice model is widely adopted in dental education. 
Recently, virtual reality (VR) simulators have been employed as supplementary components 
to the traditional skill-training curriculum, and numerous dental VR systems have been 
developed academically and commercially. However, the full promise of such systems has 
yet to be realized due to the lack of sufficient support for formative feedback. Without such a 
mechanism, evaluation still demands dedicated time of experts in scarce supply. With the aim 
to fill the gap of formative assessment using VR simulators in skill training in dentistry, this 
thesis presents a framework to objectively assess the surgical skill and generate formative 
feedback automatically. VR simulators enable collecting detailed data on relevant metrics 
throughout a procedure. Our approach to formative feedback is to correlate procedure metrics 
with the procedure outcome in order to identify the portions of a procedure that need to be 
improved. Prior to the correlation, the procedure outcome needs to be evaluated. The scoring 
algorithm designed in this thesis provides an overall score and identifies specific errors and 
their severity. Building upon this, we developed techniques to identify the portion of the 
procedure responsible for the errors. Specifically, for the errors in the outcome the 
responsible portions of the procedure are identified based on correlation of location of the 
error.  For some types of feedback one mode may be more suitable than another. Tutoring 
formative feedback are provided using the video- and haptic- modalities. The effectiveness of 
the feedback systems have been evaluated with the dental students with randomized 
controlled trials and the findings show the feedback mechanisms to be effective and have 
potentials to use as valuable supplemental training resources. 
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CHAPTER I
INTRODUCTION

Precise psychomotor skills are essential for dentists in performing everyday

tasks. Dental schools have allocated a significant portion of curriculum to skill training.

Similar to the other disciplines of medicine, the mainstream approach to surgical skill

training in dentistry is in the form of master-apprentice model along with practice and

feedback. Trainees perform procedures under direct observation of an experienced sur-

geon who can give feedback and assess their psychomotor skills. The assessor usually

identifies errors made by the student during the procedure and provides formative feed-

back on the outcome. A significant amount of time and resources are required in this

classic approach to skill training. Usually, students use either the extracted teeth from

patients or the plastic teeth in skill training laboratories. Due to anatomical variations

in human teeth, the use of extracted teeth yields unstandardized training content which

often leads to the different knowledge and skills acquired by the students. In contrast,

artificial teeth facilitate the standardized training experiences, however, students have

limited or no opportunities to train with rare cases as there is no pathological variation

in plastic teeth. Regarding assessment, the assessor usually observes the students work

provide the score and the verbal feedback on their preparation. With an increasing num-

ber of enrollment in dental schools and a large student to faculty ratio, students are not

receiving the feedback as much supervised training as would be desirable.

In response to these limitations, virtual reality (VR) simulators have been

recently introduced into skill training and assessment areas of surgical curricula. As vir-

tual procedures provide standardized training contents, VR simulators have been used

in adjunct with extracted and artificial teeth benefiting to the students as they can be

trained to learn from errors without consequences. VR simulators can collect all the

kinematics variables while the users perform the procedure. A plethora of work has

been established the objective assessment using metrics obtained from the simulators.
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Existing studies mainly address the validity and reliability of simulators and metrics for

assessment while paying less attention to the formative aspect of the assessment. With

the summative assessment feedback currently available in most of the dental VR simu-

lators, the skills training using VR simulators still demands the presence of instructors

during the training and the trainees are still receiving the quality and quantity of feed-

back before the simulators are included in preclinical training laboratories.

The formative assessment identifies the gap between the target and student

performance and provides feedback on where, when, and how elements of students’ er-

rors which can help the trainee to rectify or modify their performance on the next trial

and increase the likelihood of achieving the desired outcome. Beyond the simple anal-

ysis of kinematics, the procedure analysis on VR simulators can be extended by incor-

porating the information from outcome analysis. The combined procedure and outcome

analysis could be instrumental in generating the formative feedback for skill training.

VR simulators are considered to be the perfect platform to investigate the formative

assessment feedback as they facilitate the analysis of both procedure and outcome.

For a virtual procedure performed on a simulator, the resulting outcome is

available at the end of a training task for further analysis. This outcome needs to be

evaluated with an appropriate outcome assessment system to provide formative feed-

back. Ideal procedure outcome from experts using VR simulator is easily accessible,

yet the objective assessment of outcome is not a trivial task for 3D voxel structure com-

monly used in VR dental simulators. The challenge lies in the assessment at a sufficient

level of detail to allow for the identification of the performance gap in irregular 3D

anatomy objects given the procedure specific evaluation requirements. Specifically, in

the identification of the cause of the errors to determine which lead to the performance

score. The content of the formative feedback could be generated from the combined

analysis of procedure and outcome, other elements in the provision of feedback such as

choosing the appropriate modality and the right timing to provide the feedback pose as

challenges.

With the aim to fill the gap of formative assessment using VR simulators,

we present a framework to objectively assess the surgical skill and generate feedback

automatically using a VR simulator. To identify and localize error in a students perfor-
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mance, we first obtain the flaws in the outcome by assessing outcome. In the subsequent

step, we identify the portions of the procedure which are considered to be responsible

for each fault and correlate them as the sources of errors. Finally, formative feedback

is generated using the resulting correlation information on the error and the identified

sources. The tutoring feedback generated enables students to learn to associate their

actions with the resulting performance which is of importance in skill acquisition.

The framework addresses the problem of objective performance assessment

and feedback generation in skill training using VR simulators. Relying solely on analy-

ses performed on the data obtained from the simulator, the automated assessment frame-

work achieves an objective assessment of surgical skill that is free from subjectivity.

Objective formative assessment feedback is generated by establishing the correlation

between the way the procedure is performed and the resulting outcome.

1.1 Scope of the Thesis

This thesis focuses on the objective assessment of skill and automatic feed-

back generation for surgical skill training using a VR simulator. While we are interested

in developing general techniques, a specific domain is required to formulate and validate

the problem in a systematic way. We choose the area of surgical skill training using a

dental VR skill simulator. The existing VR simulator is employed in this thesis to focus

our attention mainly on the objective assessment and feedback and to a lesser extent on

other technical and nontechnical aspects of simulations.

The dental simulator is selected because the evaluation scheme for the sim-

ulation outcome can be set up in a straightforward manner in accurately deformed hard-

tissue objects in the VR simulator. The focus is further narrowed to the access opening

procedure of the root canal treatment procedure in endodontics.

The root canal endodontic treatment is necessary when the dental pulp is

infected. In the access opening stage, a small hole is drilled out from the tooth surface

to get access to the pulp chamber, the root canals, and the roots. The access opening

is considered as the most important stage in the root canal treatment as the successful

completion of the treatment relies on the shape and the size of the drilled area in this
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stage. Accurate shape and size of outcome demand the precise fine motor skills of the

dentists. While the frameworks design is based on a dental surgical procedure, many of

the techniques implemented should generalize well to other surgical areas.

Firstly, the components of the objective assessment and feedback frame-

work are identified along with their input/output and define the structure of the frame-

work (Chapter 3). Using a VR dental surgical skill training simulator, and the simulated

procedure, an automated outcome scoring system is implemented. The outcome scores

from the system are validated in comparison with the human experts (Chapter 4). The er-

ror information from outcome scoring system is combined with the procedural analysis

information, to associate the errors in the outcome with the procedure portions that are

responsible for them. The formative feedback output from the correlator component is

provided to the student in the form of video-playback (Chapter 5). The effectiveness of

video-based formative feedback is evaluated in comparison with the traditional training

approach without using the simulator and training using the simulator without feedback.

The extended use of correlation information in the formative feedback is demonstrated

with the use of haptic feedback as a means to train the correct application of force in a

dental procedure (Chapter 7)

1.2 Contributions

The thesis contributes in a number of ways to the body of knowledge of the

field. Effective formative feedback requires the ability to correlate procedure metrics

with the procedure outcome in order to identify the portions of a procedure that need to

be improved. The automated objective assessment and feedback generation framework

in this thesis is based on correlating procedure and outcome. Indeed, determining the

correlation between procedure and outcome has been identified as one of the important

outstanding problems in surgical simulation [1,2]. We designed and developed a general

purpose outcome scoring technique for dental surgery and implemented a prototype for

scoring of outcomes in access opening for root canal procedure. This is the first scoring

algorithm for endodontic surgery and can more precisely identify errors in the outcome

than other commonly used techniques for outcome assessment in dental simulators. The
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scoring algorithm provides an overall score and identifies specific errors and their sever-

ity. Building upon this, we identified the portions of the procedure responsible for the

errors. Responsible portions of the procedure are identified based on correlation of loca-

tion of the error and the procedure kinematics variables. This problem is an instance of

the well-known credit assignment problem [3]. We have contributed a tractable solution

to the credit-assignment problem provided that the immediate effect of the actions are

available. Once the tooth is drilled, the effects of drilling actions are available immedi-

ately in the outcome. If the drilling actions lead to an error in the outcome, both spatial

and temporal error information can be localized in a straightforward manner. Using

the localized error information, we correlate the portion of procedure and error in the

outcome, and the integrated information is translated into the precise and objective lan-

guage using dental terminology and notation with which the trainee dentists are familiar

as formative feedback.

The video-based formative feedback system presented in this study visual-

izes the errors in the outcome and provides the trainee with an opportunity to review

their performance to comprehend when and what aspects of the errors in the outcome.

To the best of our knowledge, this is the first use of replay with visualization techniques

to provide feedback in dental surgery. The video playback provides a large amount

of information to the user in an easily intelligible form. We show the effectiveness of

formative feedback using video-modality in motor skill training.

Additionally, we have demonstrated the extended use of formative feedback

to train correct application of force in endodontic surgery with haptic feedback modality.

The force-feedback represents the first time that haptics have been used to teach correct

application of force in dental surgery. The haptic training is one of the current research

issues in human computer interaction studies involving computer-based simulators and

haptic devices [4–8]. A commonly used approach to haptic training consists of two

phases. In the first phase, the expert’s movement is recorded in terms of position, veloc-

ities, and force patterns. In the subsequent phase, the recorded movements are haptically

and visually displayed to learners during the playback mode training. Playback can be

either passive or active mode. In the passive playback mode, the trainees have to grasp

the end-effector of the haptic device and are physically guided through the ideal motion
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through a desired trajectory to acquire the kinesthetic understanding of what is required.

In contrast, the trainee moves the end-effector through a desired trajectory at his/her

speed in the active playback mode. Our approach deviates from the traditional haptic

training approaches in utilizing the correlated information (formative feedback) from

the correlator component. For the procedure stage containing portions of the procedure

which are labeled as the portion responsible for a certain error region in the outcome,

trainee has to undergo the haptic training. Using the expert’s force in the identified pro-

cedure stage, the expert’s force is rendered to the student via a haptic device and the

student has to cancel it with the opposite force. Training on the proper use of force is

more meaningful with the sense of touch (haptic cues) involved in the countering force.

The initial evaluation with dental students revealed significant changes in the applied

force in post training performance.

Evaluation of both feedback components show that the methods significantly

improve learning outcomes. While our work is implemented using a VR dental surgi-

cal simulator, many of the components generalize beyond the domain of dental surgery,

making the work of importance to many problems that involve training of complex psy-

chomotor skills.
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CHAPTER II
BACKGROUND AND RELATED WORK

This chapter includes background on relevant concepts from dental surgery,

the existing approaches to skill training and assessment in medical and dental education

with or without using computer-based simulators.

2.1 Dental Surgical Skill

Surgery is the branch of medicine that is concerned with diagnosis and treat-

ment of injuries or diseases using operative procedures. Surgical competency consists

of a combination of cognitive capacity, technical skill and non-technical skills such as

communication, decision-making and leadership skills. The term, technical skill refers

to the manual/physical skill that requires the individuals capacities in visual and haptic

perception, fine-grained physical and temporal movement, and manipulation of instru-

ments, while actively monitoring the overall task at hand [9]. Psychomotor skill is of

paramount importance to the trainees as it serves as the basis for the successful comple-

tion of adequately planned surgery. Spencer et al. [10] reported that 25% of a skillfully

performed operation is thought to be attributed to manual dexterity. This 25% cannot

be learned or improved by studying textbooks or visiting lectures [11] and has to be

acquired by practicing the related movements numerous times.

Not limited to surgery, but almost all activities performed by dentists involve

the use of instruments, like high-speed handpieces that can cut through and potentially

harm any tissue in contact with the tool. Usually, these instruments are used in intraoral

environments that have limited access challenges, offer less than optimal light and are

often obscured by blood and saliva. Lastly, most procedures performed on teeth are irre-

versible, and harm to the patient can occur if the procedures are performed incorrectly.

Given these circumstances, a significant proportion of dental education is dedicated to
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training psychomotor skills.

2.2 Assessment and Feedback in Skill Learning Theories

To provide training feedback, it is essential to understand how trainees learn

to acquire skills and progress from novice to expert. Various learning theories exist,

aimed at explaining and understanding how people acquire knowledge and skills such

as those of Dreyfus and Dreyfus [12], Fitts and Posner [13], and Bloom [14]. The five-

stage skills acquisition model by Dreyfus [12] has been applied to many disciplines in

medical education [15–18]. The five stages, which individuals progress through in their

acquisition of skills, are novice, advanced beginner, competent user, proficient user, and

an expert. As a novice, an individual follows the given rules or plans in approaching

the task mechanistically and needs supervision to complete them. To move to advanced

beginner, individuals must have practice by applying the facts and rules to real situations

along with proper feedback on the performance. After having considerable experience,

competence develops in advanced beginners, and they learn to organize principles to ac-

cess the particular rules that are relevant to the specific given task. Proficient individuals

use intuition in decision-making and develop their own rules to formulate plans. At the

expert stage, individuals act intuitively and produce a fluid performance that happens

unconsciously, automatically, and no longer depends on explicit knowledge.

Fitts and Posner [13] described three stages that individuals undertake when

learning a new skill as cognitive, associative and an autonomous. The learner gains a

better understanding of the skill, and build the ability to execute the skill as he progresses

through the phases. The cognitive phase involves the identification and development

of the components and mechanics of the task. During this stage, the novice gathers

and brings together reasoning abilities and experiences, which appear to relate to the

performance of the task. In particular, the learner places great emphasis on the required

responses and their ordering. In the subsequent associative phase, the prior cognitive

activities begin to fade out. The learner links the parts into a smooth action via skill

practices with feedback to perfect the skill. Major errors are significantly reduced as

the learner refines responses. The learner focuses on better coordination and integration
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by identifying redundant or inefficient responses. During this phase, feedback plays a

significant role. In the automated stage, the essential elements of the skills have become

so highly integrated that they are retained as an intact unitary skill. The acquired skill is

deeply ingrained in the learner, and it could appear automatic or second nature to him.

At this stage, errors have been greatly reduced, and less attention is required for the

learner to perform the task. Regarding assessment, Millers pyramid conceptual model

[19] provides a framework for assessing clinical competence in medical education. At

the lowest level of the pyramid is cognitive levels of knowledge (knows), followed by

application of knowledge/competence (knows how), demonstrated performance (shows

how), and how a doctor (or dentist) performs in practice with patients/action (does). In

the context of dentistry, consider the following as an example of the student passing

through the stages of Millers pyramid. A dental student may first learn tooth anatomy

and morphology, then learn how to recreate this knowledge using a material such as

composite cast models. Afterward, they demonstrate that they can perform this skill in

a simulated setting such as a plastic tooth or extracted patient tooth followed by being

able to complete the same task for a patient.

Miller’s pyramid model has been used to match assessment methods to the

competency being tested. It helps in formulating the objectives for a particular train-

ing session with consideration on the achievement target. As an example, consider a

training session on application of local anesthesia stage in a root canal treatment. The

following are the examples of objectives and the level of Millers pyramid being repre-

sented: (a) Understanding what is meant by cardiac risk from anesthesia and why its

crucial (knows) (b) Knowing what to do if the risk is too high (knows hows), and (c) Be-

ing able to demonstrate the application of local anesthesia on a patient (shows). Millers

pyramid model for medical competence overlaps Blooms taxonomy of educational ob-

jectives [14] which was revised by Anderson et al. [20]. Traditionally assessment meth-

ods have been developed to test learning objectives within the cognitive domain and less

commonly the psychomotor domain [21]. Bloom and colleagues [14] classified learn-

ing objectives into one of three domains cognitive, affective and psychomotor. The

stages in Blooms concept of the Psychomotor domain which were further developed by

Dave [22] include imitation, manipulation, precision, articulation, and naturalization. In
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the context of dentistry, William et al. [9] view that it is possible to reach precision by

training using phantom heads while the fourth articulation level would refer to training

in a clinical setting. The naturalisation stage relates to the skills of the competent prac-

titioner which could be equivalent to the shows level of Millers model, while it would

seem to be more likely to be observed as part of does or performance [21]. Theories

of acquisition of motor skills differ, however, one unifying aspect is the importance of

feedback in skill mastery [23].

2.3 Dental Surgical Skill Training and Assessment

In traditional curricula, dental students acquire the required psychomotor

skills in the early stage by consciously following detailed textual and verbal instruc-

tions, observing from demonstrations and simulated clinical activities showing how to

carry out motor skill tasks. Then the students go through preclinical activities by assist-

ing mentors in providing care to patients in the clinic. As the trainee gains experience,

training involves performing irreversible operative procedures on patients under the su-

pervision of experienced clinicians [24]. At this point, the training process typically

centers on the provision of patient care; it still includes several practice sessions with su-

pervisors in both laboratory and clinical sessions until they can perform independently.

Repetition of clinical procedures to achieve clinical competence is widely accepted and

adopted in dental education [25].

Laboratory training includes a wide range of exercises that require the in-

tegration of theoretical knowledge to practice. Procedures are practiced on benchtop

models such as typodont plastic teeth, extracted teeth from patients on manikin heads,

and animal jaws (porcine or ovine) which closely resemble the dentistry of the human

jaw. As there are no two identical teeth, variable external and internal anatomy when

using the extracted teeth is an obstacle to deliver the standardized means of training and

assessing surgical performance. Little or no mechanism to control anatomic variation

or the presence of specific pathology means training is often done in a non-uniform

fashion. Inconsistent learning experiences [26] and inconsistent feedback from different

tutors [27] are the known issues associated with the use extracted teeth in dental skill
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training.

Another drawback of plastic teeth and extracted teeth is that the practice can-

not be repeated. Additionally, the look and the feel of artificial teeth are different from

natural extracted teeth and usually have neither simulated anatomy nor pathology; those

that do exhibit either of them are expensive [28]. With limited internal anatomical and

pathological variations available in plastic teeth, the trainees opportunity for exposure to

a range of examples with anatomical variation during training, an essential aspect of the

skill training [29, 30], is restricted. In addition, the simulated activities in the laboratory

are associated with high costs and are time-consuming to set up. Students interact with

the supervising dentist on a one-to-one basis at the chairside while providing patient

care; the presence of the patient in clinical learning environment adds extra stress and

pressure to the students [31].

Assessment using typodont teeth is an almost universal competency assess-

ment method of dental students before allowing them to perform procedures on a patient.

Dental educators still rely upon the assessment of directly observed clinical procedures

carried out under supervision (glance and mark) in assessing skill [21, 32, 33]. Incon-

sistencies can occur between and within examiners which is a well-recognized problem

in dental education [34]. The findings from studies by Satterthwaite and Grey [35] and

Goepferd and Kerber [36] highlight the presence of inter-rater variations in dental pre-

clinical laboratories. Satterthwaite and Grey [35] found the intra-examiner agreement

of two experienced assessors to be 0.53 when assessing typodont preparations. Other

studies relating to clinical and laboratory assessments in dentistry, inter-examiner agree-

ment scores are found to be ranged between 0.012-0.94 [35–44]. Jenkins et al. [32]

found that assessment scores of Class II cavities vary up to seven marks out of a thirteen

point grading scheme. They also found out when the assessors are reluctant to give high

grades if they think the preparation is the students work [34].

Another observation based assessment method that has been widely used in

clinical skill evaluation in general medicine, albeit with lesser frequency in dentistry,

is assessment via video recordings. In the video-based assessment, a student’s per-

formance is video recorded as he performs the tasks and the examiners evaluate the

performance later from the videos. Hassanpour et al. [45] compared video observation
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of procedural skills (VOPS) to direct observation of procedural skills (DOPS) using a

10-point Likert scale. VOPS and DOPS scores are highly correlated and high intra-

observer reliability is observed in their study. As the assessment can be done at a later

time, multiple assessors can be included in VOPS conveniently.

2.4 Simulation based Skill Training and Assessment

In dentistry, a handful of VR simulators are dedicated to teaching psychomo-

tor skills. Table 2.1 lists a few examples of the pedagogical use of virtual reality sim-

ulations (both commercial products and academic prototypes) in various branches of

dentistry. One advantage of the simulator is the facility to point out to trainees their

errors after every procedure or allow them to assess their procedural mistakes.

Table 2.1: Examples VR dental simulators

No. Studies Branch Procedures Evaluation

1 VRDTS

[46]

Endodontics Drilling, caries removal and

cavity preparation. Filling cav-

ities

2 IDSS [47] Endodontics Detection of carious lesions Y

3 VDP [48] Periodontics Pocket probing, calculus prob-

ing, and removal

4 Voxel-Man

Dental [49]

Endodontics Cavity preparation, Carious le-

sion removal

5 Forsslund

[50]

Endodontics Drilling, Wisdom teeth extrac-

tion

Y

6 Simodont

[51]

Endodontics, Drilling, decay removal, cavi-

ties filling

Y

ProsthodonticsCrown and bridge removal

7 Periosim

[52]

Periodontics Pocket probing, calculus detec-

tion and removal, scaling and

root planing

Y

8 HapTel

[53]

Endodontics Drilling, caries removal and

cavity preparation

Y

9 VirDenT

system

ProsthodonticsTooth preparation (crown and

bridges), teeth grinding

Y

10 iDental

[54]

Endodontics,

Peri-

odontics

Drilling, decay removal

Pocket probing, calculus detec-

tion, and removal

Continue on the next page
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Table 2.1: Examples VR dental simulators (cont.)

Studies Branch Procedures Evaluation

11 VirTeasy

[54]

Odontology,

En-

dodon-

tics,

Prosthodon-

tics,

Implan-

tology

Drilling, caries removal, Im-

plant

Y

12 Simulator

used in this

study [55]

Endodontics Drilling, access opening, crown

preparation

The Virtual Reality Dental Training System (VRDTS) prototype [46] allows

the trainee to practice cavity preparation and virtual restoration of teeth using the haptic

devices. The system is at an early stage of development, and the detailed technical infor-

mation is not available [56]. The Iowa Dental Surgical Simulator (IDSS) [47] supports

the detection of carious lesions (cavities) on the surface of teeth using a haptic prob-

ing system. Originally, it was designed to support the virtual simulation of the clinical

evaluation of tooth decays using a probe, and then the focus changed on prosthodontic

restorations (crowns). The virtual Dental Patient (VDP) by Marras et al. [48] aims to as-

sist trainees in familiarizing themselves with tooth anatomy and handling of instruments

used for drilling as well as challenges associated with the drilling procedure [57]. The

trainee can perform virtual tooth drilling within the oral cavity which is constructed us-

ing anatomical data [57]. The Voxel-man dental simulator [49] supports training manual

dexterity and problem-solving skills in using virtual teeth models with carious lesions.

The Forsslund Dental system [50] supports wisdom teeth extraction training using the

haptic devices. The MOOG Simodont Dental Trainer [51] is an immersive virtual re-

ality unit that allows dental students to be trained in operative dental procedures with

haptic, visual, and audio sensory feedback. Teeth are simulated with pathological dental

conditions and and it includes simulation of drilling, removal of tooth decay, restoring

cavity preparations, crown and bridge preparations as well as a mirror reflection. In

addition to practicing manual dexterity skills, the system allows users to select virtual
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patient profiles, supports to perform diagnosis, treatment planning and provides auto-

matic user evaluation [58]. The PerioSim [52] simulator is the first VR simulator that

includes training and assessment of performance in periodontics procedure. Students

can perform periodontal pocket probing, calculus detection, and calculus removal using

the haptic device. The HapTel [53] consists of a haptic unit adapted from a computer

gaming device, includes two screens that enable the user to look down onto a simu-

lated jaw as if they were treating a real patient. The simulator supports caries removal

cases with different difficulty levels. The Virdent [59] is designed for training users on

restorative dental procedures, particularly in how to prepare teeth (crowns and bridges)

in fixed prosthodontics [59–61]. No additional technical information is available re-

garding feedback and evaluation for the Virdent simulator. The iDental simulator uses

the voxel-based modeling based on the linear list for drilling simulation [54], and per-

formance metrics are defined for the quantitative assessment of three periodontics pro-

cedures. VirTeasy simulator [54] is designed for teaching implantology. Trainees can

obtain an objective evaluation of an action and review them at any time while perform-

ing the procedure and is also possible to save the information for the subsequent review

and assessment. Automatic skills assessment is said to include process and result of

a student preparation, objective evaluation is based on predefined standards such as a

reference preparation of a cavity or a crown.

Recently, robotic patients (DENTAROID [62]) have been introduced into

dental education. Automatic dialogue features enable the robotic patient to communi-

cate with the trainee just like with an actual patient [63]. Medical emergencies can be

simulated with robotic patients [64] permitting the trainees to gain clinically realistic

experiences [62].

Using simulators, dental students technical skill can be evaluated from the

way the procedure is executed (procedure analysis) and from the quality of procedure

outcome. In this regard, we categorized existing objective assessment using VR simula-

tors into three groups as (a) assessment of skill using procedure analysis (b) assessment

of skill using outcome analysis (c) assessment of skill using both procedure and outcome

analysis.
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2.4.1 Assessment of Skill using Procedure Analysis

The assessment of skill by procedure analysis using a VR simulator usu-

ally begins with the identification of interesting metrics, which are likely to distinguish

expert behavior from novice behavior and can be acquired from the simulators while

operators perform surgical tasks. Statistical models are then created using the acquired

metrics to characterize the factors that constitute the difference between expert, compe-

tent, and novice. The assessment of student performance is carried out by computing the

statistical similarity between the student’s model and the prior ones. While the primary

function of metrics is to provide the novice with objective feedback on performance,

they also allow the trainer to provide formative feedback to aid the trainee in acquiring

the skill [65]. A number of metrics useful for objective assessment can be extracted

from simulators. Metrics commonly used in the objective assessment of dental surgical

skill are summarized in Table 2.2.

Table 2.2: Metrics used for objective assessment of dental surgical skill

Metrics Description

Traveling distance Total traveling distance with respect to handpiece move-

ment

Force Force utilization in the x, y, and z-axes (x: mesio-distal di-

rection; y: facio-lingual direction; and z: long axis of the

tooth)

Task completion time The total time taken to complete the task

Outcome score Based on errors found in the incisal, labial-incisal, labial-

gingival, and marginal regions of the tooth.

Tooth mass loss The difference between the amount of tooth mass measured

in grams before and after procedure

Mirror position A measure to quantify the extent of bimanual dexterity

through evaluation of the direct relationship between the

mirror position and the handpiece

Objective feedback in skill assessment in dentistry using VR simulator was

first introduced by Buchanan et al. [66] using the DentSim simulator [67]. The DentSim

simulator consists of a phantom head with plastic teeth, a set of dental instruments, in-

frared sensors and an overhead infrared camera with a monitor and two computers [57].

As the student performs a procedure, the location of the instrument and the resulting

outcome are displayed on the monitor while real-time evaluation is done in comparison
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with the optimal performance kept in the repository. With limited anatomical and patho-

logical variations available in plastic teeth, trainees are exposed to the general cases only.

As the sensors are used, the tracking can be interfered from the way the handpieces are

handled. In the Voxel-man dental simulator [49], the percentage of caries removed, the

portion of healthy tissue removed are taken into consideration in computing the scores.

To evaluate the wisdom teeth extractionm the Forsslund Dental system [50] measures

the removed amount of bone, enamel, dentin, and pulp on the virtual tooth. Likewise,

Haptel simulator [53] measures the percentage of caries removed and the percentage of

hard tissue removed and provide as a performance score [57].

The haptic dental VR simulator developed by Rhienmora et al. [55] is used

in this study. The simulator supports the simulation of the dental procedures which

involves the drilling acts. The simulator collects various kinematics variables while

the user performs the procedure. The collected variables have been used to assess the

quality of the performed procedure using hidden Markov models [55]. The details of the

simulator is provided in Chapter 3. Rhienmora et al. [55] also presented a mechanism for

objective feedback in skill assessment using an intelligent dental skill-training simulator.

In their approach, once the student finished performing the procedure, the performance

is classified as either novice or expert. User performance is modeled using the hidden

Markov model (HMM) built from the kinematic variables such as the force applied,

tool position, and tool orientation. The findings indicate their approach achieved high

accuracy in classifying users into novice and expert and the generated feedback also

received a high acceptance from experts.

2.4.2 Assessment of Skill using Outcome Analysis

In skill laboratories, students observe demonstrations of a task and perform

supervised practice with mentors. To assess the performance, the mentor observes the

students actions throughout a procedure. Assessment of the procedure outcome is usu-

ally carried out at the end of training session, and the mentor provides feedback regard-

ing errors present in the result and suggestions to improve the procedure.

The idea of using the operative product as a measure of technical compe-

tence using bench model representation was first presented by Szalay et al. [68]. Their



/ 17

study evaluated the quality of final product across six benchtop stations. The authors

conclude that the method possessed construct validity. Additionally, they found a corre-

lation between OSATS (Objective Structured Assessment of Technical Skills) and prod-

uct analysis based assessment. Their finding is later reinforced by the study in Datta et

al. [69]. Datta and colleagues [69] assessed the outcome of a vascular anastomosis on

a bench model by measuring the leakage across the anastomosis and the cross-sectional

area at the narrowest point of anastomosis. They found a significant correlation between

these outcome measures and surgical dexterity.

Wierinck et al. [70] published the first study involving the evaluation of

preparation using the dental VR simulator. In their research, Class II amalgam prepara-

tion on the lower left second premolar was performed, evaluated and graded on DentSim

simulator [67]. An initial overall preparation score of 100 was assigned to each tooth

preparation. The preparation was assessed by three parameters, namely, outline shape,

cavity floor, and cavity walls. The error score of these parameters was later deducted

from the initial maximum score. The passing grade for this task was defined at 60 by

the grading system.

The E4D Compare software in its Beta version presented by Renne et al.

[71, 72] evaluated students all-ceramic preparations compared to three calibrated clini-

cians. The gold standard preparation was agreed upon by the calibrated faculty mem-

bers involved in prosthodontics course. The ideal and the student’s preparations were

scanned into the program with a laser scanner resulting in high-quality 3-D models.

The two digital models were aligned based on common anatomical features of the adja-

cent teeth. Using the aligned teeth, the faculty member marked the finished line of the

student preparation and the ideal standard, utilizing intuitive automatic margin finding

tools and further refinement with manual tools. The areas of discrepancy in reduction

(over-reduction or under-reduction) between two outputs were presented as color-coded

regions, and the percent surface area of each color was calculated and responded back as

the numerical value. The distance threshold between the ideal and the student’s prepa-

ration was defined as 300 , the student’s work varied from the ideal preparation within

this range was considered as acceptable. The findings indicated that E4D software is

significantly more precise method than the hand-grading method.
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Zou and colleagues [73] presented a laser-scanning Cavity Preparation Skill

Evaluation System (CPSES) for cavity preparation evaluations. The system scans evalu-

ated and provided the scores on the outline form and depth of cavity preparations against

a theoretical ideal. Firstly, the ideal cavity preparation was scan into the program, which

was subsequently used to compare with the work prepared by the student. The CPSES

measured over drilling or under-drilling (insufficient drilling) and displayed the discrep-

ancies using different colors. The outline form score calculation is mainly based on the

measurements associating with the width and depth of the prepared cavity and desired

cavity. The student outline form score was computed from the outline form over drilling,

and outline form drilling insufficiency score. And the depth score was calculated from

over drilling and drilling insufficiency of the preparation depth data. The total score

consisted of the score combined with form and depth scores. The authors noted the need

for training before usage and the cost as drawbacks.

Currently, several computer-based evaluation systems are used in preclini-

cal training, including the NISSIN Fair Grader 100 (Japan), KaVo PrepAssistant (Ger-

many) [74], [75]. These systems can rapidly scan students cavity preparation samples,

accurately compare them with standardized cavity preparation models, and then gener-

ate objective 2D or 3D feedback data on screen for the student.

2.4.3 Assessment of Skill using Both Procedure and Outcome Analysis

The assessment of clinical skill performance of experts and novices using

both process and outcome is found in a study Suenukarn et al. [76]. In their study, the

assessment of performance process was based on the couples of kinematic measures

gathered from the simulator while the user performs the procedure. The experiment was

set up for the tooth preparation of a metal-ceramic crown on the upper left central incisor.

Suebnukarn et al. [76] performed a comprehensive evaluation of all process measures

including angulations of the instrument; force used, and task completion time. The re-

sults were saved and were graded by an experienced expert using a haptic VR simulator

as the measurement can be made using the virtual bur and adjacent tooth. All tooth sur-

faces (incisal, facial, mesial, distal and lingual) were evaluated and graded using three

evaluation parameters: depth, inclination, smoothness. Three-point scales (with 2 on
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the scale defined as ”reference”, 1 as ”acceptable”, and 0 as ”unacceptable”) were em-

ployed. Thus, the maximum score for each surface was 6, and the total maximum score

was 30. The findings indicated that task completion time and differences in preparation

outcome successfully distinguished between novice and expert performance.

Their work was later expanded to assess outcome variables with the inclu-

sion of bimanual coordination and force utilization in [77]. The study task was an ac-

cess opening procedure on the upper right molar with a haptic VR system [76]. An

expert graded the outcome of the preparation. The four-point scale used in their study

is with four on the scale defined as ”minimally extended cavity affording unimpeded

access to/and visibility of the orifices of all canals presents”; three as ”a coronal cavity

permitting effective debridement of the canal system without prejudice to subsequent

restoration; two as ”incomplete removing of pulp chamber roof and/or inadequate reten-

tion form for the maintenance of an effective dressing”; and one as ”unidentified canals

and/or perforation”. The referenced templates in the outcome scoring system presented

in this thesis are designed based on their grading scheme which we will discuss in detail

in Chapter 4.

2.5 Feedback

Feedback is the information a trainee receives about his performance of a

motor skill during or after the performance. Van de Ridder and colleagues [78] de-

fined clinical feedback as specific information about the comparison between a trainees

observed performance and a standard, given with the intent to improve the trainees per-

formance. Evidence in motor learning indicates that feedback is essential and some form

of feedback is necessary for learning to take place [79–85], and it has been suggested

that its absence can prevent progress [86]. Among several possible channels used in the

provision of feedback, the verbal feedback given during the surgical task is of prime im-

portance in skill training. Based on the findings of Kannappan et al. [87], both positive

and negative verbal feedback could be the potent stimulants for improved performance

and motivation. Porte et al. [88] argue that the verbal input from an expert instructor

could lead to lasting improvements in technical skill performance. Despite the known
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benefits of feedback, instructors often hesitate in giving feedback, specifically in the ver-

bal format of the sensitivity of verbal feedback aspects such as the tone, the timing, and

the composition which could alter the positive feedback into negative one instantly [89].

Feedback, whether summative or formative, is an essential component of

skill acquisition [90]. Summative feedback describes how well a student achieves a

result in the form of scores or grades. With its nature as a measure for an assessment

of learning, the advice the expert would make to the trainee is not adequately captured

with the summative feedback. Formative feedback is considered as an assessment for

learning, and it is the information communicated to the learner in response to some

action on the learners part. Learners can use the formative feedback to modify their

thinking or behavior to improve their skills. The various information can be conveyed

as formative feedback (e.g., verification the action, explanation of the correct answer,

hints) and can be administered at various times during the learning process (e.g., right

after an answer, at the particular interval). Formative assessment in the form of paper

feedback after the procedure is currently the gold standard in providing feedback to

surgical trainees [89]. Although this approach is cheap, fast, and easily reproducible,

due to its retrospective post-procedural timing, the precision and accuracy of the content

heavily rely on the information being retrieved from experts memory.

In dental education, practice teeth prepared by students in clinical laboratory

sessions are usually evaluated by experienced dentists primarily using visual inspection.

During clinical laboratory sessions, the trainees require feedback on their work to move

onto the next procedure. Consistent and accurate feedback from the faculty is vital for

the students to achieve a higher level of performance before advancing to the clinics.

However, the degree of consistency and accuracy of feedback could vary considerably,

with many sources contributing to disagreement about student work, including the raters

understanding on the grading scale, rater calibration, training for assessment, and per-

sonal influences [91].

2.5.1 Feedback in Motor Skill Training

The acquisition of motor skill is a specialized process involving many recep-

tors. Information received through sensory receptors is referred to as somatic sensation
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which includes both exteroception and proprioception [92]. Thus, two types of feed-

back for motor skill acquisition are task-intrinsic and task-extrinsic feedback. Intrinsic

feedback is sensory information inherently produce as a natural consequence of a move-

ment. This feedback could originate from sources outside of the body (exteroception),

or from within the body (proprioception). Extrinsic feedback is provided to the learner

by sources external to the learner but from the environment. It is usually the informa-

tion about the outcome of the movement that performers cannot obtain on their own.

Extrinsic feedback is divided into the knowledge of their results (KR) or knowledge

of performance (KP). KR provides a performer with information about the success in

reaching the desired outcome. Without KR, it is difficult for students to know if their

performance is close or far from the desired outcome. The error information is obtained

from a comparison of the desired and actual outcomes and then may be provided by

a trainer as KR (e.g., the pulpal depth was 1mm too deep) [76]. Feedback provided

by an instructor when the student has completed all or part of the dental task, such as

cavity preparation [93, 94] as an example of KR. The availability of KR feedback dur-

ing simulated practice has been identified as one of the most critical factors that lead

to effective motor learning [93, 95–98]. KP provides the performer with information

about the quality and quantity of their actions. It represents information about the kine-

matics (pattern or speed). This information is gathered from the comparison between

the desired parameters of the movement with the actual parameters (e.g., was the hand-

piece held perpendicular to the long axis of the tooth when it should have been) [76].

Information about the quality of performance and movement characteristics known as

knowledge of performance (KP) [93,95–98]. With KP and KR, the performer can make

appropriate adjustments to the movement on the next stage and increase the likelihood

to achieve the desired outcome. On this basis, we can consider proprioceptors and exte-

roceptors as sources of data that the performer can access to regulate and modify their

performance during the learning process. In general,

• proprioceptors provide sensory feedback that accompanies the movement

of one’s own body, such as signals of body and limb movement, and position.

• exteroceptors provide sensory feedback about the movement of the ob-
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jects on the environment, mainly from the organs such as the eyes and ears.

Each time a motor response is made, the relationships between its contained

sensory components (proprioceptive and exteroceptive) consequences and the initial

conditions (e.g., tooth anatomy, the location of the tooth in the mouth, the posture of

the operator, etc.) are established. This relationship is registered along with the perfor-

mance outcome in the operator. Through practice, the operator comes to associate the

movement with particular sensory consequences and the output product. During train-

ing, the availability of (KR) and (KP) enable connecting motor response to the output

and accelerate the formation of an optimal association between them.

Feedback is the most crucial instructional component for simulation-based

medical education, which centered at procedural skills training at its core. The simula-

tion setting is considered as an ideal environment for providing feedback as trainees can

practice the essential physical movements without risking the patient safety. Without

the feedback, the trainee trained with the simulator might be unaware of committing an

error and persists in this error, which might be, repeated or deliberately practice leading

to the reinforcement of undesirable behavior rather than corrected [99]. With VR simu-

lators, the delivery of feedback no longer relies on the availability of the expert during

or after the skill training. It can be more explicit and more objective than human ex-

pert feedback. Several studies have investigated the impact of feedback on skill training

using simulators; and the results are reportedly mixed between studies.

The role of feedback in dental skill training has been investigated using

conventional phantom heads [94], computer-assisted simulators [100], and VR simu-

lators [101, 102]. In operative dentistry training, using the DentSim simulator [67],

Buchanan [66] shown the effectiveness of simulators in providing objective formative

evaluation and in enhancing the rate of acquisition. Using the plastic teeth and dental

handpiece, the students perform procedures on the Dentsim. Augmented visual feed-

back is generated based on the information from the motion tracking sensors and the

students work compared to the standard preparation. In a study by Wierinck and col-

leagues [100], using DentSim simulator [67], they reported that when only the visual

feedback from the simulator is provided to novices, short-term enhancement in perfor-

mance is observed which is not found in retention. In the subsequent study by the same
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authors [103] found that standardized feedback from an expert during the training ses-

sion found to be more effective for retention and transfer of skill in relative to the VR

feedback alone. In endodontic education, Suebnukarn et al. [101] demonstrated that

augmented kinematic feedback from a simulator on movement patterns during the ac-

cess opening for root canal treatment resulted in an enhanced performance at the early

stages of training. Amid having the mixed results, feedback from the VR simulators is

found to be useful as a means of improving performance and the combined feedback

from experts and the simulator during the training are found to be useful in the early

stages of skill learning and assisted in retention to a certain level. The findings from

existing study suggest that a combination of instructor and visual display (VR)-driven

feedback method could result in faster skill acquisition relative to VR alone [93], which

leads to the studies to investigate the use VR dental simulators as adjuncts to traditional

training approaches [44, 104–106].

2.5.2 Structure and Timing of Feedback

Feedback can be in the form of textual, verbal or tactile based on the context

in which it is generated. Content presented in textual format could be the simplest form

of feedback. However, feedback consisting of a significant amount of textual informa-

tion could distract the student. Also, it may not be adequate for motor skills, as learners

do not receive visual cues on task-relevant movement. During the training process,

while the primary display is rendering the simulated environment (such as operating

site in surgery), the appearance of a large number of text messages on screen during

training could also distract the operator. To enhance the student’s direct perception of

errors and the desired outcome, and to retain the knowledge longer in memory, graphics

information can be incorporated in the feedback. In addition to the textual and graphical

feedback, auditory and haptic feedback are available in computer-based simulations. It

is particularly suitable for VR dental simulators which are equipped with haptic devices

as the haptic feedback can be provided efficiently without distracting the trainee’s at-

tention from the working area. In DentSim simulator [67], instant feedback messages

are delivered for critical, non-correctable errors throughout the procedure. In addition,

the user can request feedback at any point of execution. At the end of the procedure, an
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extensive evaluative feedback report is presented in graphical and textual forms, includ-

ing a numerical grade on the performance outcome. Rhienmora et al. [55] describe a

mechanism for providing objective skill assessment and tutoring feedback during crown

preparation procedure. Unique characteristics of force, position, the orientation of in-

strument observed by the simulator during student’s preparation are compared to gold

standards to generate useful feedback. The quality of the produced tutoring feedback is

comparable to the feedback provided by human tutors.

Another essential factor to determine is the timing of the feedback. Ac-

cording to Shute [107], the feedback timing may independently influence its effective-

ness. Typically, it is feedback given less than 100% of the time is considered optimal

while there is no such the ideal combination of when and how feedback should be de-

livered [108]. Existing evidence suggests that efficacy and timing should be determined

by the training objectives and the difficulty/complexity level of the task [109] and the

competency level of the trainees themselves. Recently, the feedback related studies are

moving towards the study of the optimal frequency and type of feedback [110].

In general, feedback can be immediate, delayed, and on-demand [111]. In-

stant feedback is given at the end each step, delayed feedback is provided after the task

is completed, and on demand, feedback is presented in response to a request by the

student. In motor skill training, Catania [112] argues that for optimal learning and prac-

tice, the operator needs feedback on procedure performance proximate to task execution,

particularly for metrics errors [112]. Gallagher et al. [113] also considered that proxi-

mate feedback is particularly helpful in motor skill training because when it is provided

closer to the event, it has more clarity and relevance for the recipients over the delayed

feedback.

Concurrent/Immediate/Proximate feedback is given while the task is being

carried out may be advantageous for a novice learner. Based on the analysis of learning

curve, novice learners can gain advantages from the feedback provided while the task

is being carried out. As the trainee can immediately correct the mistakes or miscon-

ceptions [114], the learners can directly improve their performance [115]. Immediate

feedback is considered useful in short-term and for supporting the development of pro-

cedural skills [109]. Novices are found to be benefited from the feedback given during
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the execution of the procedure at the early stages of the training [43]. McGahie et al.

[133] argue that direct improvement in clinical performance from immediate feedback

might result from its nature of the instant correction of misperceptions [43]. Otherwise,

immediate/proximate feedback can interrupt trainees from the task at hand [43], and it

could also lead another issue that the trainees become dependent on the feedback during

procedure execution. Boyle et al. [116] assessed the effect of proximate or immedi-

ate feedback laparoscopic colectomy procedures. They concluded that the provision of

standardized feedback during training was associated with significantly fewer errors and

an improved learning curve.

On the other hand, immediate delivery of feedback as soon as a slight de-

viation or error is detected can interrupt trainees from the task at hand [108], and can

lead to the reliance on feedback [117] which may detrimentally affect task resilience as

well [95, 118]. Hence, immediate feedback should gradually be fade out or reduced in

favor of delayed feedback given at the specific point of the procedure (such as the end of

a stage/task) and terminal feedback presented at the end of the performance [108, 119].

Being postponed until the end of the procedure, the learners are supported

with fewer interruptions during the task with delayed feedback. Trainees who already

mastered the necessary skills may benefit from delayed feedback. Whether this is prox-

imate or terminal, it is important to note that both the way the feedback is delivered

and the way the reception of feedback determines its effectiveness. The feedback that

is given in a standardized and structured manner could lead to in an improvement in

trainee performance [116]. On the other hand, the feedback can not necessarily pro-

mote learning if the recipients do not receive it mindfully [120]. Archer [121] stated

the circumstances that could lead to the mindless feedback including when the feedback

(answers) is provided before the recipient has had time to think, when the challenge is

too easy or too complicated, or when the process is random or inconsistent.

2.6 Root Canal Treatment

As described in the scope of the thesis in Chapter 1, this thesis focuses on the

area of motor skill training in endodontic surgery in dentistry. We will briefly describe
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the background on the endodontic root canal treatment in this section.

Root canal treatment is a endodontic procedure used to treat infection at the

root canal system inside the tooth due to the disease and injuries related to dental pulp.

The treatment requires attention and precision while working in a confined space such

as the root canal system of the tooth [122]. Learning a fine motor skill in endodontics

requires the trainee to establish control of instruments as well as the integration of pos-

ture, motion, and muscle stimulation that, in turn, allows them to execute a variety of

motor behaviors that are controlled by a range of task requirements [123] [124]. In the

field of dentistry, endodontics is regarded as a stressful and challenging discipline by

dental students. The complex anatomical diversity of teeth and the reliance on indirect

vision to visualize the root canal, the dependence on tactile feel, and the array of in-

struments and materials tends to make some students feel inadequately prepared to deal

with endodontic treatment procedures [125].

Figure 2.1: A saggittal cross-section of a tooth with an infected pulp

(Source:www.medindia.net)

The root canal system primarily consists of the pulp chamber and the root

canals. The pulp chamber comprises blood vessels, nerves, and connective tissues. As

shown in Figure 2.1 when the pulp is injured or infected, the pulp tissues die. If the

necrotic pulp is not removed, the tissues around the root of the tooth can become in-

fected. During the root canal treatment, the pulp tissues are removed, the pulp chamber

is cleaned and sealed using a root filling. As the roots are located at a lower portion of

the tooth concealed by the crown, to perform root canal treatment, the route to access

the roots needs to be prepared first. This preparation step is commonly known as the

access opening phase. In this stage, the endodontist drills a small access hole through
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the surface of a tooth crown to gain access to the pulp chamber and root canals for treat-

ment. The expected result of access preparation is to create an unobstructed passageway

to the pupal space and the apical portion of the root canal.

Inadequately prepared access could create access related mishaps including

perforation and ledge formation in the subsequent stages. A well-designed and thor-

oughly executed access preparation is necessary for the successful root canal treatment.

Typically, errors may arise in later stages of the treatment when access opening is pre-

pared in either under-extended or over-extended manner [126]:

• Under-extension occurs when the access cavity is not opened up across

the width of the root sufficiently, and as a result, some canals may be left unidentified.

If the cavity is not adequately extended, there may be insufficient space for instruments

to maneuver in treating the root.

• Over-extension occurs when the dentist removes unnecessary tooth struc-

ture. Consequently, a weak tooth structure could be left behind after the treatment.

Both under-extension and over-extension could compromise the subsequent treatment

stages. Therefore, the access opening preparation stage is considered the most critical

stage in the root canal treatment.

Figure 2.2: Tooth surfaces

In practice, an expert dentist provides feedback on student’s work by spec-

ifying the location of errors in the student’s outcome. To identify specific areas on a

tooth, the crown of the tooth is divided into surfaces that are named according to the

direction in which they face. As shown in Figure 2.2 the surfaces of a premolar and

molar teeth from occlusal view are
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• Buccal: The surface that faces the cheek

• Lingual: The surface that faces toward the tongue

• Mesial: The surface that faces the front of the mouth

• Distal: The surface that faces the back of the mouth

• Occlusal: The surface that is used for biting or chewing.
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CHAPTER III
OBJECTIVE ASSESSMENT AND FEEDBACK GENERATION

FRAMEWORK

In this chapter, we describe the framework for objective assessment and

feedback generation for technical skill training using a dental VR simulator.

3.1 Framework Overview

As shown in Figure 3.1, our approach to objective feedback begins with an

assessment of outcome where the procedure outcome will be evaluated to identify the

location, the type, and the severity of errors. Then, to determine the portions of the

procedure responsible for errors, the way the procedure is executed will be assessed. In

the subsequent step, the relation between procedure and outcome will be determined to

provide the feedback in the following step. In providing the feedback, some modalities

might be more appropriate than the other, therefore, multiple modalities will consider in

this framework.
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Figure 3.1: Objective assessment and formative feedback framework

The major components of the framework are: (i) Automated outcome scor-

ing system, (ii) Correlator and (iii) Feedback system as shown in Figure 3.2. The pro-

cedure log is the kinematic variables log collected by the simulator while the student

performs the procedure. The correlator component incorporates the procedure log of the

student as well as that of the expert. The collided voxels log contains the timestamps

and the locations of voxels that are drilled out from the tooth volume. The correlator

component also references to the collided voxels log to obtain the temporal information

of the error voxels. Each component of the framework will be discussed in the following

sessions.
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Figure 3.2: Framework components

3.1.1 Automated Outcome Scoring System

The main aim of the automated outcome scoring system is to evaluate and

assign the scores on the outcome and to identify the types and locations of errors in

the outcome. In this thesis, the student’s work is compared with the standard virtual

templates using the template matching technique to evaluate and determine the score for

the student’s outcome automatically. The system identifies the regions of the outcome

that deviate from the standard outcome and the score is determined based on the degree

of deviation.
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Figure 3.3: Automated outcome scoring

The overview of automated outcome scoring is shown in Figure 3.3. The

correct identification of location and shape of pulp chamber is crucial for the accurate

scoring result. Due to the unique nature of each tooth, there is no standard way of

pinpointing the pulp chamber from each tooth. Automated outcome scoring system

faces difficulties in addressing the variation in internal anatomy of the individual tooth.

The presence of the external bone fragments in tooth surrounding and the pulp stones

inside the tooth create challenges in locating the pulp chamber inside the training tooth.

The details of the automated outcome scoring system are discussed in Chapter 4.

3.1.2 Correlating Procedure and Outcome

This component is responsible for correlating the errors identified in the

performance outcome with the responsible portions of the procedure. The correlated

information is used in generating the feedback in the subsequent feedback system. The

correlator identifies when and how an error was made during procedure execution for

each error diagnosed in the outcome. The problem of correlation procedure and out-

come is an instance of the well-known credit assignment problem [134]. The problem

is concerned with determining and distributing the success and the failure of a system’s

overall performance to the various contributions from different system’s components



/ 33

[134]. The details on the credit assignment problem are further discussed in Chapter 5.

Figure 3.4: Correlator overview

The overview of correlator component is shown in Figure 3.4. The types

and the locations of errors in the outcome obtained from the automated outcome scoring

component serve as inputs into the correlator. Since the information on errors is at

the fine-grained voxel level, the correlator component transformed them into clusters.

It then employed the procedure log containing the kinematic variables of the student

together with the experts procedure log which was obtained before the training. Among

all the kinematic variables available in the log, the correlator component extracts the

timestamps, the stage, the force (in x-, y- and z- axes) and the angulation (in x-, y- and

z- axes) of the instrument, and the drilling status of the instrument from the procedure

log. As the correlator component needs to decide when the error occurs, it incorporates

the collided voxels log. Similar to the procedure log, the collided voxel log is collected

in 1000 ms while the student executes the procedure. It contains the timestamps, the

locations of voxels which were collided and drilled out with the instrument during the

procedure. For each error voxels in the outcome, the spatial locations of errors are

mapped to the collided voxel log to identify the portion(s) of the procedure responsible

for each error. The details of the correlator component are further discussed in Chapter

5.
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3.1.3 Feedback System

The outputs of the correlator component are information on types and loca-

tions of errors in the outcome, and portions of the procedure identified as causes respon-

sible for them. Although information necessary to generate the feedback is obtained

from the correlator component, another challenge is to decide how to effectively convey

to the students. Primarily, the formative feedback will be delivered to the trainee through

video-based formative feedback system to assist them in their learning process.

Figure 3.5: Feedback system overview

As shown in Figure 3.5, the input to the video-based formative system con-

sists of the error information (the location and the type of errors), the procedure logs of

trainee and expert, and the temporal information of the portion of the procedure that is

identified as the cause leading to the error from the correlator component. The feedback

information is transformed as simulator playback together with video control features.

The playback replays the procedure while it interactively visualizes the simulation by

highlighting the error areas within the tooth volume at the identified point of time as-

sociated with the wrong actions determined from the correlator component. The design

features, and the findings from the evaluation study on effectiveness of the of video-

based formative feedback system are discussed in details in Chapter 6.

Video-based feedback system is the visual feedback modality aims to com-

municate with the students on the errors in the outcome and the portions of the procedure
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accountable for them. The kinematic variables of procedure (the applied force and the

angulation of the instrument in our case) are analyzed as part of the identification and

to assign the credit/blame to the portions of the procedure each error in the correlator

component. Video modality alone is not sufficient to convey the feedback involving the

kinematic variables such applied force information on the instrument. Therefore, the

haptic modality-based force formative feedback was designed and implemented as part

of the feedback component of the framework.

For each procedure stage, the students applied force on the instrument is

compared with that of the expert and provided to the trainee. Together with the expert,

the trainee has to decide the stage to get the force feedback training. For the stage de-

termined to train again, the simulator is rewound, and the correct application of force is

trained by using haptic feedback. The details on the formative force feedback approach

and the findings of its effectiveness evaluation study are described in Chapter 7.

3.2 Evaluation

We employed the VR dental simulator developed by Rhienmora et al. [55].

The simulator operates on a standard PC connected to two GeoMagic Touch hapticTM

devices [127] as a dental handpiece and as a dental mirror (Figure 3.6). The stylus of

the haptic device controls the position of the virtual dental bur on the display screen.

The monitor was placed at eye level, and the haptic device was positioned at elbow

level directly in front of the participant. A virtual high-speed handpiece with a tapered

bur diameter of 1 mm and a length of 6 mm was employed. The tooth model was

acquired using three-dimensional micro-CT (RmCT, Rigaku Co., Tokyo, Japan). The

operator receives different force feedback depending on the density values of various

tissues while cutting the tooth. A study of the construct validity of the simulator showed

the haptic force feedback to the operator to be similar to working in the real situation

[128]. In the simulator, the tooth is stored in the form of a three-dimensional grid of

voxels representing the density of the structure at each point using a value between 0

and 255 with 0 representing a transparent voxel.
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Figure 3.6: Simulator interface

We have selected access cavity preparation of the root canal treatment pro-

cedure to demonstrate and evaluate our approach. This procedure was chosen because it

exclusively involves drilling, which is supported by the simulator, and because the out-

come is challenging to score, being a complex function of the internal tooth anatomy. In

the access cavity preparation phase, the endodontist drills a small access hole through

the surface of the tooth crown to gain access to the pulp chamber and root canals for

treatment. The ideal result of access opening preparation is to create an unobstructed

passageway to the pulp space and the apical portion of the root canals. The perfect

shape of the opening is a function of the tooth shape, tooth size, and the number and

location of the root canals. The number and location of the root canals can differ in the

same tooth (e.g., mandibular left second molar) across different patients. While the act

of drilling may seem at first relatively simple, the access to the complicated root canal

systems dictates the final treatment outcome. During data collection, data was gathered

on elapsed time and kinematic variables concerning

• the position of the handpiece in x, y and z-axes*,

• the angulations of the handpiece with respect to x, y, and z-axes*,

• the transformation of the handpiece from the original position, drilling

enabled/not enabled,

• the position of the mirror in x, y, and z-axes*,

• the angulations of the mirror with respect to x, y, and z-axes*,
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• the transformation of the mirror from the original axes, and the force ap-

plied on the handpiece in x, y and z-axes*. *x, y, and z-axes (x, buccolingual direction;

y, mesio-distal direction; and z, long axis of the tooth)

We considered three stages of access preparation:

• Stage 1, initial drilling to shape the outline;

• Stage 2, extend the opening to the distal canal orifice;

• Stage 3, extend the opening to all the remaining canal orifices.

Evaluation will be carried out on three key components of the system (Figure 3.7) is

designed for our study.

Figure 3.7: Evaluation plan

The first evaluation point is the automated outcome scoring system. The

outcome score from the system is evaluated for compliance with domain expert judg-

ment (Chapter 4). Evaluation studies are carried out to determine the effectiveness of

the video-based (Chapter 6) and haptic-based feedback (Chapter 7) system in dental sur-
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gical skill training. In general, the studies involve the comparison of skill achievement

between three groups of students, one experimental group trained with the simulator

with feedback, one experimental group trained with the simulator without feedback and

a control group trained in the traditional way.
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CHAPTER IV
AUTOMATED OUTCOME SCORING SYSTEM

Having defined the framework, in this chapter, we describe the first com-

ponent of the framework, the automated outcome scoring system in details. Attempts

to evaluate tooth preparation objectively include the use pulpal floor measuring instru-

ments [129], CAD systems [130], and the computer-based approaches using simulators

discussed in Chapter 2. The need for valid objective assessment using simulators has

been noted since early 2000 [131], yet the integration of efficient grading and evaluation

systems using simulators into curricula is still open to research.

In a survey conducted by Wang and colleagues [58], they found that only

a few VR simulators [48, 49, 51, 132–134] provided immediate feedback on errors or

score performance of trainees [58]. Among existing dental skill training simulators, the

Dentsim [67] and EPED [135] simulators provide training in intracoronal and extra-

coronal restoration by using plastic teeth and tracking kinematic data of the instruments

using sensors. In practice, the look and the feel of artificial teeth are different from nat-

ural extracted teeth and usually have neither simulated anatomy nor pathology; those

that do exhibit either of them are expensive [28]. In the absence of pathological insinu-

ations, the trainee ignores merely the limits of the carious lesion, without knowing with

the certainty of the distribution of the dental disease [136].

The number of voxels cut in the operating area by a novice compared to

skilled dentists is a commonly used metric for outcome assessment. Examples include

the percentage of caries removed, the percentage of healthy tissue removed and injuries

(e.g. pulp exposed) considered in cavity preparation [26, 49, 53, 132] and how much the

operator has carved into risk areas by measuring the removed amount of bone, enamel,

dentin, and pulp on the virtual tooth in tooth extraction [137]. Although a significantly

different number of voxels removed in each area can indicate severe problems in the

procedure, a similar number of voxels removed does not always mean error-free perfor-

mance. IDEA simulator [133] measures and records task time, the percentage of desired
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material removed, and deviation from the assigned drilling task. The measures were

further processed to get the final score. However, the authors noted that this grading

system has not yet been validated [133]. For quantitative evaluation for three Periodon-

tics procedures, iDental [54] uses performance metrics such as (a) periodontal pocket

probing check task: deviation of pocket depth, maximum contact force, probing angula-

tion; (b) Calculus detection: the number of identified calculus, reported value of position

and size; (c) Calculus removal task: the number of removed calculus, the damage to the

neighboring gingiva, and the operation angle of the probe.

In a construct validation study of Simodont simulator [134] provided imme-

diate feedback for a manual dexterity exercise to the trainee. The feedback information

included a percentage score for each of the following: target (task completion percent-

age), error scores (Leeway Bottom, Leeway Sides, container bottom and container sides)

and time taken to drill (in seconds). No further discussion on the scoring system is pro-

vided further.

4.1 Outcome Scoring System

To provide formative tutoring feedback, automated outcome scoring (AOS)

must have the ability to identify the type, location, and severity of errors and be robust

enough to account for a variety of possible outcomes. Since the optimal access opening

route is an unobstructed passageway to the pulp space, we first locate the pulp cham-

ber from the training tooth and project vertically from the base of the pulp chamber to

capture the morphological information (shape, size, and location) of the pulp as shown

in Figure 4.1 (a, b). Using the projection, the areas of the training tooth are virtually

removed to create the optimal outcome template Figure 4.1(c).
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Figure 4.1: Virtual optimal template creation(a) pulp chamber location (b) projection

from pulp chamber (c) removal of tooth mass for projected area

To permit a clinically acceptable amount of variation in outcome, Max (max-

imally acceptable) and Min (minimally acceptable) templates are defined by expanding

and compressing the optimal template, respectively. Given a tooth and a procedure, a

wide range of outcomes is possible. Our approach to outcome scoring is to evaluate

the voxels in the tooth volume and label them with scores with respect to reference

templates. In AOS, a new tooth volume is created and the voxels tagged with scores

according to their locations. We call this a score cube.

Figure 4.2: Portion of score cube between surface and Max template

The score cube (Figure 4.2) is a 3D volume of the same size as the training

tooth. To fill in the cells of the score cube, we first define a voxel scoring function. In
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practice, endodontists evaluate each access opening preparation on a scale between 0

and 100, with 0 representing perforation, 1-69 representing unacceptable, and 70-100

representing clinically acceptable. Following this scoring scheme, the score of 100 is

assigned to the optimal template area, and the score of 70 is assigned to Max and Min

templates. The values of the voxels in the regions Min to Optimal, Optimal to Max

and Max to Surface are filled using linear interpolation. Figure 4.3 illustrates the z-axis

cross-section view of the score cube.

Figure 4.3: Score cube z-axis cross-sectional view

Initially, we computed the overall outcome score as the average of the scores

of voxels on the drilled area surface. However, in comparison with scoring by endodon-

tists, we found that our scores computed in this way did not correspond well with the

expert scores. In subsequent interviews we found that experts assign a significantly

higher weight to more severe errors than to minor errors, such that a wall with a small

area that is considerably over drilled (close to perforation) is given a much lower score

than a wall with numerous small amounts of over drilling, even if the average amount of

over drilling in the second case is more significant than in the first case. Thus, the lin-

ear scheme was adjusted with a non-linear five-parameter logistic weight function [138]
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shown in Eqn. 4.1 to apply a higher weight to more severe errors at the voxel level. The

parameters were estimated by curve fitting with least squares method before the exper-

iments as shown in Figure 4.4. The range of the weight values [0,400] was determined

experimentally.

weigth = D +
(A−D)

1 + (voxelscore
B

C
)E

(4.1)

where

• D is the top plateau of the curve (the highest weight value),

• A is the bottom plateau of the curve (the lowest weight value),

• C is the voxel score at which the middle weight value is attained,

• B is the slope factor, and

• E is the symmetry factor.

To effectively communicate the assessment results, feedback should be made in a lan-

guage easily comprehensible to students. Endodontic surgeons evaluate and communi-

cate about errors in terms of scores for the four axial walls (Lingual, Buccal, Mesial,

Distal), the pulpal floor (Figure 4.5), and an overall score.

Note: The voxel scores between 70 and 100 are assigned near zero value weights.

Figure 4.4: Non-linear weight function
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Figure 4.5: Tooth walls

To translate the weighted voxel-level scores into the wall level score, the

scores of the four axial wall regions are first determined. Typically, human experts use

subjective judgment in determining the axial wall regions of the tooth. To standardize

the scoring, we define the four walls by projecting rays from the center of the tooth

to the four diagonals as shown in Figure 4.6(b). At the center of the pulp chamber, a

minimum bounding box is drawn within the pulp area. From the center through the four

corners of the bounding box, the lines are projected towards the tooth surface, to create

four non-overlapping regions. In this manner, AOS determines non-overlapping axial

wall regions for scoring.

Figure 4.6: Segmentation of tooth into four axial walls (a) Original tooth walls (b)

Adjusted tooth walls

After determining the walls for scoring, AOS first extracts the surface con-

tour from the drilled outcome area. The contour of the wall is then mapped onto the score

cube, and the voxels on the surface are assigned the score points from the weighted-

scoring function. As shown in Figure 4.7, the wall score is computed as the average
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weighted scores of the drilled area surface on the tooth slices in the wall region. The

overall outcome score is determined by the average score of four axial walls and the

pulp floor.

Figure 4.7: Wall score computation

4.2 Experimental Evaluation

We sought to evaluate the degree of agreement between AOS and human

expert scores over a range of outcomes, including varying numbers of errors, types of

errors, and severities. Fifteen outcome samples using the mandibular left second molar

were prepared by an experienced endodontist who is familiar with the use of the VR

system. During data collection, the expert deliberately committed a range of errors on

the training tooth to reflect the types of errors committed by the students during the

access opening procedure. The set of outcomes contained optimal results and those with

errors including perforation of the walls, floor, and both, as well as various combinations

of more minor over and under drilling errors. Five endodontists (R1 - R5) who had

professional training and experience in root canal treatment participated as raters in the

experiment. The raters were selected by expertise levels which varied from one year to

more than ten years of experience. The raters received verbal instructions to score the

four axial walls (Lingual, Buccal, Mesial, Distal) and the pulp floor using the standard

scoring scheme to which they were accustomed. Human raters usually score outcomes

using the external view of the tooth, making it difficult to see some errors. Thus, any

differences in rating between AOS and the human raters could be due to limitations of
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(a) Experiment I (b) Experiment II and Experiment III

Figure 4.8: Example views the experiments

perception or to differences in judgment. To separate these two factors and determine

the extent of the influence of perception on scoring, we ran three sets of experiments.

In experiment I the raters were provided with a 360 degree external view of

the drilled tooth (Figure 4.8a)) just as they would have in a clinical setting with a real

patient. In experiment II the level of information provided to the raters was increased

by additionally providing mid cross-sectional views of the drilling area (Figure 4.8b)).

This provided raters with visual information on the depth, size, and shape of the drilling

at the center of the pulp.

Figure 4.9: Min, Max and Optimal templates overlaid on student’s drilling area from

the lingual wall and occlusal view

Note: Overcut area indicates student’s drilled area beyond optimal template; Undercut area

suggests student’s drilling needs further extension to get the optimal result; Error-Free area

represents student’s drilling within the optimal drilling area.

In experiment III the ideal drilling area based on the internal anatomy of the

tooth along with the acceptable drilling areas were provided as visual guidelines for all
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Table 4.1: Mean and standard deviation values for the scores of AOS and human raters

in all experiments

R1 R2 R3 R4 R5

Experiment I
Outcome 59.8 25.0 66.4 27.7 66.6 27.5 64.2 26.4 69.1 28.6

Axial 63.8 22.7 70.1 17.5 69.1 18.1 66.8 14.7 71.3 18.9

Floor 60.0 22.4 94.7 11.3 94.0 10.7 89.7 11.9 92.7 8.0

Experiment II
Outcome 61.5 9.5 65.5 27.1 69.5 28.8 61.3 25.3 65.8 28.2

Axial 59.7 17.6 68.4 17.1 76.0 18.0 66.7 16.7 71.5 20.6

Floor 68.7 13.0 90.0 15.0 78.3 13.3 84.0 11.7 83.7 23.9

Experiment III
Outcome 48.5 20.6 64.7 26.4 72.3 29.6 67.4 27.8 70.8 29.2

Axial 52.8 15.0 67.3 13.4 77.7 16.5 72.3 15.0 76.4 15.9

Floor 65.3 14.1 94.0 12.4 91.3 14.1 89.0 11.1 92.0 16.6

AOS
Outcome 66.1 27.3

Axial 76.4 15.9

Floor 93.1 10.5

axial walls and the pulp chamber floor from both lateral and top views separately (Fig-

ure 4.9). In each experiment, raters gave a score on the four axial walls and the pulp

floor, with the overall outcome score then computed as the average of the five compo-

nent scores.

4.3 Results

4.3.1 Bland-Altman plots

The performance data of access opening scores for human raters in three

experiments are summarized in Table 4.1. The mean values for raters R2 through R5

are quite close, but those for R1 are consistently lower. The internal consistency among

raters was further analyzed using a Bland-Altman plot.

The Bland-Altman plot is a scatter plot, in which the difference between the
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Table 4.2: Information-based disagreement between AOS and human raters with confi-

dence intervals

AOS

R2 R3 R4 R5
Experiment I
Outcome 0.06 (0.04 , 0.01) 0.04 (0.02 , 0.06) 0.06 (0.04 , 0.10) 0.06 (0.03 , 0.09)

Axial 0.17 (0.14 , 0.21) 0.19 (0.16 , 0.22) 0.17 (0.15 , 0.21) 0.15 (0.13 , 0.19)

Floor 0.04 (0.01 , 0.09) 0.04 (0.01 , 0.09) 0.08 (0.05 , 0.15) 0.07 (0.04 , 0.12)

Experiment II
Outcome 0.08 (0.05 , 0.11) 0.07 (0.04 , 0.10) 0.1 (0.07 , 0.15) 0.11 (0.07 , 0.17)

Axial 0.15 (0.12 , 0.19) 0.13 (0.11 , 0.16) 0.21 (0.18 , 0.24) 0.17 (0.14 , 0.22)

Floor 0.05 (0.01 , 0.10) 0.2 (0.15 , 0.28) 0.15 (0.12 , 0.19) 0.14 (0.06 , 0.27)

Experiment III
Outcome 0.06 (0.05 , 0.09) 0.1 (0.06 , 0.12) 0.07 (0.04 , 0.11) 0.08 (0.05 , 0.12)

Axial 0.16 (0.15 , 0.19) 0.1 (0.09 , 0.12) 0.13 (0.11 , 0.16) 0.1 (0.09 , 0.13)

Floor 0.05 (0.02 , 0.11) 0.06 (0.02 , 0.12) 0.09 (0.06 , 0.13) 0.08 (0.03 , 0.15)

scores is presented in the vertical y-axis against the average between these scores on the

horizontal x-axis. Two lines are drawn horizontally at the limits of agreement, which

are defined as the mean difference plus and minus 1.96 times the standard deviation

of the differences. With Bland-Altman plots, we can investigate the existence of any

systematic difference between the raters and identify possible outliers. From Figure

4.10, it is observable that the rater R1’s scores widely deviate from the other human

raters. Rater R1 was thus eliminated from further analysis.

4.3.2 Information-based disagreement

To examine the degree of subjectivity in the scoring of outcomes, we eval-

uated the agreement among the five experts. Table 4.2 shows the information-based

measure of disagreement (IBMD) [139] between AOS and human raters. The minimum

disagreement (0.04) was found at the floor between AOS and R2 and R3 in experiment

I. The maximum disagreement (0.21) between AOS and human raters was observed for

rater R4 at the axial walls in experiment II.

An information-based disagreement value of 0.2 is observed for the floor

score of rater R3 in experiment II as well. Post-experiment interviews indicated that this

was likely due to difficulties in perception. The rater may have relied too heavily on
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Table 4.3: Information-based disagreement between human raters R2 vs. R3, R4, R5

R2
R3 R4 R5

Experiment I
Outcome 0.05 (0.026 , 0.080) 0.07 (0.041 , 0.112) 0.06 (0.030 , 0.096)

Axial 0.14 (0.113 , 0.172) 0.13 (0.108 , 0.163) 0.15 (0.121 , 0.192)

Floor 0.04 (0.011 , 0.106) 0.08 (0.036 , 0.158) 0.08 (0.037 , 0.140)

Experiment II
Outcome 0.07 (0.041 , 0.116) 0.07 (0.042 , 0.114) 0.08 (0.061 , 0.118)

Axial 0.16 (0.129 , 0.194) 0.18 (0.148 , 0.217) 0.17 (0.135 , 0.221)

Floor 0.19 (0.126 , 0.253) 0.12 (0.094 , 0.155) 0.11 (0.037 , 0.214)

Experiment III
Outcome 0.12 (0.085 , 0.158) 0.07 (0.037 , 0.106) 0.09 (0.064 , 0.135)

Axial 0.17 (0.145 , 0.194) 0.12 (0.104 , 0.150) 0.15 (0.133 , 0.185)

Floor 0.06 (0.022 , 0.105) 0.06 (0.032 , 0.108) 0.03 ( 0 , 0.077)

the cross-sectional view which was taken mid-volume, revealed only half of the drilling

area, thus raters needed to estimate the depth of the drilling in the rest of the pulp floor.

Table 4.4: Information-based disagreement between human raters R3 vs. R4, R5, and

R4 vs. R5

R3 R4

R4 R5 R5
Experiment I
Outcome 0.05 (0.035 , 0.076) 0.05 (0.028 , 0.090) 0.08 (0.049 , 0.139)

Axial 0.11 (0.085 , 0.135) 0.16 (0.121 , 0.196) 0.14 (0.116 , 0.188)

Floor 0.06 (0.036 , 0.104) 0.06 (0.029 , 0.112) 0.08 (0.031 , 0.141)

Experiment II
Outcome 0.14 (0.090 , 0.184) 0.10 (0.058 , 0.160) 0.13 (0.095 , 0.171)

Axial 0.21 (0.186 , 0.257) 0.15 (0.117 , 0.201) 0.18 (0.141 , 0.225)

Floor 0.23 (0.174 , 0.328) 0.13 (0.084 , 0.188) 0.19 (0.143 , 0.272)

Experiment III
Outcome 0.08 (0.047 , 0.132) 0.04 (0.025 , 0.068) 0.07 (0.036 , 0.131)

Axial 0.12 (0.097 , 0.150) 0.11 (0.094 , 0.134) 0.12 (0.091 , 0.152)

Floor 0.08 (0.050 , 0.133) 0.04 (0.009 , 0.101) 0.1 (0.071 , 0.145)
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Table 4.5: Mean Absolute Error of pairs of AOS and human rater scores

AOS R1 R2 R3 R4

R1 R2 R3 R4 R5 R2 R3 R4 R5 R3 R4 R5 R4 R5 R5
Experiment I
Outcome 17 4 3 4 4 15 16 16 17 3 4 4 3 4 5

Axial 20 11 12 11 10 16 17 15 17 8 8 10 6 10 9

Floor 33 3 3 6 5 35 34 30 33 3 6 6 4 6 6

Experiment II
Outcome 18 5 5 6 7 17 21 15 18 5 4 5 9 6 8

Axial 19 10 9 13 11 13 18 15 17 10 11 11 14 10 11

Floor 24 3 15 10 9 22 12 16 22 14 9 6 9 18 13

Experiment III
Outcome 18 4 6 5 5 16 24 19 22 8 4 6 5 3 5

Axial 24 10 6 8 7 15 25 20 24 11 8 10 8 7 8

Floor 28 4 4 7 6 29 26 24 28 8 10 4 6 3 7

4.3.3 Mean Absolute Errors

Mean Absolute Error (MAE) values were computed to quantify the degree

of disagreement. As shown in Table 4.11 and Table 4.5, MAE values between AOS and

human raters are higher in the axial scores than the overall and floor scores in experi-

ments I and III while large MAE values for floor scores were observed in experiment II.

The minimum MAE value between AOS and human raters across all experiments was

3, and the maximum was 15. The values of MAE also are correlated with the degree

of disagreement between AOS and human raters observed with IBMD. For example,

Raters R2 and R3 in experiment I have the minimum IBMDs and the minimum MAEs.

Figure 4.11: Mean Absolute Error between AOS and human raters
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Table 4.6: Chi-square values from Kruskal-Wallis tests for R2, R3, R4, R5 (Significant

results are indicated with the bold-faced fonts

Raters R2 R3 R4 R5

Outcome 0.326 5.215 6.857 1.374

Axial 1.656 21.551 21.551 6.973
Floor 1.228 12.726 4.239 1.847

4.3.4 Perceptual effects

In evaluating the AOS, we are aware of the fact that any differences in rating

between AOS and the human raters could be due to limitations of perception or to differ-

ences in judgment. To confirm the perceptual effects of additional information provided

in each experiment on the scores, the non-parametric Kruskal-Wallis tests (two-sided)

were conducted. Kruskal-Wallis test determines if there are statistically significant dif-

ferences between the assessment scores across three experiments for each rater. Dunn

(Dunn-Bonferroni) post hoc method was applied following a significant Kruskal-Wallis

test. All statistical analyses were performed using SPSS 18 (SPSS, Chicago, IL, USA)

and statistical significance was defined as a p-value less than 0.05.

Table 4.6 shows the Chi-square (2) values of Kruskal-Wallis tests. For the

overall outcome scores, there were no statistically significant differences among raters

across the experiments. No statistically significantly different scores across all experi-

ments were found for rater R2 meaning that R2 scored consistently throughout the three

experiment regardless of the level of information provided. On the other hand, signif-

icant differences were found between experiments for raters R3, R4 and R5 in axial

walls scores. The post hoc analysis revealed that experiment I axial wall scores of R3

were significantly different from experiment II. For the rater R4, axial wall scores from

experiment III were statistically different from experiment I and II. For the rater R5,

significant differences were found for the scores between experiment I and III. From the

post-hoc results, there is no clear pattern of increase in response to increasing amount

of information provided to the raters, and we can conclude that the differences in scores

between AOS and the human rater would less likely be due to the limitations of percep-

tion.
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4.3.5 Discriminatory Power of the AOS Scores

Our final analysis examines the extent to which the AOS scores can discrim-

inate among the various grades assigned by human raters. AOS scores can be viewed as

a measure that indicates to which grade the drilled tooth should be assigned. If we view

one tier of a grade as the positive class and one as the negative class, then the sensitiv-

ity and specificity of the measure can be adjusted based on the threshold one chooses,

with sensitivity typically traded off against specificity. ROC analysis allows the dis-

criminatory power of a test or measure to be evaluated independent of any arbitrary

threshold [140]. The basic concept is to plot the sensitivity in function of 1-specificity

for all possible thresholds. The area under the resulting curve (AUC) is an indication

of the discriminatory power of the measure. A perfect measure will have an AUC of 1

while a measure that is no better than a random guess will have an AUC of 0.5. For this

analysis, the grades are assigned using the scheme: A (score ≥ 80), B (70 ≤ score ≤
79), C (0 ≤ score ≤ 69).

Table 4.7 shows the Area Under Curve (AUC) values of the AOS scores for

the two cutoffs among the three grades: A:BC,AB:C. An AUC value should be above

0.8 to be regarded very good performance for any test. Low AUC values of (0.5 AUC

0.8) are observed for all axial walls across three experiments for all raters for the cutoff

A: BC. This is not surprising since the small AUC values coincide with large mean

absolute error values in Table 4-5. The highest AUC among pairs is a perfect 1.00 for all

raters for AB:C in outcome scores of experiment I. In fact, among the cutoffs, the AUC

values are highest for the AB:C cutoff at the boundary between clinically acceptable (B)

and clinically unacceptable (C). One possible explanation is the relatively broad range of

values of scores in the C category, making it easier to differentiate between that category

and the others.

4.4 Discussion

In root canal treatment, the internal anatomy - pulp and the roots in par-

ticular - dictate the size, shape and the location of the access opening. In root canal

treatment, an access route to the cavity cannot be assumed to take a predetermined geo-
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Table 4.7: ROC AUC values for AOS scores over all grades in all experiments

Rater 2 Rater 3 Rater 4 Rater 5

{A:BC} {AB:C} {A:BC} {AB:C} {A:BC} {AB:C} {A:BC} {AB:C}
Experiment I
Outcome 0.8 1 0.9 1 0.6 1 0.8 1

Axial 0.7 0.7 0.6 0.7 0.5 0.6 0.7 0.8

Floor 1 - 0.9 - 0.9 0.8 - -

Experiment II
Outcome 0.7 0.7 0.9 1 0.5 0.8 0.7 0.6

Axial 0.7 0.7 0.8 0.8 0.6 0.6 0.7 0.7

Floor 0.9 0.9 0.9 0.9 1 1 1 1

Experiment III
Outcome - 0.9 0.8 1 0.7 0.8 0.9 1

Axial 0.6 0.8 0.7 1 0.6 0.6 0.6 1

Floor 1 - 0.9 0.9 1 - 1 1

Note: ’-’ indicates AUC is not computed because the rater’s scores did not fall within the

interval of a certain grade tier. For example, R2’s floor scores are above 70 for all samples, and

thus the AUC between AB: C cannot be computed.

metric shape. The anatomy of the pulp chamber of a tooth determines the access cavity

shape. Many dental students find endodontic treatment challenging to learn because of

root canal anatomy variation among individuals [125, 141]. Limited anatomical varia-

tion in plastic teeth potentially constrains the students exposure to multiple anatomical

and pathological specimens essential for skill training [29,30]. Extracted teeth are avail-

able as an alternative; however, with hygienic and ethical concerns, this is not a viable

skill training option. In our approach, with the virtual tooth models created from CT

scans of teeth and templates created on the fly, a variety of realistic training teeth can be

employed.

In dental schools there is much discussion of standardization of training and

assessment [21, 142–146]. Our evaluation of expert scoring highlights the significant

variation that is typically found. Subjective definition of the axial wall regions of the

tooth noted earlier could be one of the factors leading to such variation in scores. This

is seen in the disagreement in scores at the junctions of adjacent walls among the ex-

perts and between AOS and the experts. The standardized AOS definition of axial wall

regions helps to addresses this issue. Our AOS has the potential to help create easily

communicated standards for assessment. The fact that the templates are related to the

anatomical structure in a very clear way also helps to provide an objective basis for
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discussion of standards for endodontic surgical outcomes.

In assessing outcomes of endodontic surgery, it is essential to identify both

areas of under preparation and of over-preparation. Under preparation can lead to in-

strument breakage in subsequent stages or the trainee might end up with inaccessible

roots. Over-preparation can result in weakened tooth structure due to excessive removal

of tooth mass. The inclusion of Max/Min-templates in the score cube addresses both

injuries and underprepared areas. Scoring metrics based on the identification of in-

juries [49, 53] do not capture regions of under preparation and do not identify near the

injury. Metrics based on the amount of tissue removed [137] recognize neither areas of

over nor under preparation and cannot provide nonlinear scoring. Our results suggest

that if similarity with expert judgment is a desired criterion, researchers using template-

based approaches should consider the use of non-linear scoring functions. The use of

reference templates seems most suited to this.

The objective consistency of AOS scores and a high degree of agreement

with experts make it a promising addition to existing VR simulators. The translation of

detailed level scores into terminology commonly used in dental surgery supports natural

communication with students and instructors. With the reference virtual templates cre-

ated automatically, our scoring cube based approach is robust and is not limited to the

access opening procedure in root canal treatment. It is applicable in scoring the outcome

of any dental surgery procedure involving the act of drilling or milling.

One of the advantages of a scoring system to a training program is that the

trainee can review specific areas of weakness in the task with reference to the scoring

system. The outcome assessment can be done with or without the presence of an ex-

aminer. The use of automated outcome scoring for assessing a student task’s outcome

could provide increased accuracy in scoring and grading. Although we did not show in

this study, the scoring system is general enough to use with a variety of training teeth. In

our study, we have demonstrated the scoring approach using a molar tooth with four root

canals. Other than molar teeth if the training tooth is chosen either as premolar, canine

and incisor type, the templates can be created in the same manner without requiring any

further changes as they have less complex root canals system consisting of a maximum

of two roots. To use the scoring system with a new training tooth, the challenge lies
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in the correct identification of pulp chamber inside the tooth. With one - two orifices,

the identification of pulp chambers in incisors, canines and premolar is relatively simple

compared to the molar tooth. Depending on the user’s requirement for the scores such

as the way the scores are penalized with the weight, it is optional to fit the non-linear

weight function again for the new tooth. Templates can be created based on the identi-

fied pulp chamber for a new training tooth and the score cube can be created with the

templates in a straight forward manner. Once the score cube is in place, scoring can be

done on the student’s preparation using the new training tooth.

In this chapter, we presented an approach that provides scores to the 3D

voxel structure commonly used in VR dental simulators at a sufficient level of detail

to allow correlation with procedure kinematic variables collected by such simulators.

The fine-grained voxel level scores provide the precise error information that can be

difficult to quantify in irregular 3D objects such as teeth with complex internal anatomy.

To efficiently communicate outcome score results, detailed level scores are translated

into the language of the coarser level standard scoring system used by dental schools.

The algorithm has been implemented for the procedure of access opening to the root

canals. Agreement between system scores and those of expert endodontists is evaluated

on fifteen outcome samples with a range of error types and severity. Results show a high

degree of agreement between system scores and those of experts, while at the same time

highlighting the variability in the subjective expert judgments.
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CHAPTER V
CORRELATOR: CORRELATING PROCEDURE AND

OUTCOME

Having identified possible errors in the outcome and their causes using the

automated outcome scoring system, we will outline our approach to correlating the pro-

cedure and the outcome in this chapter.

The problem of correlation procedure and outcome is an instance of the well-

known credit assignment problem. It is concerned with determining how the success

of a system’s overall performance is due to the various contributions of the system’s

components [134]. In his seminal work, Minsky exemplifies the problem with chess

(checker) board game. In the game of chess, the player would receive a reinforcement

signal after a long sequence of moves. During play, each ultimate success (or failure) is

associated with a vast number of internal decisions. If the run is successful, appropriate

credits should be assigned to individual moves resulting from the multitude of decisions

for their contribution to success or blames in the case of loss. In situations in which the

assignment of credit is extended over time as in a chess game, the problem is called as

the temporal credit assignment problem.

Formally, the temporal credit assignment problem concerns determining

which of the past actions were responsible for an eventual success (or failure). In re-

inforcement learning, temporal credit assignment is mostly attempted with temporal

difference (TD-) learning algorithms [227]. It is based on the difference between tem-

porally successive predictions. An initial prediction is made first, and when the ob-

servation is available, the prediction is fine-tuned in accordance with the observation.

In short, TD-learning estimates the value of state-action pairs. The value itself is the

(discounted) expected accumulated future reward when taking a particular action in the

state. The value can then serve as an immediately available alternative for the delayed

reward signal. In essence, the task of correlating procedure and outcome is considered as
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credit assignment problem. However, the function cannot be implemented with existing

reinforcement learning based approaches straightaway due to the following reasons. Ex-

isting approaches from reinforcement learning are based on learning the optimal policy

(stage-action pairs) and emphasize the temporal aspect of each action. In this regard, ex-

isting approaches are more applicable for a study that involves learning such as training

a robot on how to perform dental surgery. This thesis focuses on the direct assignment

the credit/blame to the associated actions while bypassing the learning stage.

The original credit assignment problem was conceptualized on apportioning

credit /blame for the various actions leading to the outcome: success/failure. During

execution, some activities could be explicitly recognized as wrong actions. Among a

multitude of such activities, a specific portion of them may be considered as secondary

actions resulting from the domino effects of the one game-changing primary action. In-

tuitively, the credit/blame should be assigned to the central action that necessarily leads

to the secondary actions. The correct credit/blame assignment to the right action is par-

ticularly important for our approach as the assignment information will be subsequently

used in providing feedback. It poses a challenging problem as well since the procedure

and outcome could not be correlated instantly regardless of the availability of localized

error information.

In motor skill acquisition, the correct assignment of credits to actions that

are responsible for the success is essential for shaping learning. Due to its relevance, the

credit assignment problem has been extensively investigated in motor control learning

studies. Berniker and Kording [20] examine credit assignment regarding allocating the

cause of observed errors to changes in the properties of the body versus the surrounding

world. In their study, probabilistic Bayesian models are built to allocate the errors in

proportion to the optimal estimate of where the errors arise.

Dam and colleagues [43] investigate how people solve the credit assign-

ment problem while learning a motor skill with reinforcement. They quantitatively vary

reward functions and examine whether and how people assign credits to different move-

ment properties during movement reinforcement learning. Intelligent Tutoring Systems

(ITS) also widely study the idea of modeling error assessment as credit/blame assign-

ment problem as a function to provide feedback. In designing an Intelligent Tutoring
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System for Introductory Physics, Liew et al. [119] describe an approach to solving a

credit assignment problem to used as a function to generate feedback that is specific

to the problem context. Similarly, Mengshoel and Wilkins [132], use an interactive

multimedia-based crisis management ITS in identifying types of errors made by dam-

age control assistant students and study with credit assignment problem to recognize

and giving them feedback on those errors. Bayesian networks and techniques from Un-

certainty subdiscipline of Artificial Intelligence are widely used to address the credit

assignment problems in ITS [43].

5.1 Error Regions in the Outcome

The outputs of the automated outcome scoring system are numeric scores

range between 0 and 100 and the error log detailing the location (x, y, z) and the type,

and the location the errors in the outcome. An example of the outcome scores and the

error information for the four axial walls, the pulp chamber floor and overall scores

along with the error regions is shown in (Figure 5.1).

Figure 5.1: The outcome scores and the error information for an outcome
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(a) Undercut
(b) Overcut (c) Perforation

Figure 5.2: Operative errors

5.2 Types of Errors and Causes

As described in Chapter 3, the formative feedback from the framework is

designed to contain the three aspects of error: the types (what), the location (where)

and the time they are committed (when). In practice, several mishaps or errors can arise

during the root canal treatment, ranging from treating the wrong tooth, missed canals

to identify, damage to existing restoration, under-/over-extension and access cavity per-

forations to crown fractures [126]. To simplify the process of diagnosing the errors in

the outcome, we define the types of errors (Figure 5.2) to be included in the assessment

process as follows:

• Undercut: when the dentist drills a hole with a small diameter, the roots

remain inaccessible

• Overcut: when the dentist drills a large mass of tooth unnecessarily

• Perforation: when the dentist accidentally punches a hole through the

tooth surface or gum with an instrument

Once the errors in the outcome are localized, the next step is to identify

the originating source actions for each error in the procedure that are accountable for

them and assign the blame to them. However, there could be more than one underlying

cause (action) contributed to each type of error in the outcome. To provide the formative

feedback, it is necessary to understand the underlying actions that could lead to the

errors. Therefore, for each operative error, we study the possible causes as follows.
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Figure 5.3: Overcut example

(a) Maximum template and the students drilling area (b) Overcut area (b) Inappropriate amount

of force applied in the area where the student should stop drilling leading to the overcut error

(c) Right amount of force is applied but repeated drilling in the same area

• Case 1: Overcut As shown in Figure 5.3, the overcut case occurs when the

student’s drilling reaches to the area beyond the maximum area defined by the standard

virtual templates (Figure 5.3 (a). In the resulting outcome, the overcut regions will be

recognized as an overcut error (the filled area in Figure 5.3 (b). Although the filled area

is labeled as errors, the actions taken in that region could not be immediately labeled as

wrong actions. In fact, two conditions could lead to the overcut errors.

– Case 1.1: Improper amount force was exerted on the instrument or inap-

propriate orientation of the instrument at the area where the student should have stopped

drilling (marked with the virtual maximum template 5.3 (c)).

– Case 1.2: The right amount of force was applied, but the student did not

recognize the area to stop drilling and repeatedly drilled at the same region with the uni-

form force and with fixed tool orientation. Repeated drilling in the same neighborhood

eventually leads to an overcut error in that area 5.3 (d)).

• Case 2: Undercut In contrast to Case 1, undercut cases occur when the

student did not clear the internal tooth anatomy entirely as required. The undercut re-

gions can be determined by the optimal virtual template as shown in Figure 5.4(a). The

possible condition of this error is

– Case 2.1: Inappropriate orientation of instrument or an insufficient num-

ber of passes or improper amount of force exerted at the student’s drilled area prevented
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him from reaching to the optimal drill area Figure 5.4 (c).

Figure 5.4: Undercut example

(a) Optimal template and the students drilling area (b) Undercut area (b) Inappropriate amount

of force applied in the area where the student should stop drilling

• Case 3: Perforation The perforation cases occur when the student’s drilling

area reaches beyond the virtual maximum template, and the instrument punches through

one of the tooth walls, resulting in an irreversible hole in the wall as shown in Figure 5.5

(a-b). Similar to over-cut cases, perforation cases can be occurred from

– Case 3.1: Improper amount force was exerted on the instrument or in-

appropriate orientation of the instrument at the area where they should have stopped

(marked with the virtual maximum template Figure 5.5 (c).

– Case 3.2: The right amount of force was applied, but the student didn’t

recognize the area to stop and drilled over and over at the same region with the uniform

force with the fixed tool orientation as in Figure 5.5 (d). Repeated drilling in the same

neighborhood could eventually lead to over-cut error in that area.
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Figure 5.5: Perforation example

(a) Maximum template and the students drilling area (b) Perforation area (b) Inappropriate

amount of force applied in the area where the student should stop drilling leading to the

perforation error (c) Right amount of force is applied but repeated drilling in the same area

causing perforation

Through cases 1-3, we can conclude that errors in the outcome are caused

by either the inappropriate amount of force applied or the incorrect orientation of the

instrument. Errors identified in the outcome are considered to be caused by the actions

taken during the procedure. Additionally, the errors are contributed from the omitted

actions as well. Consider overcut errors occur from over drilling of the tooth (drill

actions were taken by the trainee), on the other hand, undercut errors occur at the area

of the tooth when the trainee did not remove as required (drill actions are omitted). As

omitted actions are not explicitly present in the procedure, an additional step is necessary

to identify the neighboring portions of the procedure of the excluded actions before

assigning the credit/blame.

For some errors, the responsible portions of the procedure can be identified

based on the information obtained by correlating the outcome and the procedure. On

the other hand, some errors caused by a consequence of more holistic characteristics of

the procedure such as the incorrect tool angulation throughout one stage due to incorrect

finger positions and misunderstanding of the sequence of stages, are more challenging

to identify and do not address in this current formative feedback system design.

5.3 Procedure and Outcome Correlation

The details on the procedure and outcome correlation inside the correlator

component are shown in Figure 5.6. The error information from the automated outcome
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scoring system are at the voxel level. We assume that providing feedback at the lowest

voxel level is tedious and unnecessary. Therefore, the voxel level error information is

grouped into cluster levels. With a simple flood fill segmentation method, the errors

in the 3D tooth volume are segmented to get the coarser cluster level representation.

Grouping error voxels into regions of under and over cutting enables generating feed-

back in a natural manner. After discussion with the expert and through experiments, the

clusters consisting of less than 50 voxels are considered as the minor errors which dont

attribute to the performance and discarded from further analysis.

For each error cluster identified in the outcome, firstly spatial location is

mapped to the collided voxel log to determine the relevant portion(s) of the procedure.

Actions over multiple parts of a procedure may be responsible for a single error. For ex-

ample, the overcut error identified at the mesial wall in Figure 5.7 is caused by repeated

visits to the same region with the tool at different stages of the procedure. Some error

clusters may also spread across more than one wall, and a single wall may contain more

than one type of error.

Figure 5.7: Outcome scores, errors and temporal information in procedure

In order to map the errors with the portions of the procedure, it is necessary

for the correlator to obtain the timestamps at which the errors voxels are drilled out.

Using the record of collided voxels over time, the temporal information of each voxel is

gathered and the portions of the procedure associated with the errors are identified. Fig-
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ure 5.8 shows an example of mapping between the error voxels from error information

from AOS Output and the collided voxel log.

Figure 5.8: Mapping between error information and collided voxels log

The correlator then maps the spatial information of errors (voxel indexes)

into the walls. Figure 5.8 shows an example of the overcut error voxels mapped onto

the respective walls and the portions of the procedure using the spatial and temporal

information of errors. For the overcut and the perforation error clusters types, the error

related timestamps are directly obtainable using the error voxels since the errors are

caused by the drilling actions. For the undercut error clusters, the mapping cannot be

done straightforwardly due to the absence of collided voxels for the undercut errors

caused by the omitted actions. Therefore, the correlator firsts lookup the neighboring

voxels (20 voxels in x-, y-, z- axes) for each voxels lies at the border of undercut errors

with the drilled area. Using the neighboring drilled out voxels, the timestamps of the

undercut error clusters.
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As the length of the collided voxel log is directly proportionate to the number

of voxels removed during the procedure, the larger log files take long time to carry out

the mapping. Therefore, for the error clusters with more than 100 voxels (determined

through experiments), error voxels of the same clusters are sampled by taking every

other five voxels (determined through experiments). The worst scenario in mapping is

when the error voxels are drilled out different portions of the procedure, however, since

the drilling can perform in one direction from the top occlusal surface towards the pulp

floor only, this issue is solved by a proper simple indexing error voxels.

Figure 5.9: Portion of the analysis of wall, error occurrence in time (Note: Occurrences

of overcut errors are marked in red color.)

After mapping the error information with the procedure, the identified por-

tions of the procedure are extracted to analyze further with the kinematic variables on the

applied force and the orientation on the instrument. In the absence of standard amount

of force and orientation, the challenges come in determining whether the applied force

is appropriate or the tool orientation is correct or not. The correlator tracks the trajec-

tory of the instrument in the stages containing the timestamps related to the errors and

determine the appropriate amount of force in comparison with the expert. The trainees

tool orientation is analyzed in the same manner. The mapping information on each error

cluster: the types of errors, their locations on the outcome, the collided timestamps dur-

ing the procedure, the differences in applied force and the orientation of the instrument

relative to the expert in x-, y-, z-axes are combined and forward to the Feedback system

component. The pseudo code of the correlator component is shown in Figure 5.10.



Correlator: Correlating Procedure and Outcome / 68

Figure 5.10: Pseudo code of the correlator component
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CHAPTER VI
VIDEO-BASED FORMATIVE FEEDBACK SYSTEM

In this chapter, we present the video-based formative feedback system using

a dental VR training simulator. First, we review the literature pertaining to video-based

feedback in medical and dental skill training. Video recordings have been used in skill

training assessment and feedback in medicine [147–150]. Muessig et al. [151] argued

that video feedback could be more useful in the acquisition of technical, practical skills

than in non-technical skills. Vyasa et al. [152] reported that trainees who were able to

watch experienced surgeons complete endoscopic tasks benefitted more than trainees

who watched and critiqued their own performance, or trainees who simply completed

more repetitions. While majority report positive results on using video in the feedback

process, Backstein et al. [153] failed to demonstrate an improvement in orthopedic skills

using video feedback. Byrne et al. [154] also found the use of video feedback technique

as effective, but not more so, as traditional feedback in a simulation of general anesthe-

sia.

Experiential learning and reflection are the two processes through which

trainees learn from training practices [155–157]. Reflection at the end of the procedure

with the video playback facilitate the trainees to look at themselves from a distance and

with space for reflection, thereby giving them a realistic picture of their skills or self-

image [158, 159]. A study by Fierman et al. [77] demonstrated that self-observation

promotes the acquisition and transfer of procedural knowledge necessary for problem

solving. Strandbygaard et al. [146] concluded that that viewing ones performance, later

on, might even promote reflective practice. However, evidence of the gain from observ-

ing recorded operations is still sparse.

According to a recent survey on existing VR dental simulators for skill train-

ing by Wang et al. [58], the ForssLund simulator [137], the HapTel simulator [53], and

the Simodont simulator [51] have the replay feature which allow the student or instructor
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to watch in full replay mode upon completion of a procedure. The existing systems pro-

vide the simple playback of the procedure carried out using the simulator without any

formative feedback added. The need for recording and playback of training exercises

in VR training simulators in dental education has long been recognized as the require-

ment [58, 160].

6.1 Video-based Formative Feedback System

The formative feedback generated in this thesis contains the errors of differ-

ent types located in the different regions of outcome, and the portions of the procedure,

which are identified as the origins of the errors, are also temporally distributed across

the procedure. To effectively communicate both spatial and temporal aspects of the per-

formance errors, the video modality is considered as the most appropriate modality to

convey the feedback. Hence, the video-based formative feedback system was imple-

mented as a modality to provide feedback using the dental VR skill-training simulator.

Video-based Formative Feedback System was implemented as the graduating project of

the undergraduate students group consisting of Farin Kulapichitr, Varistha Jatuwat, Nut-

tanun Uthaipattanacheep from Faculty of Information and Communication Technology,

Mahidol University. The formative feedback information was provided by the author,

while the development team was mainly responsible to upgrade the original playback

module of the simulator by integrating formative feedback with the additional video

features.

6.1.1 User Interface Design

The video playback interface consists of four main components: video con-

trol panel, mode control panel, the simulation panel and viewing aspect control panel

(Figure 6.1).



/ 71

Figure 6.1: Video playback user interface

6.1.2 Video control panel

The video control panel offers access to several standard buttons including

Play, Stop, Skip Backward and Skip Forward. The Play button toggles into Pause while

the video is being played (Figure 6.2 ).

Figure 6.2: Video control panel

The skip forward and backward buttons are used to skip to the next/previous

error in the video or the beginning of nearest next stage whichever comes first. They al-

low the user to quickly and efficiently jump to the point of the error or stage. The trainee

can rewind as needed to comprehend the association between instrument movement and

errors. By fast-forwarding through portions of a procedure that may not contribute to the

overall assessment could reduce the time needed to complete the playback. The expert

will benefit from this feature to use as a supplement in an evaluation process as well.
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As the video is being played, a video progress bar (a.k.a scrubber/scrub

bar/seek bar) is highlighted with red, blue, and yellow colors to denote the overcut,

undercut and perforation errors respectively (Figure 6.3). The types and the temporal

information of the errors are obtained from the correlator component.

Figure 6.3: Example view of video progress with different types of error

Accordingly, the colors coded error regions serve as formative feedback that

informs the users where the error was made, thus allowing them to rewind the video to

the section of the error at any time.

Figure 6.4: Stage Borders on the video progress bar

Additionally, as shown in Figure 6.4, two Stage Border vertical bars are

drawn on the progress bar to represent the three stages involved in the access opening

procedure mentioned under Simulation and Task discussed in Chapter 3. Stage Indica-

tor(s) informs the user with

• a reference point for the current stage being played

• the time spent in each stage

• the time (when) and the type of errors (what) committed in each stage.
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The last component of the progress bar is the Slider bar that provide the drag and drop

functionalities of the mouse cursor to navigate to the desired region of the video play-

back quickly. The video progress bar succinctly presents the feedback information ob-

tained from the correlator component. It informs the trainee with where the errors are in

the outcome, what types of errors are they, when/in which stage the errors happened in

the procedure.

6.1.3 Simulation panel

The simulation panel (Figure 6.5) hosts the video replay of the procedure

consisting of the tooth, the handpiece, and the mirror. The formative feedback will

feature on the graphics rendering of the tooth. As it is being drilled, with respect to the

timestamps and the color coded region on the progress bar the portion of the tooth will be

highlighted accordingly. Blue color represents the area of the tooth with undercut error,

Red color represents the overcut area and Yellow color for the area with the perforation

error. In the default video replay mode, the original tooth in opaque mode is displayed;

however, for the better understanding of feedback, the tooth volume is recommended to

switch to the transparent mode. This feature is supported by a shortcut key t/T.

Figure 6.5: Example undercut error region on the tooth in the Simulation Panel
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6.1.4 Mode control panel

This panel contains three more buttons to switch between two modes: Feed-

back, and Replay. The Feedback mode integrates the video playback system with static

formative feedback according to the performance achieved by the user. This mode con-

sists (a) video playback, and (b) the kinematics comparison graphs (Figure 6.6) with

regard to the force applied to the tooth (along x, y, z-axis), the orientation of the driller

(along x, y, z-axis). Kinematics graphs show the comparison between the trainee (green

bar) and the expert (yellow bar). The video playback shows the tooth, and the errors of

drilling are highlighted in specific color. The graph is generated by using the average

values of the orientation and the force during each particular procedure stage.

Figure 6.6: Example kinematic graphs (top: Orientation, below: Force)

We hypothesize that having the feature that displays how the expert carried

out the same procedure would be a benefit to the trainees. Therefore, in the Replay

mode, the system allows the user to view his/her performance in comparison with video

playback the expert performance (Figure 6.7). The teeth in both windows are set to be

transparent to increase the comprehension of the changes in tooth internally as it is being

drilled. The expert window can be activated by pushing the button b, and all the video

and camera functions work the same in student window.
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Figure 6.7: Student and expert windows in the Replay mode

6.1.5 Viewing aspect control panel

In the default view, the tooth is positioned with the Buccal wall facing to-

wards the user. As the tooth is being drilled, the Lingual and Mesial walls are partially

blocked from the view of the user by the driller. To provide the user with the option

to view the playback from the specific wall, the axial walls are presented in Axial Wall

View (Figure 6.8).

Axial Wall View: Dentists widely use axial walls to communicate and there-

fore, four axial walls (Mesial, Lingual, Distal, and Buccal) are provided to the user.

Upon selection, the camera will be rotated to the selected wall, and the user can view

how the tooth is being drilled from the selected wall (Figure 6.8, Figure 6.9).

Figure 6.8: Viewing aspects control panel
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Figure 6.9: The Buccal wall view

Rotation panel: Using the Rotation Panel users can rotate the viewing angle

step by step by tilting the walls and turning left/right. As shown in Figure 6.8, six-

rotation buttons are Buccal Tilt, Lingual Tilt, Mesial Tilt, Distal Tilt, Left and Right.

Zoom panel: The zoom in/out functions allow the user to have a closer look

at what is happening while the tooth is being drilled (Figure 6.10).

Figure 6.10: Magnified view of the simulated tooth

Auxiliary functions: The virtual handpiece and the virtual dental mirror in
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the scene partially block the portion of the tooth being drilled and the highlighted error

regions. Therefore, the auxiliary shortcuts are provided to remove the handpiece and the

mirror from the playback scene. They are:

• Space Bar: remove/reload the handpiece and

• Space Bar + Right Mouse Button: remove/reload the mirror from the

scene.

6.2 Experimental Evaluation

In evaluating the effectiveness, we aim to evaluate two main hypotheses as

follows:

• Hypothesis I: Skill training using simulator with video-based formative

feedback is better than training using simulator without feedback feature.

• Hypothesis II: Skill training using the simulator with video-based forma-

tive feedback is better than the traditional training approach.

To confirm the hypotheses the evaluation study is designed as a pre-test/post-test control

group design. Experimental groups and control group are determined as:

• Experimental group I (G1): The participants in this group are trained with

a VR simulator without feedback feature.

• Experimental group II (G2): The participants in this group are trained

with a VR simulator with the summative score and video-based formative feedback

feature.

• The control group (G3): The participants in this group are without VR

simulator in the traditional laboratory.

To test the Hypothesis I, the learning gain of the training is defined as the difference

between the pre- and post-training scores. The hypothesis I was tested by showing

the students group trained with simulator with video-based formative feedback achieve

higher learning gain than that of a control group consisting of a student group trained

with the simulator without feedback. The null and alternative hypotheses are

• Null Hypothesis (H0): There will be no significant difference in learn-
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ing gains between participant group trained using simulator with video-based formative

feedback system (G2) and participant group trained utilizing the simulator without feed-

back (G1).

• Alternative Hypothesis (HA): The learning gains of the participant group

trained using simulator with video-based formative feedback system (G2) will be higher

(better) than that of the participant group trained utilizing the simulator without feedback

(G1).

Regarding the Hypothesis II, to confirm the two training methods are equally effective,

we compared whether the learning gains of the participant group trained with simulator

with feedback are equivalent to outcome scores of the participant group trained in a

traditional laboratory setting. The null and alternative hypotheses are:

• There will be no significant difference in learning gains between partic-

ipant group trained using simulator with video-based formative feedback system (G2)

and participant group trained in a traditional laboratory setting (G3).

• Alternative Hypothesis (HA): The learning gains of the participant group

trained using simulator with video-based formative feedback system (G2) will be higher

(better) than that of the participant group trained utilizing the simulator without feedback

(G3).

Our sample size calculation is based on the similar study [161] conducted by co-investigators

previously. Suebnukarn et al. [161] evaluated the effectiveness of simulator-based train-

ing using microcomputed tomography (micro-CT) tooth models on minimizing proce-

dural errors in comparison with conventional phantom head training. According to their

study, the response within each participant group is normally distributed with a stan-

dard deviation of 0.25 and the difference in the experimental and control mean 0.33.

As shown by Chan [162], the required number of participants in each group is then

calculated by

m(sizepergroup) =
2c

δ2
(6.1)

where δ = |μ1−μ2|
σ

is the standardized effect size and μ1 and μ2 are the

means of the two treatment groups, σ is the common standard deviation and c = 7.9
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is related to a required significance level of 5%. As a result, 10 participants in each

experimental group and 10 control participants are required to reject the null hypothesis

that the population means of the experimental and control groups are equal with the

probability (power) 0.8. The type I error probability associated with the test of this null

hypothesis is 0.05. Stratified randomization is used in order to minimize the differences

in gender distribution across and within groups.

Ethical approval was obtained from the Institutional Review Boards from

Mahidol University and Thammasat University. A week before the first day of the ex-

periment, the student representative was contacted regarding the purpose of the study

to circulate the information on the experiments to the students for recruitment. We re-

cruited thirty fifth-year dental students at Thammasat University School of Dentistry,

Thailand. They were not admitted to the study if any of the following criteria were

present: left-hand dominant individual; had prior experience with the simulation; re-

ceived below 70 percent marks in knowledge assessment of the endodontic access open-

ing. No participant dropped out from the study. The flowchart of participants through

trials is illustrated in Figure 6.11.
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Figure 6.11: Flowchart of participants through trials

After obtaining the consent to participate in the experiment, each student

was provided plastic typodont lower left permanent molar and asked to prepare the ac-

cess opening stage of the root canal treatment. The artificial plastic teeth are designed

for endodontic training with simulated anatomical pulp cavity and canals and have an

x-ray imaging ability. Similar to working with natural teeth, trainees can experience the

difference in cutting feel between the enamel and the dentin material. The teeth were

acquired from Nissin Dental Products Inc (http://www.nissin-dental.net/), and examples

of the teeth before, during and after preparation are shown in Figure 6.12. We would

like to note the difference between the simulated tooth (mandibular lower right molar)

and the plastic teeth (lower left molar). Lower left molar tooth is used in the evaluation

study as it is the only lower molar tooth available in supply and the internal anatomy of

the tooth is the most similar to the tooth used in simulation. Students were additionally
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provided with a tungsten carbide bur (330), millimeter graduated periodontal probe, a

mouth mirror, and a sharp straight dental probe (explorer). All teeth were coded anony-

mously.

Figure 6.12: Artificial teeth (a) Before preparation (b) Mounted on the artificial jaw (c)

During preparation (d) After preparation

Data were collected in separate sessions between control and experimental

groups after study hours. In the pre-training session, all participants performed access

opening in the laboratory using plastic teeth. During the training session, participants

from G1 are trained using the simulator without feedback, participants from G2 were

trained using simulator with formative feedback, and participants from G3 were trained

in the traditional laboratory without the VR simulator.

Participants from G1 and G2 were briefly instructed on the use of the sys-

tem, the experiment flow of assigned group and the requirements of the access opening.

The participants received a verbal explanation about the use of the system from the in-

vestigators and familiarized themselves for fifteen minutes with the system interface,

but not with the task. Participants from G2 were also informed that they are allowed to

stop the video-feedback as they feel they understand the errors and the causes during

the video-playback. During this familiarization or warm-up period, each participant was

allowed to ask questions and receive further verbal explanation and suggestions from

the investigators. After the familiarization, the participant continued in acquisition ses-

sions. During the training stage, participants from G2 received scores on the outcome

from the automated outcome scoring system and video-based formative feedback on the

performance. They were allowed to navigate the video playback freely and exit before

the replay was over (and many did) if they felt that they had understood how and what
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Table 6.1: Intra-class correlation coefficient (ICC) between two evaluators (95% confi-

dence interval)

Mesial Distal Buccal Lingual Floor Overall

0.97 0.98 0.98 0.98 0.91 0.99

( 0.955 , 0.984) ( 0.961 , 0.986) ( 0.972 , 0.99) ( 0.966 , 0.988) ( 0.848 , 0.947) ( 0.983 , 0.994)

leads to the resulting performance score.

The primary outcome measure is the average outcome scores from each pre-,

and post-training retention assessed by a panel of two experts who are blinded to trainee

and training status. The overall preparation score was considered as the primary de-

pendent variable representing the success in learning outcome while the scores on axial

walls and the pulp chamber floor are considered for detailed analysis of performance.

6.3 Results

The two experts evaluated the artificial teeth from both controlled and ex-

perimental groups in pre- and post-training steps. For all the scores normality was con-

firmed using the Kolmogorov and Smirnov test. Since the outcome scores in this study

are normally distributed, we computed the intra-class correlation coefficient (ICC) [163]

to confirm the degree of agreement between two experts in scores, ICC value ranges be-

tween 0.0 and 1.0, and the high value indicates a few variation between the scores given

to each tooth by the raters. As presented in Table 6.1, high ICC values indicated the

strong inter-rater agreement in all categories (the axial walls, the floor and the overall

scores). All the coefficients of ICC are significant at p = 0.05. The highest ICC (0.99)

was observed in the overall score while the lowest (0.91) was found in the floor scores.

The descriptive statistics of pre- and post-training scores in all groups are

summarized in Table 6.2. The mean scores before training ranged between (65.80 -

63.70) while the means of after training ranged between (66.30 - 91.6). A marked de-

crease in the standard deviation values was observed in post-training scores compared

to that of the pre-training scores in G2 (8.07 from 15.52) and G3 (7.70 from 15.71),

indicating the convergence in performance of these two groups.
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Overall, the mean post-training scores in all categories (the axial walls, the

floor and the overall scores) were higher than the mean pre-training scores in G2 and G3

compared to G1. A paired t-test was used to compare the difference between the means

of pre- and post-training score. At p < 0.05, the significant differences were found

G2 from G1 and G3. The student group trained with simulator with feedback achieved

higher mean post-training outcome scores (G2 PostMean = 91.6) than that of the control

group consisting of a student group trained with the simulator without feedback (G1

Post-Mean = 66.3), and that of participant group trained in traditional laboratory setting

(G3 Post-Mean = 73).

Before further analysis, the initial differences among the three groups were

determined with a one-way analysis of variance (ANOVA). The overall preparation score

(S) before training was taken as the main dependent variable. Additional Tukey HSD

post hoc tests were applied when significant effects were encountered. The results re-

vealed that between-group differences were not significant (p = 0.809): F(2, 29)=.214,

p < 0.05, and post hoc (Tukeys HSD) analyses revealed that neither of the experimental

groups had significantly higher scores than the control group (G3).

The independent samples t-tests were used to compare the learning gains

among all three groups. We found that the student group trained with the simulator with

feedback (G2) achieved statistically significantly higher learning gain (30.30 ± 17.5) at
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the end of the training session. The statistically significant gain compared to the control

group (G1) (trained with the simulator without feedback) (0.5 ± 11.375), t (18) = -

4.523, p = 0.000, confirms our hypothesis I. Similarly, the student group trained with the

simulator with feedback (G2) had statistically significantly higher learning gain (30.30

± 17.5) at the end of the training session compared to the control group G3 (trained

with traditional phantom head) (8.5 ± 14.152), t(18) = -3.068, p = 0.007, confirming

our hypothesis II. Figure 6.13: Plot of the change [(post-training overall score) (pre-

training overall score)] vs. pre-training overall score.shows the comparison of learning

gain [(Post-training score) - (Pretraining score)] with the initial pre-training scores. We

can notice that low initial scores the change is high (much improved after the training

period), but for high initial scores, there was little improvement.

Figure 6.13: Plot of the change [(post-training overall score) (pre-training overall

score)] vs. pre-training overall score.

Additionally, we analyzed the learning gain in each axial walls and the pulp

floor of every group to have a better understanding of the difference in performance be-

tween groups. The negative learning gain means were observed in G1 from Buccal, and

Lingual walls, indicating that scores of participants from G1 significantly dropped from

pre-training scores in these two walls. In contrast, G2 and G3 have positive learning

gains in Buccal, and Lingual with higher learning gains were observed in G2. From

one-way analysis with Tukey post-hoc tests revealed that the mean learning gain of G2

are significantly higher than in the Mesial and Distal walls scores than that of G1 and
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G3. Experts concluded the absence of the probe tool in G2 as a possible cause. The

participants from G3 can use the dental probe tool to inspect the drilled area in Mesial

and Distal wall while the participants from G2 were gaining the benefits of seeing the

Buccal and Mesial walls from video-playback and formative feedback.

6.4 Discussion

Issues centered around the subjectivity on the feedback has been a topic of

controversy in dental education [164, 165]. The video based-formative feedback pro-

vides purely non-evaluative objective performance feedback, specifying what was done,

how it was done and how it affects the performance and thus, the system ultimately

eliminates the drawbacks of face-to-face verbal feedback.

According to Weeks and Kordus [166], the most effective feedback motor

skill development should create awareness of when and how an error was made which is

more important than the final result itself. The video-based formative feedback system

is highly suitable feedback modality to create such awareness as it provides where, when

and how an error was made. This knowledge of errors can help the trainee to rectify or

modify their performance on the next trial and increase the likelihood of achieving the

desired outcome. This is evident in the improved post-training performance observed

from participants in G2.

White et al. [9] noted that trainees knowledge is increased by making and

learning from errors. The opportunity to actually see the (what) actions lead to each

error instead of only being told the performance quality (grade/score) help the trainee

to discover the relationship between the movement and the performance outcome. Stu-

dents, especially novices, are dependent on instructors to supervise and provide feed-

back [167]. Performance scores observed from participants of G2 confirm without feed-

back training with simulator alone tells students very little about how to improve their

performance.

Video-playback provides trainees with a third-person view of their perfor-

mance and opportunity for reflection of own performance. Video-based feedback pro-
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vides trainees with an accurate perception of their performance as well as enhancing

their self-awareness. The ability to self-assess work done on a VR simulator could help

students gauge the quality of their work and determine a scope to improve [168] and

can contribute to the faster acquisition of skills and reduce the learning curves. The

ability to self-assess is thought to be one of the essential elements for developing the

motor skills [99]. The video-based formative system permits the student to conduct a

self-assessment. Using the video-based formative feedback, students can have a better

understanding of which movement or actions to errors and can improve their ability to

recognize the error, which in turn leads generating a more accurate self-assessment that

leads to improvement in performance. Also, trainees with or without their instructor can

review errors at the exact time point they occurred and work out for the remedy.

Being able to compare their performance with experts performance facili-

tates the trainees to benchmark their performance against experts. Knowledge on the

ideal procedure outcome prepared by the expert and how the expert carried out the pro-

cedure allow the trainees to know the quality of their performance and enable to plan for

improvement in the next trails if needed.

As a limitation, we noted that we have considered two additional feedbacks

in the experimental group: feedback specifically on outcome from automated outcome

scoring system and the video-based formative feedback. In principle, it would be good

to know to what extent these different aspects contribute to improvements separately.

Familiarity with using plastic teeth which is as realistic as natural teeth cannot be dis-

counted in G3 as training with phantom head with plastic/extracted teeth are the gold

standard in the preclinical laboratory. Terminal feedback is known to be superior to

concurrent feedback in long-term retention of the learned skill. The terminal feedback

generated from our system emphasizes on the promotion of task-relevant visual aspects

(internal anatomy, the errors in space and time). This evaluation study did not investi-

gate this terminal feedback and its impact on retention of skills and identified this as the

future work.

Informal interviews with instructors and the participants revealed that both

students and instructors would like to have the feature to record/save the playback as

a video, providing that it would enable them to keep records of their performance and
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can be used to monitor their progress. The instructor can also utilize it to review each

trainees skill and the performance in one place and it could provide them with the fea-

sibility to provide more extensive feedback without requiring him to present during the

training session.
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CHAPTER VII
FORCE FEEDBACK

In this chapter, we present the use of haptic formative feedback to train the

correct application of force in endodontic surgery.

Critical physical parameters required for precise manipulation of invasive

instruments during an endodontic procedure include trajectory, orientation, and the mag-

nitude and the direction of applied force. While visual guidance or demonstration would

suffice to guide/train trajectories and orientation of instrument, it is less useful for guid-

ing the correct application of force. At the same time, application of force is particularly

challenging. The amounts of force used are on the order of tenths of Newtons, requiring

a highly refined tactile sense, with incorrect force possibly causing irreversible damage

to the tooth and surrounding tissue. Despite its importance, students receive very little

(if any) explicit feedback on their application of force during training. Since instructors

have no means to directly assess the amount of force applied by a trainee, one-to-one

guided instruction/intervention on the proper application of force is very difficult in a

traditional pre-clinical laboratory.

Commonly, learning by observation from expert demonstrations is at the

centered of dental student clinical skill training [31]. Trainee dentists typically have

to rely on visual observation of experienced surgeons and verbal descriptions of proper

techniques. Although demonstration takes up a significant portion of psychomotor skills

training [169, 170], a typical demonstration takes a considerable time of training and

requires to conduct with care as the knowledge related to the skill underlying demon-

stration is often associated with tacit knowledge and not visible to the trainees [171],

and needs to be clearly communicated as part of the demonstration. Specifically, in mo-

tor skill training on instrument manipulation requiring the proper application of force,

verbal instructions or demonstration are not suitable to convey the magnitude or the di-

rection the trainee should apply on the instruments. Demonstration session also limits
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the precision with which an instructor can monitor a trainees drilling performance, as

he/she cant feel the fine details of the trainees interaction within the confined cavity, and

cant easily share the drill and the operating area for a demonstration. Teaching motor

skills is considered to best explained by an instructor through physical interaction [172].

However, such approach is expensive and inefficient because it necessarily requires a

low student-to-faculty ratio.

Realistic manikins in the clinical laboratories of the dental schools provide

the instructors with a means to explain and improve students hand-eye coordination, and

dexterity. However the verbal description of tactile sensation [168] and the necessary

force and motion coordination for instrument manipulation are fundamentally difficult

to explain. With less realistic soft tissues in gums and other structures around the teeth,

Yamaguchi and colleagues [173] noted that learning to apply correct probing force using

manikin is especially difficult in skill necessary for periodontal treatments. Numerous

empirical and experimental studies have been conducted on providing realistic haptic

feedback using VR dental simulators including [47, 53, 173–177]. Evidence suggests

that there is a link between simulator ability and operative skills, indicating some bene-

fit to using haptic simulation in undergraduate dental teaching [26] [134]. Studies have

evaluated surgical performance and skill acquisition during training and shown that sig-

nificant differences exist between experts and novices in force/torque magnitudes at the

hand/tool interface [55, 76, 178]. But no work has yet explored the use of haptic feed-

back as formative feedback and a modality for training the correct use of force. Typi-

cally, dental students acquired motor skills by observation and practice. Alternatively,

motor skills can be trained through physical guidance. Physically guiding children how

to write or how to move a swimming stroke to get maximum forward extension are a few

example of physical guidance. Majority of existing haptic-based motor skill training ap-

proaches are centered on the two-phase process, namely, record-and-play. In the record

phase, the experts movement is recorded in terms of position, velocities, and force pat-

terns. In the subsequent play phase, the recorded movements are haptically and visually

displayed to learners during the playback mode training. Playback can be either active

or playback mode. In the passive playback mode, the trainees have to grasp the end-

effector of the haptic device and are physically guided through the ideal motion through
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a desired trajectory to acquire the kinesthetic understanding of what is required. In con-

trast, the trainee moves the end-effector through a desired trajectory at his/her speed in

the active playback mode. As the end-effector movements are constrained to the ideal

trajectory, the learner experiences as moving along a virtual channel, which keeps the

end-effector on the correct path. Yokokohji et al. [179] introduced What You See is

What You Feel concept in which the experts forces are first recorded and displayed to

the trainee to identify and adopt a strategy based on the force displayed. The authors

also introduced various haptic training methods, including guiding a subject through a

motion or restricting a subjects motion, however, any substantial results are provided.

Gillespie et al. [180] presented Virtual Teacher where they demonstrated a strategy on

how a teacher physically guides the movement of the trainees hand. The findings from

the pilot study involving a simulated crane moving task are inconclusive, and their re-

sults show the virtual teacher has an advantage over the human teacher because of its

accuracy and consistency in demonstrating motor skills.

Likewise, in the Virtual lesson system for teaching Japanese calligraphy de-

veloped by Henmi et al. [181] adopted the record-and-play strategy. In their system, the

position and force trajectories of the teachers brush were recorded first, and then these

trajectories are displayed to the student. Although findings from the preliminary exper-

iment primarily focusing on force utilization reported the transfer of skill, the authors

noted the need for further investigations. In a haptic-based Chinese handwriting learning

study presented by Tao et al. [76], metrics such as character shape, strike smoothness,

normal forces against a virtual paper, and pause-and-go motion are identified as con-

stituents of the skills relevant in Chinese calligraphy. Post-training performance showed

that most of the metrics, except the normal force pattern, were improved immediately

after the training.

In addition to the calligraphy, haptic-based force feedback training is widely

found in motor rehabilitation studies. Kim and Yang [182] described a rehabilitation

exercise for the users with hand dysfunctions in the haptic virtual environment where the

users hand movement is guided on the right track of the predefined trajectory according

to the real-time guidance force. Though the results are analyzed and reported to the user

during experiments, the finding details are not disclosed in their paper.
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Another discipline that requires the motor skill intensively is the medicine.

William and colleagues [183] demonstrated the merits of a haptic training to achieve cor-

rect hand movements with a haptic playback feature of the virtual palpatory diagnosis

trainer. With active playback mode, the authors compared the hand movements between

two groups of subjects, one of which received the haptic training and the other did not.

Their findings indicate that the trained group performed better than their counterparts.

In fact, haptic training has been studied in various areas of the medicine such as the di-

agnosis of prostate cancer [184], gynecologic exam procedure [185], surgical dissection

training [186], and laparoscopic surgery [187]. As the person will choose a set of forces

based the prior knowledge/experience, preference and environmental setting, Srimath-

veeravalli and Thenkurussi [188] presented the use of a unique haptic profile constructed

from the haptic attributes to every task performed using the motor skill. A time series of

force information is considered as haptic attributes and X, Y, Z components are regarded

as the haptic profile of the person. Participants in their study are trained to reproduce

an experts handwriting in terms of shape and force pattern while the reference character

is visually displayed and the experts position trajectories and the forces applied were

passively displayed by a haptic device. Superior results are observed in training given

using force information in the form of haptic attributes as compared to training using

position information in the study. Considering haptic interface as one of the modalities

in training a motor skill, comparative studies with other modalities are also available in

the literature. Avizzano et al. [189] compared haptic training with visual training in a

task involving a simple reproduction of a predefined circle. While four critical points

on the reference circle were displayed for guiding purpose in the visual training, a 2

DOF force-feedback device passively constrained participants hand close to the circular

trajectory in the haptic training. As the shapes of the drawn-circles were significantly

better after haptic training than after visual training, it is concluded that haptic training

is more helpful for a circle drawing task.

In the study presented by Morris et al. [185], the normal force against a hor-

izontal virtual plane was displayed haptically, visually, and visuo-haptically. Based on

the results from experiments in which the participants hands were actively guided along

randomly chosen paths, they concluded that force patterns could be learned through
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haptic training and visuo-haptic training was shown to be the most effective method for

force pattern training. Solis et al. [190] evaluated the skill-transferability of a Japanese

character learning system [191] under three training methods: visual, haptic and visuo-

haptic. Performance metrics considered in their study include task completion time,

overall correctly applied force magnitude, and performance. Their findings indicate that

haptic training can only improve task completion time while training with both visual

and haptic feedback could dramatically improve participants motor skills. Feygin et

al. [192] also have a similar result that haptic only training was adequate with respect to

the temporal aspect of the task, while motor skill improvements were due to the training

with visual information.

Kolesnikov et al. [174] first introduced the haptic playback mechanism to

skill acquisition in dentistry. The passive playback feature is incorporated into the pro-

totype of haptic-based virtual reality simulator, Periosim [174], to investigate haptic

capabilities in sensorimotor skill acquisition. The realism and the effector of the simula-

tor were evaluated with faculty members and students from a variety of clinical areas in

dentistry. In the follow-up study, Kolesnikov and Zefran [193] demonstrated that there

is no direct relationship between the tracking precision of a haptic playback system and

its effectiveness as a tool in motor skill transfer.

7.1 Sensory Motor Integration

A typical root canal preparation using hand instruments principally involves

tactile sensory input, rather than visual input as occurs in routine cavity preparation

tasks [123]. Endodontists use their hands almost always to explore the operating area

and the objects in it. They have to recognize and distinguish the form of an object

through exploration (touch) using indications about the texture, size, spatial properties

and temperature of the object [194] [195].

Brain activity related to learning fine motor skills is triggered mainly by vi-

sual and tactile sensory input systems [170]. The haptic perception, the process of rec-

ognizing objects through touch [123], includes a mixture of somatosensory perceptions
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of patterns on the skin surface (e.g., edges curvature, and texture) and proprioception of

hand position and conformation [196]. The human hand is said to have the most substan-

tial sensory and motor representation in the sensory cortex [197]. People with normal

sensation and movement can usually identify a familiar object by touch alone, and this

ability is referred as the stereognosis or hapticgnosis [198]. Two central somatosensory

systems of stereognosis are (i) the kinesthetic (the proprioceptive) system which pro-

vides information about the position and movement of the body and limbs (ii) the tactile

(also called cutaneous) system which provides feedback from the external world.

The haptic devices commonly used in skill training with VR systems primar-

ily focus on stimulating the kinesthetic system and have been designed with the primary

intention of generating somatosensory feedback. Sensors and actuators in the haptic de-

vices monitor user actions and create forces which guide, resist or perturb movement,

providing force feedback about the physical properties and movements of objects in the

virtual environment. There is a various mechanism for providing force feedback, in-

cluding mechanical levers or pneumatic actuators connected to the hand, which form

an interface between the persons fingers and a computer. Haptic devices allow move-

ment with several degrees of freedom, support and react with different amplitudes, offer

manipulation in a restricted space and use various technologies. The GeoMagic touch

used with our simulator is a body-based haptic device which use a connection point of

the own device to provide force feedback. The device permits simulation of fingertip

contact with virtual objects. The stylus tracks x, y and z Cartesian coordinates of the

virtual point-probe. Its actuators communicate forces back to the users fingertips as it

detects collisions with virtual 3D objects, simulating the sense of touch [199]. To train

the parameters of a task beyond auditory and visual cues, haptic devices are commonly

integrated into dental training systems, usually as dental mirrors [161], dental hand-

pieces [161] in drilling tasks and probe explorers [175] in diagnostic tasks. The use of

haptic devices allows the trainee to capture tactile sense with minimal intervention from

the instructor [52], and also pave the way for haptic training.
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7.2 Haptic Formative Feedback

We study an approach to using haptic feedback as a means to convey for-

mative feedback on the correct application of force. We build on previous work on

automated outcome assessment [200] (Chapter 4) and the correlator component (Chap-

ter 5) to analyze the relationship between procedure and outcome. With the portions of

the procedure responsible for errors classified in the correlator component, we then iden-

tify stages in which the amount and direction of applied force differ significantly from

the force used by experts. Providing force feedback requires determining possible mis-

applications of force related to the error. We distinguish two misapplications of force:

over-exertion and under-exertion of force. Interestingly, interviews with experts and de-

tailed analyses of erroneous cinematics revealed that there is no one-to-one mapping

between over-exertion/under-extertion of force with over-extension/under-extension er-

rors. This information is conveyed to the student graphically, and the correct amount of

force to apply is trained haptically.

To generate feedback, we adapt the haptic training method of Saga et al.

[201,202]. They present a haptic technique to teach hand skill tasks such as calligraphy

by rendering the force applied by the expert on the haptic device but rendering it in

the opposite direction. A student holding the haptic device must then apply the same

amount of force in the original direction to cancel out the rendered opposite force to

proceed with the operation. In this way, the student learns what the correct amount of

force feels like.

This method requires knowledge of the desired (i.e., an expert’s) applied

force. Therefore, initial samples were obtained from an expert endodontist with more

than ten years of experience. Because previous investigations (e.g., [76]) revealed that

experts exert a fairly constant force along a primary axis during the procedure, the aver-

age force by the expert in each axial wall of the tooth in each stage was pre-computed

as an approximately correct amount of force. To provide formative force feedback for a

given stage, the expert’s average force is rendered in the opposite direction to the haptic

stylus. To get a sense of the magnitude and the direction of the force applied by the

expert, a student holding the haptic device must then apply the same amount of force in
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the original direction to cancel out the rendered opposite force as shown in Figure 7.1.

While the memory is still fresh with the tactile experience, the simulator is rewound to

the point before the error, and the student is asked to redo the stage where significant

deviations are found. Throughout the reattempt, a hotkey feature is provided to retrieve

the force training episode as required.

Figure 7.1: Opposite force training

Note: �FE : Expert’s applied force, �FN : Student’s applied force

7.3 Experimental Evaluation

We conducted a preliminary evaluation of the effectiveness of the described

haptic force feedback for student training. The study had a pre-training/post-training

control group design. Ten dental student volunteers (5 Males, 5 Females) beginning

their fifth year were recruited and were randomly assigned to experimental and control

groups. All participants briefly received a verbal explanation about the use of the sys-

tem from the experimenter and were given 10 minutes to familiarize themselves with the

system interface, but not with the task. During this familiarization period, each partici-

pant was allowed to ask questions and receive further verbal explanation and suggestions

from the experimenter. After the familiarization, the participants were asked to perform

the endodontic access opening procedure on the mandibular second left molar.

Data were collected in separate sessions between control and experimental

groups after study hours. Participants performed one trial in each of the pre-training

and post-training stages. In between the pre- and post-training trials the control group

received one training trial, and the experimental group received two training trials.1

1Due to experimenter error, the control group is missing the intended second training trial. To make

sure that differences between control and experimental group are not because of differences in training

trials, we also analyzed performance of the experimental group after one training trial (employing perfor-



/ 97

Each trial took approximately 15 minutes. During the training stage, feed-

back on the outcome was provided by a qualified endodontic instructor for the control

group. For the experiment group, in addition to the feedback on the outcome, the instruc-

tor provided feedback on the magnitude and direction of force applied on the handpiece

in each stage of the procedure using the analysis provided by the system as shown in Fig-

ure 7.2. Immediately after giving the feedback, the instructor asked the student’s opinion

to determine the stage to re-execute to improve the performance. The simulator was then

rewound to the beginning of the selected stage, and the student was provided with three

force training episodes each lasting a minute. Participants could choose to exit the force

training episode before the minute was over (and many did) if they felt that they had

understood how to apply force in the given situation. After the three training episodes,

the student was asked to redo the stage and then continue with the remainder of the pro-

cedure. It is essential to have the student complete the procedure after redoing the stage

since any changes (improvements) in the outcome of the stage will impact later steps in

the procedure.

Figure 7.2: Comparison of force used in mesial wall between expert and novice in

stage 3

The primary outcome measure for the evaluation was an overall preparation

outcome score. The nonparametric Wilcoxon Signed-Rank test was used to examine the

differences between the paired pre- and post-training outcome scores, in the same group.

mance in the second training trial as the post-test performance). This analyses yielded virtually identical

results to the analyses reported here.
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Table 7.1: Pre-training and post-training outcome scores between control and experi-

mental groups (mean ± SD)

Control Group Experiment Group

Pre Post Pre Post

Lingual 44 ± 41 54 ± 32 40 ± 38 65 ± 9

Buccal 50 ± 29 38 ± 35 59 ± 2 54 ± 31

Mesial 46 ± 9 36 ± 33 46 ± 26 57 ± 33

Distal 80 ± 16 56 ± 34 61 ± 8 76 ± 9

Overall 55 ± 6 46 ± 17 51 ± 6 66 ± 12

The Mann-Whitney U test was used to detect any differences in training gain between

student groups trained with and without haptic force feedback. A significance level of

0.05 was adopted for all reported analyses.

7.4 Results

None of the participants in the control or experimental group dropped out

before completing the post-training assessment. There were no significant differences

between the groups in terms of the outcome scores in pre-training (U = 9, n1 = n2 = 5, p

> 0.4, two-tailed). Group mean outcome scores on the four axial walls (lingual, buccal,

mesial and distal) and the overall summary score are shown in Table 7.1 differences

were found in both detailed wall level and overall outcome scores between pre- and

post-training trials in the control group. The distal wall scores are significantly improved

from pre- and post-training in the experiment group (p = 0.043). Training gain, defined

as post-test score - pre-test score, was significantly larger in the experimental group (M

= 15) than in the control group (M = -9): U = 3, n1 = n2 = 5, p< 0.05, two-tailed.

Group differences were also evident in changes of the amount of force ap-

plied: In the pre-training trial, the participants in experiment group used a more substan-

tial amount of force than the control group and the expert across all four axial walls in y-

and z-axis. The opposite pattern was observed in the post-train trials where the control

group applied the more substantial amount than the experimental group and the experts.

The applied force in experiment group noticeably reduced after the force training in all
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walls except lingual.

7.5 Discussion

Studies of surgical performance and skill acquisition during training reveal

that significant differences exist between expert and novices in force/torque magnitudes

at the hand/tool interface during dental procedures using simulators [55, 76, 178]. Their

findings are aligned with the conclusions of the study on the parameters involved in the

acquisition of a practical skill in oral surgery to characterize expert and novice perfor-

mance [203]. For a drilling task using an ovine jaw, Ioannou and colleagues [203], the

analysis on force sensors readings reveal that regarding magnitude, the experts applied

slightly more force than novice and experienced participants groups in the study while

the direction of the forces applied varies widely. The authors of the studies [55, 76],

also show that experts use defined force patterns while novices do not. Students tend

to use significantly less main pushing force compared to experts [76] in crown prepara-

tion procedures. Less use of force in endodontic surgery may result in longer times to

complete each step of the procedure, which can cause patient discomfort and damage

to the tooth structure. On the other hand, too great a force can cause over-extension

or in extreme cases perforation of the tooth. Even subtle differences in force can yield

substantial differences in achieved results.

A known problem of conventional method in teaching skillful motion or

manipulation of tools in the dental procedure is the teacher, and the student cannot hold

the same tool at the same time with the right posture. To mitigate the issues arising from

the spatial gap, the instructor usually holds the hand or arm of the trainee to teach the

motion. This makes it difficult to show the trainees motion and force correctly. The

haptic demonstration approach we presented is designed to communicate directly to the

trainee’s hand and there no such spatial limitation and the trainee can sense to mimic the

instructors actions.

Training on the application of force while using instruments with verbal

feedback such as ”harder..” or ”2 times higher..” might be insufficient in guiding novices
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how to adjust their parameters [204]. Automatically moving with the haptic stylus in the

student’s hand along the recorded expert path will not solve the problem as it is a pas-

sive method and students still cannot learn the actual forces applied by the expert [176].

Similarly, tracking based haptic training approach shown no direct relationship between

the trajectory tracking precision and the motor skill performance [193]. HapticMas-

ter [205], a hardware component in Simodont Simulator [206] uses the same concept of

rendering the countering force to achieve the realistic feedback. The fundamental dif-

ference lies in the use of formative feedback in our approach, which is generated after

objectively evaluate, analyze the outcome and the procedure. Our approach still relies

on the expert to determine the rewinding stage. We are investigating a threshold-based

method to automate the process to determine the error-related stage and region. In this

preliminary evaluation, we have considered two additional feedbacks in the experimen-

tal group: feedback specifically on the force by the instructor and the haptic feedback.

In principle, it would be good to know to what extent these different aspects contribute

to improvements separately.



/ 101

CHAPTER VIII
CONCLUSIONS AND FUTURE RESEARCH

This research address the issue of objective assessment and feedback in skill

training using VR simulators. Our approach to objective assessment and feedback is

based on correlating the procedure and the outcome. The components are Automated

Outcome Scoring System, Correlator, and Feedback System consisting of video-based

and haptic-based feedback systems. While the framework is implemented for the root

canal treatment using a dental simulator, our approach to assessment and formative feed-

back generation is general and can apply to a wide variety of surgeries as well as to other

physical procedures. In this chapter, we will discuss the generality and extensibility of

of each component and the framework as a whole.

8.1 Automated Outcome Scoring System

The scoring cube for outcome assessment used in the Automated Outcome

Scoring System provides scores to the 3D voxel structure commonly used in VR dental

simulators at a sufficient level of detail to allow correlation with procedure kinematic

variables collected by such simulators. To effectively communicate outcome score re-

sults, detailed level scores are translated into the language of the coarser level standard

scoring system used by dental schools. The objective consistency of the outcome scores

and the high degree of agreement with experts make it a promising addition to exist-

ing VR simulators. This is the first scoring algorithm for endodontic surgery and is a

scoring mechanism with a precise way of identifying errors in the outcome compared to

commonly used techniques for outcome assessment.

Our scoring system relies on the availability of templates of the 3D volume

objects. It is applicable to assessment of outcomes of procedures involving 3D volumne

objects or regions where the desired outcome can be described in terms of templates.
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Our scoring approach is robust and is not limited to the access opening procedure in

root canal treatment. In addition to the access opening stage, the algorithm can apply in

assessment of cavity preparation stage of the root canal treatment. In the cavity prepa-

ration stage, the canals are expanded and shaped with the small files to get access the

apical portion (tip) of roots. At present there is no reliable method for evaluating the

canal cleaning and shaping [207], and the systematic way of scoring of canal prepara-

tion is needed in practice. As the canals can be identified along with the pulp chamber,

the cavity preparation stage can be assessed and scored using our scoring system.

Other than the root canal treatment, the scoring algorithm is also applicable

in evaluating the outcome of other dental surgery procedures such as the dental implant

procedure. This procedure involves replacing an extracted tooth with a metal stud or

post screwed right into the jaw bone to serve as an anchor to the crown or false denture.

As a part of the procedure the portion of the gum is needed to cut then drill into the

jawbone in order to place the stud or post, and in this stage our outcome scoring system

is applicable for assessment and scoring. Elsewhere other than dental surgery, consider

hip replacement surgery. In the hip replacement surgery, the ball portion of the joint

is removed by cutting the thighbone with a saw. With the same underlying concept of

removing the hard bone tissue, the outcome scoring system is also applicable. It is not

limited to the procedure with the hard tissue removal, drawing on the similar analogy,

our scoring system is applicable to other surgery procedures involving the soft tissue

removal such as surgical removal of tumors.

In addition to the dental and medical area, the scoring system can be used

to evaluate the outcomes of VR simulations involving physical procedures such as gem-

stone faceting and the welding using VR. For instance, consider the fillet welding task

where two pieces of metal are joined together either in perpendicular or at an angle. Fil-

let weld process outcome is evaluated from five aspects [208] known as the Root, Toe,

Face, Leg and Throat as shown in Fig 8.1. The Root refers to the deepest penetrated

area on the opposite angle of the hypotenuse, the Toe refers to edge or the points of

the hypotenuse, the Face is the outer visual, the Legs refer to the opposite and adjacent

sides to the triangular fillet weld (size of the weld) and the Throat of the weld is the

distance from the center of the face to the root of the weld. Typically, the depth of the
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Throat is at least as thick as the thickness of metal in process. Based on the evaluation

criertria, the scoring templates for the fillet weld task on a VR simulator can be created

in a straightforward manner. The non-linear scoring function can be adjusted with the

desired weight function. With the templates and the weight function, the weld process

outcome can be assessed and scored using a VR weld simulator and 3D volume models.

Figure 8.1: Five aspects in fillet weld [208]

8.2 Video-based Formative Feedback

We have shown the effectiveness of the video-based formative feedback on

trainee performance through a randomized controlled trial using VR skill training simu-

lator with our feedback system relative to training with simulator without feedback and

training in a conventional setting. We found that the students trained using the simulator

with video-based feedback have significant learning gains compared to the other two

groups. The findings indicate that the system can potentially serve as a highly effective

supplementary training tool in the skill training in dental surgery education. This is the

first use of simulator replay with visualization techniques to provide feedback in den-

tal surgery. The video-playback provides a large amount of information to the user in

an easily intelligible form, and the features and functionalities are simple and general
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enough to incorporate into a wide variety of computer-based simulators. Through the

video-replayed at the end of procedure, the trainees are informed with the immediacy of

consequences which is usually not available in a conventional training setting. The lo-

cality of the mistakes/errors manifested in their performance in terms of both spatial and

temporal aspects are captured and visualized in the video-playback. The video playback

with formative feedback succinctly illustrates the general feedback mechanism of ”ac-

tion and effect” and this simple yet powerful feedback mechanism enables the trainees

to comprehend the consequences of their actions which is essential in skill training.

Feedback from the evaluation study indicated several areas for extension

and improvement. Experts and the students would like to export and store the video

playback in the hardware independent multimedia file formats. Speed replay (such as

x-times faster than average rate) can also be added into the system. In addition, kine-

matic graphs and the video-playback can be combined into one window. The system can

be further extended by integrating of instrument sound while drilling and incorporating

voice-over explanation of causes for each error region (such as you have over-exerted

force in this region).

8.3 Haptic-based Feedback

In addition to the video-based feedback, we have shown how haptic feed-

back can be used to train the correct application of force in dental surgery. The force-

feedback represents the first time that haptics have been used to teach correct application

of force in dental surgery. The mechanism enables analysis and feedback concerning the

use of force which is otherwise difficult to provide in traditional dental skill training en-

vironments. Haptic sense is a unique among the senses in human beings and it is physi-

cally and functionally integrated with motor control [7]. The haptic training is one of the

current research issues in human computer interaction studies involving computer-based

simulators and haptic devices [4–8]. A common approach to haptic training consists of

two phases. In the first phase, the expert’s movement is recorded in terms of position,

velocities, and force patterns. In the subsequent phase, the recorded movements are
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haptically and visually displayed to learners during the playback mode training. Play-

back can be either active or passive mode. In the passive playback mode, the trainees

have to grasp the end-effector of the haptic device and are physically guided through

the ideal motion through a desired trajectory to acquire the kinesthetic understanding

of what is required. In contrast, the trainee moves the end-effector through a desired

trajectory at his/her speed in the active playback mode. Haptic sense can be trained

through physical guidance. Physically guiding children how to write or how to move

a swimming stroke to get maximum forward extension are a few example of physical

guidance. Our approach deviates from the traditional haptic training approaches in uti-

lizing the correlated information (formative feedback) from the correlator component.

For the procedure stage containing portions of the procedure which are labeled as the

portion responsible for a certain error region in the outcome, trainee has to undergo the

haptic training. Using the expert’s force in the identified procedure stage, the expert’s

force is rendered to the student via a haptic device and the student has to cancel it with

the opposite force. Training on the proper use of force is more meaningful with the sense

of touch (haptic cues) involved in the countering force. This is the first time that hap-

tic devices have been used to teach correct application of force in endodontic surgery.

From the preliminary evaluation using the randomized control trial with pre-/post- train-

ing control group, we found out that the students trained with the haptic feedback have

significantly improve learning outcomes after training. The findings indicate that this

assessment and feedback mechanism may be an effective addition to dental skill train-

ing. More exhaustive experiments on the effectiveness of force feedback mechanism

with a larger sample of faculty and students, variety of teeth, different pathologies and

retention effects should be covered out in the future.

8.4 Correlator and Formative Feedback Framework

The correlator component in our framework is responsible for correlating

the procedure and outcome to generate formative feedback. Specifically, the correlator

associates the error in the outcome with the procedure portions responsible for it. Cor-
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relating procedure and outcome is an instance of credit assignment problem where the

portions of the procedure which are responsible for the errors in performance outcome

are identified. The credit-assignment problem is usually explained with the chess board

game, where the win/loss status at the end of a chess game is apportioned as credit/blame

to the moves taken by a player during the game. In this particular example, the actions

(the moves of the player) have delayed effect since the game outcome win/loss is ob-

servable only at the end of the game. Having the action effects delayed till the end,

it is not trivial to determine which of the player’s moves were the most important (or

detrimental) in leading to a win (or loss). Additionally, in a chess game, the individual

moves are not completely independent from one another. A player’s next move highly

depends on the current board set reached from the previous moves. Usually a sequence

of moves rather than one specific move have impact on the win or loss game outcome

at the end. Specifically, the individual actions have indirect effect on the game outcome

and this characteristic further underscores the hard credit assignment task. Unlike the

chess game, the drilling in actions in the dental domain have immediate effects on the

outcome. It simplifies the way to solve credit-assignment problem since the assignment

of credit/blame only relies on the spatial information of errors (effects) to obtain the

associating temporal information of actions. With the immediately observable effect of

each action and the availability of localized spatial and temporal aspects of the effects,

in our case we have a tractable solution to the credit assignment problem. It is important

to note about the immediate effects of actions in the perforation error type. While over-

cut actions effects are immediately available in the outcome, perforation errors are not

the immediate effects of the actions. As mentioned in the correlator component (Chap-

ter 5), the repeated or extended drilling in the same neighborhood eventually leads to

the perforation error, it is the special case of overcut error. Although, the action effect

is not immediately available, immediate effects can be established from the continuous

overcut actions leading to perforation.

In our prototype for the framework, the correlator relies on the locality of

both temporal and spatial aspects of errors (effect of action) due the nature of error

under study. The correlator works for the class of problems with the action(s) with

immediate effects on the outcome. For example, consider a scenario playing a musical
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instrument where the effects of an action has no associating spatial information. The

correlator component can correlate the error (effects of action) in the resulting sound of

a music score with how it was executed/played. In this case, the correlation is possible

to establish because an action (incorrect key) or an episode of continuous actions have

immediate and direct effect on the sound produced from the instrument. Specifically,

the correlator component works with the class of problems which has the fundamental

characteristic of having actions which have immediate effects on the outcome.

Continuing from the previous example of the welding simulator, the corre-

lator can also be integrated into the training welding simulator to generate formative

feedback as the action taken by trainee have immediate effect on the outcome of the

welding process. Other simulators where the framework is applicable include calligra-

phy training simulators, and psychomotor rehabilitation training VR simulators to train

the patients after a medical condition such as stroke or injury in hand.

Formative feedback can be further improved by providing the image-guided

instructions as feedback during the procedure execution to reduce the chances of stu-

dents committing the errors. Based on the reference templates, the simulator knows the

ideal drilling area and shape, and guidance instructions can be generated as feedback

while the students are performing the procedure. Besides the reference templates, the

important anatomical landmarks can be highlighted to assist in student decisions in the

drilling process to achieve a better outcome. Frequent feedback during the training could

disrupt the learning process. Therefore, the feature to turn on/off the feedback can also

be integrated in the future.

In determining the factors that contributed to the errors, we have focused

only on the applied force and the orientation of the instrument during the procedure.

However, the other variables such as the kinematics variables associated with the mirror

could indicate whether the trainee properly manipulate whenever the indirect view of

the operating tooth is necessary or not. Regarding the error types in correlating with

the portion of the procedure, only the three most common types associated with the se-

lected procedure stage are taken into consideration in this thesis. Errors can be further

analyzed in more detailed level, for example the perforation error could be separated

into either lateral or vertical perforation. Similarly, the undercut error could be sepa-
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rated from incomplete error (unfinished task outcome). By analyzing at the finer level,

the trainee’s understanding on the task, the tooth anatomy and morphology can be de-

termined and associated with the procedural errors. In this regard, this thesis can be

extended by distinguishing the knowledge origins of the errors. Each error can be ana-

lyzed whether it is caused by the technical limitation of the trainee or the student does

not have sufficient underlying knowledge to perform the task. This information will be

instrumental in deriving directive feedback on correcting errors, inappropriate actions,

or misconceptions.

The objective assessment and feedback generation framework in this thesis

originated in dentistry. Beyond the domain of dental surgery, we have discussed ex-

amples on how each component is applicable in other procedures within dentistry, in

general medicine as well as in other disciplines. Being implemented using a VR dental

surgical simulator, the framework fundamentally requires a VR simulator with 3D vol-

umetric object models. While scoring component requires the ideal outcome template,

the framework requires the simulator to be equipped with the ability to capture kine-

matics variables along with temporal and spatial information on collided and removed

voxels. Other than the simulator features, the framework is generalizable to the class of

problems constitute with the actions with immediate effects on the outcome.

8.5 Conclusion

To develop the required level of skills, a large portion of the curriculum

is usually allocated to skill taining in dental schools. Scarcity of expert time and the

limitations of traditional approaches have spurred a search for alternative methods of

instruction to maximize procedural skills development for the dental students. With

increasing attention in the development of learner-centered curricula, our framework

implemented on VR simulators could provide a valuable training resource that allows

the trainee to perform independent practice with less reliance on experts. Our objec-

tive assessment and formative feedback system could be incorporated into formal skills

training curricula. We would like to emphasize that virtual simulators cannot replace the



/ 109

experts during training but rather complement the experts in the training process. When

both the expert and the simulator actively engage in the training process, the benefits are

multifold. Expert’s time and workload could significantly reduce with the addition of

VR simulators equipped with assessment and feedback features. Simulators can provide

opportunities for students to practice independently with feedback from the simulator

and their outcome automatically evaluated. Students can reflect their performance us-

ing video-based feedback from the simulators and revise the actions to improve their

future performance. Expert performance on the same task can be reviewed using simu-

lator through which trainees can learn from the expert without requiring the presence of

experts during practice sessions. While simulators are the perfect platform for the delib-

erate practices, they can never replicate fully the clinical experience of the expert. As the

simulators takes assessment and feedback for each practice session, experts can focus

on qualitative feedback aspects of skill training. In a surgery, the incorrect manipulation

of instruments of the dentist will be reflected as errors in the outcome, nevertheless, the

correct outcome does not guarantee the correct/precise manipulation of instruments by

the students. Beside the tracking sensors (if any), the experts can focus on observing

students performances during practice and providing instructions to ensure the trainees

adopt the correct instrument manipulations techiques and perform procedure stages in

an efficient manner during the practice. Beyond instrument manipulation, experts can

also observe the trainee’s operating posture and the ergonomic aspects as well. Ad-

ditionally, experts can confirm the students’ understanding on the task, their planned

actions, projected outcome and the task’s ideal outcome through various tutoring in-

tervention strategies. Additionally, the expert can provide and discuss visual cues the

student should consider for the operation such as important landmarks which are not

available in the textbook. Moreover, either expert or student can use the simulator with

a haptic training feature to train the correct application of force during practice sessions

as well.



References / 110

REFERENCES

[1] Stefanidis, D., Arora, S., Parrack, D. M., Hamad, G. G., Capella, J., Grantcharov,

T., Urbach, D. R., Scott, D. J., and Jones, D. B. (2012). Research priori-

ties in surgical simulation for the 21st century. The American journal of

surgery, 203(1), 49–53.

[2] Overby, D. W. and Watson, R. A. (2014). Hand motion patterns of fundamentals

of laparoscopic surgery certified and noncertified surgeons. The American

Journal of Surgery, 207(2), 226–230.

[3] Minsky, M. (1961). Steps toward artificial intelligence. Proceedings of the IRE,

49(1), 8–30.

[4] Neges, M., Adwernat, S., and Abramovici, M. (2018). Augmented virtuality for

maintenance training simulation under various stress conditions. Procedia

Manufacturing, 19, 171–178.

[5] Campbell, J., Hogan, T., and Fraser, M. (2018). Feeling virtual worlds: An explo-

ration into coupling virtual and kinaesthetic experiences. Proceedings of

the Twelfth International Conference on Tangible, Embedded, and Embod-

ied Interaction, pp. 279–285.

[6] Vi, C. T., Ablart, D., Gatti, E., Velasco, C., and Obrist, M. (2017). Not just seeing,

but also feeling art: Mid-air haptic experiences integrated in a multisensory

art exhibition. International Journal of Human-Computer Studies, 108, 1–

14.

[7] MacLean, K. E. (2008). Haptic interaction design for everyday interfaces. Reviews

of Human Factors and Ergonomics, 4(1), 149–194.

[8] Schneider, O., MacLean, K., Swindells, C., and Booth, K. (2017). Haptic experi-

ence design: What hapticians do and where they need help. International

Journal of Human-Computer Studies, 107, 5–21.



/ 111

[9] White, C., Rodger, M. W. M., and Tang, T. (2016). Current understanding of learn-

ing psychomotor skills and the impact on teaching laparoscopic surgical

skills. Obstet. Gynecol., 18(1), 53–63.

[10] Spencer, F. C. (1978). Teaching and measuring surgical Techniques-The technical

evaluation of competence. Bull. Am. Coll. Surg., 63, 9–12.

[11] Müller-Tomfelde, C. (2004). Interaction sound feedback in a haptic virtual envi-

ronment to improve motor skil acquisition. International Conference on

Auditory Display.

[12] Dreyfus, S. E. and Dreyfus, H. L. (1980). A five-stage model of the mental ac-

tivities involved in directed skill acquisition. Operations Research Center,

University of California, Berkeley.

[13] Fitts, P. M. and Posner, M. I. (1967). Human Performance. Brooks/Cole.

[14] Bloom, B. S. (1971). Taxonomy of Educational Objectives: The Classification of

Educational Goals. David McKay Co., Inc.

[15] Field, A. (2014). Understanding the dreyfus model of skill acquisition to improve

ultrasound training for obstetrics and gynaecology trainees. Ultrasound,

22(2), 118–122.

[16] Carraccio, C. L., Benson, B. J., Nixon, L. J., and Derstine, P. L. (2008). From

the educational bench to the clinical bedside: translating the dreyfus de-

velopmental model to the learning of clinical skills. Acad. Med., 83(8),

761–767.

[17] Peña, A. (2010). The dreyfus model of clinical problem-solving skills acquisition:

a critical perspective. Med. Educ. Online, 15.

[18] Richard M. Dubinsky Mamatha Pasnoor Sonja Fabricius Richard J. Barohn Neu-

rology residency handbook 2015-2016.

[19] Miller, G. E. (1990). The assessment of clinical skills/competence/performance.

[20] Anderson, L. W. and Krathwohl, D. R. (2001). A taxonomy for learning, teaching,

and assessing : a revision of Bloom’s taxonomy of educational objectives.

Longman.

[21] Albino, J. E. N., Young, S. K., Neumann, L. M., Kramer, G. A., Andrieu, S. C.,

Henson, L., Horn, B., and Hendricson, W. D. (2008). Assessing dental



References / 112

students’ competence: best practice recommendations in the performance

assessment literature and investigation of current practices in predoctoral

dental education. J. Dent. Educ., 72(12), 1405–1435.

[22] Dave, R. H. (1970). Psychomotor levels in Developing and Writing Behavioral

Objectives, pp. 20-21. Tucson, Arizona: Educational Innovators Press.

[23] Rogers, D. A., Regehr, G., Howdieshell, T. R., Yeh, K. A., and Palm, E. (2000).

The impact of external feedback on computer-assisted learning for surgical

technical skill training. Am. J. Surg., 179(4), 341–343.

[24] Ali, K., Slade, A., Kay, E., Zahra, D., and Tredwin, C. (2017). Preparedness of

undergraduate dental students in the united kingdom: a national study. Br.

Dent. J., 222(6), 472–477.
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[174] Kolesnikov, M., Žefran, M., Steinberg, A. D., and Bashook, P. G. (2009). Pe-

rioSim: Haptic virtual reality simulator for sensorimotor skill acquisition

in dentistry. Proceedings - IEEE International Conference on Robotics and

Automation, pp. 689–694.

[175] Luciano, C., Banerjee, P., and DeFanti, T. (2009). Haptics-based virtual reality

periodontal training simulator. Virtual Real., 13(2), 69–85.

[176] Rhienmora, P., Gajananan, K., Haddawy, P., Dailey, M. N., and Suebnukarn, S.

(2010). Augmented reality haptics system for dental surgical skills training.

Proceedings of the 17th ACM Symposium on Virtual Reality Software and

Technology - VRST ’10, 1(212), 97–98.

[177] Medical and dental. http://www.novint.com/index.php/medicaldental. Accessed:

2017-11-25.

[178] Mm, B. (2016). Can virtual simulators replace traditional preclinical teaching

methods: A students’ perspective? Int J Dent Oral Health, 2(1).

[179] Yokokohji, Y., Hollis, R. L., Kanade, T., Henmi, K., and Yoshikawa, T. (1996).

Toward machine mediated training of motor skills. Proceedings of the

IEEE International Workshop on Robot and Human Communication, pp.

32–37.

[180] Gillespie, R. B., O’Modhrain, M., Tang, P., Zaretzky, D., and Pham, C. (1998).

The virtual teacher. Proceedings of the ASME Dynamic Systems and Con-

trol Division, pp. 171–178.

[181] Henmi, K. and Yoshikawa, T. (1998). Virtual lesson and its application to virtual

calligraphy system. IEEE Int. Conf. Robot. Autom., 2(May), 1275–1280.

[182] Kim, Y. K. and Yang, X. (2007). Hand-writing rehabilitation in the haptic virtual

environment. Proceedings of the 2006 IEEE International Workshop on

Haptic Audio Visual Environments and Their Applications, HAVE 2006,

pp. 161–164.

[183] Williams, R. L., Srivastava, M., Conaster, R. R., and Howell, J. N. (2004). Im-

plementation and evaluation of a haptic playback system. Haptics-e, 3(3),

160–176.



/ 127

[184] Burdea, G., Patounakis, G., Popescu, V., and Weiss, R. E. (1999). Virtual re-

ality training for the diagnosis of prostate cancer. IEEE Transactions on

Biomedical Engineering, 46(10), 1253–1260.

[185] Moraes, R. M., Souza, D. F. L., Valdek, M. C. O., and Machado, L. S. (2006).

A virtual reality based simulator for gynecologic exam training. 7th Inter-

national Conference on Information Technology Based Higher Education

and Training, ITHET, pp. 786–791.

[186] Chial, V. B., Greenish, S., and Okamura, A. M. (2002). On the display of haptic

recordings for cutting biological tissues. Proceedings - 10th Symposium

on Haptic Interfaces for Virtual Environment and Teleoperator Systems,

HAPTICS 2002, pp. 80–87.

[187] Shen, Y., Devarajan, V., and Eberhart, R. (2005). Haptic herniorrhaphy simulation

with robust and fast collision detection algorithm. Volume 111: Medicine

Meets Virtual Reality 13 Studies in Health Technology and Informatics se-

ries, pp. 458–464. IOS Press.

[188] Srimathveeravalli, G. and Thenkurussi, K. (2005). Motor skill training assistance

using haptic attributes. In Eurohaptics Conference, 2005 and Symposium

on Haptic Interfaces for Virtual Environment and Teleoperator Systems,

2005. World Haptics 2005., pp. 452–457.

[189] Avizzano, C. A., Solis, J., Frisoli, A., and Bergamasco, M. (2002). Motor learning

skill experiments using haptic interface capabilities. International Work-

shop on Robot and Human Interactive Communication, pp. 198–203.

[190] Solis, J., Avizzano, C. A., and Bergamasco, M. (2003). Validating a skill transfer

system based on reactive robots technology. Proceedings - IEEE Inter-

national Workshop on Robot and Human Interactive Communication, pp.

175–180.

[191] Solis, J., Avizzano, C. A., and Bergamasco, M. (2002). Teaching to write japanese

characters using a haptic interface. Proceedings - 10th Symposium on Hap-

tic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS

2002, pp. 255–262.



References / 128

[192] Feygin, D., Keehner, M., and Tendick, F. (2002). [haptic guidance: Experimental

evaluation of a haptic training method for a perceptual motor skill]. Haptic

Interfaces for Virtual Environment and Teleoperator Systems, 2002. HAP-

TICS 2002. Proceedings. 10th Symposium on, pp. 40–47.
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