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1 General Introduction 
This thesis introduces methods I developed for automated morphometric analysis of diatom slides, 

and their application in two research settings in the Southern Ocean. The following sections describe 

the organisms and their habitat, as well as introduce established and the newly developed methods. 

1.1 Diatoms 

Diatoms are unicellular, eukaryotic photosynthetic microorganisms (Round et al. 1990), so-called 

microalgae, which sometimes form chains or other types of colonies. Their taxonomic classification 

still is under debate, and so they are referred to as either class Bacillariophyceae (Kociolek et al. 

2017) or division Bacillariophyta, with Bacillariophyceae being one of three classes (Round et al. 

1990). More than 74,000 names of diatom taxa have been described (Kociolek et al. 2017), and 

estimations suggest that up to 100,000 or even 10,000,000 diatom species might exist (Norton et al. 

1996, Mann and Vanormelingen 2013). A major criterion for differentiating them is their 

morphology, which comes in very diverse designs, with their symmetry being either bilateral 

(pennates) or rotational with bi- or multipolar features (centrics). 

Habitats of diatoms are planktonic or benthic, where the latter refers to moist or submerged surfaces 

(Round et al. 1990). Diatoms dwell in any aquatic habitat (ocean, lake, stream, brackish water), and 

some even in terrestrial environments like moist soil, tree bark or within wet mosses (Pfister et al. 

2017), but also attached to or even within sea ice (Thomas and Dieckmann 2002); some species live 

epiphytic (Winter and Duthie 2000) or epizoic (Frankovich et al. 2015).  

Diatoms are one of the most important primary producers. They contribute substantially to both, 

phytoplankton (Round et al. 1990) and global biogenic carbon fixation, with their contribution to the 

latter estimated to be ca. 20 - 25 % (Nelson et al. 1995, Mann 1999). Thus they play an important role 

in food webs and the ocean carbon cycle (Smetacek 1999). Exporting organic carbon to the deep sea, 

they can sequestrate CO2 from the atmosphere (Smetacek et al. 2012), thus affecting global climate 

as well. Accordingly, boosting diatom growth by fertilization on large scale has been discussed as a 

possible geoengineering technique for counteracting global warming (Denman 2008, Shepherd 2009, 

Assmy et al. 2013). 

A unique feature of diatoms is their cell wall being heavily impregnated with silica (SiO2 · nH2O) 

(Round et al. 1990), enclosing the cell material within a robust shell. These shells display a broad 

range of shapes and fine structures, depending on the species, and are referred to as frustules. The 

frustule is bipartite, consisting of two usually similar parts fitting into each other, with their 

arrangement often described as resembling a hat box or pill box. The two subunits are called thecae, 

where the larger epitheca overlaps the smaller hypotheca. The overlapping area is comprised by 

cinguli or girdle bands, whilst the thecae’s terminal surfaces are termed valves. Because of their 

heavy utilization of silica, diatoms play an important role in the global silica cycle (Tréguer and De La 

Rocha 2013). 

The diatom life cycle is determined by their unique reproduction scheme, which is closely linked to 

cell size changes. Most of the time, they reproduce vegetatively by mitotic cell division. In doing so, 

each daughter cell inherits one of the two thecae, which now becomes the new epitheca regardless 

of its former position, and is complemented by a newly formed smaller hypotheca (Round et al. 

1990). This results in one daughter cell being the same size as its parent – whilst the other daughter 

cell is smaller. Over time, as the population grows due to ongoing cell division, the proportion of 

smaller cells increases, dragging down the average cell size of the population. This ongoing shrinking 
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is referred to as the Macdonald-Pfitzer rule (Macdonald 1869, Pfitzer 1869), and can continue only 

until cells reach their physiologically possible lower size limit. For most diatom species, the only way 

out of this impasse is by auxospore formation. This is mostly preceded by meiosis to produce haploid 

gametes, which then fuse (sexual reproduction). The details of these processes differ between 

diatom species: iso- and anisogamy were observed, as well as flagellated, amoeboid, or immotile 

gametes, and heteromixis, automixis or parthenogenesis (Round et al. 1990). The resulting 

auxospore does not bear a typical bipartite frustule, and thus can expand to produce the so-called 

“initial cell”. This is the largest cell of the whole size cycle, and it is enclosed afresh in a silicified 

frustule. Subsequently, this initial cell can propagate for some time by cell division again, producing 

increasingly smaller offspring, until another sexual event becomes necessary to restitute cell size.  

Sexual reproduction in diatoms can be induced only if cell size falls below ca. 30 – 75 % of its 

maximum (Davidovich 2001), but a broad variety of possible external triggers has been observed and 

discussed (Chepurnov et al. 2004). These depend on taxon and include, for example, changes in light 

regime, temperature and nutrient availability (Drebes 1977), salinity (Schultz and Trainor 1968), 

ammonia released by grazing events (Moore et al. 2017), or the presence of specific pheromones 

(Sato et al. 2011, Moeys et al. 2016). However, for most species the actual triggers are unknown. 

The double-track reproduction scheme of diatoms allows for fast population growth under favorable 

conditions, by conducting vegetative reproduction, whilst, at the same time, it allows for adaptation 

to unfavorable conditions by sexual recombination of genes. This might help to explain the ecological 

success of diatoms, which becomes apparent in their broad geographic distribution and their high 

contribution to global phytoplankton abundance. 

Changes in cell size during the diatom life cycle are often accompanied by more or less subtle 

alterations in the frustule’s shape and structure (Woodard et al. 2016). Other external factors also 

affect these, like fluctuations in the environment and changes in the climate regime. Consequently, 

not only species composition (Smol and Stoermer 2010, Almeida et al. 2014, Tan et al. 2017), but also 

variations in cell morphometry might be applied as indicators of water properties, as well as for 

reconstructing past conditions like for example location of water-masses, nutrient availability and 

water temperature (Potapova and Snoeijs 1997, Cortese and Gersonde 2007, Shukla et al. 2009, 

Shukla et al. 2013). 

1.2 Southern Ocean 
The Southern Ocean surrounds Antarctica, connects the major oceanic basins and is an important 

site for the global overturning thermohaline circulation (Rintoul et al. 2001). Thus it is important to 

the global ocean-climate-system, as the largest upwelling area, as well as the main regions for 

formation of cold, high density water masses sinking from the ocean surface to depth, are located 

within it (Marshall and Speer 2012). It is characterized by extreme environmental conditions, with 

severe storms and strong intra-seasonal changes in sea ice coverage and radiation regime. One of its 

major features is the Antarctic Circumpolar Current (ACC), which is the largest of all ocean currents 

(Rintoul et al. 2001), driven eastwards by strong winds, with the Subantarctic and the Polar Front 

comprising its main fronts (Orsi et al. 1995). The Southern Ocean is the largest high-nutrient low-

chlorophyll region in the world ocean (Martin et al. 1990), with restricted phytoplankton growth due 

to limitation in iron (Boyd et al. 2007). In some areas and occasionally, this iron limitation is alleviated 

by input from upwelling (Tagliabue et al. 2014), islands (Planquette et al. 2007), icebergs (Smetacek 

et al. 2004) or aeolian dust (Gao et al. 2001, Erickson et al. 2003). The dominant phytoplankton group 

of the Southern Ocean are diatoms, contributing 89 % of regional primary production, i.e.  
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4.0 Pg C · y-1 (Rousseaux and Gregg 2014). Since those surface water masses of the ACC, which 

submerge at the northern boundary of the Southern Ocean, fuel lower latitude upwelling (Sarmiento 

et al. 2004), diatom silica consumption in the ACC influences the global potential for diatom growth 

and biological carbon sequestration (Kienast et al. 2006, Assmy et al. 2013).  

The growth of strongly silicified diatoms has led to an accumulation of siliceous sediment below the 

ACC, the so called “diatom ooze belt” (Kozlova 1966, Defelice and Wise 1981, Zielinski and Gersonde 

1997, Crosta et al. 2005, Shukla et al. 2016). This accounts for approximately one third of the global 

biogenic silica accumulation (Tréguer and De La Rocha 2013, Tréguer 2014), and represents a unique 

climate archive (Combes et al. 2007, Cortese et al. 2007, Shukla et al. 2013, Esper and Gersonde 

2014a). 

Due to the often harsh environmental conditions, sampling in the Southern Ocean is mostly 

restricted to spring and summer, in limited regions at any one time point. Year-round sampling can 

be accomplished only by sediment traps. 

1.3 Fragilariopsis kerguelensis 

I focused mostly on the pelagic pennate diatom Fragilariopsis kerguelensis (O’Meara) Hustedt (Hasle 

1965), because it plays an important role in ecological, biogeochemical and paleoclimate research 

(Zielinski and Gersonde 1997, Smetacek et al. 2004, Assmy et al. 2013). It is endemic to the Southern 

Ocean (Hasle 1965), being frequently present, and sometimes dominant (Hart 1942), in the ice-free 

open waters of the Antarctic Circumpolar Current, at water temperatures roughly between 0 and 10 

°C (Zielinski and Gersonde 1997, Pinkernell and Beszteri 2013). Here it is a main contributor to 

depletion of dissolved silica from surface waters (Assmy et al. 2013) and its export to the sediments 

of the diatom ooze belt. This makes F. kerguelensis an important species in the global silica cycle, and 

since it thrives well in high-nutrient low-chlorophyll waters, high abundance of F. kerguelensis in 

sediments is interpreted as an indicator for low-carbon high-silica exporting regimes (Smetacek et al. 

2004, Geibert et al. 2005, Abelmann et al. 2006). Besides this species’ abundance being used in 

transfer functions to determine past sea surface temperature (Zielinski et al. 1998, Esper and 

Gersonde 2014b), morphometric features of its valves have been proposed as proxies for 

paleoclimate research, linked to productivity, iron availability, (summer) sea surface temperature, 

the position of the Antarctic Polar Front, and to glacial / interglacial conditions (Fenner et al. 1976, 

Cortese and Gersonde 2007, Cortese et al. 2012, Shukla et al. 2013). 

1.4 Traditional methods for diatom analyses 

Scanning electron microscopy and modern biomolecular analyses have become widespread in 

diatom research. Nevertheless, conventional light microscopy still is the most common method for 

investigating diatoms, applied almost since microscopy became a scientific research tool. Samples 

containing living cells, or dead cells fixed with Lugol’s iodine solution or formol, are usually 

investigated using inverted light microscopes. However, since fine structural details, that are also 

important for taxonomic identification, mostly cannot be observed from such material, often the 

organic cell compounds are removed by oxidizing agents and acids, and only the siliceous frustules 

are investigated, at resolutions up to the optical limit. For light microscopic imaging, diatom frustules 

are embedded in high-refractive mounting media like Naphrax or special industrial glues (e.g. 

Norland Optical Adhesive NOA 61, Norland Products Inc., Cranburry, New Jersey, USA), to increase 

the otherwise very poor contrast of the silica structures. Unfortunately, conventional light 

microscopy comes with major drawbacks: Processing speed is slow, it requires highly trained experts, 

and results are scarcely documented by images. As a consequence, the traditional method often has 
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issues regarding data archival, quality and reproducibility, related among others to taxonomic 

inconsistencies among different investigators. 

A possible remedy to this might be newer methods of automated light microscopic imaging and 

image analysis. High throughput imaging methods have become more and more available in the last 

years, also in marine research. Systems like FlowCam (Fluid Imaging Technologies, Inc., Scarborough, 

Maine, USA) or Imaging FlowCytoBot (Olson and Sosik 2007) allow for high-throughput in situ or in-

line analyses of living or fixed micro-phytoplankton and even of oxidized diatom samples (Spaulding 

et al. 2012, Anglès et al. 2015). However, these systems neither provide the highest optical 

resolution, which mostly is essential for detailed taxonomic diatom analyses, nor get the complete 

cell into focus. Furthermore, they often cannot retrieve views from the usually indispensable 

pervalvar angle, especially for chain-forming species. What is more, these methods cannot cover 

sediment and benthic samples. And finally, these systems are not suitable for processing samples 

already embedded on slides, which is the common form of storing diatom material for in-house 

documentation as well as for long term archival in publically accessible collections. 

1.5 Collections 

Diatom collections play an important role in scientific research, as public type repositories, providers 

of material, documenting archive or contact point, especially since the processed siliceous material, 

usually mounted on microscopy slides, has a shelf life in the order of hundreds of years. One of the 

largest diatom collections in the world is hosted at the Hustedt diatom study centre (Simonsen 

1987), which is today integrated into the Alfred Wegener Institute, Helmholtz Centre for Polar and 

Marine Research in Bremerhaven, Germany. Present work in this collection, including my thesis 

work, focuses on taxonomy, biogeography and morphometrics (Pinkernell and Beszteri 2013, 

Beszteri et al. submitted) of mainly Southern Ocean diatoms. Its herbarium originates from the 

private collection of Friedrich Hustedt, a diatomist of high renown, who, during his life from 1886 to 

1968, described ca. one third of the 6,000 diatom species known at his time. Over the years, the 

collection was extended by the complete collections of Reimer Simonsen, Grete Hasle and Kurt 

Krammer, as well as by contributions of many more, and currently comprises ca. 100,000 microscopy 

slides and 50,000 samples of diatom material. These cover a broad range of taxa and sampling 

methods, as well as geographical and geological origins. Some specimens were sampled during 

historic expeditions like Challenger or Gauss (Heiden and Kolbe 1928, Hinz et al. 2015), but also 

contemporary expeditions contribute to the diversity and importance of this collection.  

1.6  History of automated diatom analysis 
Diatom morphometry already dates back several decades (Pappas et al. 2014). Traditionally, it 

utilized multivariate analyses of measurements and countings (Genkal and Kuz'min 1979, Theriot and 

Stoermer 1984). Valve outline was mostly analyzed by application of Legendre polynomials 

(Stoermer and Ladewski 1982, Pappas and Stoermer 2003), Fourier analysis (Mou and Stoermer 

1992, Pappas et al. 2001), or based on landmarks (Potapova and Hamilton 2007, Woodard et al. 

2016).  

Attempts at automating diatom morphometry already started more than 40 years ago (Cairns et al. 

1974, Johnston and Stoermer 1976). Some 20 years ago, the first project attempting automatic large-

scale diatom imaging and image analysis was conducted, the ADIAC (Automated Diatom 

Identification And Classification) project (du Buf and Bayer 2002), which I will introduce in detail 

below. Girault (2010) developed automated microscopy and imaging techniques employing a 

computer-controlled microscope and the open-source image processing software ImageJ (Rasband 
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1997-2016) to investigate size characteristics of centric diatoms. Recently, a FlowCam system was 

used for automated size measurement of pennate diatoms (Spaulding et al. 2012), and automated 

diatom taxa identification was addressed by means of classical machine learning or deep learning 

(Bueno et al. 2017, Pedraza et al. 2017). 

Software implementing automated diatom morphometry is rare. ImageJ (Rasband 1997-2016) offers 

a broad range of image processing and analysis functions, but often solid background knowledge as 

well as some programming experience is required to combine these into a usable workflow. One 

attempt to overcome these requirements is the automated phytoplankton identification system 

PlanktoVision (Schulze et al. 2013). This was realized as a plugin for ImageJ, offering a complete 

image processing and classification pipeline, classifying object outline by elliptic Fourier descriptors 

(Claude 2008) as well as texture by a neural network. During the work of my master’s thesis (Kloster 

2013) I developed DiatoMorphoTo, which implements a workflow for finding diatom valves of certain 

shapes, reviewing them and exporting their outline as well as basic morphometric descriptors. 

Development of this program continued and finally culminated in the software SHERPA, which I will 

introduce below. Automatic characterization, classification and description of biological images are 

facilitated by the VisionBioShape package (Stela and Monleón-Getino 2016) for the R programming 

environment (R Core Team 2015). This application focuses on object outline only, as described by 

elliptic Fourier descriptors; the resulting feature vectors can be classified by a broad range of 

machine learning methods. DiaCurv (Wishkerman and Hamilton 2017) is another software for 

investigating diatom outlines, calculating their curvature by identifying the chord and the sagitta 

from the mid-point.  

1.7 The ADIAC project 

The ADIAC (Automated Diatom Identification And Classification) project (du Buf and Bayer 2002), was 

the first extensive pilot study regarding automated large-scale diatom identification by means of 

computer-based image processing. The combined efforts of a European consortium, with working 

groups from the Royal Botanic Garden Edinburgh and universities of Newcastle, Strasbourg, Bern, 

Groningen, Madrid and Faro participating, brought together experts in image processing and pattern 

recognition as well as diatom taxonomists. They investigated methods of automating slide scanning, 

image acquisition, reference image database construction, image processing, feature extraction and 

feature classification, for use in diatom identification. With the project running from 1998 to 2001, 

nowadays some of its aspects have been outrun by commercially available developments, like 

automated slide scanners. Also diatom image databases, augmented with taxonomic and ecological 

metadata, have become publically available, like for example DiatomBase (Kociolek et al. 2017), 

AlgaTerra (Jahn and Kusber), the Hustedt database (Beszteri et al.) or the Antarctic Freshwater 

Diatoms database (Spaulding et al.). However, these databases address the taxonomist’s need for 

information, but do not cover the demand for extensive annotated training sets, which are essential 

for automated classification. These require libraries depicting each diatom species by hundreds of 

images, to cover the morphological variability within the species, including plastic variance as well as 

ontogenetic size variability. However, even the original ADIAC image database (Bayer et al. 1999) 

covers only 470 taxa by 2300 images, with a maximum of ca. 20 images each for just 50 taxa. Other 

major aspects covered by ADIAC regarded automatic diatom contour extraction, morphometry-based 

classification, compilation of training data, and quality assessment of classification results. Even 

though their approaches were very promising, the methods they developed did not become 

widespread in the diatomist community, probably because the technical developments remained 

unavailable to a broad group of users, and “shape analysis of diatoms was something vaguely known 
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but only used by very few diatomists” at that time, as the final ADIAC report stated (du Buf and Bayer 

2002). As of nowadays, utilization of shape analysis has drawn much more attention in diatom 

research (Mann et al. 2004b, Beszteri 2005, Beszteri et al. 2005, Veselá et al. 2012, Olenici et al. 

2017, Wishkerman and Hamilton 2017), but nevertheless, methods for automating the 

accompanying procedures did not mature into routine application. I tried to address this 

shortcoming, substantially inspired by the ADIAC project, but focusing on developing a complete 

diatom light microscopic image acquisition, processing and analysis pipeline, which is easily operated 

without deep knowledge of the technical aspects, and thus suitable for everyday use by diatomists. 

This was achieved by combining a commercially available slide scanning microscope with my self-

developed image processing and diatom morphometry software SHERPA. 

1.8 Objectives of the thesis 

The aim of my thesis work was to develop a high throughput, high optical resolution light 

microscopy-based diatom analysis workflow, and to apply it for investigating morphometrics in 

Southern Ocean diatoms. In the first part of the thesis, I report on results of the workflow 

development, and first tests of its applicability in routine use. Subsequently, two major applications 

of the system were executed, investigating different material types, and focusing on F. kerguelensis 

as an exemplary Southern Ocean diatom species. The first study investigated life cycle events of this 

species by morphometric signals from a two-year sediment trap time series. In the second study, 

fossil sediment core material was examined for morphometric changes related to changes in 

environmental conditions during glacial-interglacial transitions. 

1.9 Thesis outline 

This work is structured in four major subjects: 

1.9.1 Semi-automated image analysis 

The first step in this study regarded investigation and implementation of image processing methods 

for automated diatom morphometry. To do so, I revised the software DiatoMorphoTo, which 

originated from my master’s project (Kloster 2013), and integrated new methods, resulting in the 

novel diatom morphometry software SHERPA. The programming part included, among other tasks, 

implementation of new features like template matching via elliptic Fourier descriptors (Claude 2008, 

Claude 2010), calculation of various morphometric descriptors, and an enhanced ranking system for 

internal assessment of result quality. Also, I tested the software extensively, extended the template 

library massively, and provided detailed documentation, including a user guide, a technical manual 

and instructions for optimizing settings. SHERPA and the corresponding documentation were 

published in the frame of Publication I, which describes the software, the concepts behind it, the 

methods employed and the general usage. Two short practical applications assessed the applicability 

of SHERPA on material from different sources: 1) Sediment core material was used to test the 

software’s aptitude to analyze material containing debris, broken valves and overlapping objects, and 

compared different segmentation methods; 2) parts of the work done to differentiate six Sellaphora 

pupula demes by minute differences in their valve outline (Mann et al. 2004b) were successfully 

reproduced. SHERPA was made available for all to download and use under www.awi.de/sherpa. 

1.9.2 High throughput imaging and morphometry workflow 

The second step in this study implemented a complete high-throughput diatom morphometry 

workflow, from image acquisition to extraction and analysis of feature descriptors. For automated 

microscopic imaging, I used the Metafer slide scanning microscope (MetaSystems Hard & Software 

GmbH, Altlussheim, Germany). This commercially available system was designed especially for 

http://www.awi.de/sherpa
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research purposes, with a broad range of possible applications, though primarily targeting medical 

applications, that is, digital histology and pathology. Its imaging capabilities comply with the needs of 

diatom microscopy, especially since it can make use of oil-immersion objectives and apply focus-

stacking. Nevertheless, its image processing and classification functions turned out to be insufficient 

for finding and measuring diatom valves. To overcome this limitation, we developed and tested 

several scenarios of combining the Metafer slide scanner with SHERPA. The most promising workflow 

replicated ideas which had been supposed in the ADIAC project, but were not be implemented at 

that time due to problems related to re-locating positions, in which diatom valves were found, at 

sufficient precision. My approach employed a low-resolution scan of the slide area, followed by 

locating diatom valves of interest with SHERPA. In a second scanning cycle, only these valves of 

interest were imaged, with a high-resolution oil immersion objective and applying focus stacking. The 

resulting focus-enhanced images were subjected to high-precision morphometric measurements by 

SHERPA. To render this two-step scanning procedure possible, I extended SHERPA with a function for 

exporting valve outline coordinates into the Metafer VSAI format. Furthermore, I increased the 

processing speed of SHERPA, by code optimization, improved linking of external functions and 

parallelization of image processing routines, and I developed and implemented a novel routine for 

measuring costae distance or striae density for the taxon targeted in the next two chapters of this 

thesis. After I honed the workflow by extensive testing, it was applied in a showcase scenario, which 

investigated basic valve morphometrics of F. kerguelensis from sediment core material. During this 

test, I found and documented valves of this species much larger than described before (Hasle 1965, 

Fenner et al. 1976, Cefarelli et al. 2010), extending the valve length range (apical axis) reported for 

this species by ca. 45 %. 

The workflow and the findings, along with an updated version of SHERPA, were published in 

Publication II, as part of a special issue of Applied Sciences regarding "Automated Analysis and 

Identification of Phytoplankton Images". This special issue comprised three other publications 

(Bueno et al. 2017, Pedraza et al. 2017, Rojas Camacho et al. 2017), showing the growing interest in 

the topic. 

1.9.3 Life cycle analysis from sediment trap samples 

For testing the potential of this high-throughput diatom morphometry workflow, I applied it to 

measure features of ca. 29,000 F. kerguelensis valves from a two year sediment trap time series. This 

enabled me to investigate life cycle events of the species, as they are represented by morphometric 

changes. Here I mainly analyzed changes in distributions of valve length, although I also looked at 

other features. In Publication III, which is a manuscript ready to be submitted for publication, I 

present this data set and discuss possible causes of changes in valve size distributions, such as 

vegetative proliferation, grazing, adaptation to environmental conditions, an overwintering strategy 

and sexual activity. 

1.9.4 Morphometric changes related to glacial-interglacial transitions 

As a final showcase, I investigated further morphometric features from ca. 12,000 F. kerguelensis 

valves I had measured from the Southern Ocean sediment core PS1768-8 (Gersonde and Hempel 

1990, Gersonde 2003). This sediment core had been studied intensively before (Zielinski 1993, 

Zielinski et al. 1998, Gersonde and Zielinski 2000, Gersonde et al. 2003, Gersonde et al. 2005, 

Abelmann et al. 2006, Esper and Gersonde 2014a, b). Nevertheless, focusing on sampling depths 

covering glacial-interglacial transitions, I found two previously overlooked F. kerguelensis 

morphotypes, which differed by the shape of their valve tips. These differences were so subtle that 

they did not become apparent by visual inspection, but only by the value of the morphometric 
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descriptor rectangularity. In Publication IV, which is ready to be submitted for publication, I describe 

this data set, changes in relative abundances of both morphotypes throughout two glacial-

interglacial transitions, and suggest possibilities for improving paleo-proxies based on F. kerguelensis 

valve morphometrics which have been proposed for summer sea surface temperature, iron 

availability, position of the Antarctic Polar Front or glacial / interglacial regimes (Cortese and 

Gersonde 2007, Cortese et al. 2012, Shukla et al. 2013, Shukla and Crosta 2017). In this publication, I 

also underline the taxonomic and paleoceanographic improvement gained by precisely measuring 

morphometric features like valve area (as opposed to roughly estimating it, as has previously 

routinely been done in F. kerguelensis morphometric proxy studies). 
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2 Publications 

2.1 List of publications 

This thesis is based on the following publications: 

I. M. Kloster, G. Kauer, B. Beszteri (2014)  

 

SHERPA: an image segmentation and outline feature extraction tool for diatoms and other 

objects 

 

BMC Bioinformatics 2014, 15:218, doi:10.1186/1471-2105-15-218  

Received: 15 May 2014, accepted: 27 May 2014, published: 25 June 2014  

 

II. M. Kloster, G. Kauer, B. Beszteri (2017)  

 

Large-Scale Permanent Slide Imaging and Image Analysis for Diatom Morphometrics 

 

Applied Sciences "Automated Analysis and Identification of Phytoplankton Images" 2017, 7, 

330, doi:10.3390/app7040330  

Received: 1 February 2017, accepted: 23 March 2017, published: 28 March 2017  

 

III. M. Kloster, A. S. Rigual-Hernández, L. Armand, G. Kauer, T. W. Trull, B. Beszteri  

 

Insights into the life cycle of the Southern Ocean diatom Fragilariopsis kerguelensis through 

high-throughput microscopy of sediment trap samples  

 

To be submitted to Journal of Phycology  

 

IV. M. Kloster, O. Esper, G. Kauer, B. Bestzeri  

 

Morphometry of the diatom Fragilariopsis kerguelensis from Southern Ocean sediment: 

High-throughput measurements show second morphotype occurring during glacials  

 

Submitted to Marine Micropaleontology 

Other publications prepared with contributions of this candidate from the period of this work: 

V. B. Beszteri, C. Allen, G. O. Almandoz, L. Armand, M. Á. Barcena, H. Cantzler, X. Crosta, O. 

Esper, R. W. Jordan, G. Kauer, C. Klaas, M. Kloster, A. Leventer, J. Pike, A. S. Rigual-Hernández 

 

Quantitative comparison of taxa and taxon concepts in the diatom genus Fragilariopsis  

 

Submitted to Journal of Phycology 
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2.2 Statement of the candidate´s contribution to the publications included in this 

dissertation 

Publication I  

The candidate investigated image analysis methods for their potential applicability to diatoms, 

developed the software SHERPA, compiled the template library and wrote the accompanying 

documentation. Some basic concepts of it originate from the software DiatoMorphoTo, which the 

candidate developed during his master’s project (Kloster 2013). B. Beszteri provided help concerning 

diatom morphometry and recreated the analysis Mann et al. (2004b) did on differentiating six 

Sellaphora pupula demes by minute differences in their valve outline. G. Kauer provided help with 

programming questions. The manuscript was written by the candidate in discussion with the co-

authors. 

Publication II  

Bank Beszteri proposed the two-cycle workflow. The candidate developed this workflow and 

programmed the export of object coordinates into the Metafer VSAI format, along with the other 

extensions and refinements of SHERPA, as well as the R script for removing doublets. The workflow 

was honed by the candidate, Gerhard Kauer and Bank Beszteri. Sample material was contributed by 

Oliver Esper and Rainer Gersonde. Friedel Hinz, Sean Seegert, Sarah Olischläger and Fenina Buttler 

prepared the samples and microscopy slides. The candidate scanned the samples, did SHERPA 

analyses including manual check of the taxonomic identity and segmentation quality for each valve 

outline found, and performed all downstream morphometric analyses. The manuscript was written 

by the candidate in discussion with the co-authors. 

Publication III  

Andres S. Rigual-Hernández proposed to investigate F. kerguelensis life cycle from sediment trap 

material, which was provided by Tom W. Trull. Andres S. Rigual-Hernández prepared the samples and 

microscopy slides. The candidate performed microscopic scanning, morphometric measurements 

using SHERPA including manual check of the taxonomic identity and segmentation quality for each 

valve outline found, and data analysis. Life cycle signals in the observed size distributions were 

interpreted by the candidate in discussion with Leanne Armand, Andres S. Rigual-Hernández and 

Bank Beszteri. The manuscript was written by the candidate, supported by the co-authors; Andres S. 

Rigual-Hernández provided the text and map of the oceanographic setting (Figure 1). 

Publication IV  

Sample material was contributed by Oliver Esper and Rainer Gersonde. Friedel Hinz, Sean Seegert, 

Sarah Olischläger, Fenina Buttler and Fabian Altvater prepared the samples and microscopy slides. 

The candidate scanned the samples, analyzed F. kerguelensis valves using SHERPA including manual 

check of the taxonomic identity and segmentation quality for each valve outline found, programmed 

the R scripts for the morphometric analyses and conducted them. The manuscript was written by the 

candidate in discussion with the co-authors. 
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2.3 Publication I – SHERPA: An image segmentation and outline feature extraction 

tool for diatoms and other objects 

 

Michael Kloster: Corresponding author, AWI and HSEL, eMail: sherpa@michael-kloster.de  

Gerhard Kauer, HSEL, eMail: gerhard.kauer@hs-emden-leer.de  

Bánk Beszteri, AWI, eMail: bank.beszteri@awi.de  

 

AWI: Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research,   

Am Handelshafen 12, 27570 Bremerhaven, Germany 

HSEL: University of Applied Sciences Emden / Leer, Constantiaplatz 4, 26723 Emden, Germany 

2.3.1 Abstract 

Background 

Light microscopic analysis of diatom frustules is widely used both in basic and applied research, 

notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. In 

these applications, usually large numbers of frustules need to be identified and / or measured. 

Although there is a need for automation in these applications, and image processing and analysis 

methods supporting these tasks have previously been developed, they did not become widespread in 

diatom analysis. While methodological reports for a wide variety of methods for image 

segmentation, diatom identification and feature extraction are available, no single implementation 

combining a subset of these into a readily applicable workflow accessible to diatomists exists. 

Results 

The newly developed tool SHERPA offers a versatile image processing workflow focused on the 

identification and measurement of object outlines, handling all steps from image segmentation over 

object identification to feature extraction, and providing interactive functions for reviewing and 

revising results. Special attention was given to ease of use, applicability to a broad range of data and 

problems, and supporting high throughput analyses with minimal manual intervention. 

Conclusions 

Tested with several diatom datasets from different sources and of various compositions, SHERPA 

proved its ability to successfully analyze large amounts of diatom micrographs depicting a broad 

range of species. SHERPA is unique in combining the following features: application of multiple 

segmentation methods and selection of the one giving the best result for each individual object; 

identification of shapes of interest based on outline matching against a template library; quality 

scoring and ranking of resulting outlines supporting quick quality checking; extraction of a wide range 

of outline shape descriptors widely used in diatom studies and elsewhere; minimizing the need for, 

but enabling manual quality control and corrections. Although primarily developed for analyzing 

images of diatom valves originating from automated microscopy, SHERPA can also be useful for other 

object detection, segmentation and outline-based identification problems. 

Keywords: Diatom, Segmentation, Outline, Elliptic Fourier analysis, Shape descriptors, 

Morphometrics, Automated slide scanning 

mailto:sherpa@michael-kloster.de
mailto:gerhard.kauer@hs-emden-leer.de
mailto:bank.beszteri@awi.de
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Abbreviations: CDF, convexity defection factor; CDMs, convexity defect measures; CHMDF, convex 

hull maximum distance factor; CSV, comma separated values; EFDs, elliptic Fourier descriptors; 

EFDIs, elliptic Fourier descriptor invariants; PCAF, percent concave area fraction; RATS, robust 

automated threshold selector; SHERPA, tool for SHapE Recognition, Processing and Analysis; TIFF, 

tagged image file format 

2.3.2 Background 

Diatoms are a group of photosynthetic protists producing uniquely ornamented and diversely shaped 

silicate shells (Round et al. 1990). They are present in all aquatic and wet habitats and, with an 

estimated 105 species, they represent the most species rich algal group (Mann and Vanormelingen 

2013). Diatom assemblage composition reflects the abiotic and biotic features of their respective 

habitats, and is widely used for making inferences about environmental conditions in water quality 

monitoring and paleontology (Smol and Stoermer 2010). Due to a combination of traditional and 

practical reasons, the most widely applied method for diatom investigations is based on light 

microscopic analysis of so called permanent slides, prepared using the silicate frustules after cleaning 

them of organic material (Round et al. 1990). 

Size and shape distributions of diatom populations are measured and analyzed in a number of 

different fields, including taxonomy (Droop et al. 2000, Kingston and Pappas 2009, Poulíčková et al. 

2010, Abarca et al. 2014), ecology (Crawford et al. 1997, Jewson et al. 2008, Shimada et al. 2009, 

Jewson et al. 2010), and paleontology (Mann et al. 2004b, Cortese and Gersonde 2007, Marchetti 

and Cassar 2009, Cortese et al. 2012, Shukla et al. 2013). In such studies, dozens to hundreds of 

specimens are routinely investigated from each of several slides, and measurements are usually 

performed by one of the following methods: 1) through an ocular micrometer directly on images 

seen in the microscope by the investigator (Kumar et al. 2009); 2) as manual (mostly, length) 

measurements on digital live images presented on a computer screen (Shukla et al. 2013, Abarca et 

al. 2014); 3) as manual (again mostly, length) measurements on saved digital images using general 

purpose image analysis software (Shimada et al. 2009); 4) combination of manual measurements and 

measurements obtained by custom-developed macros or extensions of general purpose image 

analysis software like ImageJ (Shukla et al. 2013) or Optimas (Droop et al. 2000, Mann et al. 2004b). 

There is a considerable methodological gap between these approaches and the sometimes rather 

sophisticated methods which have been applied to diatoms in the image analysis literature for 

instance in the project ADIAC (du Buf and Bayer 2002), or by others including (Grima et al. 2003, 

Álvarez-Borrego and Solorza 2010, Luo et al. 2011). Much of the experience gained in diatom image 

analysis studies should in principle be transferable to diatom morphometrics and would have the 

potential to speed up the latter and make it more accurate and reproducible. However, these 

methods have remained practically inaccessible to diatomists due to a lack of publicly available and 

user friendly implementations of image processing and analysis methods suitable for diatom 

analyses. Most of the diatom image analysis literature does not explicitly state which software tool or 

framework was used for implementing the applied methodology. Although this practice reflects a 

focus upon algorithms and methods, as opposed to software, and is probably well suited for readers 

with their main area of expertise lying in computer science and image analysis, translating these 

methodological experiences into routinely practicable workflows has remained a challenge beyond 

the qualification of most, if not all, diatomists, as illustrated by the almost complete lack of reports 

on re-use of these methods beyond the groups which developed them. The only case known to us 

where implementations of individual algorithms have been made available publicly is represented by 

the small collection of MATLAB and C source code files available under (Marshall et al.). However, 
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even these only represent fragments of a practically applicable analysis workflow and are virtually 

inaccessible to most diatomists (at least to the overwhelming subset lacking familiarity with 

MATLAB / C programming). 

Several of the individual algorithms tested and applied in diatom image analyses in the above cited 

works represent standard image analysis methods, with widely available implementations in general 

purpose image analysis software like ImageJ (Rasband 1997-2016). Thus, it could be argued that such 

software should also be perfectly suited for the needs of diatomists. However, in our experience, 

whereas for instance ImageJ can be useful for processing and analyzing individual diatom images or 

small collections thereof, building a workflow for high throughput work with it requires serious 

programming capabilities, a reason probably hindering the use of such software in diatom studies. 

For instance, a number of segmentation algorithms can successfully be applied to diatom valves, but 

it is often found that a different method works best for different objects, depending not only on 

valve structure (and thus, also taxonomy) but also upon minor details of how the object lies relative 

to the focal plane and to neighboring objects (du Buf and Bayer 2002). Whereas one can easily apply 

a handful different segmentation algorithms to an image in for instance ImageJ, deciding which one 

gives best results in a case-by-case manner can be challenging. Doing so programmatically to enable 

batch processing of large numbers of images with minimal manual interaction would go beyond the 

capabilities of most non-image-analysis-expert users of ImageJ. Since diatom images are notoriously 

difficult to segment due to the optical properties of the silicate shells (low contrast, strong halo 

around outline, huge structural and shape diversity), chaining together individual analysis steps to an 

automated workflow also requires some kind of quality control. Differentiating objects of interest 

(diatom frustules, or, in particular cases, frustules of a particular group of diatoms) from other 

objects found by segmentation methods (sediment particles, debris, non-target species) would also 

require considerable programming skills to implement in ImageJ. 

The outline represents a rather information rich aspect of the morphological variability of diatom 

frustules, and its shape and size contains substantial taxonomic and life cycle related information 

especially in the case of pennate diatoms (even if it has to be noted that diatom identification at the 

species level is mostly impossible based on outline shape alone). The main approaches for 

quantitative characterization of outline shapes in diatom morphometrics have included the use of 

simple heuristic shape descriptors like rectangularity (Droop et al. 2000), ellipticity, compactness (du 

Buf and Bayer 2002, Rosin 2003); Legendre-polynomials ((Kingston and Pappas 2009) and the large 

body of literature cited therein); Fourier descriptors (Mou and Stoermer 1992, Pappas and Stoermer 

2001, du Buf and Bayer 2002); and landmarks and semi-landmarks (Falasco et al. 2009, Frankova et 

al. 2009, Vesela et al. 2009, Poulickova et al. 2010, Veselá et al. 2012, Kermarrec et al. 2013). 

Although further methods have been developed, some specifically for diatoms, notably the segment 

shape analysis approach (Loke and Du Buf 2002) successfully applied in (Mann et al. 2004b), these 

have not become widely used. General purpose morphometrics software (SUNY Stony Brook 2004, 

Klingenberg 2011) is available for landmark and semi-landmark digitization and analysis, but using 

such software, landmark points need to be digitized individually and manually, hindering high 

throughput analyses. For other types of outline descriptors, some software support is available (see 

e.g. examples for software tools capable of calculating elliptic Fourier coefficients under (SUNY Stony 

Brook 2004)), but again not as part of routinely applicable workflows supporting the analysis of large 

numbers of images. 

With SHERPA presented in the present paper, we address these gaps and introduce an easy-to-use 

tool for segmenting and analyzing light microscopic images of diatom frustules, and for extracting a 
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number of outline features useful for diatom morphometrics (but potentially in other fields as well). 

Our goals were to develop a tool that implements 1) a full image analysis workflow from image 

segmentation to outline feature extraction, specifically adapted to diatom images, but potentially 

useful for other objects where outline shape is informative; 2) multiple segmentation methods and 

an automated selection of the best result for each segmented object; 3) matching of object outlines 

against a set of template outlines to enable both taxonomically selective as well as broader analyses; 

4) object scoring and ranking to support quality checking; 5) extraction of a wide range of outline 

shape descriptors for further analyses; 6) supporting processing of large batches of images by 

minimizing the need for manual interaction, but leaving the possibility for it in case it should be 

required, e.g., to correct outlines for diatom valves with minor overlaps with neighboring objects. 

Software implementing statistical and / or machine learning methods for exploration, analysis, and 

classification of large multivariate data sets is widely available both commercially and free of charge 

for users at a wide range of levels of computer fluency (ranging for instance, from the easy-to-use 

PAST (Hammer 2013) or JMP (SAS 2013) to the more challenging, but also more versatile statistical 

analyses systems like R (R Core Team 2015) or SPSS (IBM Analytics 2013)). Accordingly, we decided to 

not include this functionality in our tool but rather generate output that can be loaded for 

downstream analyses into the user’s statistical tool of choice. 

2.3.3 Implementation 

SHERPA, the tool for “SHapE Recognition, Processing and Analysis”, offers an image processing 

workflow focused on the identification and measurement of object outlines (see Figure 1). Though it 

was developed focusing on analyzing diatom valves, SHERPA can also handle other object classes. 

Starting point are micrographs, obtained by optical microscopy, or similar images. For each depicted 

object, the respective outline is detected and compared to a set of templates which characterize 

representative shapes of interest. Detected objects receive quality scores and are ranked 

accordingly, reflecting the chance of representing a relevant object. The aim of this step is to reduce 

the effort required for sorting out unwanted objects. Suboptimal results can be revised manually to 

improve yield if necessary, and selected results can be exported along with a set of descriptors for 

further morphometric scrutiny. 

 
Figure 1: Structure of SHERPA‘s image processing pipeline / workflow.  

This way, extensive image collections can be processed in a fully automated manner or with minimal 

manual intervention. Irrelevant data, originating from debris, damaged or unwanted objects, can be 

sorted out with little or no user intervention at all, while relevant objects are identified and 
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measured. The exported morphometric descriptors allow for a detailed and specific analysis based 

on tools like R (R Core Team 2015), and questions about variation in outline shape and size can easily 

be investigated. 

One of the main strengths of SHERPA is its easily to follow workflow and plain user interface, which 

combine different techniques into a simple to use, yet powerful tool, which does not demand deeper 

expertise in image processing and programming. This distinguishes SHERPA from general purpose 

image analysis solutions like ImageJ (Rasband 1997-2016), which usually require experience in image 

processing and a lot of manual intervention or skills in scripting (Table 1 lists the main features of 

SHERPA which go beyond those supported by ImageJ). 

Table 1: Comparison of features of SHERPA and ImageJ 

Feature SHERPA ImageJ 

Integrated workflow for segmentation, identification and measurement of objects Yes No 

Automatic combination of multiple segmentation methods Yes No 

Automatic combination of multiple contour optimization methods Yes No 

Convexity defect measures Yes No 

Ranking of segmentation results Yes No 

Quick interactive review of results Yes No 

 

In order to create a low level entry point for novice users, extensive documentation is provided along 

with the software, including a comprehensive manual, a quick-start guide, a tutorial on how to 

achieve suitable settings in a straightforward way, and a technical description of the analysis process 

and extracted morphometric features. 

SHERPA was developed for Windows7 64 Bit using C# / .NET 4.0. Most image processing functions 

are realized based on OpenCV 2.4.2 (itseez 2012), whose DLLs are wrapped for .NET by Emgu CV 

2.4.2 (Emgu 2012), and on ITK 4.2 (Kitware and al. 2012) called via external executables. “Microsoft 

.NET Framework 4” (Microsoft Corporation 2013a) and the “Microsoft Visual C++ 2010 SP1 

Redistributable Package (x64)” (Microsoft Corporation 2013b) have to be installed prior to running 

SHERPA. A 32 Bit version of SHERPA is available, but its usage is not recommended because it might 

run out of memory resources when analyzing large amounts of data. 

2.3.3.1 Input data 

Image data to be analyzed can depict objects either as dark structures on bright background (like 

obtained e.g. using bright field microscopy) or as bright structures on dark background (like obtained 

e.g. using dark field microscopy). Objects are identified by shape information. For proper results, 

object outlines should be focused as precisely as possible. Minor blurring will affect the accuracy of 

outline detection, while extensive fuzziness might impede usable results. For an optimal 

identification yield the sample density should be sparse without overlapping objects. 

Templates provide prototypes of relevant shapes, containing silhouettes of each suitable object type 

(see some example diatom templates in Figure 2). A broad collection of templates depicting diatom 

valves is provided along with SHERPA (see under “Results and discussion”). However, for good 

results, a set of templates depicting the morphological variability of the objects under investigation 

must be generated. Depending on the object of interest, several templates might be needed to cover 

the range of shapes corresponding to one type (species). In the case of our objects of primary focus, 
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diatom valves, templates should cover the range of shape variation occurring during size reduction 

for each taxon concerned (see some examples in Figure 2 e-g). 

 a 

 

 e 

 

 b 

 

 f 

 

 

 c 

 

 

 g 

 

 d 

 

 

 

Figure 2: Seven exemplary templates used for shape detection. a) a typical Navicula, b) Gyrosigma, c) the same Gyrosigma 
mirrored, d) Cymbella helvetica, e-g) different variations of Sellaphora pupula. All shapes were derived from ADIAC data (du 
Buf 2003) 

Since templates are matched to object shapes by using elliptic Fourier analysis (see below under 

“Shape identification”), the identification process is insensitive to size, rotation and position. 

However, it is not invariant to mirroring, so for objects which do not have symmetry with respect to 

an axis, two templates need to be used (see Figure 2 b-c). 

2.3.3.2 Image processing 

Image data is converted into shape information by applying a consecutive set of image processing 

functions: 

Noise reduction can be performed by applying Gaussian or median filtering. 
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Image segmentation separates objects from image background by using up to five different 

procedures (see Figure 3). Segmentation algorithms implemented are Otsu’s thresholding (Otsu 

1979), Canny edge detector (Canny 1986), robust automated threshold selector (RATS) (Lehmann 

2006) and adaptive thresholding (Bradski and Kaehler 2008), p. 138 ff., where Otsu’s thresholding 

can additionally be combined with histogram equalization (Bradski and Kaehler 2008), p. 186 ff. for 

analyzing images with poor contrast. Whilst for most segmentation procedures a single set of 

parameters is provided, RATS can be applied running a whole range of sigma values as a kind of 

“brute force” approach for trying to successfully segment even difficult data. Since only the outer 

contour of each object is analyzed, segmentation errors within the object’s interior are negligible. 

 
Figure 3: Results of different segmentation procedures. a) Otsu’s thresholding, b) Otsu’s thresholding combined with 
histogram equalization, c) robust automated threshold selector (RATS), d) adaptive thresholding, e) Canny edge detector, 
f) original image data. For each object (white) only the outer contours are analyzed subsequently. 

All segmentation procedures can be applied simultaneously. This allows for an increased yield of 

detected objects, since each procedure presents its own advantages and disadvantages, depending 

on the image data quality, but this approach can generate manifold results for a single object (see 

Figure 4). To prevent multiple detection, for each object only the one result will be taken into 

consideration, which produces the best matching value for any template (according to elliptic Fourier 

analysis, see below under “Shape identification”). Two shapes are considered as belonging to the 

same object if the centroid of one shape lies within the area of the other. 
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Figure 4: Multiple shapes (highlighted red) detected for a diatom valve according to different segmentation procedures 
(compare to Figure 3). a) Otsu’s thresholding, b) Otsu’s thresholding combined with histogram equalization, c) robust 
automated threshold selector (RATS), d) adaptive thresholding, e) Canny edge detector. Only the result matching best to 
one of the templates (according to elliptic Fourier analysis, see below under “Shape identification”) is taken for analysis. 

Shape detection is accomplished by following each object outline using an algorithm by (Sklansky 

1982). The outer object contour is the starting point for subsequent analysis steps. 

2.3.3.3 Shape processing and analysis 

Shapes derived from image processing might be flawed due to segmentation problems or 

overlapping objects, and they can depict anything from objects of interest to debris and foreign 

particles. To increase the yield of usable results and to sort out irrelevant data, shapes can be 

optimized and are evaluated according to their chance of depicting a relevant object. 

Shape validation reduces the amount of data to be analyzed to speed up the analysis processes. 

Each image’s segmentation can result in hundreds or even thousands of separate objects, with most 

of them usually not depicting relevant ones (see Figure 5). Objects will be rejected if their size is 

outside a user defined range, or if they are within close proximity to the image border, where the 

chance is high that they were truncated by the camera’s field of view. 
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Figure 5: Shapes detected after segmentation (highlighted in different colors). Most of them do not depict relevant objects. 
Only the shape of the diatom valve will pass validation, other objects are too small or too close to the image border and 
hence are excluded from further analysis. 

Contour optimization can optionally be applied to increase the yield of usable results. Due to debris, 

overlapping structures, damages or segmentation flaws, not all objects can be segmented 

successfully. However, some contours can be “repaired” by applying morphological operators 

(Gonzalez and Woods 2007) “Opening”, “Closing” and combinations of these two (see Figure 6). 

Small indentations and bulges are removed this way and the yield of usable results can increase 

significantly, but at the expense of accuracy of the derived outlines, reliability of the convexity defect 

measures (see below), and processing time. For each object, only the result matching best to one of 

the templates (see “Shape identification” below) is taken for further analysis. 

 
Figure 6: Effects of contour optimization, shapes are highlighted in red. The bulge of the original contour (see top left) can 
be eliminated successfully by applying morphological opening (see top right) or opening followed by closing (see bottom 
center). 

Manual rework is an option if a shape is distorted due to segmentation flaws, but the corresponding 

object is essential as a valid result. SHERPA offers functions for redrawing a contour like in a painting 
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program, for smoothing it and for applying morphological operators (see above) with individual 

settings to it, as well as to expand the outline to its convex hull. 

Shape identification identifies objects by comparing their shapes with templates via elliptic Fourier 

analysis (Claude 2008, Claude 2010). Matching is accomplished by summing up the squared 

differences of the normalized elliptic Fourier descriptors of object and template outline; the template 

having the lowest matching value is assigned to the object. The number of harmonics to be used for 

Fourier analysis is configurable, appropriate base points are assigned along the object perimeter at 

steady intervals, with the starting point being the leftmost point with respect to the major axis (see 

Figure 7). 

 
Figure 7: Base points (colored crosses) used for elliptic Fourier analysis, spaced equally along the object outline. The starting 
point is highlighted yellow. 

2.3.3.4 Rating and ranking 

The assignment of template and object can be incorrect either because no matching template is 

available, or because the object shape is distorted due to imperfect segmentation. To estimate the 

chance of a shape to represent a relevant object, two groups of criteria are evaluated. The first type 

of criteria judges the quality of shape identification plus some object features (see “Matching and 

quality indicators” below and Table 2), whereas the second type provides information about contour 

convexity (see “Convexity defect measures” below and Table 3). The user can define cut-off values 

for each criterion. Results are ranked by the number of criteria they fulfill. Appropriate cut-off values 

will depend on a number of factors, including types of objects of interest and representativeness of 

the template set. A guide on how to achieve appropriate settings is provided along with SHERPA’s 

documentation. 

Matching and quality indicators rate the matching between shape and template and some 

properties which help to distinguish objects of interest from irrelevant ones, like e.g. width / height-

ratio and standard deviation of the texture gray levels within the central part of the object (see 

Table 2). 
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Table 2: Matching and quality indicators used for ranking 

EFDIs Match 

with Template 

Matching between elliptic Fourier descriptor invariants (EFDIs) of object and 

template shape (Claude 2008, Claude 2010). 

Hu Match for 

EFDIs Template 

Matching between the Hu invariants(Hu 1962) of the object and the template 

which matches best according to EFDIs. 

Optimization 

Method 

Morphological Operator used to improve the object contour. If an optimization was 

applied to derive a shape, its ranking is degraded, because the resulting outline 

might be inaccurate. 

Standard 

Deviation of 

inner 50 % 

Standard deviation of the gray level distribution within the object boundaries. Only 

the inner 50 % of the area are analyzed. This way, diatom valves, normally 

containing striae / costae / areolae, can be distinguished from empty girdle bands 

which can produce good outline matching but have a homogenous interior. 

Width / Height 

Ratio 

Ratio between object width and height. Usually objects of a certain type have a 

ratio within a certain range. 

Contour 

Smoothness 

Estimation of the object contour smoothness. The actual object outline usually is 

quite smooth, especially for diatom valves, whilst contours distorted by 

segmentation inaccuracies or failures usually are rough. The ratio between the 

outline perimeter and that of the outline smoothed by a Gaussian filter provides 

information about the contour smoothness. 

Formfactor Heuristic descriptor “formfactor” (Russ 2011) 

 

Convexity defect measures (CDMs) are calculated based on differences of area and / or perimeter 

between a contour and its convex hull, the latter being the smallest area which encloses the contour 

without containing any concave parts. 

Table 3: Convexity defect measures used for ranking 

Absolute measures 

CDF “Convexity Defection Factor”, depicts the percentaged difference between area 

resp. perimeter of contour and convex hull (Kloster 2013) 

PCAF The “Percent Concave Area Fraction” compares the areas of contour and convex hull 

(Nafe and Schlote 2002). 

CHMDF For the “Convex Hull Maximum Distance Factor” each convexity defect’s maximum 

distance between contour and convex hull is calculated. For distances larger than 

√2 ∙ pixelwidth the squares of the distances are summed up to the CHMDF (Kloster 

2013). 

Relative measures 

CDF-Match Ratio of CDF of object and template 

PCAF-Match Ratio of PCAF of object and template 

Compactness-

Match 

Ratio of heuristic descriptor “compactness” between object and template shape 

Absolute measures result from the object and are judged directly by their values, relative measures result from comparing 

values between object and best matching template. 

If only convex shapes are of interest, these measures (see Table 3, “Absolute measures”) are 

excellent features to decide about segmentation quality. This is because for convex shapes, even 

small indentations or bulges caused by erroneous segmentation will produce noticeable concave 
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parts within the outline (see Figure 8), which significantly increase the CDMs. When enabling the 

setting “Force Convexity” in SHERPA, only absolute values of the object’s CDMs are evaluated, and 

only convex templates are taken into consideration. When doing so, most segmentation problems 

are detected clearly, and segmentation quality can be judged quite precisely based on absolute 

values of the convexity defect measures. 

 
Figure 8: Typical convexity defects. The object area is highlighted in purple, its convex hull in blue. Black arrows depict 
significant convexity defects caused by segmentation faults, resulting in indentions resp. bulges of the contour outline. 

This approach will not work for objects which naturally contain concave parts. If the data contains 

convex as well as concave objects, SHERPA’s feature “Use Convexity” can be activated. In this case, 

only if the best matching template is convex, CDMs are evaluated by their absolute values derived 

from the respective object shape (like when using “Force Convexity”). If the best matching template 

is concave, some CDMs plus the heuristic descriptor “compactness” (Russ 2011) of the object will be 

compared to those derived from the best matching template (see Table 3, “Relative measures”). 

When the set of objects to be detected contains both convex and concave outlines and convexity 

analysis is employed (i.e. “Use Convexity” or “Force Convexity” is enabled), the template set should 

be composed with special care. The situation to be avoided is that the best match of a concave 

object becomes a convex template, which can happen if no proper concave template is provided. In 

this case, the object convexity will be judged by absolute values even though it is concave, which will 

result in a failure of convexity defect measures and hence in a poor ranking. 

If neither “Use Convexity” nor “Force Convexity” are activated, only a relative comparison of some 

CDMs between object and template plus an evaluation of the form factor takes place, regardless if 

the best matching template is convex or concave. The object’s CDMs are not judged directly. This is 

usually a good choice if it is not known in advance if all relevant objects are convex and / or there is 

no extensive library of templates yet. 

It should be noted that detection of segmentation flaws is much less accurate when an object’s 

convexity defect measures are compared to those of the template instead of being judged by their 

absolute values. So if only convex objects are of interest, choosing “Force Convexity” will provide a 

more precise ranking and might save some manual reviewing. 

Heuristic descriptors rectangularity (du Buf and Bayer 2002), ellipticity (Rosin 2003), triangularity 

(Rosin 2003), roundness (Russ 2011) and convexity (Zunic and Rosin 2002, Russ 2011) are calculated 

for exporting but not evaluated by SHERPA. 
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2.3.3.5 Review, rework and selection of results 

Analysis results can be reviewed for verification and for selecting data to be exported in a 

comfortable manner (see Figure 9). For each object passing validation (see above under “Shape 

processing and analysis”), the path to the original image file the object was found in, the name of the 

segmentation method, the path to the best matching template file, values of basic morphometric 

variables (e.g. width, height), values of quality and convexity defect measures, and ranking are 

displayed. Objects detected can be displayed, along with their detected outlines, their enclosing 

convex hull, the points used for elliptic Fourier analysis as well as their best matching templates. 

Shapes containing segmentation errors can be reworked manually to increase the yield of usable 

results. Quality indicators, rankings and morphometric variables are updated after manual reworking. 

 
Figure 9: Screenshot of SHERPA. Analysis settings and results (background), a single result (bottom left, detected object 
highlighted in purple) and its best matching template (bottom center) are displayed. 

2.3.3.6 Data export 

Selected results can be exported to a set of CSV and TIFF files for further morphometric analysis 

using tools like e.g. “R” (R Core Team 2015). Results can be exported to a table containing all the 

information displayed by SHERPA, plus some additional morphometric values (see Table 4). All 

relevant settings of SHERPA used to create these results are stored into a separate file. Optionally, 

the image data cropped to the object region, the coordinates of the object outline, the coordinates 

of the outline points used for elliptic Fourier analysis, and the resulting descriptors can be exported 

to separate files for each result. Detailed information on all features is included in the manual and 

the “Technical Details” document linked within SHERPA’s help menu. 
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Table 4: Exportable features 

Name of feature Description 

Source Image Path to raw image data file 

Area Object area 

Perimeter Object perimeter 

Width Object width (along major axis) 

Height Object height (perpendicular to major axis) 

Rotation Angle Rotation angle of the major axis 

Segmentation Method Segmentation method used to derive the object shape 

Optimization Method Optimization method applied to the object shape 

Best Template (EFDIs) Path to the best matching template (according to matching of elliptic 

Fourier descriptor invariants) 

Template Difference 

(EFDIs) 

Value for matching of elliptic Fourier descriptor invariants between object 

and best matching template 

Hu-match for best  

EFDIs-Template 

Value of matching of Hu invariants between object shape and best 

matching template 

Standard Deviation Standard deviation of texture gray levels within the inner 50 % of the 

object boundaries 

Width/Height-Ratio Aspect ratio of the object shape 

Smoothed Perimeter 

Ratio 

Ratio between the perimeters of the smoothed and the original contour; 

smoothing is performed by Gaussian filtering of the contour coordinates. 

Quality Index Number of fulfilled quality indicators 

Template is convex Indicator showing if the best matching template is convex 

Convexity is used Indicator showing if convexity was judged directly to calculate convexity 

indicators (use of absolute convexity measures) 

Rectangularity Heuristic descriptor 

Compactness Heuristic descriptor 

Ellipticity Heuristic descriptor 

Triangularity Heuristic descriptor 

Roundness Heuristic descriptor 

Convexity by perimeter Heuristic descriptor 

Convexity by area Heuristic descriptor 

Formfactor Heuristic descriptor 

CDF Convexity defect measure 

PCAF Convexity defect measure 

CHMDF Convexity defect measure 

CDF-Match Ratio of CDF between object and template 

PCAF-Match Ratio of PCAF between object and template 

Compactness-Match Ratio of heuristic descriptor “formfactor” between object and template 

Convexity Defect Index Number of fulfilled absolute or relative convexity indicators 

Ranking Index Ranking for object shape, i.e. estimation of quality and relevance of result 

Contour Image Name of the file containing the image data cropped to the object area 
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Contour Image top left 

Corner 

Coordinates of the top left corner of the cropped object image with 

respect to the raw data 

Image Moments (mu) Image moments of the object shape 

Hu Invariants (Hu) Hu-Invariants of the object shape 

2.3.4 Results and discussion 

For the following analyses, bright field micrographs of valves of different diatom species and from 

different sources were analyzed. All results were produced without manually reworking or resorting 

detected shapes, relying solely on SHERPA’s automated functions for segmentation, contour 

optimization and result ranking. 

2.3.4.1 Templates 

To facilitate use of SHERPA for generic diatom recognition and analysis, we prepared a library 

covering a wide range of diatom outline shapes, containing about 450 templates. This compilation is 

mainly based on the outline shape classification scheme and accompanying diagrams from (Barber 

and Haworth 1981), Fragilariopsis data sets from a surface sediment sample (Zielinski et al. 1998), 

and upon the extensive ADIAC diatom image database available online (du Buf 2003), although the 

ADIAC data is not fully covered by the current template library. For the latter two, SHERPA was used 

for image segmentation to detect shapes previously not represented in the template set: Shapes 

with a poor template matching value were screened manually. If they were depicting relevant valves 

and segmentation quality was satisfactory, they were converted into additional templates employing 

the built-in functions of SHERPA. Because diatom shapes vary widely among taxa, as well as during 

the life cycle of even a single taxon, it is crucial to check the presence of a representative set of 

templates for taxa of interest when using SHERPA for analyzing a particular type of diatom samples. 

2.3.4.2 Sellaphora data as example for identification accuracy 

To demonstrate the usability of SHERPA, we analyzed a set of images from one of the classical model 

taxa of diatom microdiversity, the Sellaphora pupula (Kützing) Mereschkowsky complex s.l. S. pupula 

has been known as a morphologically highly variable diatom species during most of the 20th century. 

However, Mann and colleagues demonstrated in a series of papers (cumulating in (Mann et al. 

2004b)) that sympatric demes of this diatom “species” formed reproductively isolated groups, that 

could also be diagnosed using molecular markers and also differed in minute morphological / 

morphometric features, including (but not limited to) minor differences in their valve outlines. In 

their 2004 investigation (Mann et al. 2004b), Mann et al. used Legendre-polynomials and contour 

segment analysis for comparing outline morphology of six S. pupula demes (since that study, also 

formally recognized as distinct species). They made the images upon which the analyses were based 

publicly available (Mann et al. 2004a), which we used in this analysis. 

All five segmentation methods plus contour optimization were applied to analyze a total of 383 

micrographs focused on the outlines of Sellaphora valves (see Table 5). Most of the valves were 

clearly isolated, without overlapping structures and only little amount of debris, so this might not be 

a typical data set, but serves as an example on how specific the identification process works. Since 

contours of S. pupula contain concave parts, convexity was not taken into account for judging 

segmentation quality directly (i.e. neither “Use convexity” nor “Force convexity” were activated in 

SHERPA). 
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Table 5: Results analyzing 383 images (Mann et al. 2004a) depicting Sellaphora valves (plus one 
centric diatom) 

 Identified as Sellaphora pupula Identified as other 1) 

Ranking 0 318 4 

Ranking 1 25 7 

Ranking 2 2 1 
1)

 One centric diatom was present in the data set, the other valves identified as being not Sellaphora have a similar shape 

and therefore cannot be distinguished when using the large template set. 

All five segmentation methods were used (RATS with σ range 1 to 11) and contour optimization was applied. 

Considering only results of ranking 0 to 2, which usually is the range for objects without significant 

segmentation flaws and good coverage by templates, 357 (93 %) of the valves contained in the data 

set were successfully segmented (see Figure 10). When using the comprehensive template library, 

most of the results were assigned correctly to one of the 18 Sellaphora pupula templates derived 

from the ADIAC dataset (no template was created from the Sellaphora data set itself). Only about 

3 % of the results were assigned to templates of other species, which had shapes very similar to S. 

pupula. One centric diatom was actually present in the data and correctly identified as a disc-shaped 

type, clearly distinct from the others. When using only the 18 Sellaphora pupula templates instead of 

the whole template library, the yield was identical (apart from the single centric diatom), with all 

valves correctly identified. 

 
Figure 10: Percentage of different rankings and identifications for the Sellaphora data set (compare Table 5). About 93 % of 
the valves were segmented successfully (green and blue), about 90 % were identified correctly as S. pupula (green), about 
7 % were not segmented successfully (red). 

Results having a ranking above 2 are not listed, because they were caused by partly unfocused 

outlines, overlapping objects or debris and would have needed manual inspection and reworking. 

2.3.4.3 Fragilariopsis data as example for segmentation quality 

As a typical data set, 773 micrographs originating from sediment core PS1768-8 (Zielinski et al. 1998) 

and mainly showing Fragilariopsis kerguelensis, plus broken valves, debris and overlapping objects, 

were analyzed. The data was obtained using a Metafer slide scanning system (Metasystems, 
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Altlussheim, Germany), applying the implemented autofocus and stacking functions. Because not all 

valves were lying parallel to the focal plane, outlines were partly out of focus or blurred despite of 

stacking. Since the outline of F. kerguelensis is completely convex, SHERPA’s “Force Convexity” 

feature was used to improve judging of segmentation quality. 

Again, the full template set covering a broad range of diatom species was used. Although 

Fragilariopsis valves were mostly identified correctly, some were assigned to templates of other 

similarly shaped species, and some correctly identified valves of other species were present. 

Undamaged valves could successfully be distinguished from artifacts like broken ones or debris. In 

some cases, objects like girdle bands or spherical structures were identified as relevant valves 

(usually at a ranking index 2 or worse), because of their shape similar to those of other diatom 

species in the template library. This problem can be overcome by using only Fragilariopsis templates. 

All segmentation methods available in SHERPA were applied separately, as well as in combination, to 

compare the yield of usable results (see Table 6 and Figure 11). As expected, the best yield is 

achieved when using all segmentation methods, employing RATS with a wide range of σ, and 

applying contour optimization. When combining the individual strengths of the different methods 

plus contour optimization, even objects which are difficult to segment can be handled successfully; 

although not always without contour inaccuracies (see Figure 12). Since applying the whole range of 

methods drastically increases the time needed for analysis, using only Otsu’s thresholding, Canny 

edge detector, adaptive thresholding and Otsu’s thresholding plus histogram equalization might be a 

practicable choice for preliminary or quick analyses. 
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Table 6: Results for Fragilariopsis data for different combinations of segmentations methods and 
contour optimization 
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✓ 224 230 73 527 
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258 193 31 482 
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✓ 258 287 97 642 
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340 167 37 544 

   
✓ 

  
✓ 340 271 97 708 

    
✓ 

  
217 169 43 429 

    
✓ 

 
✓ 217 264 126 607 

     
✓ 

 
217 122 11 350 

     
✓ ✓ 217 141 19 377 

✓ ✓ 
  

✓ ✓ 
 

385 170 38 593 

✓ ✓   ✓ ✓ ✓ 385 249 91 725 

✓ ✓ ✓  ✓ ✓  403 164 44 611 

✓ ✓ ✓  ✓ ✓ ✓ 403 248 95 746 

✓ ✓  ✓ ✓ ✓  421 155 52 628 

✓ ✓  ✓ ✓ ✓ ✓ 421 243 97 761 
2)

 Whilst results of ranking 0 and 1 contain nearly only correctly segmented valves of Fragilariopsis and a few of other 

species, ranking 2 also contains few results of girdle bands incorrectly identified as valves. 

The more methods are combined, the higher is the yield. 
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Figure 11: Results for Fragilariopsis data for different combinations of segmentations methods and contour optimization 
(compare Table 6). The more methods are combined, the higher is the yield. 

 

 
Figure 12: Successful segmentation in the presence of debris and overlapping objects. a) – c) Micrographs of Fragilariopsis 
valves, d) – f) segmented shapes (highlighted red) after contour optimization, using d) adaptive thresholding, e) Otsu’s 
thresholding, f) RATS (σ = 3.0). By application of multiple segmentation methods and contour optimization even 
problematic objects could be extracted, since often at least one of the methods succeeded, but partly at the expense of 
contour accuracy (see the small bulges in the object contours). 

Otsu’s thresholding                      
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Adaptive thresholding                      

Canny edge detector                     
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2.3.4.4 Comparison of segmentation methods 

88 valves of the Fragilariopsis data were successfully segmented by each of the five segmentation 

methods (RATS with σ = 3.0) without applying contour optimization. Area, perimeter, width and 

height obtained by the different segmentation methods were compared by calculating their 

percentage deviation for each of these valves. The deviations for all valves were compared (see 

Equation 1). This illustrates the variation of the object contours produced by the different 

segmentation methods, which is about ±1 % around the center value between the minimum / 

maximum values (see Figure 13). 

 
Figure 13: Percentaged deviation of features around the minimum / maximum center when using all five segmentation 
methods. The deviation is about ± 1 % around the center value. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑀𝐴𝑋 −𝑀𝐼𝑁

𝑀𝐴𝑋 +𝑀𝐼𝑁
∙ 100 % (Equation 1) 

With MAX = maximum, MIN = minimum value for a feature (area, perimeter, etc.) when using 

multiple segmentation methods. 

2.3.4.5 Further analysis using R 

As a benchmark experiment, and to illustrate how data exported by SHERPA can be used in further 

analyses, we imported both the classical morphometric features and the elliptic Fourier descriptors 

(EFDs) calculated by SHERPA for the 356 Sellaphora valves from the first above described experiment 

into the open source statistical data analysis environment R (R Core Team 2015). In R, we reproduced 

those plots from (Mann et al. 2004b) for which features used were captured by SHERPA (see Figure 

14; besides outline features, Mann et al. also measured a number of features characterizing striae 

density, orientation and the terminal bars which are not captured by SHERPA). 
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Figure 14: Reproduction of plots from (Mann et al. 2004b) using the same variables. a) valve length, b) valve width, c) valve 
width vs. length, d) valve width vs. rectangularity, corresponding to Figures 5, 6, 10 and 14 from (Mann et al. 2004b). In the 
box plots in a) and b), the thick horizontal lines represent the medians; the boxes the range from the first to the third 
quartile; and whiskers +/− 1.58 times the interquartile range. Individual values outside these ranges are displayed as circles. 

The plots correspond to Figures 5, 6, 10 and 14 from Mann et al., based on valve length, width and 

rectangularity. These figures rather accurately correspond to those in the original publication, with 

the exception of a single “lanceolate” valve with an extremely low rectangularity value of 0.705: such 

a low value does not appear in the original publication and it is also extremely low when compared 

with the other values exported from SHERPA. This outlier reflects a segmentation problem caused by 

a shadow overlapping the valve outline which can easily be fixed using the “Manual rework” feature 

of SHERPA, resulting in a rectangularity value of 0.757 which hardly differs from the value given for 

the same valve by Mann et al. (0.760). In order to illustrate the accuracy of the methods when 

applied in a fully unsupervised manner, we opted to keep the original value for Figure 14 a) and for 

the following classification exercise. When applying a cross-validation linear discriminant analysis 

based on classical morphometric features extracted by SHERPA (randomly selected 50 % of objects 

used to train the model, the remaining 50 % is then classified against it, in 100 iterations), 

classification accuracies of the six demes (species) range from 98.9 % to 100 % (median: 100 %). 
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EFDIs performed less well in linear discriminant analysis (77.5 - 92.7 % accuracy, median: 88.2 %, in 

an identical cross-validation, see Figure 15), but the classical morphometric features still 

demonstrate that the set of features extracted by SHERPA provides a robust basis for downstream 

outline-based classification, especially when considering the small differences in outline shapes 

among the Sellaphora groups. 

 
Figure 15: Principal component analysis of elliptic Fourier descriptor invariants for the Sellaphora data set. EFDIs have a 
comparable discriminatory power to the Legendre polynomials used by (Mann et al. 2004b), differentiating the three main 
shape groups but not the individual demes / species within each shape group. 

2.3.4.6 Future development 

Besides improving performance, the next steps in SHERPA’s development will concern the analysis of 

texture und structural features to improve versatility and identification specificity. 

2.3.5 Conclusions 

SHERPA provides a useful tool for diatom identification and morphometrics, enabling mass 

screenings, since it greatly reduces the amount of work needed to be performed by human 

interaction. Manual revision required for best results can be accomplished in a quick and effective 

manner, supported by a ranking based on matching and quality indicators. 

The degree of identification reliability reflects both the range of templates used and the diversity 

present in the analyzed samples. In spite of depending solely on outline shape, good identification 

accuracy can be reached using customized template sets. Combining multiple segmentation methods 
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improves the identification rate without significantly impairing result accuracy, and, combined with 

contour optimization, even objects showing segmentation artifacts can be analyzed successfully. For 

convex shapes, convexity defect measures provide an effective way to judge segmentation quality, 

hence allowing identification of flawed object outlines. 

The approach of restricting SHERPA to the identification of relevant objects and the calculation of 

their morphometric features enables an adaptation to specific problems / target taxa. Downstream 

analyzes or classification can be performed using widely available commercial or free statistical 

software tools, e.g. “R”. 
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2.4.1 Abstract 

Light microscopy analysis of diatom frustules is widely used in basic and applied research, notably 

taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. Although 

there is a need for automation in these applications, various developments in image processing and 

analysis methodology supporting these tasks have not become widespread in diatom-based analyses. 

We have addressed this issue by combining our automated diatom image analysis software SHERPA 

with a commercial slide-scanning microscope. The resulting workflow enables mass-analyses of a 

broad range of morphometric features from individual frustules mounted on permanent slides. 

Extensive automation and internal quality control of the results helps to minimize user intervention, 

but care was taken to allow the user to stay in control of the most critical steps (exact segmentation 

of valve outlines and selection of objects of interest) using interactive functions for reviewing and 

revising results. In this contribution, we describe our workflow and give an overview of factors critical 

for success, ranging from preparation and mounting through slide scanning and autofocus finding to 

final morphometric data extraction. To demonstrate the usability of our methods we finally provide 

an example application by analysing Fragilariopsis kerguelensis valves originating from a sediment 

core, which substantially extends the size range reported in the literature. 

Keywords: slide scanning; virtual slide; SHERPA; Fragilariopsis kerguelensis; microscopy; Metafer 

Abbreviations: ADIAC, Automated Diatom Identification And Classification; AIC, Akaike information 

criterion; BIC, Bayesian information criterion; CSV, comma separated values; LED, light emitting 

diode; MIS, marine isotope stadium; SHERPA, tool for SHapE Recognition, Processing and Analysis; 

XML, extensible markup language  

2.4.2 Introduction 

Large-scale automated image acquisition and analysis methods are spreading in both biomedical and 

environmental research. In the aquatic realm, examples include sea floor imaging as well as in and ex 

situ imaging of pelagic particles, phyto- and zooplankton (Olson and Sosik 2007, Álvarez et al. 2011, 

Álvarez et al. 2012). Similar methods, meant to enable highly automated imaging and image analysis 

workflows, were previously developed for diatom permanent slides during the ADIAC (Automated 

Diatom Identification And Classification) project (du Buf and Bayer 2002). In spite of the highly 

promising results (several algorithms tested reached better-than-human identification success), the 

methods developed have not achieved widespread application. The main reason for this is that both 
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the hard- and software developed in that project are highly customized innovations that were only 

prototyped, but did not become available to a wider group of users. 

Development of digitally controlled light microscopes, slide scanning and virtual slide systems, widely 

available programming libraries for computer vision, machine learning, as well as, more recently, 

deep convolutional neural networks, are currently making workflows similar to or even beyond those 

drafted by ADIAC more readily available to a wider user community, including diatomists. However, 

the analysis of large image sets, as they can easily be produced by slide scanning microscopes, has 

remained challenging for most diatomists not trained in image analysis. To fill this gap, we developed 

SHERPA, a user-friendly software tool conducting segmentation of such images and morphometric 

characterization of objects of interest (Kloster et al. 2014). This tool incorporates some of the ideas 

and experiences reported previously (du Buf and Bayer 2002, Claude 2008), and contributes a 

number of novel ideas to support quick but highly precise morphometric characterization of diatom 

outlines. Matching segmented objects against a library of shape templates representing objects of 

interest, and a refined quality scoring and ranking system, represent the major innovations of this 

software, whereas its workflow allows for an automated as well as a manual, but massively 

computer-assisted, analysis. 

To illustrate the applicability of the described methods, here we investigate valve size distributions of 

Fragilariopsis kerguelensis from sediment core PS1768-8 using our workflow. This sediment core was 

retrieved at 52°35.58′ S, 4°28.56′ E close to the Antarctic Polar Front from a depth of 3299 m by a 

gravity corer (Gersonde and Hempel 1990). Its 9.03 m cover ca. 140,000 years, with F. kerguelensis 

being the dominant species (Zielinski et al. 1998). This diatom is the most prominent endemic diatom 

species of the Southern Ocean as well as the main opal contributor to the Southern Ocean diatom 

ooze belt (Zielinski and Gersonde 1997). Its abundance is an indicator of low carbon, high silica-

exporting regimes in the Southern Ocean (Smetacek et al. 2004, Abelmann et al. 2006, Sachs et al. 

2009), and its morphology has been hypothesized to be related to oceanic currents, nutrient (esp. 

iron) availability and summer sea surface temperature (Cortese and Gersonde 2007). 

In this contribution, we show that a light microscopic imaging and image analysis workflow for 

diatom permanent slides can now be implemented combining commercially available components 

and the freely available SHERPA software. After introducing some options of potential implementations 

and highlighting some methodological issues, we draft a workflow resembling that initially 

recommended by ADIAC, which we are successfully applying in morphometric work. Finally, we 

provide the example application mentioned above to demonstrate the usability of our methods. 

2.4.3 Materials and Methods 

We implemented a complete workflow for semi-automated light-microscopic imaging, measurement 

and analysis of diatom valves (Figure 1, the numbering refers to the workflow steps as they are 

described below). Content to be analysed consists of cleaned frustules mounted on permanent slides 

(step 1); the according raw material can originate from planktonic or benthic samples, sediment 

traps, sediment cores or cultures. Data collection and processing consists of two cycles of slide 

scanning and image analysis via SHERPA: The first imaging cycle (steps 2–4) serves the purpose of 

locating valves of interest at low magnification. During the second cycle (steps 5–7), only these valves 

of interest are imaged at high magnification and measured at high precision. This method provides a 

good trade-off between manual effort, time consumption and data economy. Final analysis of the 

morphometric features measured by SHERPA is realized via R scripts customized to the particular 

problem (step 8). 



Page 41 of 144 

Applied Sciences 2017, 7, 330; doi:10.3390/app7040330 www.mdpi.com/journal/applsci 

For image acquisition, we use a Metafer slide scanning system (MetaSystems, Altlussheim, Germany) 

operating with a ZEISS AxioImager.Z2 using ZEISS objectives Plan-APOCHROMAT 10×/0.45, Plan-

NEOFLUAR 20×/0.5 and Plan-APOCHROMAT 63×/1.4 with oil immersion. Images are obtained with a 

CoolCube 1m monochrome camera (MetaSystems).   

In combination with the system’s three-colour (red, green, blue) LED illumination, colour images can 

be recorded by taking three images of each position and combining them in silico. Since permanent 

slides prepared of oxidized diatom frustules contain no relevant colour information, we solely use 

blue LED illumination in all imaging procedures to achieve the highest possible optical resolution.  

Regarding diatom analysis, the Metafer slide scanning system is capable of two main modes of 

operation. In area scan mode, a user defined rectangular or circular region on a slide is imaged in 

overlapping fields-of-view; these images can be combined (stitched) into large panoramic overview 

images (virtual slides) using the VSlide software (version 1.1.101, MetaSystems). In position list mode, 

a list of user-defined positions, spread arbitrarily over the slide, can be imaged. The vertical position 

of objects can be determined by automatic creation of a focus map, i.e., based on interpolation 

between reference points, or by autofocusing at each position captured, or using a combination of 

both. Each object/field-of-view can optionally be photographed at multiple focus depths, and the 

resulting images can, again optionally, be combined (stacked) to extended focus depth images.  
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Figure 1: Schematic overview of our imaging/image analysis workflow, composed of the following steps: (1) Sample 
preparation, (2) low-resolution scan for locating valves of interest, (3) stitching of the virtual slide, (4) selecting objects of 
interest for high-resolution scan, (5) setting up the position list for high-resolution scan, (6) high-resolution scan of selected 
objects, (7) high-precision measurement of morphometric features, and (8) data export and post-processing. 

All parameters regarding the operation of the slide scanner are recorded in so-called classifiers. 

These include settings for illumination (intensity, colour) and imaging (exposition, number and 

distances of focal planes to image) as well as parameters related to stacking focal plane images. 

Further settings are related to image post-processing and object detection, the latter of which is 

unfortunately too simplistic to be useful in diatom analyses; these are not applied in the workflows 

presented in this contribution. The actual classifier settings for each run are saved alongside the 

images produced, enabling the reproduction of an imaging run or the transparent application of a 

standardized set of settings to multiple slides. The only important component of an image acquisition 

workflow that is not explicitly documented in the classifier archive files is the autofocus settings. 

Settings for finding the focus are, similarly to classifiers, recorded as named parameter combinations, 
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and the classifier files only record this name. Metafer settings and configuration files, as used in this 

project, are provided as Supplementary Materials. 

Image analysis and object measurement is realized by our software SHERPA (version 1.1c) (Kloster et 

al. 2014), which is a freely available Microsoft Windows software developed specifically for diatom 

morphometry. SHERPA can apply a set of different image processing methods for detecting objects in 

light microscopic images, and compares their contour outline to a set of shape templates to identify 

objects of interest. An internal rating and ranking system assesses the relevance and quality of 

results to reduce efforts for reviewing them manually, but nevertheless enables for manual review of 

objects found and for correction of faulty segmentations which lead to flawed object outlines. All 

parameter settings can be saved and restored to reproduce the settings. For the selected objects of 

interest, coordinates with respect to the images they were found in, as well as a wide variety of 

morphometric feature descriptors, can be exported. The coordinates (in our workflow originating 

from the low-resolution area scans) can be saved into an XML annotation file which can be read by 

the VSViewer software (version 2.1.103, Metasystems, Altlussheim, Germany) and subsequently 

converted into a position list for high-resolution imaging in the Metafer imaging software (version 

3.10.4, Metasystems, Altlussheim, Germany). For morphometric analysis, measurements obtained by 

SHERPA can be exported as CSV files along with cut-outs of the original images and intermediate 

image processing results. We process this CSV output by R scripts that allow for a quick, easy and 

flexible analysis of various morphometric descriptors, but, being simple comma-delimited text tables, 

they can be viewed and analysed just as well with any other spreadsheet/data analysis software. 

The number of parameters influencing the results of an image analysis procedure with SHERPA is 

substantial. Settings regard the parametrization of pre-processing applied for each of one or more 

segmentation methods and the optional subsequent contour optimization, the identification of 

valves of interest, and the filtering, scoring and ranking of results. To ensure transparency and 

reproducibility, SHERPA supports saving a combination of settings and re-applying it to several image 

data sets. The according configuration files and templates are provided as Supplementary Materials. 

In the following, we describe the workflow illustrated in Figure 1 in detail (the numbering in that 

figure refers to the workflow steps as they are described below): 

2.4.3.1 Step (1): Preparation 

Throughout this contribution, microscopic imaging is performed from so-called permanent slides, 

prepared by embedding oxidized frustule samples into a mounting medium. Since strong object 

contrast is vital for successfully automating image processing, we recommend using a high refractive 

index mountant like Naphrax. Another critical issue is sample density. On the one hand, the density 

has to be sparse and uniform enough to preferably show objects clearly separated from each other, 

because overlapping impedes automatic valve detection by SHERPA and thus could increase manual 

efforts required for selecting and reworking valve shapes. On the other hand, the density has to be 

high enough for focus map creation to find objects at random positions on the slide. We qualitatively 

found that optimal sample density for the automated procedure is somewhat lower than that for 

manual counting. 

2.4.3.2 Step (2): Low-resolution area scan for locating valves of interest 

Our two-cycle microscopy and image analysis procedure starts with a low-resolution area scan (see 

Figure 2), creating a slide overview with a magnification appropriate to the investigated diatom. 

Usually we employ a 20× magnification objective, with a lamp intensity of 150, in combination with a 

maximal integration time of 0.011 s. Individual fields-of-view overlap by 64 μm in both X and Y 
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directions. Finding the focus for each image position is performed in two steps: First, at the start of 

each run, a focus map of the slide is prepared. For this, the optimal focus position is located over a 2 

mm grid spanned over the target area by determining the value of a focus function at 25 positions in 

5 μm steps and finding the Z position giving the maximum absolute local contrast (focusing mode 0: 

absolute local contrast, contrast mode 0). Subsequently, the focus map is created by linear 

interpolation of determined optimal focus Z values over (X, Y), covering the target area. After the 

focus map is created, the area scan itself is performed by fine focusing at each position, followed by 

final image capture. For fine focusing, the value of the focus function is determined (focusing mode 

2: horizontal quadratic normalized gray level distances, pixel distance 2, contrast mode 0), this time 

in 40 planes in Z-steps of 2 μm. This second, fine focusing step can sometimes be omitted, but it 

often leads to substantial improvement in the sharpness of resulting images (depending on density 

and contrast of diatom valves). Finally, images at 10 focus positions in Z-distances of 2 μm are 

captured and stacked together to extended focus depth images which are saved for further 

processing. These stacked images represent the input to SHERPA for locating diatom valves, as well 

as to the stitching procedure to create a virtual slide. 

 
Figure 2: Overview of the low-resolution slide area scan procedure (step 2 of the workflow). Left: manual selection of 
rectangular target area. Centre: focus map creation over a 2 mm × 2 mm grid. Right: focus stack capture in overlapping 
fields-of-view over target area. 

2.4.3.3 Step (3): Stitching of virtual slides 

The overlapping low-resolution images are stitched together to a virtual slide using the VSlide 

software (Metasystems, Altlussheim, Germany). These virtual slides enable for visualizing the valves 

of interest as identified and selected via SHERPA in the context of the whole slide (see steps 4 & 5 

below) and also for manually adding further positions for the later high-resolution scan (see step 6 

below). Although in principle, it is not strictly required to stitch images to a virtual slide at this stage, 

this is necessary with the imaging system we are using for two practical reasons: First, the object 

coordinates relative to individual field-of-view images (as recorded by SHERPA) are transformed to 

coordinates relative to the whole slide scanned at this step. Second, import of positions into a virtual 

slide is necessary for feeding a list of positions back into the imaging software in the specific Metafer 

imaging system we are using. 

2.4.3.4 Step (4): Selecting objects of interest for high-resolution scan via SHERPA 

For locating and selecting valves of interest, the low-resolution images (step 2) are processed by 

SHERPA. Object outlines are compared to a user defined set of shape templates, in case of the 

example analysis explicated below to the F. kerguelensis templates provided with SHERPA. The 

template set selected defines the taxonomic scope (more precisely, the scope in terms of outline 
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shapes) of an analysis. Hereby analyses focusing on a narrow range of outline shapes are possible, 

like in our example application, as are analyses targeting a broad diversity of diatom shapes. For the 

latter purpose, SHERPA provides a set of ca. 500 outline templates covering a broad range of diatom 

shapes, which can be further extended by the user to match the specific set of taxa of interest from a 

particular habitat. Shape optimization and manual corrections are usually not applied since this 

analysis step is used only for localizing valves, not for measuring them. Convexity analysis often fails 

on low-resolution images, even for species with strictly convex outlines, especially if the image 

contrast or sharpness is not optimal. Even though we applied it in our example investigation (see 

below), we recommend not to do so at this workflow step, at the optional expense of increased 

efforts for sorting out potential false positives manually. To ensure that settings for validation and 

ranking are comparable to those of the high-resolution scan (like minimum required object 

area/perimeter), it is important to set the correct magnification ratio (parameter “Micrometer 

Factor”; also saved in the settings file). Valves of interest are either picked automatically by selecting 

all results up to (including) ranking index 2, or by manually reviewing and selecting results. Manual 

selection is generally conducted at least up to ranking index (including) 2, and can be extended up to 

higher indices if the amount of highest quality results is not sufficient. The position list for the 

subsequent high-resolution scan (step 6) is exported as a Metafer VSAI file and saved into the same 

directory and with the same name as the according virtual slide files. 

2.4.3.5 Step (5): Setting up the position list for high-resolution scan 

We use the VSViewer software (Metasystems, Altlussheim, Germany) to import the position list 

provided by SHERPA (step 4) into the virtual slide (step 3), using the “import annotations” function; 

valve positions are displayed by their annotated outline (see blue markings in Figure 3). The 

annotation function of the viewer enables to manually add positions of interest if some objects 

deemed relevant were missed by SHERPA (see red box in Figure 3). This allows for combining (semi-

)automated and manual selection of valves of interest.  

 
Figure 3: Screenshot of VSViewer showing a subarea of the virtual slide of a 20× scan. F. kerguelensis valve outlines 
imported from SHERPA are highlighted in blue; additional manual annotations are in red. The positions annotated in this 
low magnification image are used for the selective high-resolution scans in step 6. 



Page 46 of 144 

Applied Sciences 2017, 7, 330; doi:10.3390/app7040330 www.mdpi.com/journal/applsci 

2.4.3.6 Step (6): High-resolution position scan of selected objects of interest for precise 

morphometric measurements 

The annotated virtual slide from step 5 contains the (X, Y) position data required for selectively 

imaging the valves of interest. This high-resolution scan uses the 63× objective with oil-immersion 

and captures 20 focus levels in 0.2 μm Z-distances after two focusing steps, a first, coarse 

autofocusing followed by a fine focusing. This is necessary because object positions imported from a 

virtual slide do not preserve information on the vertical (Z) location of individual objects, so these 

have to be determined from scratch again. In the first autofocus run, the value of the focus function 

is determined at 40 Z-positions in 2 μm distances for a coarse determination of the optimal focal 

plane (focusing mode 2: horizontal quadratic normalized grey level distances, pixel distance 2, 

contrast mode 0). The focus is narrowed down by a second scan measuring at 60 focus levels in 

0.5 μm distances (focusing mode 0: absolute local contrast, contrast mode 0). Subsequently, 20 focal 

planes around the optimal one are captured in 0.2 μm distances. An extended focus image is 

produced by stacking the individual focal planes, using the method “CombPlanesFF” with focusing 

mode 0 and a submatrix size of 128. The individual focal plane images, as well as the extended focus 

image, can be saved for further processing. In general, for analysis with SHERPA, we only use the 

extended focus image, since this clearly depicts the valve’s outline as well as its interior 

ornamentation, even if not all structures can be visualized completely within a single focal plane 

because of their three-dimensional extent, or because the valve surface is slightly tilted with respect 

to the focal plane (see Figure 4). Keeping the individual focal plane images leads to a significantly 

increased demand for storage space, but allows for better manual evaluation of ambiguous species 

classifications, since in uncertain cases the three-dimensional structure of features, as well as the 

influence of stacking artefacts, can be judged. The individual focal plane images also allow one to see 

if a valve lies obliquely, leading to a perspective distortion of its outline shape and size. So far no 

software is available to make use of this information, but in theory it seems possible to develop 

automated procedures to correct morphometric measurements for the bias resulting from oblique 

valve orientation (Kloster 2013). The maximum possible bias can be estimated according to the 

Pythagorean theorem (see Figure 5): 𝑠 = √𝑚2 + 𝑡2 with s being the actual valve size, m the 

measured size, and t the tilt. Our setup limits the tilt to a maximum of 4 μm, which results in a 

maximum error of about 8 % for measurements of 10 μm. For larger measurements the error 

decreases, e.g., for 36 μm, which is the average valve length in our investigation, the maximum error 

lessens to ca. 0.6 %.  

2.4.3.7 Step (7): High-precision measurement of morphometric features from high-resolution images 

via SHERPA 

The high-resolution extended focus (i.e., stacked) images are then analysed with SHERPA to measure 

the valves of interest. Since the low-resolution position list only sets the central position of the field-

of-view, images captured in the second, high-resolution run can also depict objects that are not 

relevant for analysis, but might be detected by SHERPA. To avoid false positives, manual selection of 

the final set of valves of interest can be conducted a second time, a process which is massively 

supported by SHERPA. Usually the same settings and shape templates are applied as for the low-

resolution scan, the only difference being the magnification ratio set according to the high-resolution 

objective, and enabling convexity analysis if this is suitable for the species under investigation (i.e., its 

valve outline does not contain concave/indented parts). For the example analysis explicated below, 

contour optimization was disabled and convexity analysis enabled. Like for the low-resolution 

analysis, manual review and selection of results should be conducted at least until ranking index 

(including) 2, and may proceed to higher indices. Manual rework for correcting inaccurately 
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segmented valve outlines can be applied if deemed necessary. Selected results can be saved to CVS 

files along with cut-outs of the original images depicting the valve and intermediate stages of image 

processing to enable for a later (re-)analysis with other tools than SHERPA. 

 
Figure 4: The extended focus image (top left) clearly depicts valve outline and ornamentation, in contrast to the individual 
focal planes (anything but top left) it is stacked from. On the other hand, the focal plane images preserve information about 
the obliquity of the valve that is lost in the extended focus image. 

 

 
Figure 5: Measured (m) compared to actual object size (s) for a given tilt (t); MO = microscope objective. 

2.4.3.8 Step (8): Data export and post-processing 

Our workflow can produce duplicate results for objects of interest if some of them are captured on 

more than one field-of-view images. This happens if a valve of interest lies so near to another one 

that it is also captured in the image centred on the latter. Removing these doublets is the first 

important step of downstream analyses. Duplicate objects are identified based on a threshold 

applied to the summed up distances of basic geometric feature measures like apical and transapical 

axes length, area, circumference and orientation angle. We implemented this approach to be 

independent of object coordinates supplied by the Metafer slide scanner, enabling to process data 

originating also from manual microscopy or other slide scanning systems. The according R function 

(based on R version 3.2.2 (R Core Team 2015)) is supplied in the Supplementary Materials. 

m

t

MO
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2.4.4 Results 

Applying our automated approach, we analysed about 12,000 valves from 72 slides of samples taken 

from 21 different depths within sediment core PS1768-8 covering marine isotope stadiums (MIS) 1, 

2, 5 and 6 (see Table A1). The according CSV file is supplied in the Supplementary Materials. Because 

this core originates from the central area of the opal belt it consists mainly of diatoms, which are 

generally well to moderately preserved and do not show significant effects of dissolution on the 

preserved diatom valves (Zielinski et al. 1998). Our observations substantially expand the size ranges 

known for this taxon compared to previous reports (see Table 1 and Figure 6). 

Table 1: Summary on F. kerguelensis valve sizes from our investigation. Extreme values are 
highlighted in bold type. 
  Apical Axis Length (μm) Transapical Axis Length (μm) 

MIS n min max mean median min max  mean median 

1 2853 11.3 101.1 36.8 34.1 3.7 13.5 9.0 9.1 
2 5691 11.1 95.5 35.2 33.1 4.6 14.2 9.2 9.2 
5 2610 12.8 118.9 37.0 33.6 4.1 14.1 9.0 9.1 
6 705 14.8 94.4 36.1 33.5 5.6 13.8 10.0 10.0 
all 11859 11.1 118.9 36.0 33.4 3.7 14.2 9.2 9.2 

 

 
Figure 6: F. kerguelensis valves of extreme apical axis lengths (101.0 to 119.9 μm). Left: MIS 1, all others come from MIS 5. 

The valves with the longest apical axis were found in the MIS 5 samples. To test whether the species 

shows a different distribution of apical axis lengths between this and the other MISs, Kolmogorov–

Smirnov tests were used (see Tables A2 and A3). MIS 1 represents the most recent material we 

analysed and thus the best to be compared to the investigations of (Hasle 1965, Fenner et al. 1976, 

Cefarelli et al. 2010). Between this and MIS 5 the two-sided test did not support a significant 

difference. This indicates that the occurrence of very large valves is not caused by a general shift in 

the valve length distribution of the species during MIS 5. The overall distribution of apical axis length 

is right-skewed (see Figure 7 top). To the contrary, distribution of the transapical axis length is 

symmetric (see Figure 7 bottom) but platykurtic (test for non-normality; see Appendix C). For 

individual analysis of each MIS see Figures A1 and A2 in the Supplementary Materials. 
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Ca. 5.4 % of all valves (505 in total) are sized outside the dimensions reported in the literature of 

(Hasle 1965, Fenner et al. 1976, Cefarelli et al. 2010), depicted by the dashed rectangle in Figure 8. 

 

 
Figure 7: Distribution of basic valve dimensions along the apical and transapical axes for all MISs. Red lines depict the mean, 
black lines the median values, and blue lines the estimated density curves. Dashed lines depict the valve size ranges 
reported in the literature. Whilst for the apical axis the distribution is right-skewed, the distribution of lengths of the 
transapical axis is symmetrical but not normal (platykurtic, i.e., has thinner tails than a normal distribution). 
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Figure 8: Counts of valves of different apical versus transapical lengths for all MISs. The dashed rectangle depicts the valve 
size ranges reported in the literature.  

We modelled the relationship between transapical and apical axis length using linear models with an 

increasing order of polynomial terms (see Figure A3). A third-order polynomial gave a better fit (with 

a R2 of 0.496) than a first- or second-order regression, and lowest values of the Akaike resp. Bayesian 

information criteria. Adding a term of order 4 did not significantly improve the model fit. This means 

that, in spite of what might be suggested by the symmetric distribution of transapical valve 

measurements (see Figure 7, bottom), the transapical tends to increase with apical length only up to 

about 50 μm valve length. Above this value, the transapical length stays roughly constant or even 

decreases slightly with increasing apical length. 

2.4.5 Discussion 

Imaging and image processing methods have been developed and spread rapidly for marine research 

in the recent years (Schulz et al. 2010, Briseño-Avena et al. 2015, Schulz et al. 2015, Mullen et al. 2016). 

In contrast to many of these techniques, our approach is conducted ex situ on oxidized material, as has 

been the common practice in diatom research for nearly 200 years. This enables us to combine 

traditional preparation methodology with recent advances in imaging and automation, and the 

application of the latter to existing sets of samples. During the ADIAC project a prototyped 

automated slide scanning procedure was developed, the main limitation of which consisted of the 

mechanical parts. Since then, commercial slide scanning systems have become available off the shelf, 

and advances in camera technology improved the image quality significantly. 

Optical resolution: In the last decade, a variety of slide scanning microscopes have become available, 

which are capable of producing virtual slides by stitching together overlapping field-of-view images. 

In many biomedical applications, however, a much lower optical resolution is sufficient, and 40× or 

lower objective magnification is the highest available in many slide scanning systems on the market. 

For applying to diatoms, however, it is important to select a slide scanning system that can also 

robustly operate with high-resolution oil immersion objectives. A different high-throughput imaging 

and measurement method, using unmounted, but still acid-cleaned diatom frustule material, has 

been proposed previously by (Spaulding et al. 2012). In special settings, like for monospecific 

cultures, their FlowCam-based method can probably provide a superior throughput compared to our 

workflow. However, the range of morphometric descriptors seems limited to cell length in the case 

of the FlowCam. Also, the accuracy of measurements is expected to be higher in the case of images 

obtained using high-resolution oil immersion objectives from permanent slides, and probably even 

higher, but definitely more precisely reproducible, than data obtained by time-consuming manual 

measurement (whether using an ocular micrometer or software-assisted linear measurement 

between manually selected points in a digital image). The variation of valve measurements induced 

by using multiple segmentation methods simultaneously in SHERPA is usually around 1 % (Kloster et 

al. 2014). 

Focus: Autofocusing at a specified slide position (X, Y) is realized by capturing images at different 

focus depths (Z), determining the value of a focus function at each Z position and finding the location 

of its maximum. The focus function used, the Z-range captured, as well as the steps size, can be 

controlled by the user. Finding the best focus position is a low-level component of the imaging 

workflow that is applied at a number of different steps throughout, and autofocus settings for 

different steps (focus map creation versus final imaging) and for different objectives need to be 

optimized separately. 
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An area scan consists of a number of steps (see Figure 2 for a graphical overview): After selection of 

the target area, the Z position providing the maximum of a focus function is determined over a grid 

covering the target area. Using linear or spline interpolation, a focus map is created estimating the 

height (Z coordinate) of the optimal focus position across the whole target area. The way the focus 

grid is created can be controlled by the user in fine detail. Respective parameters regard the 

resolution of the grid for focus map creation, the autofocus settings applied in this step, as well as 

the interpolation method. The target area is divided into overlapping fields-of-view that are captured 

one by one. For each (X, Y) position, the Z position can either be determined from the interpolated 

focus map, or from a renewed autofocusing around that Z position (fine focus).  

There are two main reasons why images captured in a single focus position determined from a grid 

interpolation are often not optimally sharp: first, minute local variation in frustule positions in the Z 

direction on a preparation often exceeds the depth of focus of even relatively low-resolution (10×, 

20×) objectives. Second, in the case of several taxa, relevant morphological information is located in 

different focal planes across a single valve (for instance, the outline is often best discernible in a 

different Z position than valve face structures like striation). One of the possible measures to 

improve this situation is conducting a renewed autofocusing at each image position, which enhances 

the quality of the resulting images (more homogeneous sharpness), but comes at the cost of 

increased processing time. Another possible measure to address local variation in object Z positions 

is to capture and combine an image stack at each (X, Y) position. If this is performed over a range 

that covers the heterogeneity in Z positions across the slide, the quality of the stacked images can be 

comparable to or even better than those captured after renewed autofocusing even if a second 

autofocusing step is omitted. The trade-off for this measure is a substantially increased processing 

time. In our experience, however, it is difficult to estimate in advance the degree of Z position 

heterogeneity before a scan. We found, therefore, that the most generally applicable procedure is to 

combine a renewed autofocusing with image stacking (as opposed to capturing a single image only at 

each position). Renewed autofocusing ensures that the images are taken in a Z-range that fits the 

object height distribution in the specific field-of-view. On the other hand, capturing and combining 

images at multiple focus depths ensures that differences in object height within a single field-of-view 

do not lead to only those objects being pictured sharply which dominate the autofocus function in 

that field of view (which can be the largest or the most contrasting objects and are not necessarily 

the object of interest). Focus stacking also improves single-specimen images in the sense that 

features of the valve lying in different focus depths (for instance, valve outline as well as valve face) 

are visualised sharply, although in the case of diatoms with complex three-dimensional valve 

structures, this might create disturbing artefacts.  

We note that it is not necessary to combine (stack) images taken at different Z but identical (X, Y) 

positions into an extended depth-of-focus image. It is also possible to keep the individual Z-position 

images and analyse them separately or in a combined manner in downstream processing. However, 

we currently do not see that this could lead to an improvement in the quality of the low-resolution 

area scan analysis, and so decided to only keep the stacked images for further processing in this case, 

which helps saving disk storage space. In the case of high-resolution images, we see a strong 

potential in analysing image stacks as opposed to stacked extended depth-of-focus images, but 

development of methods specifically suited to the former is substantially more challenging than 

analyses of stacked images and currently is not part of our workflow. 

Investigated Features: During the ADIAC project, a large variety of morphometric features (e.g., 

Gabor features or Legendre polynomials) were measured and classified for taxonomic identification 



Page 52 of 144 

Applied Sciences 2017, 7, 330; doi:10.3390/app7040330 www.mdpi.com/journal/applsci 

of diatoms, utilizing a compilation of mostly prototyped methods. In contrast, SHERPA investigates 

less and partly different features (e.g., elliptic Fourier descriptors (Claude 2008)) and focuses on 

finding, imaging and measuring diatoms based on their shape as part of a routine workflow for 

morphometry purposes.  

Data economy: An area scan, as described above, can in principle be performed with any user-

selected objective, including oil immersion objectives. Accordingly, it would be thinkable to design an 

imaging/image analysis workflow where diatom slides are scanned over their whole area using a 

high-resolution oil immersion objective directly. This is indeed possible (and we have tested the 

procedure) but causes two difficulties: One is an enormous increase in storage capacity required to 

save the images. To capture the same physical surface area of a slide, roughly 10 times as many 

images captured by a high-resolution 63× objective are necessary when compared to a 20× objective. 

The difference is almost 40-fold when comparing the 63× with a 10× objective. In addition, the 

probability of individual diatom frustules not being captured fully on any single field-of-view image 

increases, hampering downstream analyses. This can in principle be helped by increasing the overlap 

between neighbouring fields-of-view, but to ensure that most frustules are captured fully in at least 

one field-of-view, the overlap between neighbouring images should be in the range of the size of the 

largest frustules in a sample, which is substantial. Taking 64 μm, a not uncommon diatom size, as an 

example (this matches the overlap between neighbouring fields-of-view in our 20× pre-scan): this 

corresponds to around 627 pixels in images captured at 63× objective magnification. A full field-of-

view image has 1360 × 1024 pixels, i.e., the necessary overlap would correspond to almost half the 

image width and over 60 % of image height. This leads to a further substantial increase of storage 

capacity, due to the fact that more images are required to capture the same slide area. Besides an 

increase in storage space requirements by more than an order of magnitude, processing time for 

downstream steps is also increased in a similar manner. 

Due to these complications, we finally adopted a two-step imaging procedure which was previously 

suggested and tested by the ADIAC project (du Buf and Bayer 2002). This consists of a low 

magnification area scan, followed by an image analysis step locating diatom frustules in the images, 

and by a high-resolution multiple focal planes imaging limited only to slide positions where objects of 

interest (frustules) were located (see Figure 1 steps 2–6). This procedure keeps storage space 

requirements relatively low while still allowing high precision of morphometric characterization. In 

order to be able to implement this workflow, software functionality for exporting outline point 

coordinates of objects found from SHERPA and importing these into virtual slides in the VSViewer 

software was developed in communication with Metasystems GmbH. 

User efforts: By all efforts at automation and supporting high throughput analyses, the quality of 

final results from this workflow can be substantially improved by human intervention at multiple 

steps of the workflow. Although in some situations it can be satisfactory to receive a subsample of 

diatom valves of interest in a defined slide area, there are also use cases when it is important to not 

miss (m)any objects of interest (quantitative counts). Also, diatom valves representing taxa of 

interest cannot be differentiated from other species (in the case of taxon-specific analyses), and from 

other types of objects commonly occurring on diatom slides (like sediment particles or unidentifiable 

fragments of broken diatoms) at a 100 % accuracy and specificity. Furthermore, segmentation can be 

misled by touching or overlapping objects, minor fractures in valves or other anomalies. The 

workflow using slide scanning and SHERPA allows a fine scale control to address these issues. After 

the first slide scan generating an overview at low objective magnification, the target objects located 

by SHERPA can be manually checked and remaining non-diatom objects sorted out before further 
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processing. In SHERPA, one can either use stricter quality settings to speed up or completely skip 

manual processing and to reduce the number of non-diatom objects detected at the price of perhaps 

missing more valves of interest; or use more permissive quality criteria potentially allowing a higher 

yield at the price of more false positives (requiring more processing time to remove these manually).  

If it is critical not to miss any valves lying in the slide area of interest, there is a possibility for manual 

interaction with the virtual slide once object positions and outlines detected by SHERPA have been 

imported into it. At this stage, the virtual slide can be scanned visually and diatom objects missed by 

SHERPA can be marked manually in addition so that they are also imaged at high resolution in the 

next step. 

Finally, to improve segmentation results in the case of individual problematic valves (e.g., ones 

overlapping with other objects), a manual correction of outlines is possible at the stage of SHERPA 

analysis of high-resolution images. The morphometric features, as well as quality scores and ranking 

of the object, are updated immediately after such manual corrections, and the fact that a manual 

correction was applied to the object is recorded in the results table exported by SHERPA for further 

processing. Again, a decision as to whether a manual processing at this step is sensible and how 

much time to invest in it can be decided case by case based on the purpose of the investigation. 

Practical example: To give a simple demonstration of the workflow introduced, we presented a basic 

morphometric characterization of Fragilariopsis kerguelensis, one of the most common diatom 

species in Southern Ocean sediments from the late Pleistocene on to present days (Cortese and 

Gersonde 2008). The fact that we can substantially extend on the hitherto reported size range of the 

species (see Figure 9) seems to simply reflect a substantial increase in sample size. Although 

qualitatively, we see many of the longest valves in samples from MIS5, a Kolmogorov–Smirnov test 

did not support a significant difference in apical length distributions of this sample from more recent 

sediment layers. Whereas taxonomic descriptions circulating in the literature might be based on 

measuring dozens, perhaps up to a few hundred valves (Hasle 1965, Cefarelli et al. 2010), using the 

partially automated workflow presented, we could measure about 12,000 valves. Ca. 0.54 % (in total 

64) of the F. kerguelensis valves analysed had an apical axis length longer than the maximum of 

83 μm reported before by (Hasle 1965, Fenner et al. 1976, Cefarelli et al. 2010). The longest valve 

with 118.9 μm apical axis length (see Table 1 and Figure 6) is ca. 45 % longer than the maximum 

reported before. The shortest valve with 11.1 μm apical axis length is smaller than the minimum sizes 

reported by (Cefarelli et al. 2010) and (Fenner et al. 1976), but larger than the 10 μm reported by 

(Hasle 1965). The transapical axis length ranges from 3.7 to 14.2 μm, compared to 4.5 to 12 μm 

reported by (Fenner et al. 1976), where 3.66 % (in total 434) valves were larger, and 0.08 % (in total 

nine) valves were smaller with regard to this axis than reported before. 

 
Figure 9: Valve size ranges reported in the literature compared to our findings. 

Whilst the distribution of apical valve axis lengths is right-skewed (see Figure 7 top), as can be 

expected based on size reduction accompanying vegetative divisions, the symmetric distribution of 

transapical valve axis lengths (see Figure 7 bottom) shows that the size reduction somehow is relaxed 
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along this axis for F. kerguelensis. Whereas it could be suspected, based on this symmetric 

distribution, that transapical valve width might remain constant with size decrease, this is not the 

case. The observed pattern is rather a roughly linear relationship of transapical width with apical 

length up to length of around 50 μm, and a constant or slightly decreasing transapical width with 

increasing length above that. This relation between apical and transapical valve length can be 

described by a third-order polynomial that explains ca. 50 % of the observed variance (see Figure A3). 

More details of the morphometrics of the species will be presented in a follow-up publication. 

2.4.6 Conclusions 

We describe a partially automated diatom slide imaging and image analysis workflow consisting of 

commercially and freely available components, making such a procedure widely applicable for 

routine research. Extending the size range reported for F. kerguelensis (quite substantially, by nearly 

45 % in the case of apical length) nicely illustrates the advantages of a (semi-)automated approach 

for microscopic morphometry of diatom valves, primarily that it makes documenting and measuring 

large numbers of specimens feasible with moderate effort. The method also enables one to flexibly 

balance throughput/manual effort required versus quality (specificity/sensitivity of detecting objects 

of interest). This workflow is still far from a fully automated optical diatom analysis system also 

capable of taxonomic identification of imaged valves, as envisioned earlier (du Buf and Bayer 2002); 

nevertheless, it implements substantial components and is usable for performing diatom 

morphometric research already in its current form. 

Supplementary Materials: The following are available online at http://awi.de/sherpa: Settings for 

Metafer4 software, the SHERPA software, SHERPA settings und shape templates, R functions for 

reading SHERPA output and removing duplicates from each dataset, morphometric data from 

PS1768-8. The latter one also is available at https://doi.org/10.1594/PANGAEA.873993. 
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2.4.7 Supplements 

2.4.7.1 Appendix A 

Samples from sediment core PS1768-8. 

Table A1: Information on the analysed samples from sediment core PS1768-8. 
Depth (cm) Age (years) MIS n 

60 10,195 1 85 
80 11,182 1 698 
100 12,071 1 857 
110 12,516 1 553 
120 12,960 1 322 
130 13,405 1 83 
140 13,849 1 255 
150 14,912 2 1659 
160 16,130 2 1458 
170 17,347 2 765 
180 18,565 2 441 
190 19,782 2 650 
200 21,000 2 718 
780 119,500 5 471 
800 123,700 5 437 
810 125,800 5 550 
820 127,900 5 420 
830 130,000 5 732 
840 132,100 6 166 
850 134,200 6 265 
870 138,400 6 274 

2.4.7.2 Appendix B 

Comparing apical valve axis length distributions from each MIS for significant differences. 

Table A2: The p-values of the two-sided Kolmogorov–Smirnov test show a significant difference 
between valve apical axis length distributions of MIS 1 & 2, 1 & 6 and 2 & 5 (see bold highlights). 
 MIS 1 MIS 2 MIS 5 MIS 6 

MIS 1 1.0000 NA NA NA 
MIS 2 0.0000 1.0000 NA NA 
MIS 5 0.2808 0.0000 1.0000 NA 
MIS 6 0.0429 0.1680 0.4442 1.0000 

 

Table A3: The p-values of the one-sided Kolmogorov–Smirnov test (Alternative hypothesis “greater”) 
show that the central tendency is greater in MIS 1 compared to MIS 2 and MIS 6, as well as for MIS 5 
compared to MIS 2 (see bold highlights). 
 MIS 1 MIS 2 MIS 5 MIS 6 

MIS 1 1.0000 0.0000 0.1408 0.0214 
MIS 2 0.7994 1.0000 0.9193 0.4559 
MIS 5 0.3137 0.0000 1.0000 0.2246 
MIS 6 0.8622 0.0841 0.7043 1.0000 

2.4.7.3 Appendix C 

The Shapiro–Wilk and the Lilliefors (Kolmogorov–Smirnov) normality tests do not support the 

hypothesis that the symmetrical distribution of transapical axis length is normal (see R output 

below). 
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R console output: 

> shapiro.test(fkergdata$Height, 5000)) # -> very low p-value, not normally 

distributed 

 Shapiro-Wilk normality test 

data: fkergdata$Height, 5000) 

W = 0.99782, p-value = 1.589e−06 

 

> lillie.test(fkergdata$Height) # very low p-value, -> not normally distrib

uted 

 Lilliefors (Kolmogorov-Smirnov) normality test 

data: fkergdata$Height 

D = 0.015253, p-value = 1.72e−06 
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2.4.7.4 Appendix D 

For each MIS we found valves exceeding the size ranges reported before (see Figures A1 and A2). 

 
Figure A1: Valve dimensions for different sampling depths; coloured lines depict the convex hull around the corresponding 
data points. Especially during MIS 5, extremely large valves were found. The dashed rectangle depicts the range of valve 
sizes previously reported in the literature. 
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Figure A2: Distribution of apical axis length for each MIS. Red lines depict the mean, black lines the median values, and blue 
lines the estimated density curves. 
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2.4.7.5 Appendix E 

Modelling apical versus transapical valve axis length. A third-order polynomial gave the best result 

regarding R2, Akaike and Bayesian information criteria (see the green curve in Figure A3). 

 
Figure A3: Models of apical versus transapical valve axis length. The polynomial model of order three (green) gives the 
lowest value of the Akaike (AIC) and of the Bayesian information criterion (BIC). The polynomial model of order four 
(brown) does not provide a significant improvement. 

Statistical assessment of polynomial model order one: 

R console output: 

> ## modelling valve transapical vs. apical length 

> x <- fkergdata$Width # apical axis lengths 

> y <- fkergdata$Height # transapical axis lengths 

> # poly(1) model 

> lmWidthHeightPoly1 = lm(y~x) 

> summary(lmWidthHeightPoly1) 

Call: 

lm(formula = y ~ x) 

Residuals: 

    Min      1Q  Median      3Q     Max  

−6.5225 −0.8975 −0.0182  0.8838  4.7325  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 6.4029050  0.0365284  175.29   <2e−16 *** 
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x           0.0762691  0.0009571   79.69   <2e−16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.31 on 11857 degrees of freedom 

Multiple R-squared:  0.3488, Adjusted R-squared:  0.3487  

F-statistic:  6350 on 1 and 11857 DF, p-value:  <2.2e−16 

 

> anova(lmWidthHeightPoly1) 

Analysis of Variance Table 

Response: y 

             Df Sum Sq Mean Sq F value    Pr(>F)     

x             1  10900 10899.5  6349.7  <2.2e−16 *** 

Residuals 11857  20353     1.7                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Statistical assessment of polynomial model order two: 

R console output: 

> # poly(2) model 

> lmWidthHeightPoly2 = lm(y~ x + I(x^2)) 

> summary(lmWidthHeightPoly2) 

Call: 

lm(formula = y ~ x + I(x^2)) 

Residuals: 

    Min      1Q  Median      3Q     Max  

−4.5560 −0.8131 −0.0312  0.7789  6.0982  

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  2.481e+00  7.707e−02   32.19   <2e−16 *** 

x            2.765e−01  3.668e−03   75.37   <2e−16 *** 

I(x^2)      −2.260e−03  4.028e−05  −56.11   <2e−16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.165 on 11856 degrees of freedom 

Multiple R-squared:  0.4854, Adjusted R-squared:  0.4853  

F-statistic:  5592 on 2 and 11856 DF,  p-value: <2.2e−16 

 

> anova(lmWidthHeightPoly2) 

Analysis of Variance Table 

Response: y 
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             Df  Sum Sq Mean Sq F value    Pr(>F)     

x             1 10899.5 10899.5  8035.2  <2.2e−16 *** 

I(x^2)        1  4270.5  4270.5  3148.2  <2.2e−16 *** 

Residuals 11856 16082.4     1.4                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Statistical assessment of polynomial model order three: 

R console output: 

> # poly(3) model 

> lmWidthHeightPoly3 = lm(y~ x + I(x^2) + I(x^3)) 

> summary(lmWidthHeightPoly3) 

Call: 

lm(formula = y ~ x + I(x^2) + I(x^3)) 

Residuals: 

    Min      1Q  Median      3Q     Max  

−4.4314 −0.7984 −0.0278  0.7729  4.3329  

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  3.553e−01  1.576e−01   2.254   0.0242 *   

x            4.350e−01  1.091e−02  39.879   <2e−16 *** 

I(x^2)      −5.806e−03  2.335e−04 −24.869   <2e−16 *** 

I(x^3)       2.372e-05  1.539e−06  15.415   <2e−16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.153 on 11855 degrees of freedom 

Multiple R-squared:  0.4955, Adjusted R-squared:  0.4954  

F-statistic:  3881 on 3 and 11855 DF,  p-value: <2.2e−16 

 

> anova(lmWidthHeightPoly3) 

Analysis of Variance Table 

 

Response: y 

             Df  Sum Sq Mean Sq F value    Pr(>F)     

x             1 10899.5 10899.5 8195.52  <2.2e−16 *** 

I(x^2)        1  4270.5  4270.5 3211.02  <2.2e−16 *** 

I(x^3)        1   316.0   316.0  237.62  <2.2e−16 *** 

Residuals 11855 15766.4     1.3                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Statistical assessment of polynomial model order four: 

R console output: 

> # poly(4) model 

> lmWidthHeightPoly4=lm(y~ x + I(x^2) + I(x^3) + I(x^4)) 

> summary(lmWidthHeightPoly4) 

Call: 

lm(formula = y ~ x + I(x^2) + I(x^3) + I(x^4)) 

Residuals: 

    Min      1Q  Median      3Q     Max  

−4.4436 −0.7984 −0.0282    0.7705  4.3359  

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  6.478e−01  3.061e−01   2.117   0.0343 *   

x            4.064e−01  2.787e−02  14.584  <2e−16 *** 

I(x^2)      −4.858e−03  8.820e−04  −5.507 3.72e−08 *** 

I(x^3)       1.105e−05  1.146e−05   0.964   0.3350     

I(x^4)       5.787e−08  5.190e−08   1.115   0.2649     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.153 on 11854 degrees of freedom 

Multiple R-squared:  0.4956, Adjusted R-squared:  0.4954  

F-statistic:  2911 on 4 and 11854 DF,  p-value: < 2.2e−16 

 

> anova(lmWidthHeightPoly4) 

Analysis of Variance Table 

Response: y 

             Df  Sum Sq Mean Sq   F value Pr(>F)     

x             1 10899.5 10899.5 8195.6842 <2e−16 *** 

I(x^2)        1  4270.5  4270.5 3211.0849 <2e−16 *** 

I(x^3)        1   316.0   316.0  237.6264 <2e−16 *** 

I(x^4)        1     1.7     1.7    1.2432 0.2649     

Residuals 11854 15764.7     1.3                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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2.5.1 Abstract 

The life cycle of the Southern Ocean diatom Fragilariopsis kerguelensis is known roughly, but many of 

its details have not been surveyed in the species’ natural habitat so far. We investigated material 

from a two year sediment trap time series by high-throughput imaging and image analysis, looking 

for morphometric signals which indicate life cycle stages. Based on changes in valve length 

distributions, we found three general seasonal phases corresponding to proliferation, ceasing and 

stagnation of the population. Furthermore we observed several transient signals, which might give 

further clues on population development and life cycle events. We discuss possible sources of these 

signals, and their relevance as possible indications for proliferation, grazing, adaption to 

environmental conditions, for an overwintering strategy and sexual activity.  

Key index words 

Morphometry, phytoplankton, SHERPA, Slide Scanner, valve size distribution 

Abbreviations 

ACC, Antarctic Circumpolar Current; APF, Antarctic Polar Front; BSiO2, biogenic silica; EIFEX, European 

Iron Fertilization Experiment; HLNC, high-nutrient low-chlorophyll; n, sampling size; N, population 

size; p, p-value; PCC, Pearson correlation coefficient; PFZ, Polar Frontal Zone; POC, particulate 

organic carbon; RI, ranking index; RFI, relative frequency of valves within the initial cell size range; 

SST, sea surface temperature 
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2.5.2 Introduction 

The pelagic pennate Fragilariopsis kerguelensis (O’Meara) Hustedt is endemic to the Southern Ocean, 

where it is one of the dominant diatom species (Hart 1942). The cells were described by (Hasle 1965) 

as 10 - 76 µm long and 5 - 11 µm wide, which we were able to extend up to 119.9 µm length (Kloster 

et al. 2017), and build colonies in form of chains, comprised of up to a dozen cells connected to each 

other. Thriving in the ice-free open waters of the Antarctic Circumpolar Current (ACC), it prefers 

surface water temperatures roughly between 0 and 10 °C (Zielinski and Gersonde 1997, Pinkernell 

and Beszteri 2013). A major fraction of the silicic acid brought to the Southern Ocean surface waters 

by the global overturning thermohaline circulation is taken up by F. kerguelensis, making this species 

the most important silica sinker of the Southern Ocean (Assmy et al. 2013). Indeed, F. kerguelensis is 

the main component of a band of silica-rich sediments that encircle Antarctica, known as the “diatom 

ooze belt” (Kozlova 1966, Defelice and Wise 1981, Zielinski and Gersonde 1997, Crosta et al. 2005, 

Shukla et al. 2016). This diatom ooze belt accounts for approximately one third of the global biogenic 

Si accumulation (Tréguer and De La Rocha 2013, Tréguer 2014), representing the largest sink for Si in 

the global ocean. Moreover, owing to the capacity of F. kerguelensis to thrive well in high-nutrient, 

low-chlorophyll waters, high abundances of F. kerguelensis in Southern Ocean sediments are 

regarded as a proxy for low-carbon high-silica exporting regimes (Smetacek et al. 2004, Abelmann et 

al. 2006).  

F. kerguelensis has a bipartite cell wall, which is strongly silicified (Hasle 1965) and encases the 

cytoplasm in two pill-box like frustules. These are exceptionally robust, which might be an adaptation 

against grazing (Verity and Smetacek 1996, Hamm et al. 2003). The frustules are comprised of two 

thecae, and their terminal faces are denominated as valves. Valve area and shape were proposed as 

proxies for reconstructing past positions and nutrient characteristics of the Antarctic Polar Front 

(APF) and the diatom ooze belt (Cortese and Gersonde 2007), as well as iron availability during 

glacial-interglacial periods (Cortese et al. 2012, Shukla et al. 2013, Nair et al. 2015, Shukla and Crosta 

2017). Furthermore, transfer functions, based on species compositions which were mostly 

dominated by F. kerguelensis (Zielinski et al. 1998, Gersonde et al. 2003, Gersonde et al. 2005), as 

well as other morphometric features of this species, have been related to summer sea surface 

temperature (Fenner et al. 1976, Cortese and Gersonde 2007).  

F. kerguelensis’ life cycle is characterized by a unique reproduction scheme (Round et al. 1990), 

which is tightly connected to their morphology. One of the two thecae is slightly smaller than the 

other, where the larger epitheca overlaps the smaller hypotheca. During cell division, each of the two 

resulting daughter cells inherits one of these thecae, but in both cases the inherited theca becomes 

the new epitheca regardless of its size, whilst the newly built theca is a smaller hypotheca. Because 

of this, one of the daughter cells has the same size as its parent – and the other is smaller. 

Accordingly, over time the size distribution of cells has an increasing amount of smaller cells. During 

this proceeding asexual reproduction, cells only become sexually inducible if their size falls below a 

certain limit, which usually is between 30 - 75 % of their maximum size (Davidovich 2001). Actual 

triggers of sexual reproduction are still unclear but considered to be diverse (Chepurnov et al. 2004). 

Among them, changes in the light regime, temperature and nutrient availability (Drebes 1977),  as 

well as the emission of specific pheromones (Sato et al. 2011, Moeys et al. 2016), have been 

reported as possible candidates to trigger sexual reproduction. F. kerguelensis exhibits a dioecious 

mating system where opposite mating types, originating from different strains, need to be present to 

start gametogenesis (Chepurnov et al. 2005, Fuchs et al. 2013). The naked gametes are formed 

within gametangia, and, after successful mating, the resulting zygote expands to a large-sized 

auxospore. Inside the auxospore, the so called initial cell is formed. The initial cell has a newly 
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formed frustule that constitutes the largest member of the subsequent vegetative size reduction 

cycle. Hence, sexuality plays a double role in the diatom life cycle: it ensures genetic diversity, and 

restores maximum cell size. Based on recent work with Seminavis robusta (to be published, personal 

talk with G. Pohnert) it appears that for cells that have just entered the size range where sexual 

reproduction is possible, gametogenesis will only be triggered if all of the other factors are optimal. 

In contrast, at the lower end of the size range, where size-restitution is a matter of survival, also sub-

optimal conditions will trigger sexual events. Accordingly, cell size distributions provide information 

on the controls as well as the details of diatom life cycles.  

Assessments of cell size distributions require large sampling sizes, and thus diatom life cycle 

investigations based on them are conducted only rarely. For example (Crawford et al. 1997) 

determined the size of 1,000 valves per sample of Corethron criophilum, and (D'Alelio et al. 2010) 

investigated Pseudo-nitzschia multistriata size temporal variations analyzing 200 cells per sample. In 

both cases, cells were sized manually by optical light microscopy. Newer technical developments 

provide automation of such measurements; for example the FlowCAM® (Fluid Imaging Technologies) 

system was utilized by (Spaulding et al. 2012) to assess cell length distributions for three species of 

diatoms, with sampling sizes between 320 and 672.  

(Fuchs et al. 2013) shed light on several aspects of the mating system and life cycle traits of 

F. kerguelensis using laboratory cultures. However, laboratory experiments are unrealistic in many 

aspects, particularly because they are only capable of reproducing natural conditions in limited ways. 

Therefore, field observations in the natural habitat of F. kerguelensis are essential to complement 

experimental observations in cultures, yet annual and multi-annual records of diatom populations in 

the pelagic waters of the Southern Ocean are rare due to logistical limitations. In this paper we 

present results of such study. We document the valve length distributions of F. kerguelensis 

populations collected during two years (2002 - 2004) by a sediment trap deployed in the Australian 

sector of the Polar Frontal Zone, in the middle of the Antarctic Circumpolar Current. The samples 

were analyzed using a Metafer automated slide scanner (MetaSystems Hard & Software GmbH, 

Altlussheim, Germany) and the diatom morphometry software SHERPA (Kloster et al. 2014). Our 

results represent the first observations of seasonal life cycle of F. kerguelensis in its natural habitat, 

clarifying influences of reproduction and grazing on the population, and hypothesizing an 

overwintering strategy. 

2.5.3 Material and Methods 

We analyzed material collected by a bottom-tethered sediment trap located at 54° S 140° E in 800 m 

depth, covering the period from November 2002 to October 2004. Details on the sediment trap, 

sampling and material processing are described in (Rigual-Hernández et al. 2015).  

2.5.3.1 Oceanographic setting 

The sediment trap site is located within the central area of the Polar Frontal Zone (PFZ) along the 

140° E meridian. The PFZ is delimited to the north by the Subantarctic Front (SAF) and to the south by 

the Antarctic Polar Front (APF). These two deep-reaching fronts account for a significant part of the 

eastward transport of the Antarctic Circumpolar Current (Nowlin and Clifford 1982, Rintoul and 

Sokolov 2001) while the PFZ waters are characterized by weak currents and relatively homogeneous 

physical and chemical properties. The PFZ waters south of Tasmania can be defined as a high-

nutrient low-chlorophyll (HNLC) regime, most likely due to the low dissolved iron concentrations in 

the region (Lannuzel et al. 2011). Indeed, it has been suggested that primary production is co-limited 
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by iron availability and light in the PFZ waters (Boyd et al. 2001, Lannuzel et al. 2011). Mixed-layer 

depths in this region are often shallower than 200 m (Rintoul and Trull 2001).  

Phytoplankton communities in the PFZ surface waters south of Tasmania exhibit high abundances of 

diatoms, as well as coccolithophores, flagellates and relatively low concentrations of cyanobacteria 

(Wright et al. 1996, Popp et al. 1999, Kopczynska et al. 2001, de Salas et al. 2011). 

 

Figure 1: Map of the Southern Ocean with annual sea surface temperatures (SST; World Ocean Atlas 2013) showing the 
location of the 54° S station and the site of the European Iron Fertilization Experiment (EIFEX). Black line represents the 
position of the Antarctic Polar front  (Orsi et al. 1995). 

2.5.3.2 Microscopy 

Microscope slides were prepared by embedding the processed siliceous material into Norland Optical 

Adhesive NOA 61 (Norland Products Inc., Cranburry, New Jersey, USA). Microscopy and 

morphometric measurements were conducted using a Metafer automated slide scanner 

(MetaSystems Hard & Software GmbH, Altlussheim, Germany) and our diatom morphometry 

software SHERPA version 1.1c (Kloster et al. 2014) according to our previously described workflow 

(Kloster et al. 2017). Briefly, a rectangular area on each slide was scanned, in overlapping fields of 

view, with a Zeiss Plan-NEOFLUAR 20× objective. These low resolution images were compared by 

SHERPA to a template library of diverse outline shapes representing the genus Fragilariopsis (see 

supplement ”SHERPA settings”), to locate valves of interest in the captured area. Positions where 

valves were found were then revisited in the Metafer system with a high resolution oil immersion 

objective (Zeiss Plan-APOCHROMAT 63×/1.4), each captured in 20 different focal planes, and the 

resulting images combined to extended depth of focus images. The latter were then analyzed with 

SHERPA for morphometric measurements. Settings files used for SHERPA analyses of both, the low 
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and high resolution images as well as the according shape templates, are included in the 

supplementary material, see “SHERPA settings”.  

Because of the relatively low refractive index (1.56) of the NOA 61 mountant, imaging contrast was 

poorer than for instance in Naphrax, causing a decreased accuracy in object segmentation and 

outline detection. To compensate this shortcoming, increased manual intervention was necessary in 

SHERPA, for manual post-editing as well as reviewing segmentation results (see supplement 

“Modified SHERPA procedure”).  

2.5.3.3 Data analysis 

For tracing auxosporulation / size restitution events, the relative abundance of very large valves was 

determined. F. kerguelensis average valve length peaks in the Southern Ocean sediments beneath 

the APF (Cortese and Gersonde 2007). Close to the APF, in the Atlantic sector of the Southern Ocean 

(49° S 2° E), the only observation of F. kerguelensis sexual activity in its natural habitat was made 

during the EIFEX experiment (Assmy et al. 2006). Since our sampling site also is close to the APF, we 

assume that data of valve length measured at both sites should be comparable. For the EIFEX 

experiment, auxospores of F. kerguelensis containing initial thecae were reported to be at least 76 

µm long. We assumed that valves longer than 75.5 µm originate from either initial cells or from cells 

which descended from them by only few divisions, and refer to them as within the initial cell size 

range. These large cells were very rare, and their counts are affected significantly by the “ranking 

index” (RI) up to which results were taken into account (please see supplement “Modified SHERPA 

procedure” and (Kloster et al. 2014, Kloster et al. 2017) for further information). Accordingly, relative 

abundance calculated from counts utilizing different highest RIs might be biased (respective results 

are listed in supplement “Valves within the initial cell size range”). To compensate for that, they were 

searched for in an additional reviewing run, by examining high-resolution results of RI 0 to 6 for each 

slide, regardless of the maximum RI used for retrieving the valve length distribution. The 

corresponding counts were normalized to the amount of material suspension applied to the slide, 

the scanned slide area (approximated by the number of fields of view scanned at low magnification), 

the length of the sampling period for the corresponding cup of the sediment trap, and the 

F. kerguelensis flux rates from (Rigual-Hernández et al. 2015) to characterize the relative frequency 

of valves within the initial cell size range (RFI) in the population (see Equation 1). These values are 

using an arbitrary scale and are only comparable between each other. 

𝑅𝐹𝐼 =
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑣𝑒𝑠 ≥ 75.5 µ𝑚) ∙ 1012

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 ∙ 𝑛𝐹𝑂𝑉𝑠 ∙ 𝑠𝑝𝑙 ∙ 𝑣𝑎𝑙𝑣𝑒 𝑓𝑙𝑢𝑥
 

with nFOVs = number of scanned fields of view, spl = sampling period length 

(Equation 1) 

 

A rough estimation of the growth rate (see Equation 2) is possible for periods with an ongoing 

decrease of mean valve length, based on an average size reduction of 0.28 µm / division observed by 

(Fuchs et al. 2013), and assuming that the observed size decrease was produced by vegetative 

proliferation only. 

𝑒𝑠𝑡. 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦) =
𝑙2 − 𝑙1

(𝑡2 − 𝑡1) ∙ (−0.28 µ𝑚 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛)⁄
 

with 𝑙1, 𝑙2 = mean valve length at time 𝑡1, 𝑡2 

(Equation 2) 
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Of the morphometric parameters determined by SHERPA, for this publication we present the apical 

valve lengths and the variation in their distribution over time. Downstream analysis of counts and 

valve sizes was performed using scripts programmed in R (R Core Team 2015) (see supplement “R-

scripts”). Measurements of additional features like transapical length, valve area, costae distance and 

F (Fenner et al. 1976) or F* (Cortese and Gersonde 2007) are included in supplement “Additional 

measurements”. The complete data set is provided in supplement “R” of the annexed data medium. 

2.5.4 Results 

We observed distinct seasonal trends for the two sampling periods 2002/03 and 2003/04, mostly 

with similarity regarding seasonal trends, but differences in detail. The according trend-lines in 

(Figure 2 & 3 a, c – h) were derived by LOESS smoothing, with the exception of chlorophyll-a data, 

where linear interpolation was used to keep the graph consistent with the original publication.  

2.5.4.1 Chlorophyll-a concentration 

The chlorophyll-a data were plotted to provide ecological background to the ensuing morphometric 

measurements (Figure 2 & 3 a and supplement “Chlorophyll-a data”, derived from NASA’s Giovanni 

online data system) as they present an estimation of algal biomass accumulation in the area between  

55.5–52.5° S and 130–150° E, aiming to reflect the chlorophyll-a concentration of the region sampled 

by the 54ºS site traps (Rigual-Hernández et al. 2015). The concentration was measured monthly, with 

the exceptions of July and August, when no data is available. 

2.5.4.2 Sediment trap material 

Signals originating from the sediment trap material are postponed by an estimated 2 to 6 weeks 

compared to the chlorophyll-a data. This is due to the time required for material to reach the 

sediment trap in 800 m depth (discussed below). Below, dates are referred to by the middle day of 

the sampling period. Sampling periods and intervals differed for both seasons: In 2002/03, a period 

of 290 days was covered, from November 18th 2002 to September 4th 2003, with sampling intervals 

mostly covering 10 days. For season 2003/04, a period of 378 days was covered, from September 

27th 2003 to October 9th 2004, with sampling intervals for the most part integrating over 14 days.  

Valve flux rates (Figure 2 & 3 b) for F. kerguelensis were estimated previously (Rigual-Hernández et 

al. 2015) and show different patterns for both seasons. In 2003/04, the flux was significantly lower 

compared to the previous season, but the period of high flux lasted nearly twice as long, from mid-

spring / November until the middle of autumn / April.  

Valve length distributions were measured from nearly 29,000 F. kerguelensis valves, and were mostly 

asymmetrical (Figure 2 & 3 c); because of this we use the median instead of the mean as measure of 

central tendency, even though both exhibit the same patterns. Their variability displayed the 

following commonalities between both seasons: Median valve size decreased during late spring and 

first half of summer, then increased until ca. mid-autumn, and, after a decrease, stayed stable during 

the rest of the year, with a slight increase around late winter / early spring. The same applies to valve 

width (transapical axis length), valve area, costae distance and F or F*; the corresponding data are 

presented in supplement “Additional measurements”.   

In the season 2002/03, median valve length varied pronouncedly over the year, ranging from 20.8 to 

43.9 µm (ca. 24 to 38 µm for the smoothed median). The minimum was reached in mid-January 2003 

/ mid-summer, the maximum middle of April / mid-autumn. After a decrease until May / late 

autumn, median lengths remained stable until mid-winter at ca. 33 µm, and increased to 38 µm 
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towards late August / late winter.  

During sampling season 2003/04, this increasing trend continued, and peaked at 41.1 µm in early 

October 2003. Within the timeframe comparable to the preceding year (mid-November 2003 until 

early September 2004), median valve lengths varied less, from 28.5 to 38.5 µm (ca. 30 to 38 µm for 

the smoothed median). Shifts were less pronounced compared to the previous season, but inflexion 

points of trend lines, laid on skewness as well as minimal and maximal sizes, occurred at about 

similar points of time. The minimum was reached in late January 2004 / mid-summer, an 

intermediate maximum of 37.4 µm in middle of April 2004 / mid-autumn, and the absolute maximum 

in early August 2004 / mid-winter. After median valve lengths decreased in late autumn, they 

remained stable at ca. 36 µm, and increased to 40.9 µm for the last sample of the season in October 

2004.  

Skewness of valve length distributions (Figure 2 & 3 d) was elevated throughout, that is 

measurements of valve lengths were right-skewed, with prolonged tails at large sizes, with the 

exception of cup 1.16. Changes in skewness were similar during both seasons, although less 

pronounced in the second one. Skewness followed the patterns of valve length medians in an 

inversed manner, with a Pearson correlation coefficient (PCC) of -0.82 (N = 41, p = 3.384 ∙ 10-11). This 

reveals that valve length distributions with higher medians were more symmetric. 

Minimal and maximal valve length (Figure 2 & 3 e, f), depicted by the first and 99th percentile, 

showed a similar general pattern as the median valve lengths (N = 41, first percentile: PCC = 0.85,  

p = 3.274 ∙ 10-12; 99th percentile PCC = 0.78, p = 1.759 ∙ 10-09). 

Ratio of reproduction size classes (Figure 2 & 3 g): We defined here sexually inducible size classes 

operationally as below 31.5 µm apical valve length, after (Assmy et al. 2006) who observed 

gametangia of maximal 31 µm length. The percentage of sexually inducible cells varied significantly, 

following median valve length with a PCC of -0.98 (N = 41, p < 2.2 ∙ 10-16).  

In season 2002/03, the fraction of the size class capable of sexual reproduction ranged from 86.6 to 

17.9 % of the whole population, with the maximum reached in late January 2003 / mid-summer, and 

the minimum in late April 2003 / mid-autumn. Subsequently, the proportion of cells within the 

sexually inducible size range rose up to 48 % and decreased throughout the winter 2003.  

During sampling season 2003/04, this decreasing trend continued, resulting in only 7.5 % of the 

population being capable of sexual reproduction by October 2003. Within the time frame 

comparable to the previous year, a similar but less pronounced pattern was visible, where the 

maximum of 58.7 % occurred at the end of January 2004 / mid-summer, an intermediate minimum of 

26.2 % in the middle of April 2004 / mid-autumn, and the absolute minimum in early August 2004 / 

mid-winter. For the last sample of the season, in early October 2004, the sexually inducible size 

fraction dropped down to 14.8 %. 

The relative frequency of valves within the initial cell size (RFI, see Figure 2 & 3 h) refers to valves of 

at least 75.5 µm apical valve length. These were quantified separately, and their relative abundance 

is expressed on an arbitrary scale, not as percentage of total measured population (see Equation 1). 

This was necessary because valves in this size range represented only a very minor part of the 

populations and occurred in very low numbers in the overall samples. RFI varied in the range 

between 0 and 0.4 and showed distinct patterns for both seasons investigated (see Figure 2 & 3 h 

and supplement “Valves within the initial cell size range”): It exhibited transient peaks in mid-

summer for both seasons, and elevated periods for winter 2003 and throughout mid-summer to mid-

winter 2004.  
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Season 2002/03: A low relative frequency between 0 and 0.07 persisted from late November 2002 / 

late spring until mid-April 2003 / mid-autumn, with the exception of 0.14 in late January 2003 / mid-

summer. Subsequently, the frequency rose up to a maximum of 0.28 in late August 2003 / end of 

winter.  

Season 2003/04: During early October and mid-December 2003, the relative frequency of valves 

within the initial cell size range dropped to 0.01. After an increase to a maximum of 0.4 by January 

2004 / mid-summer, it fluctuated at an elevated level of ca. 0.17 until end of June / mid-winter, and 

decreased subsequently. 

Explicit values of the above mentioned measurements are listed in supplement “Summary statistics 

of F. kerguelensis valve size distributions”. 

2.5.4.3 Seasonal characteristics 

The general patterns of valve length distribution shifts were similar between both seasons, despite 

varying extent of the shifts and substantial differences regarding Chlorophyll-a concentration as well 

as F. kerguelensis valve flux. These patterns were strongly influenced by the ratio between smaller 

and larger cells, which becomes apparent in the distributions’ shape, as well as by their mean or 

median (Figure 2 & 3 c, d). The median valve length correlated with the percentage of sexually 

inducible cells (Figure 2 & 3 g turquoise bars) with a PCC of -0.98 (N = 41, p < 2.2 ∙ 10-16). Because of 

the variable and mostly pronounced asymmetry of valve length distributions, we prefer regarding the 

median over their mean as a major signal, but both of them showed similar trends. The common 

seasonal patterns are summarized below by dividing the year into three different phases (see colored 

areas in Figure 2 & 3 b-h), according to the inflexion points of trend curves laid onto valve length 

median (Figure 2 & 3 c), distribution skewness (Figure 2 & 3 d) and extremes (Figure 2 & 3 e, f). 

 Phase 1 (highlighted in orange color in Figure 2 & 3): During late spring and early summer, 

average valve lengths decreased. Percentage of smaller valves (below the sexual cut-off), as well 

as minimal and maximal valve lengths, increased. By the end of this phase, valve length 

distributions were highly right-skewed and dominated by smaller cells.  

 Phase 2 (highlighted in green color): From late summer to mid-autumn, average valve lengths 

increased. Percentage of smaller valves dropped, whereas minimal and maximal valve lengths 

increased, skewness of valve length distributions tapered off. 

 Phase 3 (highlighted in blue color): During late autumn and winter, average, minimal and 

maximal valve lengths remained stagnant at high values, with a slight increase towards the end 

of the phase / early spring. 
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Figure 2: Temporal variability during sampling season 2002/03, x-axis refers to the middle day of sampling periods. 
a) Chlorophyll-a concentration in the upper water column. b-h) Sediment trap data from 800 m depth, regarding 
F. kerguelensis; depending on the sinking speed, the timeline is delayed by ca. 2 to 6 weeks compared to the chlorophyll 
data. Trend lines are derived by LOESS smoothing: b) Valve flux. c) Valve length. Blue violin plots depict the value 
distributions, box plots represent quartiles, red dots indicate the mean, black dots inside the boxplots the median. The 
dashed line depicts 31 µm, the size limit below which sexual reproduction can occur. d) Seasonal changes of the valve 
length skewness. e) Minimal valve length by 0.01 quantile. f) Maximal valve length by 0.99 quantile. g) Ratio of size fractions 
which are sexually inducible (that are capable of vegetative as well as sexual reproduction, with a valve length below 
31 µm, highlighted in turquoise), or capable of vegetative reproduction only (valve length above 31 µm, highlighted in 
orange). h) Relative frequency of valves within the initial cell size range (RFI), as an indicator for initial cells. 
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Figure 3: Temporal variability during sampling season 2003/04, x-axis refers to the middle day of sampling periods. 
a) Chlorophyll-a concentration in the upper water column. b-h) Sediment trap data from 800 m depth, regarding 
F. kerguelensis; depending on the sinking speed, the timeline is delayed by ca. 2 to 6 weeks compared to the chlorophyll 
data. Trend lines are derived by LOESS smoothing: b) Valve flux. c) Valve length. Blue violin plots depict the value 
distributions, box plots represent quartiles, red dots indicate the mean, black dots inside the boxplots the median. The 
dashed line depicts 31 µm, the size limit below which sexual reproduction can occur. d) Seasonal changes of the valve 
length skewness. e) Minimal valve length by 0.01 quantile. f) Maximal valve length by 0.99 quantile. g) Ratio of size fractions 
which are sexually inducible (that are capable of vegetative as well as sexual reproduction, with a valve length below 
31 µm, highlighted in turquoise), or capable of vegetative reproduction only (valve length above 31 µm, highlighted in 
orange). h) Relative frequency of valves within the initial cell size range (RFI), as an indicator for initial cells. 

2.5.5 Discussion 

Because of the unique reproduction scheme of diatoms, events in their life cycle can be traced from 

cell size distributions. Continuous long-term monitoring of phytoplankton is, however, not feasible in 

the Southern Ocean due to the costs and efforts of year-round on-site sampling. To overcome this 

problem, and as a test case for our diatom morphometry workflow (Kloster et al. 2017), we 
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investigated sediment trap material collected at 800 m depth at sampling intervals between 10 and 

45 days, covering two complete years. F. kerguelensis was selected as target species due to its 

importance in regulating ocean nutrient stoichiometry, key role at the base of Southern Ocean 

ecosystems, and to its usefulness as proxy for reconstructing past sea-surface conditions (Zielinski 

and Gersonde 1997, Smetacek et al. 2004, Assmy et al. 2013). By looking at year-round variations in 

valve length distributions, we provide new insights into the life cycle of F. kerguelensis in its natural 

habitat by using morphometrics based on high throughput microscopy and image analysis.  

2.5.5.1 Particles collected by the sediment trap 

It is important to be aware of the varying and differing sampling intervals. To keep figures and 

discussion congruent throughout the discussion, we refer dates to the time line of the sediment trap 

signals. This is postponed by several weeks compared to the situation within the upper water 

column, depending on size, shape and buoyancy of the sinking particles, perturbation of the mixed 

layer and processing by zooplankton. (Ebersbach et al. 2011) investigated particle fluxes in a similar 

environmental setting in Polar Frontal Zone waters at 54° S 147° E. Their observations were made 

during late January / early February 2007, in a situation where the phytoplankton bloom was strongly 

declining. They used an indented rotating sphere trap at 320 m depth to determine particle sinking 

speed. About 30 % of the biogenic silica was observed to be sinking slower than 10 m · d-1, about 

30 % sinking between 10 and 100 m · d-1, and about 40 % sinking faster than 100 m · d-1. In a gel trap 

at 290 m depth, small diatom chains or individual diatom cells comprised 74 % of the particle counts, 

whilst fecal pellets and aggregates comprised only 26 % thereof, but, due to their size, nearly 100 % 

of the flux volume. (Rigual-Hernández et al. 2016) estimated sinking rates ranging between 20 and 

50 m · d-1 from November to January, for covering the distance between our sediment trap (800 m) 

and a second trap installed at 1,500 m. For the same site, (Closset et al. 2015) reported a sinking rate 

estimation of maximal 35 m · d-1 between July 1999 and August 2000, with a strong seasonal 

variability and the highest rates achieved during spring and summer. (Waite and Nodder 2001), using 

different methods, found sinking rates between 0.47 and 2.4 m · d-1 in February 1999 at 61° S, 141° E 

between 5 m and 40 - 70 m depth during a bloom induced by iron fertilization, where F. kerguelensis 

contributed substantially to the population. Based on these numbers, we estimate the time lag for 

signals from actively living populations in the surface mixed layer compared to signals from material 

collected by the sediment trap at 800 m depth, to be roughly between two and six weeks, but there 

is a large and not quantifiable uncertainty even in this broad estimate. 

Diatoms reaching the sediment trap depth are mainly dead, with few exceptions of cells possibly 

surviving grazing (Jansen and Bathmann 2007), but nevertheless ending up as part of a fecal pellet or 

aggregate sinking down. Possible reasons for diatom death are natural mortality, starving, pathogens 

or grazing. Close to our study area (54° S 147° E), grazing clearance rates from deckboard incubations 

suggest that 42 % of the primary production per day were consumed by grazing (Pearce et al. 2011). 

Although the latter observations were limited to a short observational period and to a single site, the 

results of (Pearce et al. 2011) suggest that grazing plays an important role in the control of particle 

export at out sampling site. Furthermore, (Assmy et al. 2013) described F. kerguelensis life cycle 

strategy as involving “controlled, low-level, quasiconstant mortality in this species with sinking out of 

empty frustules and recycling of cytoplasm in the surface layer”, which would provide for a perpetual 

trickling of F. kerguelensis valves down into the sediment trap. 

2.5.5.2 Population dynamics 

We can draw indirect inferences about population dynamics from species specific valve flux rates and 

surface chlorophyll-a concentration (Figure 2 & 3 b, a). These were highly seasonal, with considerable 
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differences between the investigated seasons:  

In summer 2002/03, the productive season of F. kerguelensis comprised two periods of enhanced 

valve export, indicated by peaking valve flux rates in combination with elevated chlorophyll-a 

concentrations. During the first flux maximum, F. kerguelensis provided the largest fraction of the 

valve flux with ca. 40 % (see supplement “Flux data”). The flux from the second bloom was even 

more strongly dominated by F. kerguelensis, by ca. 70 %. After termination of this bloom, the 

chlorophyll-a concentration remained high, while flux of biogenic silica stayed low, whereas fluxes of 

CaCO3 and particulate organic carbon were within roughly the same range as during the bloom (see 

(Rigual-Hernández et al. 2015) and supplement “Flux data”). This can probably be explained by 

proliferation of phytoplankton which did not reach the sediment trap, succeeding the productive 

phase of strongly silicified diatoms, for example Chaetoceros subg. Hyalochaetae or Phaeocystis.  

In 2003/04, the F. kerguelensis productive season lasted much longer, and compared to the previous 

year, it both started earlier and ended later. Changes in flux rates were less pronounced, with only a 

single, less prominent peak at about the time of year corresponding to the second bloom of the 

previous season. This flux event was dominated by F. kerguelensis by ca. 65 % (see supplement “Flux 

data”) and corresponded, taking into account the shifted time lines, to elevated chlorophyll-a 

concentration.  

2.5.5.3 Changes in valve lengths distributions 

Shifts in valve length distributions toward shorter cells indicate vegetative reproduction, which adds 

progressively smaller cells to the population, according to the Macdonald-Pfitzer rule (Macdonald 

1869, Pfitzer 1869). Shifts towards larger cells can be caused either by loss of smaller cells, or by 

sexual reproduction (combination of a loss of small gametangial frustules and addition of initial cells). 

Stagnant distributions are a signal for low reproductive (incl. vegetative and sexual) activity. We 

observed three phases of valve length distribution shift, which are interpreted in the following way in 

this framework: 

 During phase 1 (highlighted in orange color in Figure 2 & 3) the median valve lengths were 

dragged down by an accumulating proportion of short valves. This was probably caused by 

prevailing vegetative reproduction, adding an increasing quantity of progressively smaller cells to 

the population. We assume that the reason for decreasing minimal valve length is that high 

division rates forced cells to converge towards their lower size limit. We also hypothesize that 

the reason for decreasing maximal valve length is that their absolute abundance was not 

replenished significantly by sexual reproduction (discussed below), and their relative abundance 

was reduced by a “dilution effect” caused by the massive increase in the abundance of smaller 

cells. 

 During phase 2 (highlighted in green color) median valve lengths increased by a loss of short 

valves (see Figure 4 for a detailed view). This seems to reflect a combined effect of ceasing 

vegetative reproduction and selective removal of smaller cells from the population. The latter 

might have been caused by a substantial gametogenesis event, the incapacity of smaller cells to 

resist declining environmental conditions, like reduced light availability, or by grazing selective to 

smaller cells. The latter two could also explain the increase of minimal valve length, whilst 

maximal valve length might rise due to an inversion of the “dilution effect” described above. 

 During phase 3 (highlighted in blue color) valve length distributions were mostly stagnant and 

contained the lowest proportion of short valves. This indicates low (probably light limited) 

reproductive activity during the winter. 
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Figure 4: Temporal variability of valve length 
distributions showing the ongoing loss of short valves 
during phase 2 of sampling seasons 2002/03 (detail 
from Figure 2). Blue violin plots depict the valve length 
distributions, box plots represent quartiles, red dots 
indicate the mean, black dots inside the boxplots the 
median, red and black lines the respective trend lines 
derived by LOESS smoothing. The dashed line depicts 
31 µm, the size limit below which sexual reproduction 
can occur. Phase 1 is highlighted by red, phase 2 by 
green background. 

 

 

 

 

 

 

 

 

 

2.5.5.4 Sexual reproduction 

Sexual stages of diatom life cycles are directly related to cell size. Only cells at the lower range of a 

species’ size spectrum are sexually inducible and can produce gametangia. In contrast, the largest 

diatom cells (initial cells) originate from auxospores usually generated by sexual reproduction. These 

subsequently propagate by vegetative reproduction for prolonged time periods, and add size cohorts 

to the population by producing an exponentially increasing number of progressively shrinking cells, 

according to the MacDonald-Pfitzer rule (Macdonald 1869, Pfitzer 1869). In the case of Pseudo-

nitzschia multistriata, (D'Alelio et al. 2010) observed distinctly multimodal size distributions, which 

allowed the detection of both size fractions mentioned above, as well as of explicit cohorts in a 

population. 

Gametangia of F. kerguelensis have been reported to be between 6.9 µm (Fuchs et al. 2013) and 

31 µm (Assmy et al. 2006) or 36 µm long (Fuchs et al. 2013). We relate valves within that size range 

to cells which are sexually inducible, taking the lower value as a conservative estimate. Accordingly, 

elevated abundance of these valves (see Figure 2 & 3 c - portions below the dashed lines, and  

g - turquoise bars) indicates a population composition beneficial for sexual propagation. Cells within 

this size range were present continuously throughout both sampling seasons, but dominated the 

population most strongly in mid-summer, at the transition between phases 1 and 2 (see Figure 4 for 

a detailed view). This also coincides with environmental conditions favorable for vegetative growth, 

which can also be interpreted as favoring sexual reproduction by increasing the chance of encounter 

of gametes. 

Auxospores of F. kerguelensis containing initial thecae have been reported to be at least 76 µm long 

(Assmy et al. 2006). Taking into account the precision of our measurements, we relate valves of at 
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least 75.5 µm length to either initial cells or close descendants of them. Elevated abundance of these 

valves is a clear indicator that a sexual event has occurred, even though its explanatory power is 

restricted for our data, because these valves are rare and account for not more than ca. 2 %, and 

often much less, of all results (see supplement “Valves within the initial cell size range”). To 

overcome the problem that valves of this size might be underrepresented by the method we used for 

measuring valve size distributions, we use the relative frequency of initial cells (RFI, see Equation 1 

and Figure 2 & 3 h) as a comparable relative measure for the abundance of cells within the initial cell 

size range. 

Clearest indication of a synchronized sexual reproduction event in a size distribution time series 

would be a period with abundant cells in the sexually inducible size range, followed by the decrease 

thereof and the appearance of valves in the initial size range, and further followed by the emergence 

of a distinct large size cohort moving towards smaller sizes with time. In our data, we did not see 

such a clear-cut signal, but we observed a number of cases where the relative abundance of small 

cells decreased rather suddenly. 

This happened for instance around January 2003, at the transition between phases 1 and 2 (see 

Figure 4 for a detailed view). Here, within the short time between cups 1.06 – 1.08, we saw a strong 

increase, followed by a strong decrease in the portion of valves below ca. 20 µm length. At the same 

time (cup 1.07), RFI transiently peaked at ca. 0.14, but was mostly below 0.05 throughout the rest of 

the summer. Because this transient peak was not followed by similarly increased RFI values in 

subsequent samples, it does not clearly signal a sexual event. A similar transient decrease in the 

proportion of small cells was observed between cups 1.04 – 1.06, but its significance is restricted by 

the low quantity of valves sampled from cup 1.04. A further similar, but less pronounced, event took 

place in February 2004, again at the transition between phases 1 and 2 (cups 2.09 – 2.11). Like in the 

other listed cases, these signals can be produced by massive and synchronized sexual reproduction, 

which would produce increased amounts of short valves shed from gametangia, but we do not think 

this probable, because we saw no indication of massive sexual reproduction in the RFI (see below) 

shortly afterwards. During late autumn and winter, from May to October 2003, the situation was 

inversed. Here cells within the sexually inducible size range comprised only 26 to 48 % of the 

population, whilst RFI persisted at an elevated level of ca. 0.18. This might signal sexual activity of a 

detectable, although still low, proportion of the population. 

Subsequently, RFI appeared low throughout late spring and early summer / November until middle 

of December 2003. However, the smoothed trend line indicated a slight increase, which can be 

explained by the high value for late December; to keep the amount of smoothing consistent 

throughout Figure 2 c – h, we nevertheless decided to stick to the same smoothing procedure. 

Throughout second half of summer, autumn and early winter, from late December 2003 until end of 

June 2004, after a transient maximum of ca. 0.4, RFI fluctuated at values around 0.17, comparable to 

the previous winter, with the portion of sexually inducible cells ranging between 26 and 59 %. This 

possibly indicates a low level sexual activity going on during a longer period compared to the 

previous season, with a decline starting in July 2004 / mid-winter.  

Comparing both seasons, the signals showed similarities as well as discrepancies: For both seasons 

investigated, a substantially elevated RFI was observed in mid-summer, where conditions for sexual 

reproduction were favorable in terms of the percentage of cells within the sexually inducible size 

range. Also environmental conditions were good enough to enable blooms. But for 2002/03 it is 

unclear if the high RFI signals a sexual event, due to its transient appearance. In contrast, for 
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2003/04, the transient maximum initiated a prolonged period of elevated values, which lasted for 

8 months, from late December 2003 until August 2004 (mid-summer until late winter). A similar 

period was observed for season 2002/03, where RFI was elevated for ca. 6 months, from May until 

October 2003 (late autumn and winter). Throughout both of these time frames, the proportion of 

cells within the sexually inducible size range was below 50 %. 

Size distributions of individual cohorts are defined by the size of initial cells, the size decrease per cell 

division and the number of cell divisions before entering the next sexual phase. For F. kerguelensis 

ca. 0.28 µm average length decrease per division was estimated by (Fuchs et al. 2013). The shortest 

auxospores that contained initial thecae, as a proxy for the initial cell, was reported to be 76 µm, and 

the longest gametangium, as a proxy for the largest cell possibly entering the subsequent sexual 

phase, 31 µm long (Assmy et al. 2006). From our data, a rough estimation of F. kerguelensis growth 

rate (see Equation 2) is ca. 0.73 divisions · d-1 for the period between cups 1.02 and 1.05, and ca. 

0.48 divisions · d-1 for the period between cups 2.01 and 2.09. This is within the range we observed 

for culture experiments at 6 °C and 100 µE · s-1 · m-2 radiation under nutrient-replete conditions 

(unpublished data). Within this size range between initial and sexually inducible cell size, at least ca. 

160 cell divisions can occur according to the MacDonald-Pfitzer rule, which would take not less than 

220 days with the maximum growth rate of maximal 0.73 divisions · d-1 we estimated. Considering 

the short productive season of Southern Ocean, we speculate that the vegetative phase of the 

F. kerguelensis life cycle spans several years. Indeed, this idea is consistent with the duration of the 

life cycle of phylogenetically closely related species, such as Pseudo-nitzschia multistriata (Lundholm 

et al. 2002), that has been reported to be of two years (D'Alelio et al. 2010).  

However, from our F. kerguelensis data, according size cohorts cannot be observed in a similarly clear 

manner. Shifts in the size distributions depended mostly on the percentage of the lower size fraction, 

without substantial augmentation of very large cells. Furthermore, our data do not contain obvious 

size cohorts, although distributions often show long tails towards large sizes. Which means that the 

presence of multiple cohorts in these populations is probable, but they are not as clearly distinct as 

in P. multistriata.  

The prolonged periods of elevated RFI, which mostly outlast late autumn and winter, and the lack of 

clearly distinct size cohorts, might indicate that F. kerguelensis performs asynchronous sexuality 

during periods of weak vegetative growth, according to (Edlund and Stoermer 1997). Nevertheless, 

as noted above, alternative explanations for the selective removal of smaller size classes from the 

population in autumn are also conceivable (discussed below), and the percentage of cells within the 

initial cell size range is generally low. Based on this, it cannot be excluded that a low proportion of 

the population would engage in sexual reproduction throughout the year. Before the present study, 

the only reported observation of F. kerguelensis sexual reproduction in its natural habitat was made 

by (Assmy et al. 2006) during the European Iron Fertilization Experiment EIFEX (Smetacek et al. 

2005), undertaken in the Atlantic sector of the Southern Ocean in the vicinity of the APF (49° S 2° E; 

see Figure 1) between mid-February and mid-March 2004. (Assmy et al. 2006) documented a 

significant increase in auxospore concentration of up to 11.4 ∙ 106 auxospores · m-2 approximately 

10 days after iron release, whilst outside the iron-fertilized fertilized patch the auxospore 

concentration was low (0 to 3.5 · 106 auxospores ∙ m-2) and persistent throughout the experiment. In 

total, auxospores accounted for 0.03 to 0.4 % of the F. kerguelensis population. Assuming a delay of 

2 to 6 weeks between the production of F. kerguelensis cells and their collection by the sediment 

trap, sinking auxospores would have reached the depth of the sediment trap between late February 

and early May. The later part of this timeframe is overlapping with the early period of increased RFI 
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for season 2002/03, and for 2003/04 the complete timeframe is overlapping with the period of 

increased RFI. That auxosporulation was observed only one single time in nature, contradicts the 

periods of elevated RFI lasting 5 to 8 months per year in our data. This discrepancy might result from 

auxospores being overlooked; or the auxospores witnessed by (Assmy et al. 2006) originated from 

rarer and stronger sexual activity than we observed; or that such a strong signal might have been 

blurred due to the highly variable sinking times in our investigation. 

Based on these observations, we propose that F. kerguelensis propagates sexually at very low rates 

by asynchronous sexuality, possibly throughout the whole year, with some periods of elevated sexual 

activity, which however appear at different times in different years. This might be indicative of an 

opportunistic sexual behavior, where the probability of encounter between sexually inducible cells is 

rather low, and is the main limiting factor of sexual reproduction. This scenario would perhaps not be 

unrealistic for an immotile species with no flagellated gametes, although we cannot support it with a 

clear correlation between population density (as reflected by F. kerguelensis valve flux) with RFI 

(PCC = -0.11, N = 43, p = 0.478). Furthermore, with the exception of cup 1.07, which might not 

represent a sexual event, we do not see increased RFI in summer 2002/03, even though the 

population was massively dominated by cells within the sexually inducible size range at this time. In 

contrast, throughout summer 2003/04 RFI was elevated, whilst the population was much more 

heterogeneous regarding its size fractions, and the percentage of sexually inducible cells generally 

was lower, compared to the previous year. The share of valves originating from initial cells or their 

close descendants always stayed at low rates, and only one single observation of auxospores in the 

species’ natural habitat was reported until now (Assmy et al. 2006). Therefore, it is probable that 

sexual reproduction is not exclusively controlled by population density, but also by environmental 

factors, especially since we saw an elevated RFI during different periods between both years 

investigated. However, the lack of in situ measurements of physical and chemical parameters of the 

water column during the sediment trap experiment make it difficult to establish clear links between 

environmental drivers and F. kerguelensis life cycle. Moreover, during periods where vegetative 

propagation is low due to unfavorable conditions, the population would benefit from increased 

sexual activity, mixing up the genes for better adaptation. In contrast, in situations where the 

population already is adapted well to the environmental conditions, ongoing vegetative proliferation 

would avoid the need for (costly) sexual recombination. 

2.5.5.5 Ecological-physiological effects of cell size 

Size distributions in diatom populations are often interpreted as almost mechanical consequences of 

vegetative (stepwise size decrease) versus sexual (sudden large size increase) reproduction, in the 

framework we also used above. Nevertheless, cell size also has important physiological and 

ecological effects which - either by slight physiological regulation of cell size changes or by 

differential selection across different size classes - might also influence the size composition of 

diatom populations. 

Reduced cell size is beneficial for coping with depleted nutrient conditions, because of a higher 

surface to volume ratio, allowing for more efficient nutrient uptake. For the High Nutrient – Low 

Chlorophyll (HNLC) regions as Southern Ocean, not macro-nutrients, but iron is known to be a major 

factor limiting phytoplankton growth (Martin et al. 1990). For F. kerguelensis under prolonged iron 

limitation, (Timmermans and Van Der Wagt 2010) reported a decrease of 50 % in surface area and 

volume, and thus an increase in surface-volume ratio of 25 %, whilst (Hoffmann et al. 2007, Wilken et 

al. 2011) found stronger silicification under iron-limited conditions. These findings indicate that iron 

limitation would result in the production of small and heavily silicified F. kerguelensis frustules. This 
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physiological response could potentially reduce the risk of being grazed. This applies especially during 

the productive season, when usually iron availability is low due to consumption by proliferating 

diatoms, whilst grazing pressure might be high due to proliferating grazers. Furthermore, light 

absorption efficiency and diatom growth rate increase with decreasing cell size (Geider et al. 1986). 

Also, (Laney et al. 2012) documented higher division rates on the daughter cells of Ditylum 

brightwellii that inherited the hypotheca, compared to the ones inheriting the epitheca. These 

differences in division rates of the daughter cells would give an additional boost to shifting a 

population’s size distribution towards smaller cells.  

Larger cells, as (Roselli and Basset 2015) stated for the phytoplankton found in marine and 

transitional zones, “[…] have nutrient storage capacity in nutrient-rich and fluctuating environments, 

(Grover 1991, Stolte and Riegman 1996, Litchman et al. 2009), motility and ability to control 

buoyancy in high physical mixing conditions (Naselli-Flores and Barone 2003), […] anti-predator 

strategies against grazing pressure (Thingstad 1998).”. Even though this statement refers to general 

phytoplankton inter-species competition, it might also give clues regarding intra-species competition, 

explaining why larger F. kerguelensis cells might be fitter to endure the winter conditions. 

Furthermore, larger cells might be able to sustain enough supplies until next spring, to start the first 

bloom as soon as conditions become favorable again, without needing to restock first. And they can 

support this bloom with as many cell divisions as possible before running into their lower size limit, 

which, for restoring large cell size, would require sexual reproduction. Since this reduces the growth 

rate (Waite and Harrison 1992), it would impede proliferation, even with environmental conditions 

being favorable enough to enable the bloom. 

Grazing, if size selective, can also impact diatom cell size distributions substantially. For example 

euphausiids or copepods are known to selectively graze distinct size classes. However, the lack of 

accompanying observations of the zooplankton communities in the surface layer during our 

experiment precludes the assessment of the grazing impact on F. kerguelensis populations. 

Euphausia superba was reported to show size-dependent filtering efficiency, but its aptitude for 

grazing especially on small F. kerguelensis cells is not clear, since ambiguous ranges for the preferred 

size range are given by (Assmy 2004): “mainly […] 20 - 25 µm”, (Meyer and El-Sayed 1983): “solitary 

cells smaller than 20 μm (maximum diameter) being filtered less rapidly than larger diatoms and 

chain forming species”, and (Quetin and Ross 1985) investigating clearance rates on phytoplankton 

from 4 to 40 µm cell size: “does not feed very effectively on small round cells”. Nevertheless, grazing 

might affect sexual reproduction and thus give a possible explanation on the variable timing of 

elevated RFI we found: Prior to sexual reproduction, (Fuchs et al. 2013) observed breaking of long 

F. kerguelensis chains into individual cells. Since this offers more points of attack, individual cells 

become more prone to grazing. Asynchronous sexual propagation, or a timing avoiding high grazer 

densities, might be a strategy to overcome this. In contrast, (Moore et al. 2017) show that the 

ammonia released by grazing events can trigger sexual reproduction in centric diatoms such as 

Thalassiosira pseudonana. 

Considering these effects of cell size shows that changes in F. kerguelensis size distributions, as we 

observed them over the course of the year, might have adaptive relevance, besides being the effects 

of reproduction: During phase 1, the ongoing shift towards an increased portion of smaller cells is 

probably beneficial for coping with the progressively depleted nutrient conditions, whilst, as a side-

effect of iron depletion, stronger silicification might improve protection from grazing. In phase 2, 

smaller cells were removed from the population, which might have been due to nutrient depletion or 

declining light availability, or because of size-selective grazing. The latter one can also explain the 
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strong sudden drop in the portion of valves below ca. 20 µm length, observed for cups 1.07 – 1.08 

(and also cups 1.05 – 1.06 and 2.10 – 2.11). Throughout phase 3, mostly larger cells persisted. We 

hypothesize that the loss of smallest cells during the transition to winter relates to starving due to 

size-constrained energy storage capacity, which is supported by the pronounced increase of the 

minimal valve length from mid-winter to early spring. In contrast, larger cells with larger storage 

capacities and better active buoyancy regulation might be advantaged in surviving winter, when 

reduced light availability limits photosynthesis and growth. 

2.5.5.6 Possible limitations and benefits of our analysis 

Because of the remoteness of the study area, our data is limited to information available via remote-

sensing (chlorophyll-a concentration) and from sediment trap material (fluxes and morphometric 

measurements). Sediment trap samples do not necessarily give an unbiased picture of processes in 

the surface mixed layer. The collected material is influenced by numerous and varying factors like 

mortality (intrinsic and extrinsic, that is by grazing, parasites (Kühn et al. 2004) or pathogens), sinking 

speed, aggregation, mixed layer depth, varying sampling resolution and many more. Material 

collected by a sediment trap is unavoidably integrated over time, and the possibly large variability in 

sinking speed between cells / valves sinking out individually versus as part of larger aggregates might 

confound temporal signals to an unknown degree. Furthermore, water masses passing the trap were 

driven by the ACC, which goes on continuously at a speed of ca. 1 to 2 km · h-1 (Hofmann 1985) and 

meanders (Moore et al. 1999) over the fixed position of the trap. Thus, samples also were integrated 

over an area, the so-called statistical funnel (Siegel and Deuser 1997, Siegel et al. 2008), and most 

certainly over different population patches. (Smetacek et al. 2002) observed a distinct patchiness of 

diatom populations along the Antarctic Polar Front on the mesoscale, within the magnitude of some 

tens of kilometers. These patches can contain different populations, which might exhibit different life 

cycle stages and propagation behavior. Accordingly, signals most probably are blurred, possibly 

biased and definitely postponed, compared to the surface situation. Nevertheless, until continuous 

long-term monitoring of the upper water column phytoplankton becomes more wide spread in the 

Southern Ocean (two recent efforts have been successful using moored water samplers; (Eriksen et 

al. in press; Blain et al., in preparation), sediment traps represent one of the few available tools that 

allow us for investigating F. kerguelensis life cycle in its natural habitat. 

By applying our workflow for large scale permanent slide imaging and image analysis, we were able 

to investigate precise morphometric information of nearly 29,000 F. kerguelensis valves, covering a 

period of 2 years by 41 samples. This enabled us to assess valve length distributions instead of 

average values only, from which we hoped better insights into life cycle processes. From our data, we 

see cell size changes which do not only reflect the species life cycle, but might also be beneficial in 

respect to growth and survival. Even though size cohorts depicting sexual propagation were not as 

clearly visible as for Pseudo-nitzschia multistriata, we found indication of low sexual activity lasting 

for prolonged periods throughout varying times of the year, which can be interpreted according to 

(Edlund and Stoermer 1997) as asynchronous sexuality during periods of weak vegetative growth, 

with the vegetative phases lasting at least several years. 

To tease apart the relative role of population density versus environmental factors in controlling the 

frequency of sex and changes in valve size in this species, more observations will be necessary, 

especially regarding the surface environmental conditions. Here we lack data on nutrient availability 

and plankton composition, which would be invaluable for interpreting our results. Further research 

will also be necessary to address possible biases affecting sediment trap material during its way from 

the surface mixed layer. Besides direct observation of events, also the influence of immigrating 
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populations could be assessed by DNA analyses, and a quantification of auxosporulation could be 

conducted by RNA analyses comparing the activity of meiosis- versus housekeeping genes, although 

these would also rely on long-term sampling which is currently hardly possible apart from sediment 

traps. 

2.5.6 Conclusions 

Our data suggests how an F. kerguelensis life cycle could be envisioned as follows: During the 

productive phase in late spring and summer, the population proliferates by vegetative reproduction. 

The size reduction introduced by this is possibly advantageous in coping with the progressive 

shortage of nutrients, with the additional advantage of stronger silicification caused by iron-

depletion, resulting in cells being less prone to grazing. Subsequently, a major share of smaller cells is 

removed from the population due to grazing or declining environmental conditions. During the light-

limited period of late autumn and winter, mostly larger cell persist, presumably due to their better 

buoyancy control and increased storage capacity, which might also be beneficial for starting a bloom 

in the following spring. Low sexual activity lasts for prolonged periods at different times of the year, 

which can be interpreted according to (Edlund and Stoermer 1997) as asynchronous sexuality during 

periods of weak vegetative growth, which might be beneficial for avoiding predation or for 

generating novel genetic variants possibly better adapted to unfavorable environmental conditions. 
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2.5.7 Supplements 

2.5.7.1 Data 

The raw data of morphometric measurements are provided in supplement “R” on the annexed data 

medium. 

2.5.7.2 SHERPA settings 

The configuration files and shape templates are provided in supplement “SHERPA” on the annexed 

data medium. Settings for the low-resolution scan can be found in “54S-800m.20x.dmini”, for the 

high-resolution scan in “54S-800m.63x.dmini” 
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2.5.7.3 Modified SHERPA procedure 

We adapted our established analysis workflow to compensate for the low imaging contrast of the 

mounted valves: Increased manual intervention was exerted for manual post-editing, as well as 

reviewing segmentation results by also addressing results of lower quality than described in (Kloster 

et al. 2017). “Quality” in this context relates to the question if a) an object is of interest, and b) the 

image processing and segmentation worked out well. SHERPA supports the user in tackling this 

problem by calculating the “ranking index” (RI), which increases with declining result quality. 

Accordingly, for each slide, when selecting valves of interest in the low-resolution (20× magnification) 

scans, results from RIs of 0 to 6, and for sparse samples up to RI 10, were reviewed. If ca. 

100 consecutive results of one particular RI did not represent suitable F. kerguelensis valves, the 

remaining results of this RI were skipped, because the probability that they contained further useful 

F. kerguelensis valve images was very low, and the procedure was resumed with results of the 

following RI. From the high-resolution scans (63× magnification), for each slide results were 

reviewed, reworked as needed, and F. kerguelensis valves selected for RIs 0 to at least 2. If the 

sample size was not sufficient (mostly below 300), results of higher RIs were added. The same 

applied if results of the highest RI changed the valve length distribution significantly, which was 

checked by a Kolmogorov-Smirnov test (see supplement “KS-test results regarding RI”). In some 

cases, duplicate slides were scanned, to obtain higher sampling sizes.  

Costae distance measurement is an experimental SHERPA feature and, until now, was tested on 

Fragilariopsis valves only (Beszteri et al. submitted). This frequency based method is mostly robust 

towards segmentation flaws, nevertheless results of costae distance ≥ 5 µm were assumed to be 

incorrect and thus rejected, which applied to ca. 0.5 % of all data. The valve image was segmented by 

Adaptive Thresholding (Bradski and Kaehler 2008), resulting in costae and valve border colored 

white, whilst striae and image background were colored black. The segmented image was sampled 

along the central 80 % of the valve’s major (apical) axis by the Bresenham algorithm (Bresenham 

1965). Along this sampled line, each white section was replaced by a 5 pixel wide binomial-smoothed 

peak, resulting in an artificial 2d-image of costae positions. This was transformed into the frequency 

domain by discrete Fourier transform (DFT). Average costae distance was calculated from the 

frequency of the maximum magnitude of the Fourier transformed.  

2.5.7.4 Valves within the initial cell size range 

Table S1: Abundance, percentage and relative frequency of valves within the initial cell size range. 
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1.01 300 2 0.67 0.06 

1.02 569 1 0.18 0.03 

1.03 525 1 0.19 0.04 

1.04 178 0 0.00 0.00 
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1.05 455 0 0.00 0.07 

1.06 1630 1 0.06 0.02 

1.07 574 1 0.17 0.14 

1.08 736 1 0.14 0.02 

1.09 1010 3 0.30 0.04 

1.10 907 1 0.11 0.03 

1.11 338 0 0.00 0.00 

1.11 338 0 0.00 0.00 

1.12 409 0 0.00 0.00 

1.13 478 2 0.42 0.02 

1.13 478 2 0.42 0.00 

1.14 420 0 0.00 0.03 

1.15 379 2 0.53 0.05 

1.16 145 0 0.00 0.00 

1.17 793 5 0.63 0.12 

1.18 592 3 0.51 0.18 

1.19 955 4 0.42 0.15 

1.20 811 4 0.49 0.28 

2.01 160 2 1.25 0.14 

2.02 327 5 1.53 0.18 

2.03 430 5 1.16 0.04 

2.04 600 0 0.00 0.01 

2.05 467 4 0.86 0.09 

2.06 718 0 0.00 0.03 

2.07 1639 5 0.31 0.40 

2.08 1360 9 0.66 0.19 

2.09 1228 4 0.33 0.18 

2.10 1345 3 0.22 0.16 

2.11 553 7 1.27 0.11 

2.12 689 7 1.02 0.14 

2.13 1377 7 0.51 0.10 

2.14 1525 8 0.52 0.06 

2.15 673 9 1.34 0.23 

2.16 473 6 1.27 0.10 

2.17 840 6 0.71 0.19 

2.18 998 7 0.70 0.13 

2.19 559 13 2.33 0.09 

2.20 460 2 0.43 0.05 

2.21 210 3 1.43 0.04 

*
1
) These values originate from the count performed during the morphometric analysis.  

*
2
) These values originate from the additional analysis for finding cells within the initial cell size range only.  

RFI is calculated according to Equation 1. 

2.5.7.5 R scripts 

The R scripts used for analyzing the data are provided in supplement “R” of the annexed data 

medium. 
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2.5.7.6 Additional measurements 

 
Figure S1: Season 2002/03, distribution of a) valve length (cmp. Fig 2 & 3 c), b) valve width (transapical), c) valve area,  
d) costae distance, e) F (Fenner et al. 1976) or F* (Cortese and Gersonde 2007). To compensate for outliers, results for d) 
and e) with costae distances ≥ 5 µm were excluded.  
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Figure S2: Season 2003/04, distribution of a) valve length (cmp. Fig 2 & 3 c), b) valve width (transapical), c) valve area,  
d) costae distance, e) F (Fenner et al. 1976) or F* (Cortese and Gersonde 2007). To compensate for outliers, results for d) 
and e) with costae distances ≥ 5 µm were excluded.  
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2.5.7.7 Chlorophyll-a data 

Table S2: Chlorophyll-a concentration derived from NASA’s Giovanni online data system. NA = not 
available. 

Date Chlorophyll-a  

concentration 

(mg ∙ m-3) 

2002-08-16 0.138 

2002-09-16 0.142 

2002-10-16 0.153 

2002-11-16 0.18 

2002-12-16 0.182 

2003-01-16 0.164 

2003-02-15 0.255 

2003-03-16 0.149 

2003-04-16 0.119 

2003-05-16 0.144 

2003-06-16 NA 

2003-07-16 NA 

2003-08-16 0.125 

2003-09-16 0.141 

2003-10-16 0.167 

2003-11-16 0.223 

2003-12-16 0.179 

2004-01-16 0.175 

2004-02-15 0.114 

2004-03-16 0.118 

2004-04-16 0.118 

2004-05-16 0.101 

2004-06-16 NA 

2004-07-16 NA 

2004-08-16 0.111 

2004-09-16 0.145 

2004-10-16 0.162 
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2.5.7.8 Summary statistics of F. kerguelensis valve size distributions. 

Table S3: Statistics of valve length measurements (compare Figure 2 & 3). 
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1.01 2002-11-23 10 300 30.0 26.3 1.4 13.0 70.7 66.7 0.06 

1.02 2002-12-03 10 569 30.2 27.0 1.3 14.0 69.3 66.1 0.03 

1.03 2002-12-13 10 525 29.1 27.0 1.4 13.1 63.0 68.0 0.04 

1.04 2002-12-23 10 178 32.8 30.2 0.9 14.4 70.0 53.9 0.00 

1.05 2003-01-02 10 455 24.1 22.1 1.6 12.7 54.6 85.1 0.07 

1.06 2003-01-12 10 1630 27.7 25.3 1.2 11.9 61.6 70.9 0.02 

1.07 2003-01-22 10 574 23.1 20.8 1.8 11.4 53.9 86.6 0.14 

1.08 2003-02-01 10 736 27.5 25.1 1.2 12.0 62.8 69.4 0.02 

1.09 2003-02-11 10 1010 30.5 27.4 1.0 12.8 65.6 60.6 0.04 

1.10 2003-02-21 10 907 31.1 27.8 1.0 13.6 65.8 59.6 0.03 

1.11 2003-03-03 10 338 38.1 35.9 0.4 14.7 67.8 33.4 0.00 

1.12 2003-03-13 10 409 36.1 33.0 0.7 15.6 70.7 44.5 0.00 

1.13 2003-03-23 10 478 37.5 35.3 0.5 14.7 70.7 39.5 0.02 

1.14 2003-04-02 10 420 36.4 34.5 0.6 15.0 68.1 40.5 0.03 

1.15 2003-04-12 10 379 41.9 40.6 0.4 20.3 74.0 23.0 0.05 

1.16 2003-04-22 10 145 44.0 43.9 -0.1 17.5 70.0 17.9 0.00 

1.17 2003-05-09 25 793 34.3 31.8 0.7 13.8 71.5 47.7 0.12 

1.18 2003-06-11 40 592 35.9 33.3 0.6 13.1 72.2 44.8 0.18 

1.19 2003-07-23 45 955 38.6 36.8 0.6 16.6 73.8 33.0 0.15 

1.20 2003-08-25 20 811 39.7 37.8 0.6 17.1 74.0 26.4 0.28 

2.01 2003-10-04 14 160 44.7 41.1 0.8 21.9 75.3 7.5 0.14 

2.02 2003-10-18 14 327 42.4 40.9 0.6 20.1 76.0 21.4 0.18 

2.03 2003-11-01 14 430 40.8 38.7 0.7 18.7 75.4 29.3 0.04 

2.04 2003-11-15 14 600 39.6 38.0 0.8 20.5 72.5 23.0 0.01 

2.05 2003-11-29 14 467 38.9 37.6 0.8 19.3 74.2 25.7 0.09 

2.06 2003-12-13 14 718 35.6 34.7 0.6 16.6 62.3 34.0 0.03 

2.07 2003-12-27 14 1639 33.6 32.5 0.8 15.8 66.2 44.9 0.40 

2.08 2004-01-10 14 1360 32.5 30.8 1.1 15.5 69.6 50.9 0.19 

2.09 2004-01-24 14 1228 30.5 28.5 1.0 13.6 66.5 58.7 0.18 

2.10 2004-02-07 14 1345 30.3 28.8 0.9 13.3 62.5 57.3 0.16 

2.11 2004-02-21 14 553 34.9 32.9 1.1 15.7 76.5 43.0 0.11 

2.12 2004-03-06 14 689 33.3 31.5 1.0 13.7 74.9 48.2 0.14 

2.13 2004-03-20 14 1377 34.1 33.0 0.8 15.1 69.3 44.0 0.10 
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2.14 2004-04-03 14 1525 34.7 33.1 0.8 14.7 72.1 42.8 0.06 

2.15 2004-04-17 14 673 38.4 37.4 0.9 16.1 76.5 26.2 0.23 

2.16 2004-05-01 14 473 38.5 36.9 0.7 15.7 76.3 29.6 0.10 

2.17 2004-05-25 35 840 37.4 36.0 0.7 14.7 73.7 28.8 0.19 

2.18 2004-06-29 35 998 36.0 34.4 0.8 13.8 74.1 37.0 0.13 

2.19 2004-08-03 35 559 40.3 38.5 1.0 18.7 77.2 20.8 0.09 

2.20 2004-09-07 35 460 38.4 36.3 0.8 16.5 73.6 27.8 0.05 

2.21 2004-10-02 14 210 43.5 40.9 0.8 23.0 76.7 14.8 0.04 

*1) refers to valves < 31.5 µm apical length  

*2) see Equation 1 

For cup 1.04, sampling size was low (n=178), even though this sample was taken within the 

productive period in late December 2002. Compared to the adjacent samples, valve density was 

unexpectedly sparse on the according slide. Also for cups 1.16, 2.01 and 2.21 sampling size was low 

(< 300), but here the slide density approximately accorded with the adjacent samples. We 

nevertheless decided to keep these measurements, since for the discussion of our results we mostly 

relate to smoothed general trends, which are not significantly changed by these samples. 

2.5.7.9 Flux data 

Table S4: Flux data from (Rigual-Hernández et al. 2015). 
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1.01 2002-11-23 10.0 96.7 46.8 48 18.3 19 3.6 4 3.2 56.0 

1.02 2002-12-03 10.0 190.6 110.6 58 37.5 20 4.6 2 12.1 43.6 

1.03 2002-12-13 10.0 363.9 203.6 56 81.0 22 12.3 3 25.1 38.4 

1.04 2002-12-23 10.0 240.7 134.0 56 47.2 20 11.4 5 9.5 26.3 

1.05 2003-01-02 10.0 125.6 54.4 43 45.4 36 4.8 4 3.0 44.3 

1.06 2003-01-12 10.0 158.9 93.7 59 35.0 22 5.4 3 13.2 71.7 

1.07 2003-01-22 10.0 360.2 219.1 61 68.9 19 8.6 2 21.1 73.3 

1.08 2003-02-01 10.0 213.8 113.7 53 48.3 23 5.5 3 31.4 69.7 

1.09 2003-02-11 10.0 396.5 253.8 64 56.0 14 5.1 1 20.9 74.3 

1.10 2003-02-21 10.0 60.8 26.6 44 23.7 39 2.2 4 6.9 40.5 

1.11 2003-03-03 10.0 58.5 16.8 29 23.8 41 5.5 9 1.3 67.3 

1.12 2003-03-13 10.0 89.3 26.6 30 37.0 41 7.0 8 0.9 63.1 

1.13 2003-03-23 10.0 49.5 13.6 28 25.1 51 3.4 7 1.5 64.0 

1.14 2003-04-02 10.0 33.5 7.6 23 18.2 54 2.7 8 0.8 78.0 

1.15 2003-04-12 10.0 31.9 6.2 19 20.1 63 1.6 5 1.0 84.5 

1.16 2003-04-22 10.0 21.6 5.8 27 14.0 65 1.0 4 0.6 78.7 

1.17 2003-05-09 25.0 23.8 7.3 31 12.8 54 0.9 4 1.7 85.8 

1.18 2003-06-11 40.0 23.7 10.8 46 7.8 33 1.0 4 1.4 86.7 
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1.19 2003-07-23 45.0 16.9 8.0 47 5.5 33 0.7 4 1.0 83.7 

1.20 2003-08-25 20.0 33.6 13.5 40 11.9 35 1.8 5 2.1 81.0 

2.01 2003-10-04 14.0 15.1 8.1 54 4.5 30 0.5 3 0.3 76.2 

2.02 2003-10-18 14.0 23.4 12.6 54 7.0 30 0.8 3 0.8 73.9 

2.03 2003-11-01 14.0 34.8 18.6 54 10.8 31 1.1 3 2.2 77.0 

2.04 2003-11-15 14.0 121.0 54.6 45 19.9 16 2.0 2 9.9 85.8 

2.05 2003-11-29 14.0 75.5 35.9 48 14.6 19 1.6 2 6.3 80.8 

2.06 2003-12-13 14.0 178.6 111.6 62 40.2 23 3.6 2 10.9 55.0 

2.07 2003-12-27 14.0 232.6 134.8 58 43.6 19 7.2 3 5.0 48.7 

2.08 2004-01-10 14.0 182.0 114.5 63 33.7 19 6.2 3 20.2 65.2 

2.09 2004-01-24 14.0 121.9 81.7 67 21.0 17 3.3 3 11.7 69.6 

2.10 2004-02-07 14.0 63.9 37.0 58 10.8 17 2.7 4 7.3 65.7 

2.11 2004-02-21 14.0 28.5 16.6 58 7.0 24 1.0 4 4.4 74.1 

2.12 2004-03-06 14.0 31.0 18.4 59 7.7 25 0.9 3 4.6 73.7 

2.13 2004-03-20 14.0 66.2 45.3 68 10.2 15 1.0 2 7.4 75.2 

2.14 2004-04-03 14.0 84.6 52.6 62 16.9 20 0.8 1 8.9 76.9 

2.15 2004-04-17 14.0 15.6 10.1 65 4.9 31 0.8 5 0.5 80.8 

2.16 2004-05-01 14.0 10.6 6.9 65 4.0 38 0.5 4 0.6 87.2 

2.17 2004-05-25 35.0 19.6 13.7 70 3.5 18 0.4 2 2.5 73.0 

2.18 2004-06-29 35.0 19.3 11.3 59 4.5 23 1.1 6 1.2 75.8 

2.19 2004-08-03 35.0 14.5 6.0 41 2.8 20 2.0 14 1.0 80.3 

2.20 2004-09-07 35.0 10.3 5.0 49 3.8 37 0.5 5 1.0 90.3 

2.21 2004-10-02 14.0 7.3 3.6 49 2.5 34 0.5 7 0.4 87.6 

 

The flux data also is available at:  

https://data.aad.gov.au/metadata/records/AAS_4078_diatoms_biogenic_flux_subantarctic/ 

2.5.7.10 KS-test results regarding RI 

The results of Kolmogorov-Smirnov tests, assessing the influence of adding results from subsequent 

ranking indices, can be found on the annexed data medium in the file “Supplement KS-test results 

regarding RI.pdf”. 

  

https://data.aad.gov.au/metadata/records/AAS_4078_diatoms_biogenic_flux_subantarctic/
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2.6.1 Abstract 

Fragilariopsis kerguelensis is one of the most abundant diatoms in the sediments of the Southern 

Ocean. Its morphometric features have been proposed as proxies, based on links with, for example, 

iron availability, sea surface temperature and glacial / interglacial conditions. We investigated 

morphometric changes in F. kerguelensis valves in a well-studied sediment core record, focusing on 

transition periods between glacials and interglacials. By applying a high-throughput diatom imaging 

and morphometry workflow, we found two clearly distinct shape classes, differentiated by their 

rectangularity. We relate these classes to two different morphotypes, where one of them occurred 

prominently only in glacial samples, whilst the other persisted throughout. Paleo-proxies based on 

F. kerguelensis valve morphometric features might benefit from differentiating these two 

morphotypes, since both contribute to a different extent to the feature means under different 

environmental conditions. Furthermore, the ratio of their abundance also appears as a promising 

candidate for a paleo-proxy for summer sea surface temperature. Distinguishing between the two 

morphotypes only became possible by image analysis for precisely measuring diatom valve outlines 

and area, highlighting the potential of such methods for diatom analyses. 
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2.6.2 Introduction 

The siliceous sediment below large areas of the Southern Ocean contains a diatom record which has 

extensively been used for paleoceanographic reconstructions (Gersonde et al. 2005, Abelmann et al. 

2006, Crosta 2009, Shukla et al. 2009). Reconstructions of paleo-temperatures and of sea ice cover 

are mostly performed using transfer functions linking taxonomic composition of sediment 

assemblages to environmental parameters (Zielinski et al. 1998, Gersonde et al. 2003, Crosta et al. 

2004, Esper and Gersonde 2014a, Esper and Gersonde 2014b). But observations of intraspecific 

morphometric variation correlated with environmental conditions have also led to ideas to use such 

intraspecific variability to learn about past oceanographic conditions (Cortese and Gersonde 2007, 

Nair et al. 2015, Shukla et al. 2016, Shukla and Crosta 2017). Most attention in this regard was 

directed at marine diatom species Fragilariopsis kerguelensis which is, at least in terms of valve 

counts, the most abundant diatom species in Southern Ocean sediments (Abelmann and Gersonde 

1991, Warnock et al. 2015, Shukla et al. 2016). Variation in quantitative characters like valve length, 

width and area, as well as striation density, and the composite descriptor F or F* (Equation 4), were 

proposed to be related to productivity, iron availability, (summer) sea surface temperature, the 

position of the Antarctic Polar Front and to glacial / interglacial regimes (Fenner et al. 1976, Cortese 

and Gersonde 2007, Cortese et al. 2012, Shukla et al. 2013). The reliability of these proxies is still 

under discussion, because F. kerguelensis has a highly variable valve morphology (Hasle 1965), which 

can be affected by multiple, partly intercorrelated causes (Crosta 2009, Cortese et al. 2012, Shukla et 

al. 2013, Shukla and Crosta 2017). Further drawbacks of these studies are that a) characters beyond 

simple length measurements, in particular valve area, could only be estimated, not measured 

directly, b) the data was taken from very limited sample sizes (average 38 (Cortese and Gersonde 

2007), 40 (Cortese et al. 2012) or 100 (Shukla et al. 2013) valves per sample), c) the descriptors were 

only assessed by their means or ranges of means, and d) they only considered a rather limited set of 

morphometric features. 

As a test case for a high throughput diatom morphometrics workflow combining automated 

microscopic imaging by a slide scanning system and image analyses using the custom developed 

software tool SHERPA (Kloster et al. 2014, Kloster et al. 2017), we were interested in whether any 

novel insights can be gained into patterns of F. kerguelensis valve morphometric variability in a 

paleoceanographic context. Thus, we analyzed material from Southern Ocean sediment core 

PS1768-8 (Gersonde and Hempel 1990, Gersonde 2003), which was taken at 52°35.58´ S 4°28.56´ E, 

close to the average position of the Antarctic Polar Front, from a depth of 3299 m. This 9.03 m long 

gravity core covers the past ca. 150,000 years and has already been investigated extensively (Zielinski 

1993, Zielinski et al. 1998, Gersonde and Zielinski 2000, Gersonde et al. 2003, Gersonde et al. 2005, 

Abelmann et al. 2006, Esper and Gersonde 2014b). The use of a partially automated workflow 

(Kloster et al. 2017) enabled us to process large sample sizes (mostly between ca. 300 and 1,000 

valves per sample), and to assess a broad range of morphometric features, from which we were able 

to analyze their distributions and not only means. Furthermore, valve area was measured directly 

and at a considerable precision, instead of being estimated based on length and width 

measurements. Observing distributions of diverse morphometric descriptors, we found that the 

F. kerguelensis “populations” in some layers of this sediment core consisted of two morphotypes, 

separated by the morphometric descriptor rectangularity (Droop 1995). Below we describe these 

findings and the occurrence of these morphotypes in two glacial to interglacial transitions in the 

core, and provide an initial exploration of whether their appearance provides possibilities for 

developing novel paleo-proxies, in particular related to summer sea surface temperature (SSST). 
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2.6.3 Methods 

We measured valve features with the diatom morphometry software SHERPA (Kloster et al. 2014), 

applying the workflow and methods described in (Kloster et al. 2017). The sediment core was 

obtained and processed for diatom analyses as described in (Zielinski 1993). Valve densities on the 

original slides used by (Zielinski 1993) were rather high. Since this caused difficulties for automated 

analysis, we re-mounted oxidized material at lower densities. This was done by drying ca. 1 ml 

diluted valve suspension onto cover slips in 12-well cell culture plates and embedding in Naphrax. 

Sampling depths were chosen with emphasis on transitions between glacial and interglacial periods 

(Table 1). Results from sampling depths 800 – 820 cm were obtained by employing a low-

magnification scan using a 10× objective, for all other sampling depths a 20× objective was used; 

settings for SHERPA and employed shape templates are supplied on the annexed data medium in 

supplement “SHERPA”. Data analysis was performed in R (R Core Team 2015), the respective scripts 

can be found on the annexed data medium in supplement “R”. We modeled rectangularity 

distributions by univariate normal mixtures, fitted by an EM algorithm (Benaglia et al. 2009).  

To compare our valve area measurements, as performed by SHERPA by counting pixels lying within 

the segmented valve area (we will refer to this value as measured valve area), with literature values 

(which we will refer to as estimated valve area below), we applied the equation given in (Shukla et al. 

2013):  

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑣𝑒 𝑎𝑟𝑒𝑎 = 𝑎𝑝𝑖𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ ∗ 𝑡𝑟𝑎𝑛𝑠𝑎𝑝𝑖𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ ∗ 0.8 (Equation 1) 

 

We calculated the morphometric descriptor rectangularity (in image processing often referred to as 

heuristic descriptor) as ratio between the area of the valve and the area of the enclosing rectangle, 

oriented along the major valve axes (Droop 1995): 

𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑣𝑎𝑙𝑣𝑒

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑒𝑛𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒
 (Equation 2) 

 

Ellipticity was calculated based on moment invariants according to (Rosin 2003) as: 

𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐𝑖𝑡𝑦 =

{
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1
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4   

 and µqp being the central moments 

(Equation 3) 

 

F or F* was calculated according to (Fenner et al. 1976, Cortese and Gersonde 2007): 

𝐹 =
𝑎𝑝𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑡𝑟𝑎𝑛𝑠𝑎𝑝𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
∗ 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 5 𝑐𝑜𝑠𝑡𝑎𝑒 (Equation 4) 
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Costae distance measurement is an experimental SHERPA feature and, until now, was tested on 

Fragilariopsis valves only (Beszteri et al. submitted). This frequency based method is mostly robust 

towards segmentation flaws, nevertheless results of costae distance ≥ 5 µm were assumed to be 

incorrect and thus rejected, which applied to ca. 0.5 % of all data. The valve image was segmented by 

Adaptive Thresholding (Bradski and Kaehler 2008), resulting in costae and valve border colored 

white, whilst striae and image background were colored black. The segmented image was sampled 

along the central 80 % of the valve’s major (apical) axis by the Bresenham algorithm (Bresenham 

1965). Along this sampled line, each white section was replaced by a 5 pixel wide binomial-smoothed 

peak, resulting in an artificial 2d-image of costae positions. This was transformed into the frequency 

domain by discrete Fourier transform (DFT). Average costae distance was calculated from the 

frequency of the maximum magnitude of the Fourier transformed.  

The strength of correlations, calculated by the Pearson Correlation Coefficient (PCC), is reported 

below, following the scheme (Evans 1996) suggested (0.00 - 0.19 = very weak; 0.20 - 0.39 = weak; 

0.40 - 0.59 = moderate; 0.60 - 0.79 = strong; 0.80 - 1.00 = very strong). 

2.6.4 Results 

We analyzed sediment core PS1768-8 by sampling 21 different depths, covering the previous ca. 

140,000 years, marine isotope stages (MIS) 1, 2, 5 and 6, and reconstructed SSST between 0.5 and 

4.4 °C (Esper and Gersonde 2014b, Abelmann et al. 2015), with emphasis on the transitions between 

glacial and interglacial periods. Morphometric features of ca. 12,000 valves were measured; the 

according data is supplied in supplement “R” on the annexed data medium. Table 1 shows 

summarized data on the different sampling depths. 
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Table 1: Paleological data on sediment core PS1768-8 (Esper and Gersonde 2014b) and summarized 
results. Reconstructed SSST ≤ 0.9 °C is highlighted in bold letters. 
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60 a 10,195 2.7 1 85 

80 b 11,182 4.4 1 698 

100 c 12,071 2.3 1 857 

110 d 12,516 2.2 1 553 

120 e 12,960 1.7 1 322 

130 f 13,405 1.7 1 83 

140 g 13,849 1.8 1 255 

150 h 14,912 0.9 2 1,659 

160 i 16,130 0.8 2 1,458 

170 j 17,347 0.6 2 765 

180 k 18,565 0.8 2 441 

190 l 19,782 0.5 2 650 

200 m 21,000 0.8 2 716 

780 n 119,500 2.2 5 471 

800 o 123,700 3.5 5 437 

810 p 125,800 3.1 5 550 

820 q 127,900 1.9 5 420 

830 r 130,000 0.7 5 732 

840 s 132,100 0.7 6 166 

850 t 134,200 0.5 6 265 

870 u 138,400 0.6 6 274 

All depths combined 11,857 

 

2.6.4.1 Valve rectangularity 

Combining measurements from all sampling depths, rectangularity showed a clearly bimodal 

distribution (Figure 1), which we approximated by two overlapping normal distributions, calculated 

by an EM algorithm for mixtures of univariate normals (Benaglia et al. 2009). Means of these 

distributions differed by ca. 0.055 (rectangularity is unitless and is constrained within the range 0 - 1) 

or 7 %. In the following, we refer to them as classes of low and high rectangularity, marked by a 

green and a maroon curve in Figure 1, respectively. The low rectangularity class was defined by mean 

(µ) of ca. 0.72 and standard deviation (σ) of ca. 0.014, contributing ca. 70 % (λ) of the valves. The high 

rectangularity class had a µ of ca. 0.78, a σ of ca. 0.016, and contributed ca. 30 % of all valves 

investigated. For simplifying separation of these two classes, we used a threshold of 0.753 to 

distinguish between them, corresponding to the point where the posterior probability of an 

observation belonging to either class is equal in the normal mixture model presented in Figure 1. A 

more precise estimation of the contribution of both morphotypes to any single sample / population 

is possible by fitting the normal mixture with fixed µ and σ and optimizing the value of λ to the 
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individual distribution, as illustrated in Figure 3, but to avoid confusion, we only report the values 

from the simpler, threshold-based estimates in the following text unless stated otherwise. 

 
Figure 1: Bimodal distribution of the morphometric descriptor rectangularity over all sampling depths. Green and maroon 
lines depict the low and high rectangularity classes, based on normal distributions defined by the values stated in the 
graphic. The dashed red line marks the threshold of 0.753 used to separate the two classes; the dotted black line depicts 
the density estimate. λ, μ and σ refer to mixing proportion, mean and standard deviation. 

As Figure 2 shows, rectangularity distributions from individual sampling depths displayed different 

patterns, appearing either more uni- or more bimodal; two typical examples are given in Figure 3, 

and all histograms in Figure 2. Valves from the low rectangularity class comprised between ca. 50 % 

and nearly 100 % of the F. kerguelensis populations (Figure 4). The high rectangularity class 

preferentially occurred in core depths corresponding to reconstructed SSST values ≤ 0.9 °C (Figure 2 

blue color), and contributed ca. 20 – 50 % of valves measured. For layers with the reconstructed 

value of SSST lying ≥ 1.7 °C (Figure 2 red color), the high rectangularity class contributed only ca. 5 – 

15 %, with the single exception of 33 % for 110 cm sampling depth (Figure 4). SSST between 0.9 °C 

and 1.7 °C was not covered by our samples. Two examples, which represent the samples 

corresponding to the highest and the lowest reconstructed SSST we investigated, are given in 

Figure 3: For 80 cm sampling depth (4.4 °C SSST), the population was dominated by the low 

rectangularity class by 95 %; the high rectangularity class was represented only marginally (Figure 3 

a). In contrast, for 190 cm depth (0.5 °C SSST), both classes contributed nearly equally (Figure 3 b). 
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Figure 2: SSST reconstructed using a diatom transfer function and rectangularity histograms for samples from different 
depths. Left: depth of core related to SSST, after (Esper and Gersonde 2014b). Horizontal dotted lines mark the sampling 
depths we investigated, referred to by letters a to u. Shaded areas indicate glacial periods according to MIS. Right: 
rectangularity histograms, a) – u) refer to the different sampling depths as indicated in the left hand panel and in Table 1. 
SSST ≤ 0.9 °C is marked in blue, ≥ 1.7 °C in red color. Vertical dashed red lines in the histograms mark the threshold of 0.753 
we used for separating the two rectangularity classes; the dotted black curves depict the density estimates. 
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Figure 3: Exemplary rectangularity histograms and contribution of rectangularity classes for a) 80 cm and b) 190 cm 
sampling depth. Green and maroon lines depict the low and high rectangularity classes as shown in Figure 1. The dashed 
red lines mark the threshold of 0.753 we used for separating the two rectangularity classes; the dotted black lines depict 
the density estimates. λ, μ and σ refer to mixing proportion, mean and standard deviation. 

The relative contribution of both rectangularity classes across all investigated core depths is 

summarized in Figure 4. Samples from MIS 6 showed a much lower contribution of the high 

rectangularity class than samples with similar reconstructed SSST values from MIS 2, whilst for 

110 cm sampling depth, it contributed exceptionally strong compared to nearby SSSTs. Apart from 

these cases, a general trend of increased contribution of the high rectangularity class at low 

reconstructed SSST values could be observed. 
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Figure 4: Contribution of valves from the two rectangularity classes from different reconstructed SSSTs and sampling 
depths. The proportion of valves belonging to the low rectangularity class with a high confidence is shown in green, for the 
high rectangularity class in maroon. Gray color marks the proportion of valves for which class assignment was uncertain, i.e. 
the posterior probability of belonging to one class differed from that of the other class by less than a factor of 100, 
according to the EM algorithm. Black marks indicate the class border by a rectangularity threshold of 0.753. MIS 2 and 6 
depict glacial, 1 and 5 interglacial periods. 

2.6.4.2 Rectangularity compared to valve length distribution 

Since in F. kerguelensis, like in most other diatoms with elongate valves, valve outline shape changes 

accompany size decrease, one might expect rectangularity to show such size dependence, and the 

presence of two somewhat distinct size classes might then even explain the bimodal rectangularity 

distributions observed. That this was not the case is illustrated by Figure 5. Two peaks appeared in 

the joint distribution of rectangularity and valve length, but they appeared at similar valve lengths 

(around 25 - 30 µm), and were separated clearly on the rectangularity axis. Thus, we can exclude a 

bimodal size distribution as an explanation of the bimodal rectangularity distributions.  
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Figure 5: Counts of valves of different rectangularity, compared to valve length, for measurements from all depths 
combined. The dashed red lines mark the threshold of 0.753 we used for separating the two rectangularity classes. 

2.6.4.3 Effect of separating two rectangularity classes on means of further morphometric 

features 

We compared mean values of feature from the individual rectangularity classed with their overall 

means (i.e. both rectangularity classes combined), to see how large a difference it makes to separate 

both classes. Separated by the two distinct classes of rectangularity, means of some morphometric 

features showed substantial differences from the overall means (Table 2), in the case of valve length, 

width and area by ca. 10 – 20 %. In contrast, costae distance remained nearly constant between both 

classes, and the combined feature F or F* (Equation 4) showed only little difference (ca. 5 %). 
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Table 2: Morphometric features, separated according to the two rectangularity classes; differences 
compared to values from both rectangularity classes combined are in brackets; differences ≥ 10 % 
absolute are marked in bold letters. 

 Both rectangularity 

classes combined 

Low rectangularity 

class 

High rectangularity 

class 

Rectangularity mean (µm) 0.74 0.72 (-2.2 %)  0.78 (+5.24 %) 

Length mean (µm) 36.04 38.33 (+6.4 %)  30.63 (-14.99 %) 

Length median (µm) 33.44 35.67 (+6.6 %)  28.77 (-13.98 %) 

Width mean (µm) 9.15 9.56 (+4.5 %)  8.18 (-10.61 %) 

Area mean (µm²) 250.96 272.17 (+8.4 %)  200.96 (-19.92 %) 

Costae distance mean (µm) 1.91 1.92 (+0.1 %)  1.91 (-0.24 %) 

F or F* mean (µm) 37.79 38.59 (+2.1 %)  35.90 (-4.99 %) 

 

2.6.4.4 Correlations between SSST and means of morphometric features 

SSST values reconstructed by (Esper and Gersonde 2014b) correlated stronger with means of 

morphometric features from the low rectangularity class (Table 3), with the exception of mean valve 

length and F or F*, which correlated stronger for the high rectangularity class. Correlation was 

substantially stronger for one of the classes than for both combined only in the case of mean valve 

area and length. 

Table 3: Pearson correlation coefficient (PCC) for correlation of SSST to means of morphometric 
features per sampling depth. Coefficients with highest absolute values in each row are marked in 
bold letters. N = 21; *** marks PCC with p < 0.001, ** marks PCC with p < 0.01, * marks PCC with p < 
0.05, ∙ marks PCC with p < 0.1, unmarked PCC have p ≥ 0.1. 

Feature PCC for both rectangularity 

classes combined 

PCC for low 

rectangularity class 

PCC for high 

rectangularity class 

Mean rectangularity -0.544 * 0.662 ** -0.444 * 

Mean valve area -0.211 -0.590 ** 0.276 

Mean valve length 0.183 -0.313 0.567 ** 

Median valve length 0.044 -0.382 ∙ -0.132 

Mean valve width -0.497 * -0.702 *** -0.610 ** 

Mean costae distance 0.256 0.341 -0.222 

Mean F or F* 0.540 * 0.449 * 0.698 *** 
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2.6.4.5 Valve area  

The formula (Equation 1) used previously by (Shukla et al. 2013) overestimated valve areas, as 

measured by SHERPA, on average by ca. 9 % (Table 4). 

Table 4: Comparison of estimated versus measured valve area 
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60 256.28 280.74  24.45 (+9.54 %) 

80 255.59 280.70  25.10 (+9.82 %) 

100 271.57 298.49  26.92 (+9.91 %) 

110 243.33 264.52  21.19 (+8.71 %) 

120 191.71 209.05  17.35 (+9.05 %) 

130 269.82 294.33  24.50 (+9.08 %) 

140 267.04 293.29  26.25 (+9.83 %) 

150 246.58 267.50  20.92 (+8.48 %) 

160 232.57 250.35  17.78 (+7.64 %) 

170 244.12 262.96  18.84 (+7.72 %) 

180 258.83 280.68  21.86 (+8.44 %) 

190 263.64 286.41  22.77 (+8.64 %) 

200 258.43 279.98  21.56 (+8.34 %) 

780 270.81 295.87  25.06 (+9.25 %) 

800 206.07 225.25  19.18 (+9.31 %) 

810 251.56 277.07  25.51 (+10.14 %) 

820 268.40 295.90  27.50 (+10.25 %) 

830 263.58 288.43  24.84 (+9.42 %) 

840 252.08 276.04  23.97 (+9.51 %) 

850 266.11 294.75  28.64 (+10.76 %) 

870 279.22 306.83  27.61 (+9.89 %) 

All depths 250.96 273.46  22.49 (+8.96 %) 

 

For the low rectangularity class, we found a moderate linear correlation of mean valve area to SSST 

with R² = 0.348 (Figure 6; PCC = -0.59, N = 21, p = 0.0049 for the slope and p < 2.2 · 10-16 for the 

intercept). For the high rectangularity class, R² was below 0.08, giving no indication of a correlation 

to SSST. 
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Figure 6: Comparison of mean valve area and SSST, for low rectangularity class (green) and high rectangularity class 
(maroon); sampling depths are depicted by the indicated symbols. Ca. 35 % of the variability in mean valve area within the 
low rectangularity class can be explained by a linear correlation to SSST (dashed green line), and less than 8 % for the high 
rectangularity class mean area (not shown). 

2.6.5 Discussion 

We investigated morphometric changes in F. kerguelensis valves in a well-studied sediment core 

record. Unexpectedly, we found two clearly distinct classes, differentiated by their rectangularity. 

Means of these classes differed by only ca. 7 %, yet they were clearly different, as visible in 

histograms shown in Figures 1 – 3. Means of several morphometric features were substantially 

different for both classes (Table 2), and proportion of valves matching these two classes varied over 

sampling depths of sediment core PS1768-8 (Figures 2 & 4). We found a substantial offset in valve 

area estimated by established methods, compared to our measurements (Table 4). Furthermore, we 

observed that differentiating F. kerguelensis low rectangularity morphotype leads to an improved 

correlation between valve area and reconstructed summer sea surface temperature (Figure 6 and 

Table 3). 

2.6.5.1 Morphotypes distinct by rectangularity 

F. kerguelensis morphology, as well as material from sediment core PS1768-8, has already been 

investigated thoroughly. Nevertheless, we observed two classes of different rectangularity (Figure 1) 
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which have not been recognized before. A few considerations on valve ellipticity (in a qualitative 

sense, not to be confused with the morphometric descriptor ellipticity) have, however, been made in 

the literature (see below). These might be related to the aspect of morphological variability captured 

by rectangularity.  

We defined a low rectangularity class with µ = 0.723 and σ = 0.014, and a high rectangularity class 

with µ = 0.777 and σ = 0.016, by fitting a normal mixture model to the combined data of all sampling 

depths (Figures 1 & 2). For some depths, the distributions were slightly shifted, compared to the 

overall average position (Figure 3 and supplement “Two rectangularity classes for each sampling 

depth”), but still nevertheless separable. Whenever both classes were clearly visible, also transitional 

forms, covering the whole range between them, were present; yet rectangularity distributions 

appeared strongly bimodal in most of these cases. The two classes overlapped only slightly; for 

separating them we applied a threshold of 0.753 for rectangularity, as derived from the normal 

mixture model fit to the full data set (i.e., all core depths pooled; see Figures 1 & 4). 

Table 5: Correlations between several valve properties and morphometric descriptors. N = 11587; 
p < 0.001 is marked with ***. 

Correlated properties PCC 

a) Valve length & ellipticity -0.608 *** 

b) Valve length & rectangularity -0.313 *** 

c) Rectangularity & ellipticity 0.769 *** 

 

We refer to these rectangularity classes as to two morphotypes; exemplary valves are depicted in 

Figure 7. Morphotype I (Figure 7 a – d) exhibits a lower rectangularity (mean 0.72), due to its rather 

pointed tips, resulting in a more lanceolate shape. In contrast, morphotype II (Figure 7 e – h) has a 

higher rectangularity (mean 0.78) with rounded tips, resulting in a more elliptical shape. A shape 

transition from lanceolate towards elliptic valve outlines can often be observed as a result of size 

reduction in pennate diatoms (Woodard et al. 2016), and might be reflected in the morphometric 

descriptors ellipticity (Equation 3) as well as rectangularity (Equation 2). In line with this idea, valve 

length in our data correlated strongly with ellipticity (Table 5 a), but only weakly with rectangularity 

(Table 5 b), even though both descriptors correlate strongly with each other (Table 5 c). 

Furthermore, the distribution of ellipticity is not as clearly bimodal as that of rectangularity. 

Therefore differences between the two morphotypes seem to be better captured by rectangularity, 

even though visually they appear to relate to a less, or to a more elliptical valve shape, respectively. 

We showed in Figure 5 that these differences do not seem to be caused by mitotic size reduction in 

our case. 

The proportion of these morphotypes in individual core depths is related to different SSST regimes, 

like e.g. distinct oceanic water masses or environmental changes during glacial / interglacial periods 

(Figures 2 – 4). Morphotype I represents the majority of F. kerguelensis valves in all our samples, 

contributing between ca. 50 and nearly 100 % (Figure 3), with its relative abundance being highest 

during interglacial periods, for SSST ≥ 1.7 °C (Figure 4). In contrast, proportion of morphotype II was 

highest during glacial periods, for SSST ≤ 0.9 °C; here it comprised more than ca. 20 % of 

F. kerguelensis valves. For SSST of 1.7 °C and above, it contributed less than ca. 15 %, with the 

exception of 33 % for sampling depth 110 cm, corresponding to 2.2 °C SSST. 
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Figure 7: Examples of the two F. kerguelensis morphotypes. a – d) morphotype I with rather pointed tips and more 
lanceolate shape. e – h) morphotype II with roundish tips and more elliptical shape. Valve lengths are ca. 20, 30, 40, 50 µm 
from top to bottom. 

Whether these morphotypes correspond to morphological variants reported previously in the 

species is in part difficult to decide. (Donahue 1970) proposed Nitzschia kerguelensis var. ovalis 

(Nitzschia kerguelensis being synonymous with F. kerguelensis), documented by six valve images. 

Judging by its name, one could hypothesize that this variety corresponds to the more elliptical 

morphotype II we observed. We digitized and analyzed with SHERPA Donahue’s published images of 
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her var. ovalis, resulting in rectangularity ranging from 0.70 to 0.72. These values are at the lower 

side of the distributions for our low rectangularity class, depicting the more lanceolate morphotype I. 

She further reported a higher abundance of the proposed var. ovalis north of the Antarctic 

Convergence. This is also in contrast with our findings that morphotype II is abundant mostly at 

temperatures at the lower end of F. kerguelensis physiological temperature range. Accordingly, we 

conclude that the Nitzschia kerguelensis var. ovalis, as proposed by (Donahue 1970), is not congruent 

with the F. kerguelensis morphotype II we found. 

(Frenguelli 1960) also described an elliptically shaped variant in this species as F. antarctica var. 

elliptica (F. antarctica being synonymous with F. kerguelensis). However, this variety was rejected by 

(Hasle 1965) because she observed that more elliptical valves usually occurred at lower sizes, and 

was of the opinion that this resulted from allometric change in valve outline shape. (Cefarelli et al. 

2010) agreed, since for Frenguelli’s material they “found a close correlation between form and valve 

size”. Our study is the first where the question of correlation between size and valve outline shape in 

F. kerguelensis is addressed quantitatively. Rectangularity was only weakly correlated with valve 

length (PCC = -0.313, N = 11857, p < 2.2 ∙ 10-16, Figure 5), and thus probably not a result of mitotic 

size reduction. From the single valve drawing which (Frenguelli 1960) used to illustrate F. antarctica 

var. elliptica, we measured a rectangularity value of 0.78, which conforms to the more elliptical 

morphotype II we found. (Cefarelli et al. 2010) presented further light microscopic images from 

Frenguelli’s original material, from which we also measured rectangularity with SHERPA. One of two 

var. elliptica examples had a rectangularity of 0.769, which matches the high rectangularity class 

well, but this measurement might be imprecise due to partly defocused valve edges. However, the 

other example of var. elliptica, as well as the three F. kerguelensis var. kerguelensis examples, were 

within the overlapping range of the two rectangularity classes (0.746 – 0.758), so their class 

assignment is ambiguous. Nevertheless, at Frenguelli’s sampling site (under ice near Port Martin 

winter station, Adélie Land at 66°49´ S), a SSST < 0.9 °C can be expected, which conforms with 

increased abundance of morphotype II in our sediment core samples. Thus it seems possible that the 

var. elliptica described by (Frenguelli 1960) matches the morphotype II we found. In this case, our 

analyses can be taken as evidence against the arguments put forward by (Hasle 1965) and (Cefarelli 

et al. 2010) against the biological validity of Frenguelli’s proposed variety. 

Based on only fossil material, it is difficult to decide what the biological background of the observed 

morphotypic differentiation might be. One possibility would be that the two morphotypes 

correspond to two different species or subspecies, that is, groups of populations which are either 

reproductively isolated, or in reproductive contact, but under strong divergent selection upon their 

valve morphologies. Another possibility is phenotypic plasticity, that is, it is possible that 

F. kerguelensis cells can (possibly depending on environmental conditions, for example, temperature) 

switch their valve outline shapes from lanceolate to more elliptic. When looking at morphometric 

characters besides rectangularity in our light microscopic data set, we see very little other differences 

between both morphotypes. In spite of this, the presence of two distinct taxa might still be a more 

probable explanation for our findings, since we know of no examples from other diatoms of a 

morphological switch which is similar to that between our two rectangularity classes. 

2.6.5.2 F. kerguelensis valve properties as paleo-proxy 

For F. kerguelensis, valve area, valve length and the combined factor F or F* have been proposed as 

potential paleoclimate proxies (Cortese and Gersonde 2007, Cortese et al. 2012, Shukla et al. 2013, 

Nair et al. 2015, Shukla and Crosta 2017). Our methods and findings might have implications for this 

application of F. kerguelensis morphometrics in two aspects. First, using slide scanning combined 
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with image analyses allows increasing sample sizes, and, probably even more important, a more 

precise measurement of morphometric characters apart from simple length measurements. The 

most relevant case in point is valve area: estimations according to Equation 1 (Shukla et al. 2013) 

overestimated values, compared to our direct measurements by ca. 9 % on average (Table 4). This is 

evident by considering that the rectangularity from our measurements, having an overall mean of 

0.74, corresponds to their correction-factor of 0.8. If this was a consistent bias across different 

samples or core depths, this would make little difference; however, due to the varying contributions 

of two morphotypes (Figure 4) and their distinct rectangularity, the bias affects valve area estimates 

from different communities to different extents. Accordingly we propose that, whenever feasible, 

actual measurement of valve area should be preferred over estimation based on measuring valve 

length and width only. 

The second aspect with potential relevance for F. kerguelensis morphometric proxies is our finding of 

two different morphotypes. Whether both morphotypes correspond to distinct (sub-)species or to 

phenotypic variants of the same species, their relative occurrence shows a strong correspondence 

with paleo-environmental conditions, since the high rectangularity morphotype II occurred 

preferentially during glacial periods. Based on this, it is both possible that the relative contribution of 

both morphotypes might become useful as (part of) a paleoceanographic proxy, and/or that explicitly 

distinguishing both morphotypes might improve the precision or resolution of any one of the 

previously proposed F. kerguelensis morphometric proxies. We address these points shortly below. 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑣𝑒𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 ≤ 0.753

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑣𝑒𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 > 0.753
 (Equa-

tion 5) 

 

As for the relative contribution of both morphotypes, we found that SSST showed a strong linear 

relationship with the ratio of contribution (defined in Equation 5; Figure 8), explaining ca. 80 % of the 

SSST variability (PCC = 0.89, N = 21, p = 6∙10-8 for the slope and p = 0.008 for the intercept).  

As for possible improvement of morphometric proxies by differentiating both morphotypes, we 

showed in Table 2 that several morphometric characters differed slightly between both 

morphotypes, e.g. by up to ca. 20 % for mean valve area. Since the proportion of the two 

morphotypes varied significantly between different samples (Figure 4), this might have a 

confounding effect on morphometric trends as observed for F. kerguelensis as a whole (i.e., not 

differentiating both morphotypes). We showed in Figure 6 and Table 3 that differentiating both 

morphotypes, and using valve area from only one of them, leads to an increased correlation with 

reconstructed SSST values. To decide whether this character would be a more precise proxy is not 

possible based on sediment core material only; to address these aspects, we are currently 

investigating surface sediment material and plankton net catches. 
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Figure 8: Correlation between ratio of contribution from the two rectangularity classes and SSST. Ca. 80 % of the SSST 
variability can be explained by a linear correlation with the ratio (dashed line). 

2.6.6 Conclusion 

We found two morphotypes of F. kerguelensis, distinguished by characteristics of the valve tips, 

which appear to be either rather pointed, resulting in a more lanceolate valve shape, or rather 

rounded, resulting in a more elliptical valve shape. This disparity becomes apparent in the 

morphometric descriptor rectangularity, which indicates the presence of two clearly distinct classes 

for the material we investigated. These classes can be separated easily by a rectangularity threshold, 

and increased occurrence of morphotype II might be related to lower SSST. 

Paleo-proxies based on F. kerguelensis valve morphometric features might benefit from 

differentiating these two morphotypes, since both contribute to a different extent to the feature 

means under different environmental conditions. Furthermore, the ratio of abundance of both 

morphotypes also appears as a promising candidate for a paleo SSST proxy, which however needs to 

be substantiated by further examination of recent material from known environmental conditions.  
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2.6.7 Supplements 

2.6.7.1 Data 

The raw data of morphometric measurements are provided in supplement “R” on the annexed data 

medium. 

2.6.7.2 SHERPA settings 

The configuration files and shape templates are provided in supplement “SHERPA” on the annexed 

data medium. Settings for the low-resolution scan can be found in “54S-800m.20x.dmini”, for the 

high-resolution scan in “54S-800m.63x.dmini” 
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2.6.7.3 Two rectangularity classes for each sampling depth 

 
Figure A1: Rectangularity histograms and contribution of rectangularity classes for each sampling depth. Green and maroon 
lines depict the low and high rectangularity classes as shown in Figure 1. Normal mixtures were fitted by an EM algorithm 
(Benaglia et al. 2009) with fixed µ and σ (according to the values stated in Figure 1) and optimizing the value of λ to the 
individual distribution. The dashed red lines mark the threshold of 0.753 we used for separating the two rectangularity 
classes; the dotted black lines depict the density estimates. λ, μ and σ refer to mixing proportion, mean and standard 
deviation. 
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3 Synthesis 
Methods for automated identification and classification of light microscopic diatom images have 

been developed, tested and proposed already more than 15 years ago by the ADIAC project (du Buf 

and Bayer 2002). However, these methods did not become widespread, owing to a lack of ready-to-

use equipment, as well as to deficits in usability of some of the methods, which possibly generated 

some reluctance in their application. As of nowadays, automated image processing has become a 

routine tool in many areas of research and industry. Nevertheless, before this work, no user friendly 

software was available which covered the broad range of methods required for diatom 

morphometry. I filled this gap with SHERPA, a tool for SHapE Recognition, Processing and Analysis, as 

described in Publication I. SHERPA was developed particularly for processing light microscopic 

images of oxidized slide-mounted diatom material, tackling limitations of this type of specimen (like 

poor contrast and contamination with debris) as well as making use of its peculiarities (like limited 

range of geometric shapes to investigate, and their convexity properties). These are, besides several 

image processing knacks, addressed by SHERPA’s internal quality control system, which allows 

sorting out unwanted or flawed results to reduce user efforts. For downstream analysis, SHERPA 

calculates descriptors for ca. 30 morphometric features, which are exported, along with cut-outs of 

the valve images, into standardized image and data file formats. I successfully tested the applicability 

of SHERPA on two datasets, originating from different sources and thus manifesting distinct image 

properties. As a test case for material containing debris, broken valves and overlapping objects, I 

investigated material from a sediment core, imaged by the Metafer slide scanner by a high-resolution 

scan of a continuous slide area. By competitive application of multiple segmentation methods, 

SHERPA was mostly able to successfully segment even this complicated material. Comparing the 

different segmentation methods SHERPA offers, I found that differences they introduced in 

measurements of valve area, perimeter, width and height were mostly in the range of 1.5 % or less. 

For the second test case, from original image data (Mann et al. 2004a) showing complete and 

isolated valves without debris, we successfully recreated parts of the work (Mann et al. 2004b) did on 

differentiating six Sellaphora pupula demes by minute differences in their valve outline. Since 

SHERPA is not limited to processing diatom images, but can handle light microscopic images 

depicting structures with a more or less stable outline, it also has been proposed for analyzing 

phytoliths (Evett and Cuthrell 2016). These results demonstrate SHERPA’s applicability for diatom 

morphometry, by massively reducing user efforts, by measuring a broad range of morphometric 

features, and by doing so at high precision, which, in combination with high optical resolution of 

input images, enables a high taxonomic resolution for downstream taxonomic classification. 

 

The software SHERPA, which I developed during this work, enables for precise automated 

morphometric measurement of diatom valves from slide-mounted material. 

 

For facilitating large-scale morphometric investigations, not only measurement, but also microscopic 

imaging needs to be automated. A two-cycle workflow, with the first cycle using a low-magnification 

objective for locating valves, and a second cycle for revisiting theses vales for imaging them with a 

high-magnification objective, has already been suggested by the ADIAC project more than 15 years 

ago (du Buf and Bayer 2002). However, due to technical limitations, they were not able to implement 

this procedure at that time. Nowadays, these limitations have been overcome by commercially 
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available slide scanning systems. Nevertheless, these systems do not offer functionality tailored to 

the need of diatom morphometry, and they are not designed to enable integration with self-

developed software. For the Metafer slide scanner I established such an integration, which enables 

annotating object coordinates retrieved by SHERPA into so called “virtual slides”, to use those for 

setting up a list of positions to be revisited during the high-resolution imaging step. Even though this 

connection requires slight manual user interaction, it enables for imaging and measuring up to a few 

thousand valves per day, depending on specimen and preparation quality. Making possible the 

integration of these originally independent components, and adapting them to the specific question, 

required a lot of optimization for each of the workflow steps and their harmonization. With the 

multitude of possible settings pertaining to a large number of individual workflow steps, 

documentation of analyses became another issue to be automated. Our approach enables for 

automatically storing the imaging setup of the slide scanner as well as the image processing settings 

used in SHERPA, along with all the measurements and image data. This enables for later reanalysis of 

the images, and even re-imaging of the diatom valves, ensuring reproducibility and reusability of 

data, whilst the two-cycle workflow provides a good trade-off between manual effort, time 

consumption and data economy. I put the applicability of this workflow to the test by measuring the 

length of ca. 12,000 F. kerguelensis valves from sediment core material. This sampling size, which 

was orders of magnitude more extensive compared to conventional morphometric investigations, 

enabled for expanding the known size range for the species’ valve length substantially, by ca. 45 %, 

which shows the benefit of such a large-scale approach. The workflow, as well as the test case, has 

been published in Publication II.  

 

The workflow I developed by combining a commercially available slide scanning microscope with 

SHERPA, facilitates measurement of ca. 30 morphometric features from up to a few thousand diatom 

valves per day. This approach provides a good trade-off between manual effort, time consumption 

and data economy, and it ensures reproducibility and reusability of data by automated 

documentation of imaging and analyses settings. 

 

After this workflow was established, I applied it in a large-scale investigation, measuring ca. 29,000 

F. kerguelensis valves, and looking for morphometric signals related to the diatom life cycle. Direct 

observations of the species in its natural habitat are not possible year-round in the pelagic Southern 

Ocean, thus only little is known about its seasonal development. One of very few possible remedies 

is sampling by moored or drifting sediment traps, which automatically collect material trickling down 

from the upper water column in a time-controlled manner. From such material, I traced signals 

represented by changes in valve length distributions, occurring on different time scales. The ratio of 

shorter and larger cells indicated three seasonal stages, with the population proliferating (mid-spring 

to mid-summer), ceasing (by declining environmental conditions or grazing, from mid-summer to 

mid-autumn) and stagnating (with a higher proportion of very large cells persisting over late autumn 

and winter). These phases occurred at similar, though not identical points in time during both 

observed years, and the pace and degree of changes between neighboring time points also differed 

between both years. The increased abundance of smaller cells during summer indicated conditions 

beneficial for sexual propagation. However, we did not observe clear size cohorts, which would 

indicate strong sexual events affecting a major part of the population. Instead, I found only a slightly 

elevated relative abundance of valves within the size range of initial cells, which I interpreted as 
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signal of low sexual activity. Since this occurred for prolonged periods at different times of both 

years, it is not clear if this signal was caused by events of F. kerguelensis life cycle. The signal could 

also result from the nature of sediment trap material, which usually does not give a very clear image 

of the processes in the upper water column. I nevertheless interpret these data as indication of 

asynchronous sexuality during periods of weak vegetative growth. Whilst changes in diatom cell size 

are usually interpreted exclusively in the frame of the life cycle, I also pointed out their interlinkage 

with physiological and ecological effects, which might contribute to an explanation of the patterns I 

observed in valve length distributions. This investigation, which will be published in Publication III, 

became feasible only by means of my automated high-throughput workflow, and helped elucidating 

the life cycle of F. kerguelensis in its natural habitat.  

Unlike for my other investigations, oxidized diatom frustules were embedded not in Naphrax, but in 

Norland Optical Adhesive NOA 61. The lower refractive index of this mountant resulted in weaker 

contrast of siliceous structures, complicating automated segmentation and necessitating increased 

efforts in manual review and reworking. 

 

As a first larger scale research project using the diatom imaging and morphometry workflow I 

developed, I analyzed 29,000 F. kerguelensis valves from a two-year sediment trap time series. I 

interpreted the observed changes in valve length distributions by relating them to life cycle events as 

well as to physiological and ecological effects of cell size. 

 

The last extensive showcase of my workflow regarded F. kerguelensis morphometric changes on a 

geological time scale from a sediment record. Features like valve length, valve area, and costae 

distance in relation to the valve’s aspect ratio (as the combined factor F or F*), have previously been 

proposed as paleoceanograpic proxies for summer sea surface temperature (SSST), iron availability 

and glacial / interglacial conditions. Whilst these proxies were based on the quantification of basic 

geometric valve properties, we scrutinized also more complex morphometric descriptors, measured 

from ca. 12,000 F. kerguelensis valves originating from sediment core samples. Doing so, we found 

that the formula used by (Shukla et al. 2013) overestimated the valve area by ca. 9 % on average, 

compared to actual measurements by SHERPA. For the morphometric descriptor rectangularity, I 

found two clearly distinct classes, which I termed different morphotypes. Whilst one of the 

morphotypes persisted throughout the samples, the other one occurred prominently only during 

glacials. If the second morphotype represents a cryptic taxon, or if it is a result of phenotypic 

plasticity, is not clear at the moment. However, both morphotypes contributed differently to means 

of morphometric features used or proposed as paleo-proxies. Accordingly, differentiating between 

the morphotypes might improve the accuracy of these proxies. I also found that the abundance ratio 

of both morphotypes correlated very strongly with the reconstructed SSST, making it a promising 

candidate for a paleo SSST proxy. These findings are ready to be published in Publication IV. The fact 

that the two morphotypes have not been recognized before, even though the species, as well as the 

material I used, has been investigated thoroughly before by highly skilled diatomists, illustrates the 

potential of my automated diatom morphometry workflow. To answer the question if the two 

morphotypes relate to cryptic taxa or to phenotypic plasticity needs further investigation of recent 

(for example phytoplankton net) samples and of F. kerguelensis cultures. 
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From sediment core material, I identified two previously unrecognized different morphotypes of 

F. kerguelensis. This finding not only has implications for existing paleo-proxies, but might also 

provide a new proxy for summer sea surface temperature. This study clearly underlines that large-

scale imaging based methods not only have the potential to speed up tedious analyses, but can also 

lead to substantially novel scientific insights. 

4 Summary 
Since the ADIAC project, which ended more than 15 years ago, not much progress in automating 

morphometric analysis of diatoms from slide-mounted material has been published, and no ready-to-

use system has become available. This thesis work is the first to implement such a system 

completely, covering all aspects of the underlying imaging and image processing pipeline, by 

combining a commercially available slide scanning microscope with my diatom morphometry 

software SHERPA. I was able to show the applicability as well as the potential of this approach by 

executing a series of smaller and two large-scale morphometry projects. The extensive sampling 

sizes, which were made possible only by the new workflow, enabled the first observations of life 

cycle related size distribution changes of Fragilariopsis kerguelensis in its natural habitat, leading to 

hypotheses on influences of reproduction, grazing and environmental changes in one of the most 

important diatom species of the Southern Ocean. In a second large-scale investigation, SHERPA’s 

precise morphometric measurements revealed a second F. kerguelensis morphotype, which has not 

been recognized before, even though the species, as well as the very material I analyzed, have been 

investigated intensely before by experienced diatomists; a result not disqualifying their work, but 

rather underlining that explicit and precise quantification of morphological information has a strong 

potential to generate novel scientific insights. This new morphotype has implications on the 

utilization of paleo-proxies which are based on geometrical valve features of F. kerguelensis. 

Differentiating both morphotypes might improve established methods and possibly provides a new 

proxy for summer sea surface temperature. 

As image processing and classification nowadays develop faster than ever before, further 

development will allow application of my workflow in automatic diatom identification, water quality 

monitoring, paleoceanography, paleolimnology and many other fields of diatom research. 

5 Zusammenfassung 
Seit das ADIAC Projekt vor mehr als 15 Jahren abgeschlossen wurde, sind nur wenige signifikante 

Fortschritte vorgestellt worden bezüglich der Automatisierung morphometrischer Analysen von 

Diatomeen, welche auf Objektträgern montiert sind, und gebrauchsfertige Systeme sind bisher nicht 

verfügbar. Diese Arbeit ist die erste, welche ein umfassendes Gesamtsystem implementiert das 

sämtliche Aspekte einer entsprechenden Bildaufnahme und -verarbeitungspipeline abdeckt; dies 

wurde erreicht durch die Verknüpfung eines kommerziellen Slide-Scanning-Mikroskops mit meiner 

Diatomeen-Morphometriesoftware SHERPA. Durch eine Reihe kleinerer und zwei großmaßstäbliche 

Morphometrieprojekte konnte ich sowohl die Eignung, als auch das Potential dieser Lösung zeigen. 

Die großen Stichprobenumfänge, welche erst durch dieses System ermöglicht wurden, gestatteten 

die ersten Beobachtungen von Änderungen der Größenverteilungen von Fragilariopsis kerguelensis 

in Abhängigkeit von ihrem Lebenszyklus, in ihrem natürlichen Lebensraum. Diese mündeten in 

Hypothesen hinsichtlich der Einflüsse von Reproduktion, Fressfeinden und Umweltveränderungen 

auf eine der wichtigsten Diatomeen-Arten des Südozeans. In einer zweiten großangelegten 
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Untersuchung führten die durch SHERPA ermöglichten präzisen morphometrischen Messungen zur 

Entdeckung eines zweiten F. kerguelensis Morphotypen, welcher bisher übersehen wurde, obwohl 

sowohl die Art, als auch eben jenes Material, das ich analysiert habe, bereits von erfahrenden 

Diatomologen ausgiebig untersucht wurde. Dieser Fund soll nicht die bisherigen Arbeiten 

disqualifizieren, sondern deutlich machen, dass die eindeutige und präzise Quantifizierung 

morphologischer Informationen ein großes Potential hinsichtlich der Erlangung neuer 

wissenschaftlicher Erkenntnisse birgt. Die Entdeckung des zweiten Morphotypen hat Auswirkungen 

auf die Anwendung von Paläo-Proxies, denen geometrische Eigenschaften der Valvenform von 

F. kerguelensis zugrunde liegen. Beide Morphotypen zu differenzieren könnte die etablierten 

Methoden verbessern, und möglicherweise sogar einen neuen Proxy für die Oberflächentemperatur 

des Meereswassers im Sommer bieten.  

Die immer schneller fortschreitende Entwicklung von Methoden zur Bildverarbeitung 

und -klassifizierung wird die Verwendung meines Workflows im Bereich der automatischen 

Identifizierung von Diatomeen, der Wasserqualitätsüberwachung, der Paläo-Ozeanographie  

und -Limnologie, sowie vielen weiteren Feldern der Diatomeenforschung ermöglichen. 

6 Abbreviations 
ACC, Antarctic Circumpolar Current; ADIAC, Automated Diatom Identification And Classification; AIC, 

Akaike information criterion; APF, Antarctic Polar Front; BIC, Bayesian information criterion;  BSiO2, 

biogenic silica; CDF, convexity defection factor; CDMs, convexity defect measures; CHMDF, convex 

hull maximum distance factor; CSV, comma separated values; EFDs, elliptic Fourier descriptors; 

EFDIs, elliptic Fourier descriptor invariants; EIFEX, European Iron Fertilization Experiment; HLNC, 

high-nutrient low-chlorophyll; λ, mixing proportion; LED, light emitting diode; µ, mean; MIS, marine 

isotope stadium; n, sampling size; N, population size; p, p-value; PCAF, percent concave area fraction; 

PCC, Pearson correlation coefficient; PFZ, Polar Frontal Zone; POC, particulate organic carbon; R², 

square of PCC; RATS, robust automated threshold selector; RI, ranking index; RFI, relative frequency 

of valves within the initial cell size range; σ, standard deviation; SHERPA, tool for SHapE Recognition, 

Processing and Analysis; SSST, summer sea surface temperature; SST, sea surface temperature; TIFF, 

tagged image file format; XML, extensible markup language 
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9 Annex: Data medium 
The data medium contains the data accompanying the papers, as well as R scripts used for analysis 

and visualization and other supplementary material. It can be downloaded from PANGAEA: 

https://doi.pangaea.de/10.1594/PANGAEA.890162 
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