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ABSTRACT OF THE DISSERTATION 

STUDY OF PROTEOFORMS, DNA AND COMPLEXES USING TRAPPED ION 

MOBILITY SPECTROMETRY – MASS SPECTROMETRY 

by 

Alyssa L. Garabedian 

Florida International University, 2018 

Miami, Florida 

 

Professor Yuk-Ching Tse-Dinh, Co-Major Professor 

The characterization of biomolecules and biomolecular complexes represents an 

area of significant research activity because of the link between structure and function. 

Drug development relies on structural information in order to target certain domains. Many 

traditional biochemical techniques, however, are limited by their ability to characterize 

only certain stable forms of a molecule. As a result, multidimensional approaches, such as 

ion mobility mass spectrometry coupled to mass spectrometry (IMS-MS), are becoming 

very attractive tools as they provide fast separation, detection and identification of 

molecules, in addition to providing three-dimensional shape for structural elucidation. The 

present work expands the use and application of trapped ion mobility spectrometry-coupled 

to mass spectrometry (TIMS-MS) by analyzing a range of biomolecules (including 

proteoforms, intrinsically disordered peptides, DNA and molecular complexes). The aim 

is to i) evaluate the TIMS platform measuring sensitivity, selectivity, and separation of 

targeted compounds, ii) pioneer new applications of TIMS for a more efficient and higher 

Professor Francisco Fernández-Lima, Co-Major Professor
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throughput methodologies for identification and characterization of biomolecular ions, and 

iii) characterize the dynamics of selected biomolecules for insight into the folding 

pathways and the intra-or intermolecular interactions that define their conformational 

space. 
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1.1 Overview 

Interactions between proteins and DNA control several fundamental biological 

processes, including gene regulation, replication, repair, transcription, translation and 

recombination1. Studying complex formation and conformational changes as a function of 

binding is a central goal in biochemical and biophysical research. The interaction between 

such interfaces is crucial to understanding their potential as therapeutic targets and for 

disease prevention.2 The basis of these interactions (e.g., association and dissociation) are 

rooted in the kinetics and thermodynamics of the systems.3 Data from thermodynamic 

studies (i.e., molecular modeling) have been successful in providing information on 

binding free energies. However, because of the highly complex dynamics involved in 

protein-DNA interactions there is still much ambiguity regarding the kinetic nature of the 

folding process. As a result, extensive research has been dedicated to instrumental and 

method development to further probe protein-DNA complex folding and allow detailed 

insight into structural assembly. 

Through the use of various techniques, structural elucidation of biomolecular 

complexes have grown substantially;4 however, some significant limitations still exist. 

Specifically, the heterogeneous nature and dynamic character of most assemblies and their 

low relative concentrations within physiologically relevant conditions has provided 

challenges for traditional structural biology tools. That is, high-resolution methodologies 

(e.g., x-ray crystallography and NMR) dominate the field of structural biology because 

they excel at revealing atomic level information. Unfortunately, their major limitation is 

the requirement for large quantities of highly purified and homogenous samples. Even then, 

such approaches can prove futile because of low sensitivity, lack of quality crystals, or the 
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size of the molecular assembly. Additionally, in the case of x-ray crystallography, flexible 

or disordered regions are often excluded and removed so that crystals can form for 

analysis.5 Since between 30% and 50% of eukaryotic proteins have unstructured parts, the 

majority of structural characterizations of eukaryotic proteins is incomplete. Even when 

these efforts are successful, only a snapshot of the most stable biomolecule or biomolecular 

complex conformation is described, which may not necessarily represent in vivo structures. 

Thus, the inability to access information regarding kinetic intermediates at native 

conditions means that a comprehensive view and significant portion of potential knowledge 

is left inaccessible. 

It is important, during the structural characterization of biomolecules, to preserve 

the biologically relevant concentrations and conditions. Proteins can be heavily influenced 

by their cellular environment, often being altered to some degree by post-translational 

modifications (PTMs) to carry out specific functions. Many of these modified or 

unmodified biomolecules are expressed at very low concentrations (<picomolar), 

therefore, most analytical and biochemical techniques are not effective at these detection 

limits or are restricted to one-dimensional type of analysis. For example, methods that can 

detect compounds will often lack the ability to determine structure. To further advance the 

field of structural analysis there is a push for multidimensional approaches that can detect 

low abundant biomolecules followed by identification, quantification and tertiary structure 

characterization. Comprehensive cellular measurements alone can potentially allow 

progress in protein biomarker discovery, where distinct molecular signatures can lend 

insight into the presence of specific disease. Early and effective disease detection provides 

a greater potential for successful therapeutic applications and such research is well 
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complemented by structural analysis as protein folding (i.e., the arrangement of amino 

acids in space) is imperative in the search for drug targets. 6-8 

1.2 Analytical Methods for Molecular Ionization, Separation and Characterization 

Recent innovations in speed, accuracy, and sensitivity have established mass 

spectrometry (MS) methods as a key technology within the field of structural biology and 

complex mixture analysis.9 Specifically, native MS techniques, which have been 

developed over the last two decades, permit the structural interrogation of intact 

biomolecules and biomolecular complexes at biologically relevant conditions, which are 

not accessible by other methods.10-14 For example, electrospray ionization (ESI) is a soft 

ionization technique that has become a standard method in clinical laboratories. The 

successful application of ESI by John Fenn’s group in 1988 showed that large proteins 

could successfully and very efficiently be transferred intact from solution to the gas 

phase.15 Fenn’s work opened the door for significantly low detection limits (femtomolar) 

and larger mass range of analytes (kDa). Also significant was the fact that noncovalent 

interactions are preserved throughout the ionization process, allowing complexes to be 

interrogated for stoichiometry studies.16-17 

Over the past decade ESI has been combined with ion mobility spectrometry (IMS), 

coupled to mass spectrometry (IMS-MS) to become an analytical research tool employed 

in the study of the structure of gas-phase ions, as it provides a more dynamic view and 

native-like folding information.18 Used as a gas-phase separation technique, traditional 

IMS relies on the separation of ions as they drift in a bath of inert neutral molecules (e.g., 

N2 or He) under the influence of a weak electric field.19-21 The ion’s mobility gives 

information on their size and shape via the momentum transfer ion-neutral collision cross 
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section (CCS) and allows the identification of different ion conformations based on the 

variation in size.22 Many different forms of IMS have been used in the analysis of biological 

molecules, the most common being FAIMS,23 DT-IMS24 and TWIMS.25-26 While different 

in the mode of operation, resolution and sensitivity, their implementation has allowed for 

the study of isotopomers,27 proteins,28-29 protein complexes,5, 30-35 folding pathways,36-38 

unstructured/intrinsically disordered proteins,39-43 as well as collisionally activated states 

of peptides and proteins.34, 44-50 In addition to biomolecule activation, variations in starting 

solvent conditions (e.g., pH, organic, and salt content) have become a traditional approach 

for studying conformational folding via IMS following the fact that disruption of the 

hydrogen bonding networks can provide complimentary information on protein 

composition, connectivity and architecture.51 In addition to altering starting solvent 

conditions, post translational modifications (PTMs) or single amino acid mutations can 

impact the function and folding of many proteins or complexes. The influence of chemical 

or environmental changes on biomolecule structure have gone relatively undocumented 

because most methods are insensitive to residue mutations at critical junctions18. However, 

with mass spectrometry coupled experiments, sensitive structural information can be 

elucidated.  

Ion mobility spectrometry has also been extensively employed in areas of trace 

analysis for the detection of explosives and chemical warfare agents52-53 and has proven 

itself to be an invaluable tool in field of proteomics, genomics, and metabolomics as a 

result of the ability to differentiate and identify isomeric species in complex samples.19 

Ultimately, in comparison to traditional LC-MS approaches, IMS has the ability to provide 
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more sensitive detection and higher throughput analysis of biological standards and 

complex biological matrices for biomarker identification.  

In 2011, Dr. Francisco Fernandez-Lima, Dr. Desmond Kaplan and Dr. Melvin A. 

Park. pioneered the development of a new IMS analyzer - Trapped Ion Mobility 

Spectrometer (TIMS). Since then, collaborative efforts between Dr. Fernandez-Lima 

research group, Dr. Melvin A. Park at Bruker Daltonics Inc. and others have allowed for 

major breakthroughs in the field of analytical chemistry. The possibility of decoupling the 

time domain from the IMS separation allows for the study of conformationally trapped 

molecular ions in the gas-phase as a function of the desolvation time, temperature and bath 

gas composition. In the case of structural biology, the gas-phase studies take advantage of 

the desolvation process to effectively reduce sample complexity, permitting molecular 

characterization in the absence of bulk solvent. Trapped ion mobility spectrometry-mass 

spectrometry has proven to consistently achieve high resolution and high mobility 

separation; it boasts unparalleled resolving power up to ~400,54 compared to a typical 

TWIMS and DT-IMS analyzer which will achieve ~30-60 and ~60-80. The new 

capabilities for fast separation, identification, and quantification of complex mixtures, and 

the ability to study biomolecular conformational space for structural elucidation makes 

TIMS an exceptional platform. In particular, multiple molecules and their conformations 

can be measured simultaneously, allowing it to be applied to a variety of analytical 

challenges and questions. Kinetic studies can be performed to elucidate conformational 

interconversion/intermediates of proteins and their complexes.55-62 When complemented 

with molecular dynamics (MD), or other solution- and condensed-phase techniques, TIMS-
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MS has proven itself to be a very powerful instrument for biomolecule structural 

characterization, and a leading technique in terms of speed and selectivity. 

1.3 Dissertation Structure 

This dissertation contains some research that has been published in peer-reviewed 

journals. Specifically, material from chapter 2 was published in the Journal of the American 

Society for Mass Spectrometry and published on their website (DOI: 10.1007/s13361-017-

1787-8). Chapter 3 was published in Analytical Chemistry (Anal. Chem., 2018, 90 (4), pp 

2918-2925). Chapter 4 was accepted for publication in the International Journal for Ion 

Mobility Spectrometry. Chapter 5 was published in Physical Chemistry Chemical Physics 

(Phys. Chem. Chem. Phys., 2016, 18 (38), pp 26691-26702). We aim to quickly submit 

chapter 6 to the Journal of the American Chemical Society. Chapter 7 has been submitted 

for review for publication in Scientific Reports. Chapter 8 is being prepared for submission 

in Biophysics.  

Throughout this dissertation we combine several objectives that aim to understand 

and develop new TIMS-MS capabilities, including complex mixture separation for 

discovery and targeted molecular monitoring and quantitation, structural characterization 

of intrinsically disordered peptides, DNA, proteins, and protein-DNA assemblies. 

Complemented by extensive solution- and gas-phase experimental and computational 

approaches, the goal was to pioneer new applications of TIMS for a more efficient and 

higher throughput methodologies for identification and characterization of biomolecular 

ions. In Chapter 2, we detail the first report on TIMS-CID-MS capabilities for offline 

discovery and targeted monitoring of potential peptide biomarkers using data independent 

mobility fragmentation and quantitation with internal heavy standards. The first analytical 
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separation of isomeric, middle down, histone tail proteoforms using TIMS-MS is shown in 

Chapter 3; this chapter also describes the first comparison across FAIMS, TWIMS and 

TIMS platforms and the analytical potential of using FAIMS and TIMS due to their 

substantial orthogonality. In Chapter 4, for the first time, TIMS-MS was applied to the 

study of intrinsically disordered AT-hook peptides (ATHPs 1, 2 and 3) as a function of the 

time after desolvation, organic content and bath gas composition; this study describes the 

influence of the molecular environment on the conformational populations of intrinsically 

disordered peptides. In Chapter 5, the first application of TIMS-MS for the study of DNA 

conformers, specifically the kinetically trapped intermediate structures of i-motif DNA in 

their folded and unfolded states is shown. This study provided the intramolecular 

interactions that are responsible for stabilizing the folding pathway and for the first time, 

the possibility to manipulate conformational populations prior to TIMS-MS using 

collisional induced activation (CIA-TIMS-MS). In Chapter 6, we describe for the first time, 

the interaction of intrinsically disordered peptides with DNA (ATHP with AT-rich DNA 

hairpin) and demonstrated that the ATHP peptides can effectively bind to both the major 

and minor DNA grooves. Chapter 7 provided for the first time an analytical workflow that 

combines single amino acid substitutions with TIMS-MS for direct assignment of 

intramolecular interactions and cis/trans locations in the ATHPs, as well as primary 

sequence influence on the binding dynamics to AT-rich DNA. In chapter 8, for the first 

time, the conformational space and binding dynamics to single stranded DNA and a stem 

loop DNA of two topoisomerases – E.coli Topoisomerase IA and Vaccinia Topoisomerase 

IB using TIMS-MS are described.  
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2.1 Abstract 

In the present work, the potential of Trapped Ion Mobility Spectrometry coupled to 

TOF Mass Spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of 

peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In 

particular, a TIMS-MS workflow was developed for the detection and quantification of 

peptide biomarkers using internal heavy analogs, taking advantage of the high mobility 

resolution (R = 150 – 250) prior to mass analysis. Five peptide biomarkers were separated, 

identified and quantified using offline nanoESI-TIMS-CID-TOF MS and results were in 

good agreement with measurements using a traditional LC-ESI-MS/MS proteomics 

workflow. The TIMS-TOF MS analysis permitted peptide biomarker detection based on 

accurate mobility, mass measurements, and high sequence coverage for concentrations in 

the 10-200 nM range, while simultaneously achieving discovery measurements. 

2.2 Introduction 

The level of chemical complexity during proteomic analysis and the large dynamic 

range of commonly studied and potential biomarkers represents an analytical challenge 

that requires the further development of high throughput, orthogonal, reproducible and 

robust analytical platforms. Nowadays, mass spectrometry based analysis offers an 

unparalleled, non-targeted, analysis tool for dissecting complex protein samples at the 

molecular level; however, prior to mass spectrometry analysis, pre-separation techniques, 

such as high performance liquid chromatography (HPLC) and nano-liquid chromatography 

(nanoLC), are often required to mitigate matrix effects and to enhance the peak capacity of 

the analysis. These pre-separation methods have the advantage of reducing problems 

associated with ion suppression during competitive ionization of complex samples, a 
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phenomenon that is more typically observed during direct infusion ionization analyses [1, 

2]. However, traditional LC-based protocols require long separation times in order to 

analytically separate most of the compounds of interest, and high solvent volumes per 

sample; which for large scale profiling, represents a major obstacle in analysis due to added 

time and cost [3-5]. In addition, these techniques still suffer from poor separation of 

isobaric species, which significantly challenges protein sequencing and identification using 

bottom-up appraches. These challenges become major hindrances for the analysis of a 

complex biological system, such as cancer proteomic samples, which typically contain a 

myriad of molecular species. In addition, large-scale profiling in bottom-up proteomics is 

often limited by the sensitivity of the current mass spectrometry instruments to isolate and 

detect parent and fragment ions during tandem MS analysis of complex mixtures [6]. For 

example, current bottom-up proteomic strategies require the chemical treatment of samples 

(i.e., trituration, protein extraction, enzymatic digest) prior to analysis which result in 

highly complex mixtures which then require further separation and preparation prior to MS 

analysis [7]. 

An alternative approach is the use of gas-phase, post-ionization separations such as 

ion mobility spectrometry coupled to mass spectrometry (IMS-MS), which promises 

further gains in the speed, sensitivity and selectivity for the analysis of complex biological 

mixtures [8, 9]. Specifically, the added mobility dimension of separation yields an increase 

in peak coverage [6, 10-12], a factor that has often inhibited the analysis of complex 

mixtures with MS-only detection. The IMS-MS coupling readily enhances peptide/protein 

coverage and identification by allowing more ions, specifically isomers, to be resolved 

while simultaneously reducing chemical noise [13, 14]. Previous studies have illustrated 
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the advantages of IMS-MS in terms of profiling mixtures [8, 15-19], making it one of the 

most powerful platforms for identification and characterization of proteins and peptides in 

biological samples. Our group has been working on the development of alternative, time-

independent IMS approaches based on Trapped Ion Mobility Spectrometry coupled to MS 

(TIMS-TOF MS and TIMS-FT-ICR MS) for the study and manipulation of gas-phase 

molecular ions [10, 20-33]. Briefly, the concept behind TIMS is the use of an electric field 

to hold ions stationary against a moving gas, so that the drift force is compensated by the 

electric field and ion packets are separated based on their respective ion mobilities [20, 21, 

27]. This concept follows the idea of a parallel flow ion mobility analyzer [34], with the 

main difference that ions are also confined radially using a quadrupolar field to guarantee 

higher ion transmission and sensitivity [20, 21]. Since the introduction of TIMS-MS in 

2011 [20, 21], our group [10, 22-33, 35] and others [8, 36-44] have shown the potential of 

TIMS-MS for fast, gas-phase separation and for molecular structural elucidation. In 

particular, we have demonstrated the advantages of TIMS over traditional IMS analyzers 

for fast screening [22] and targeted [10, 35] analysis of molecular ions from complex 

chemical mixtures; the study of isomerization kinetics of small molecules [23, 24], peptides 

[25], DNA [33], proteins [28, 29], DNA-protein complexes and protein-protein complexes 

in their native and denatured states [32]. In a more recent report, we showed the isomer 

separation of polybrominated diphenyl ether metabolites using nanoESI-TIMS-TOF MS 

with mobility resolutions of up to 400 (the highest reported mobility resolution for singly 

charged species) [30].  

Herein, we present for the first time a nanoESI-TIMS-CID-TOF MS workflow, 

developed for fast, gas-phase ion separation and accumulation, with efforts focused on 
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targeted quantitative analysis and discovery measurements of breast cancer markers. The 

ability of TIMS-CID-TOF MS to separate and sequence isobaric peptides in a complex 

mixture is illustrated. We address typical challenges and targeted and discovery monitoring 

strategies using isotopically-labeled internal standards for effective peptide identification 

and sequencing. While LC-TIMS-MS separations has been recently shown in the case of 

peptide markers [8], the presented workflow targets offline separations in order to shorten 

the MS analysis time while tailoring the TIMS analysis for high mobility separation and 

sensitivity.  

2.3 Experimental 

2.3.1 Tumor protein extraction and tryptic digestion 

A patient-derived mouse xenograft model of luminal B human breast cancer - 

Washington University Human-in-Mouse (WHIM16) was used for all the studies [45]. The 

WHIM16 xenograft tumor pieces were transferred into pre-cooled Covaris Tissue-Tube 1 

Extra (TT01xt) bags (Covaris no. 520007) and processed in a Covaris CP02 Cryoprep 

device using an impact setting of 3 (all tumor tissue wet weights were less than 100 mg). 

The tissue powder was then transferred into precooled cryovials (Corning no. 430487). All 

procedures were carried out on dry ice and liquid nitrogen to maintain tissue in a powdered, 

frozen state. Approximately 50 mg of WHIM16 tumor tissue was homogenized in 600 µL 

of lysis buffer (8 M urea, 100 mM NH4HCO3, pH 7.8, 0.1% NP-40, 0.5% sodium 

deoxycholate, 10 mM NaF, phosphatase inhibitor cocktails 2 and 3, 20 µM PUGNAc). 

Protein concentrations of tissue lysates were determined by BCA assay (Pierce). Proteins 

were reduced with 5 mM dithiothreitol for 1 h at 37 °C, and subsequently alkylated with 
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10 mM iodoacetamide for 1 hour at room temperature in the dark. Samples were diluted 

1:2 with Nanopure water, 1 mM CaCl2 and digested with sequencing grade modified 

trypsin (Promega, V5113) at 1:50 enzyme‐to‐substrate ratio. After 4 h of digestion at 37 

°C, samples were diluted 1:4 with the same buffers and another aliquot of the same amount 

of trypsin was added to the samples and further incubated at room temperature overnight 

(~16 h).  The digested samples were then acidified with 10% trifluoroacetic acid to ~pH 3. 

Tryptic peptides were desalted on strong cation exchange (SCX) SPE (SUPELCO, 

Discovery-SCX, 52685-U) and reversed-phase C18 SPE columns (SUPELCO Discovery, 

52601-U) and dried using Speed-Vac. 

2.3.2 Tryptic peptide fractionation 

The tryptic peptide sample was separated on a Waters reversed phase XBridge C18 

column (250 × 4.6 mm, 5-μm and protected by a 4.6 mm × 20 mm guard column) using an 

Agilent 1200 HPLC System. After sample loading, the column was washed for 35 min 

with 10 mM triethylammonium bicarbonate, pH 7.5(solvent A), before applying a 102-min 

LC gradient in combination with 10 mM triethylammonium bicarbonate, pH 7.5, 90% 

acetonitrile (solvent B). The LC gradient started with a linear increase to 10% B in 6 min, 

then to 30% B in 86 min, 42.5% B in 10 min, 55% B in 5 min and 100% solvent B in 

another 5 min.  The flow rate was 0.5 mL/min.  A total of 96 fractions were collected into 

a 96 well plate throughout the LC gradient. These fractions were concatenated into 48 

fractions by combining 2 fractions that are 48 fractions apart (i.e., combining fractions #1 

and #49; #2 and #50; and so on)[46]. The concatenated fractions were dried in a Speed-

Vac and stored at −80°C. Fractions of various volumes were prepared at PNNL based upon 

BCA analyses to have total peptide concentrations of 0.5 µg/µL and shipped for analysis 
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at FIU.  Each fraction was selected based on LC-MS/MS analyses conducted at PNNL (to 

be reported separately) to contain specific peptides to target for identification in those 

analyses (see Table 1).  Heavy standards of the target peptides were purchased from 

ThermoFisher and used as received.  The last residue of the sequence (Arg or Lys) was 

modified with 13C6 and 15N4 or 13C6 and 15N2, respectively. Light (non-isotopically 

labelled) standards of the target peptides were also purchased from GenScript and used 

without further purification. All samples were diluted with Optima grade 0.1% Formic 

Acid. 

2.3.3 Trapped Ion Mobility Spectrometry – Mass Spectrometry Analysis 

Individual fractions, each spiked with the corresponding internal heavy peptide 

standard, were analyzed by directly infusing the sample via nanoESI into the TIMS-MS 

spectrometer.  A detailed overview of the TIMS analyzer and its operation can be found 

elsewhere [20, 21, 27].  The nitrogen bath gas flow is defined by the pressure difference 

between entrance funnel P1 = 1.8-2.6 mbar and the exit funnel P2 = 0.6-1.0 mbar at ca. 300 

K. The TIMS analyzer is comprised of three regions: an entrance funnel, analyzer tunnel 

(46 mm axial length), and exit funnel. A 880 kHz and 200 Vpp RF potential was applied 

to each section creating a dipolar field in the funnel regions and a quadrupolar field inside 

the tunnel. In TIMS operation, multiple ion species are trapped simultaneously at different 

E values resulting from a voltage gradient applied across the TIMS tunnel. After 

thermalization, species are eluted from the TIMS cell by decreasing the electric field in 

stepwise decrements (referred to as the “ramp”) and can be described by a characteristic 

voltage (i.e., Velution – Vout). Eluted ions are then mass analyzed and detected by a maXis 
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impact Q-ToF MS (Bruker Daltonics Inc, Billerica, MA). In a TIMS device, the total 

analysis time can be described as: 

total IMS time = ttrap + (Velution/Vramp)*tramp + ToF = to + (Velut/Vramp)*tramp  (1) 

where, ttrap is the thermalization/trapping time, ToF is the time after the mobility separation, 

and Vramp and tramp are the voltage range and time required to vary the electric field, 

respectively.  The elution voltage was experimentally determined by varying the ramp time 

(tramp = 100, 200, 300, 400 and 500 ms) for a constant ramp voltage. This procedure also 

determines the time ions spend outside the separation region to (e.g., ion trapping and time-

of-flight). The TIMS cell was operated using a fill/trap/ramp/wait sequence of 10/10/50-

500/50 ms. The ToF analyzer was operated at 10 kHz (m/z 100-3500). The data was 

summed over 100 analysis cycles yielding an analysis time of ~50 s for the largest trapping 

times (tramp=500 ms). Mobility calibration was performed using the Tuning Mix calibration 

standard (G24221A, Agilent Technologies, Santa Clara, CA) in positive ion mode (e.g., 

m/z 322, K0 = 1.376 cm2 V-1 s-1 and m/z 622, K0 = 1.013 cm2 V-1 s-1) [27]. The TIMS 

operation was controlled using in-house software, written in National Instruments Lab 

VIEW, and synchronized with the maXis Impact Q-ToF acquisition program [20]. A 

custom-built source using pulled capillary nanoESI emitters was utilized for all the 

experiments. Quartz glass capillaries (O.D.: 1.0 mm and I.D.: 0.70 mm) were pulled 

utilizing a P-2000 micropipette laser puller (Sutter Instruments, Novato, CA) and loaded 

with 10 L aliquot of the 20x diluted sample solution. A typical nanoESI source voltage 

of +600-1200 V was applied between the pulled capillary tips and the TIMS-MS instrument 

inlet. Ions were introduced via a stainless steel inlet capillary (1/16 x 0.020’’, IDEX Health 
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Science, Oak Harbor, WA) held at room temperature into the TIMS cell. Reduced mobility 

values (K0) were correlated with Collisional cross section (Ω) using the equation: 

Ω =
(18𝜋)1/2

16

𝑧

(𝑘𝐵𝑇)1/2 [
1

𝑚𝑖
+

1

𝑚𝑏
]

1/2 1

𝐾0

1

𝑁∗      (2) 

where z is the charge of the ion, kB is the Boltzmann constant, N* is the number density 

and mI and mb refer to the masses of the ion and bath gas, respectively [47]. All resolving 

power (R = Ω/ΔΩ) values were determined from Gaussian peak fits using OriginPro 

(version 8.0). 

2.3.5 LC-ESI-MS/MS Analysis 

Confirmation studies using tandem mass spectrometry were performed by a 

QTRAP 5500 Triple-Quadrupole mass spectrometer (AB Sciex, Concord, Ontario, 

Canada) equipped with a Turbo V ion source (ESI) operated in the positive mode.  

Solutions of peptides and heavy analogs (5.0 µM) in 50% acetonitrile, 0.1% formic acid in 

water were directly infused (10 µL/min) into the TurboV ion source. Once suitable species 

(usually [M+2H]+2) were detected in manual tuning mode, automatic optimization was 

performed of the collision energy (CE), declustering potential (DP) and collision cell exit 

potential (CXP) to obtain best parameters for MS/MS via collision-induced dissociation 

(CID). A multiple reaction monitoring (MRM) detection method was thus developed for 

each peptide and heavy analog, using the two most intense transitions observed for 

quantitative and confirmation purposes. HPLC separations (40 µL injections) used a 

reverse phase column (Dionex Acclaim 120 C18 Column, 250x2.1 mm, 5 µm) and a 

Shimadzu Prominence LC-20AD Ultra-Fast Liquid Chromatograph. Mobile phase 
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gradient was performed between 0.1% formic acid dissolved in water (mobile phase A) 

and 0.1% formic acid dissolved in acetonitrile (mobile phase B), all purchased 

commercially and of Optima LC-MS grade.  The auto sampler was kept at 4° C. Analysis 

was performed at 35° C with a flow rate of 0.80 mL/min, according to the following 11.0 

min program: hold 10% B for 0.25 min; ramp to 65% B in 4.5 min; ramp to 98% in 0.1 

min; hold for 1.65 min; return to 10% B in 0.5 min; hold for 4 min until end. 

2.4 Results and Discussion 

Commonly used peptide biomarkers during detection of protein DJ-1 [48], 

calmodulin [49], parafibromin [50, 51], MAP7 domain-containing protein 1 [52-54] and 

membrane-associated progesterone receptor component 1 [55, 56] (sequences: 

DVVICPDASLEDAKK, VFDKDGNGYISAAELR, TTILQSTGK, LSASTASELSPK, 

DFTPAELR, respectively) were used in this study (see Table 2.1). The selection of the 

targeted peptides was guided towards covering a diverse protein abundance range based on 

previous analyses of the patient-derived breast cancer mouse xenograft tissue sample 

(WHIM16) using LC-QQQ by the Clinical Proteomic Tumor Analysis Consortium 

(CPTAC) [57]. Single peptide standards and their respective heavy versions were analyzed 

using TIMS-MS in order to determine the charge state distribution (CSD) and collision 

cross section (CCS) when sprayed from the same starting solvent conditions as those of the 

WHIM16 tryptic digested fractions. Peptides DFTPAELR and TTILQSTGK showed 

similar CSDs with the [M+H]+ producing the most abundant signal, while 

LSASTASELSPK, VFDKDGNGYISAAELR, and DVVICPDASLEDAKK showed 

larger abundance for the [M+2H]+2 charge state (Figure 2.1). In addition to targeting m/z 

peaks, based on their abundance as a function of the charge state, a second criteria utilized  
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Figure 2.1. Typical mass spectra and IMS projection plots of the five targeted peptides of 

interest. Notice the high mobility resolution obtained using nanoESI-TIMS-MS for singly 

and doubly charged molecular ions. 
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was the simplicity of the CCS profiles for the [M+H]+ and [M+2H]+2 charge states in order 

to avoid potential interferences. A typical mobility resolving power of R ~ 200 was 

obtained for the [M+H]+ and [M+2H]+2 charge states and CCS values correlate well with 

previously identified peptide mobility trend lines observed during IMS-MS analysis [58]. 

Comparison of the IMS profiles of the targeted peptides and the heavy analogs present the 

same distribution and CCS values (Table 2.1); moreover, an exception to this rule was 

observed for CAM modified heavy analogs customized to prevent disulfide association. 

For the latter, the confirmation and quantification was made based on the targeted and 

heavy analog m/z and CCS value. The power of the TIMS-MS for peptide characterization 

was further examined by sequencing two of the targeted peptides possessing the same 

nominal mass (e.g., m/z 948.479 and m/z 948.536 for DFTPAELR and TTILQSTGK, 

respectively). While traditional proteomics analysis is based on peptide identification using 

MS/MS strategies, for TIMS-CID-TOF MS the m/z and CCS characterization of the parent 

ion can be complemented with CID without the need for m/z preselection if separation in 

the CCS domain is achieved (Figure 2.2). Inspection of the experimental 2D IMS-MS 

contour plots of the isobaric peptide mixture shows the fragment ions of DFTPAELR and 

TTILQSTGK peptides falling directly in line with the mobilities of their respective parent 

ion (Figure 2.2a). The incorporation of IMS prior to CID holds multiple advantages for 

molecular identification since direct correlation of fragment ions with precursors ion can 

be performed in the 2D-IMS-MS [59-65]. Analysis using TIMS provided baseline 

separation of the targeted peptides, where a minimum RIMS~ 100 (i.e., CCS of 295 and 298 

Å2) was required (Figure 2.2b). Closer inspection of the product ions (mostly b and y type 

fragments and some internal fragments) permitted the verification of the peptide sequences  
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Figure 2.2. a) TIMS-CID-MS of isolated isobaric precursor ions for the DFTPAELR and 

TTILQSTGK peptides and the corresponding ladder fragmentation pattern. B) Mobility 

selected MS showing the separation of the precursor ions. C) CID spectra of the fragments 

corresponding to DFTPAELR and TTILQSTGK. 
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(Figure 2.2c). The advantage of this approach when compared to traditional LC-MS/MS 

proteomics is that the CCS values (or profiles) of each parent and corresponding fragments 

are common parameters and can be used as additional identification confirmation. That is, 

the precursor and product ions will share the same CCS, while characteristic LC elution 

times may depend on several experimental conditions and may not be as reproducible, nor 

specific, to a given peptide. However, because the CCS is a property of the peptide parent 

ion, the possibility to uniquely trap the mobility range of interest in a TIMS analyzer 

significantly enhances the multiple reaction monitoring capabilities of the TIMS-MS 

analyzer by ultimately reducing chemical noise and increasing the TIMS selectivity of the 

parent and fragment ions.  

Despite the LC pre-fractionation step, the samples of interest provided highly 

complex spectra with multiple peaks present at the nominal mass level in the 2D-IMS-MS 

domain (Figure 2.3a). The 2D IMS-MS contour plots showed that each fraction contained 

two main trend lines, corresponding to singly and doubly charged species [8]. Closer 

inspection confirmed that the TTILQSTGK [M+H]+ molecular ion (m/z 948.536) was 

accompanied by two other compounds within 5 mDa, which are not distinctly separated in 

the MS domain alone, despite the high resolution of the TOF analyzer (RMS ~20-40k). 

When combined with TIMS analysis, however, the three signals can be easily separated, 

distinguished, and identified (Figure 2.3b). Further comparison of the targeted peptide and 

the corresponding heavy analog IMS projections of TTILQSTGK [M+H]+ (m/z 956.555) 

confirmed the assignment in the 2D-IMS-MS contour plots (Figure 2.3c).  

After verifying the TIMS-MS workflow for high reproducibility and accuracy in 

measuring and identifying the targeted peptides from the WHIM16 tryptic digested 
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Figure 2.3. a) Typical 2D-IMS-MS contour plot using nanoESI-TIMS-MS for a fraction 

containing the target peptide TTILQSTGK. The 2D-IMS-MS profile highlights the 

complexity of each fraction and shows the charge state specific trend lines. b) The 2D IMS-

MS at the level of nominal mass depicts the isomeric interferences in the region of the 

targeted peptide and heavy analog. c) IMS projection plots for the targeted and 

corresponding heavy peptide using 5mDa window show identical CCS values. 
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fractions, the potential for quantitative analysis via TIMS-MS was evaluated. To mimic 

matrix effects, one of the fractions, with confirmed absence of the target peptide, was 

spiked with known concentrations of the light and heavy peptide standards. The use of 

internal heavy standards accounted for variations in the nanoESI spray between 

experiments and from sample to sample, as well as changes in the spraying conditions as a 

function of time. Figure 4 shows a linear dependence between the TIMS peak area and the 

sample concentration for the case of the TTILQSTGK [M+H]+ peptide (Figure 2.4a), 

regardless of the TIMS trapping time (e.g., tramp = 100-500 ms) and analytical ramp slope 

(Figure 2.4b). The robustness of this TIMS-MS quantitation procedure was also confirmed 

for all the peptides of interest at the low concentration (e.g., 1, 5, 10 and 20 nM) and the 

use of internal heavy peptide analogs accounted for all the potential nanoESI spray 

variability (Figure 2.4c). 

The analysis and quantitation of targeted compounds in complex mixtures using 

direct infusion ESI (and nanoESI) can be subject to ion suppression effects [66, 67]. To 

further evaluate this consequence, dilution (up to 20 times) of a WHIM16 tryptic digested 

fraction with known spiked concentrations of targeted and heavy standards showed less 

than 10% variability in the TIMS-MS quantification results (Figure 2.5a, top). 

Complementary LC-ESI-MS/MS based traditional proteomic analyses of the same sample 

showed similar ion suppression effects (Figure 2.5a, bottom). 

The ultimate test for the TIMS-MS workflow consisted of blind analysis of 

WHIM16 tryptic digested fractions known to have the targeted peptides. Briefly, the 

highest concentration of the targeted peptide observed was for DFTPAELR at 182 ± 7.0 

nM (364 fmol/µg), follow by TTILQSTGK peptide at 21.0 ± 5.0 nM (42 fmol/µg),  
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Figure 2.4. a) Typical TIMS profiles of a pure heavy standard and in-fraction light peptide 

standard (TTILQSTGK [M+H]+) as a function of the concentration. b) Trapping efficiency 

of TIMS analysis illustrating that trapping time does not impact the calculated 

concentration or linear response and c) Measured light peptide concentrations for each 

targeted peptide, via TIMS-MS, in relation to the heavy analog displaying a linear 

response. 
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VFDKDGNGYISAAELR peptide at 16.0 ± 4.5 nM (32 fmol/µg), DVVICPDASLEDAKK 

peptide at 18 ± 5.0 nM (35 fmol/µg) and LSASTASELSPK peptide at 17 ± 4.8 nM (33 

fmol/µg). The results of the TIMS-MS quantification procedure and their comparison to 

LC-ESI-MS/MS based traditional proteomic analyses of the same sample are summarized 

in Figure 5b and Table 1. Overall, comparable results for targeted peptides per fraction  

were observed using nanoESI-TIMS-MS and LC-ESI-MS/MS; moreover, it is worth 

stating that while nanoESI-TIMS-MS was routinely done in five minutes, each LC-ESI-

MS/MS analysis typically required 20-25 minutes. In addition, while TIMS-MS 

measurements were geared toward the separation, identification and quantitation of five 

targeted peptides, simultaneously, discovery TIMS-MS measurements were collected 

without compromising the targeted analysis. That is, the TIMS-MS analysis allowed for 

the identification of multiple tryptic peptides (both targeted and untargeted) from the above 

five specified proteins. For example, TIMS-MS data analysis revealed 15 to 60% protein 

sequence coverage, using peptide IDs that were not initially targeted, over the various 

fractions analyzed (see Appendix 3.2 and Appendix 3.1 in the Supporting Information). 

While new biomarker detection is out of the scope the present study, it should be noted that 

a posteriori screening (or discovery) of potential biomarkers of interest is an inherent 

potential of the current TIMS-MS workflow. That is, the use of TIMS-MS workflow as a 

broad measurement technique, concurrently with the targeted quantitative approach, 

effectively reduces the problems associated with individual analyses and holds the 

advantage of increasing proteome coverage and new biomarker detection while 

maintaining speed, accuracy and sensitivity.  
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Figure 2.5. a) Response curves for the LSASTASELSPK [M+2H]+2 peptide standards 

analyzed in fraction (matrix effect) and in the blank via nanoESI-TIMS-MS and LC-QqQ-

MS and b) comparisons of targeted peptide concentrations measured in fractions by 

nanoESI-TIMS-MS and LC-QqQ-MS. 
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Table 2.1. Peptide sequence, m/z of light and heavy peptides, ion-neutral collision cross 

section (CCS) and total in-fraction peptide concentration of the five targeted peptides in 

the fractions. LC-ESI-MS/MS concentrations using the 535.2 187.0 DA 

(DVVICPDASLEDAKK), 585.7  201.1 Da (VFDKDGNGYISAAELR) and 474.9  

130.1 Da (TTILQSTGK) channels are denoted with an asterisk (*). 

 

2.5 Conclusions 

The demand for fast, accurate, and sensitive analytical tools for the detection and 

quantification of biomolecules is increasing as a way to offset the challenge of drug 

discovery and biomarker identification. While several strategies have been developed, 

some current efforts are focused on reducing sample preparation and analysis time, while 

increasing detection limits and peak capacity by using complementary, orthogonal 

separation techniques. In the present work, the concepts of characterizing proteomes using 

offline nanoESI-TIMS-MS were evaluated by performing targeted and discovery analysis 

of cancer biomarkers from a human-in-mouse xenograft tumor tissue. Results showed that 

targeted peptide separation, identification and sequencing can be performed based on 
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accurate mobility, mass and fragmentation pattern measurements, and that peptide 

quantitation can be routinely achieved utilizing heavy peptide analogs as internal standards. 

The capacity of the TIMS analyzers for selective mobility trapping with high resolving 

power increases the selectivity and sensitivity of the analysis and provides unique 

advantages for offline targeted studies compared with traditional LC-ESI-MS-MS 

proteomic strategies. A good agreement was obtained between the quantitation using 

offline nanoESI-TIMS-MS and LC-ESI-MS/MS. This work serves as a stepping-stone and 

proof of concept for quantitative proteomics of targeted peptides without the need for 

online LC separation, an aspect that can significantly lower costs and lead to increased 

sample throughput during targeted biomarker detection. 
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3.1 Abstract 

Comprehensive characterization of proteomes comprising the same proteins with 

distinct post-translational modifications (PTMs) is a staggering challenge. Many such 

proteoforms are isomers (localization variants) that require separation followed by top-

down or middle-down mass spectrometric analyses, but condensed-phase separations are 

ineffective in those size ranges. The variants for “middle-down” peptides were resolved by 

differential ion mobility spectrometry (FAIMS), relying on the mobility increment at high 

electric fields, but not previously by linear IMS on the basis of absolute mobility. We now 

use complete histone tails with diverse PTMs on alternative sites to demonstrate that 

highresolution linear IMS, here trapped IMS (TIMS), broadly resolves the variants of ∼50 

residues in full or into binary mixtures quantifiable by tandem MS, largely thanks to 

orthogonal separations across charge states. Separations using traveling-wave (TWIMS) 

and/or involving various time scales and electrospray ionization source conditions are 

similar (with lower resolution for TWIMS), showing the transferability of results across 

linear IMS instruments. The linear IMS and FAIMS dimensions are substantially 

orthogonal, suggesting FAIMS/IMS/MS as a powerful platform for proteoform analyses 

3.2 Introduction 

As the proteomics tools mature, the front line moves to characterizing proteoforms 

and revealing the activitymodulating impacts of post-translational modifications 

(PTMs).1−5 Many proteoforms feature different numbers or types of PTMs, detectable by 

mass spectrometry (MS) on the basis of the mass increment.6 Others are isomers with 

identical PTMs on different residues.7−9 Such “localization variants” are individually 

distinguishable by unique fragments in tandem MS, particularly employing electron 
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transfer dissociation (ETD) that severs the protein backbone while retaining weaker PTM 

links.3,7,9−11 The conundrum is that multiple variants frequently coexist in cells, but MS/MS 

cannot disentangle mixtures of more than two, as those with PTMs on internal sites yield 

no unique fragments.12,13 This calls for variant separation at least to binary mixtures before 

the MS/MS step.12−14 Liquid chromatography (LC) could resolve some variants for 

peptides in the “bottom-up” mass range (<2.5 kDa) usual for tryptic digests,15 but not 

“middle-down” peptides (2.5–10 kDa) or intact proteins. Unfortunately, splitting proteins 

into peptides using proteases precludes global PTM mapping by obliterating the 

proteoform-specific connectivity information between the modified peptides.9,16 

This problem is most prominent for histones that combine exceptional importance 

to life with great diversity of PTM types and sites.9,16-26  Histones (H2A, H2B, H3, and H4) 

consisting of ∼100–140 residues are nucleosome core particles—the spools that store the 

DNA in cell nuclei and regulate chromatin structure and function through dynamic 

reversible PTMs including methylation (me), trimethylation (me3), acetylation (ac), 

phosphorylation (p), and others.9,14,16-26 Permuting their order and modulating the site 

occupation levels in this ”histone code” drastically alters the activity of the whole genome, 

defined chromatin domains, genomic regions, and/or individual genes. Nearly all PTMs in 

histones are on the enzymatically cleavable N-terminal domains (“tails”) protruding from 

the nucleosome.16,24,25 The H3 tail of ∼50 residues is cleavable by the endoproteinase Glu-

C, and its characterization approaches that of intact histone.23-25 

A growing alternative to LC is ion mobility spectrometry (IMS), which is based on 

the ion transport in gases driven by an electric field,27,28 with the key benefits of speed and 

distinct (often superior) selectivity. Linear IMS27 measures the absolute ion mobility (K) 
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at low field strength (E), whereas differential or field asymmetric waveform IMS 

(FAIMS)28  relies on the difference between K at high and low E elicited by an asymmetric 

waveform. That ΔK is less correlated29,30 to the ion mass (m) than K, rendering FAIMS 

more orthogonal to MS than linear IMS is—by about 4-fold for many biomolecular classes 

comprising peptides.31,32 Therefore, FAIMS commonly separates isomers better than linear 

IMS of the same resolving power (R), including peptides with sequence inversions32 and 

localization variants with diverse PTMs.14,33-37 In particular, complete histone tails and their 

segments involving various PTMs and sites have been resolved.14,34,35 

Linear IMS separations of such variants were limited to phosphopeptides under 

∼1.5 kDa.38,39Expanding this capability to larger peptides and smaller PTMs is topical, as 

linear IMS platforms can be more sensitive than high-definition FAIMS. They also 

determine the collision cross section (Ω) unavailable from FAIMS,27,28 which may help 

understanding and predicting the PTM-controlled differences in the stability of peptide 

folds with implications for activity in vivo.40 Here we deploy linear IMS in the commercial 

traveling wave (TWIMS)41-47 and trapped (TIMS)48-53 platforms to separate localization 

variants for complete histone tails. The instrumental resolving power of TIMS can exceed 

300, far over ∼50 with TWIMS.42,53,54 However, R for proteins in linear IMS has been 

capped at ∼30 by peak broadening due to conformational multiplicity.55,56 A critical 

advantage of TIMS is achieving for some protein conformers the same peak width as that 

for small peptides, as in FAIMS.52,57 

We utilize the H3 variants investigated14 by FAIMS to compare performance and 

evaluate the orthogonality between two dimensions for middle-down proteoforms. We also 
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inspect the correlation between TWIMS and TIMS to gauge the transferability across linear 

IMS platforms. 

3.1 ESI-TWIMS-MS Instrumentation 

In TWIMS,41-47 ions “surf” along a stack of addressable electrodes that create an 

axial wave with spatial period L and radially confining rf field. We employed the Synapt 

G2 system (Waters, Milford, MA), where exiting ions are injected into an orthogonal 

reflectron time-of-flight (ToF) stage (resolving power RMS of 20000) and registered.42 As 

isobaric ions have the same velocity under vacuum, their temporal separation at the 

detector equals the difference of transit times (tT) through the IMS stage determined by 

mobility. Unlike the case with drift-tube (DT) IMS, the tT(K) function is not reducible to 

closed form.42  Hence, extracting K (to deduce the ion geometries by matching calculations 

or preceding measurements) necessitates a multipoint calibration using standards and is 

especially challenging for macromolecules because variable source conditions and field 

heating prior to and during IMS separation affect the geometries of pertinent standards.42-

44 Still, Synapt has become the prevalent IMS/MS platform in proteomics and structural 

Table 3.1. PTM localizations in H3 tail (ART3K4Q T6ARK9S10 TGGK14A PRK18QL 

ATK23AA RK27S28AP ATGGV K36KPHR Y41RPGT VALRE) 

PTM Positions 

me K4, K9, K23 

me3 K4, K9, K23, K27, K36 

ac K9, K14, K18, K27, K36 

p T3, T6, S10, S28, Y41 
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biology.45-47  Here we look at the variant separations without assigning structures; thus, 

the tT scale was not converted into Ω terms. However, as in FAIMS,14 an internal 

calibrant—a peptide of similar mass (insulin, 5.8 kDa)—was spiked to validate consistency 

and accurate spectral comparisons. The spectra were linearly scaled to align the tT for 

calibrant peaks. 

The key parameters of TWIMS are peak voltage (U), wave speed (s), and the buffer gas 

identity, pressure (P), and temperature (T).42 Separations are mainly governed by the ion 

drift velocity at wavefront relative to its speed: 

c = KU/Ls = K0P0TU/(PT0Ls)        (1) 

where the subscript “0” denotes quantities at STP (including the reduced mobility K0). The 

resolution is maximized at some c; therefore, the variants with unequal mobility (reflecting 

different geometries and/or charge states z involved) may separate best in differing 

regimes. However, the said maximum is near-flat over c ≈ 0.3–0.8, allowing ∼4-fold 

variation of K with little resolution loss.42 The mobilities of large peptides with z > 3 

depend on z weakly, as charging induces unfolding (elevating Ω), and the mobility range 

for conformers at a given z is limited as well.56,59 Hence, peptides in different charge states 

can often be run together. Ions in TWIMS are materially field-heated, which may isomerize 

flexible macromolecules with mobility shifting over time.42,60 As reducing c slows the ion 

transit,42 that effect may influence the variant resolution for large peptides apart from its 

dependence on c for fixed geometries. Therefore, we have repeated analyses over the 

practical c range using s values of 650, 1000, and 1900 m/s at U= 40 V with N2 gas at P = 

2.2 Torr. The gas flows were 0.5 L/min N2 to the source (at 100 °C), 0.09 L/min N2 to the 

(unheated) cell, and 0.18 L/min He to the helium gate in front of it. 
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The ESI source with a 32-gauge steel emitter was run with the infusion flow rate of 

20 μL/min, capillary at 2.8 kV, and sampling cone at 45 V. The geometries of protein and 

peptide ions from ESI may keep the memory of folding in solution and thus depend on the  

 

Figure 3.1. TWIMS spectra for histone tail variants with z = 6 - 11, measured with solvent 

(i) using s = 650 m/s 
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solvent,61,62 modifying the variant resolution. To assess that, we tested 0.1 μM peptide 

solutions in (i) default 50/49/1 MeOH/H2O/acetic acid (pH = 3), (ii) predominantly organic 

90/9/1 MeOH/H2O/acetic acid, (iii) extremely acidic 97/3 H2O/formic acid (pH 1.5), and 

(iv) 99/1 isopropyl alcohol/acetic acid. 

The apparent TWIMS resolving power is R = tT/w, where w is the full peak width 

at half-maximum. The true R is greater by the logarithmic derivative of tT(Ω), which is ∼2 

over the practical c range where tT(Ω) is near-quadratic.42,54 

3.2 nESI-TIMS-MS Instrumentation 

In TIMS,48-53 ions radially confined by rf field in a straight section of 

electrodynamic funnel are axially stratified by flowing gas (sucked by MS vacuum) and 

retarding longitudinal dc field E. As Eis ramped down, the flow pushes ions in order of 

decreasing mobility to the MS stage—here, an Impact Q-ToF (Bruker, Billerica, MA) 

with RMS = 30000 (at 10 kHz frequency). Separations depend on the gas flow velocity (vg), 

trapping voltage (Vramp), base voltage (Vout), and ramp duration (tramp). Isomers emerge at 

elution voltages (Velution) given by 

K = vg/E = A/(Velution – Vout)        (2) 

where A is a constant fit using internal calibrants52 (here the Agilent Tuning Mix 

components with K0 values of 1.013, 0.835, and 0.740 cm2/(V s) for respective m/z values 

of 622, 922, and 1222) with Velution for each determined from the analysis time corrected 

for delay after elution (using varying ramp times).50  All electrode voltages were managed 

by custom software synchronized with the MS platform controls. The rf amplitude was 250 

VPP at 880 kHz frequency. The typical dc voltages were: inlet capillary at 40 V, funnel 

entrance at 0 V, Vramp = −(50–200) V, and Vout = 60 V. Lower scan rates (Sr = ΔVramp/tramp) 
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improve the resolving power; we generally adopted Sr = 0.3 V/ms. The overall 

fill/trap/ramp/wait sequence was 10/10/(100–500)/50 ms. With summation of 100 cycles, 

the longest acquisition took ∼1 min. 

The buffer gas was N2, with vg set by the difference between pressures at the funnel 

entrance (2.6 Torr) and exit (1.0 Torr). Ions were generated by a pulled-tip nESI emitter 

(biased at 700–1200 V) from 10 μL sample aliquots (0.5 μM in (v) 50/50 MeOH/H2O or 

(vi) H2O) and introduced into the TIMS device via an orthogonal unheated metal capillary. 

More details on the nESI/TIMS hardware and mobility calibration are given in 

the Supporting Information. 

The measured mobilities were turned into Ω using the Mason-Schamp formula63; 

𝛺 =
3

16
[

2𝜋

(𝑘𝐵𝑇) (
1

𝑚
+

1

𝑀
)]1/2 𝑧𝑒

𝑁𝐾
        (3) 

where z is the charge state, e is the elementary charge, kB is the Boltzmann constant, 

and N and M are the gas number density and molecular mass, respectively. The resolving 

power is51 R = Ω/w. 

3.3 Results and Discussion 

3.3.1 TWIMS Separations 

Using solvent (i), we observed all variants in z = 5–11. This range is lower than 

the z = 8–12 examined in nESI/FAIMS experiments with the same solvent,14 which reflects 

a different ion source and greater instrumental sensitivity that allows collecting IMS data 

for more states (although with low signal at z = 5).  

Most IMS spectra were obtained using the default s = 650 m/s (Figure 3.1). Each 

variant exhibits one defined peak in z = 10, 11 but up to three (fully or partly resolved) 

javascript:void(0);
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Figure 3.2. Relative (approximate) cross sections for K9me3 (dominant peaks). Lines guide 

the eye through trends below and above the transition region. Data for K9ac are in 

Appendix 3.2. 

peaks in z = 6–9. This suggests a gradual transition from compact conformers at low z to 

unfolded conformers at high zover several charge states exhibiting rich structural 

heterogeneity, ubiquitous for proteins.56,59As the scaling42 of tT as ∼Ω2 renders Ω about 

proportional to z(tT)1/2 over the practical tT range, we can estimate relative Ω with no scale 

anchoring (Figure 3.2 and Appendix 3.2). The S shape of these plots with a jump between 

two trend lines for all variants confirms unfolding at intermediate charge states. The 

apparent R is 29–33 for all PTMs (average over variants and charge states) and 30–34 in z = 

7 and 9–11 (average over variants and PTMs). In z = 8, the slightly wider peaks and 

lower R = 27 likely reflect unresolved conformers broadening the peaks in unfolding 

region. Hence, the performance is consistent across PTMs, their locations, and charge 

states. 



54 

 

The spectra for variants in many charge states significantly differ, but rarely enough 

for satisfactory resolution. The greatest separation is for me3 tails, proven using the 

mixtures of two to five variants (Appendix 3.3a-d). The best resolution is in z = 6, 8, 9: at 

the peak apexes, K23me3 is largely resolved from all but K27me3 as 8+ ions and all but 

K36me3 as 9+, K27me3 is largely resolved from all but K23me3 or K36me3 as 8+, and 

K36me3 is baseline-resolved from others as 6+ and 9+. K9me3 is filtered from others in z = 

10, 11 (not at the apex). As MS/MS can fully characterize binary variant mixtures, this 

partial resolution helps more than may seem: for example, one can use 10+ or 11+ to detect 

and reasonably quantify K9me3, 8+ for K27me3 (in K27me3/K36me3 mix), and 9+ for 

K23me3 (in K23me3/K36me3 mix), while the K4me3 and K36me3 variants with PTMs 

on bookend sites need no separation. This strategy demands no prior knowledge of the IMS 

spectra for each variant, although that would accelerate analyses by revealing the optimum 

drift times and charge states. 

This successful separation was limited to the me3 case. For the isobaric acetylation, 

no variant is fully resolved in any state. The K9ac and K36ac are filtered in 10+ at the 

longest and shortest tT, respectively (with large signal loss), but separating those “bookend” 

variants is not crucial. K14ac is enriched at the lesser peak in 9+, but intense contamination 

by other variants makes that of little utility. The situation for phosphorylation is more 

promising. One can cleanly filter the Y41p variant at its peak apex in 7+ and T3p and S10p 

(away from apexes) in respectively 11+ and 10+, and T6p/S28p mix near the apex of S28p 

in 6+ (the S10p contribution there would not compromise the analysis for T6p and S28p 

with occupied external sites). For single methylation with just three variants here, the major 

task is separating K9me with PTM in the middle. That is feasible (a bit off apex) in 10+ 
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and 11+, and the K4me variant can be filtered (away from the apex) in 10+. The profile for 

K23me differs from those for K4me and K9me in 8+ and 9+ substantially, but not enough 

for clean filtering. The separations for p and me variants are also verified using selected 

mixtures (Appendix 3.3e-f). 

The peak pattern in Figure 3.1 is consistent over the practical wave speed range: 

raising s from 650 to 1000 and 1900 m/s increases tT from 4–7 to 6–10 and 10–25 ms 

without significantly moving the relative peak positions (Figure 3.3 and Appendix 3.4). To 

quantify, the tT sets at s values of 650 and 1000 m/s are correlated with r2 (average over all 

charge states) of 0.95 for ac and 0.85 for me3, where the transitions between major 

conformers at some z interfere with correlation (Appendix 3.5). The respective r2 values 

for pairs at s = 1000 and 1900 m/s decrease to still high 0.90 and 0.79 (excluding one 

outlier). Hence, the ion geometries are largely conserved between ∼5 and ∼20 ms. The 

resolving power is unchanged at s = 1000 m/s (apparent R of 29–35 in z = 7, 9–11 and R = 

25 in z = 8 upon averaging over all me3 and ac variants), but drops at s = 1900 m/s (to R = 

17–28 in z = 7, 9–11 and R = 14 in z = 8). Thus, the variant resolution at s = 1000 m/s is 

close to that at s = 650 m/s but deteriorates at s = 1900 m/s outside the optimum 

range.42 Substitution of ESI solvent has minor effects on IMS spectra in any given charge 

state (Appendix 3.6). This agrees with the analyses64 of unmodified histone tails using 

Synapt G2, where the mobilities at fixed z were the same with solvent pHs of 2 and 6.5. 

More acidic or organic media favor higher z as anticipated,64,65 and solvents (ii) and (iii) 

produced me3 variants in z = 12 observed14 in FAIMS. However, we saw no significant 

variant resolution for 12+ ions (Appendix 3.7). Hence, the variant separations by ESI-

TWIMS are independent of the source and kinetic factors, likely reflecting the equilibrium  
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Figure 3.3. TWIMS spectra for K27me3/K36me3 mix (z = 9) measured with solvent (i) 

depending on the waveform speed (solid black lines), with fits by scaled individual traces 

(colored lines) and their computed sum (dotted lines). Data for other speeds and mixtures 

are in Appendix 3.4. 

ion geometries formed in the desolvation region. Then overcoming insufficient variant 

resolution requires IMS of higher resolving power, such as TIMS. 

3.3.2 TIMS Separations 

We observed z = 6–11 for all PTMs (K4me3 and K27me3 were not studied because 

of sample shortage). The resolving power for base peaks at Sr = 0.3 V/ms is ∼80–280, with 

a mean of ∼150–170 for each PTM. The overall average (R = 167) is >5× that with TWIMS 

(R = 32), yielding multiple (up to ∼10) substantial peaks for all variants in each z except 6 

and 10 (Figure 3.4 and Appendix 3.1). These metrics match those for multiply charged 

unmodified peptides.66 We now note no drop of R in z = 8: instead of peak broadening, 

multiple conformers produce rich spectra for all variants. The Ω values increase at 

higher z due to unfolding, and relative Ω values match those estimated from TWIMS data 

(Figure 3.2 and Appendix 3.2). This validates our approximation to obtain the relative Ω 

from raw TWIMS spectra and points to similar ion geometries in the two separations. 
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Figure 3.4. TIMS analysis of histone tail variants: spectra (cross section scale) for z= 6–11 

(with solvent (v), tramp = 500 ms). 

 

With the TIMS residence time of ∼40–400 ms (depending on tramp), even the 

shortest is much beyond the longest in TWIMS. Gas-phase protein conformations may 

evolve over time, specifically on the ∼5–500 ms scale relevant here.67,68 Present TIMS 

experiments employed soft ion injection without activation. However, the IMS spectra for 

all variants and charge states do not significantly depend on tramp or solvent (v) versus (vi) 

(Figure 3.5 and Appendix 3.8). Therefore, we focus on the data obtained at maximum 

resolution (tramp = 500 ms) using solvent (v), which provides a higher and more stable ion 

signal. 
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Figure 3.5. TIMS spectra for K23me3 8+ measured at (a) tramp = 100 and 500 ms from 

solvent (v) and (b) tramp = 500 ms from solvents (v) and (vi). Results for 

other tramp values, variants, and charge states are given in Appendix 3.8. 

 

The three me3 variants can be largely separated using z = 6–9, 11 (Figure 3.4). One 

can filter K36me3 from K9me3 and K23me3 best at the major peak c in 6+ and lesser a in 

9+, largely K23me3 from others at the major peaks c in 8+ and b in 9+, and readily K9me3 

from K36me3 in z= 6, 8, 9, 11. Resolving K9me3 from K23me3 is difficult: the best 

outcome is a ∼3× enhancement in 8+ at the major peak d or e. However, separation to the 

binary mixtures (by resolving the K9me3/K23me3 mix and K36me3) is trivial. As seen in 

DTIMS and FAIMS analyses,14,38 the spectra are “quantized”: most variants exhibit 

features at discrete Ω bands (labeled in Figure 3.4) in different proportions. This suggests 

a set of energetically competitive folds persisting across variants, with relative energies 

and thus populations dependent on the PTM position. 

Despite many more features, these separations track the order and often the relative 

spread of cross sections found in TWIMS (Figure 3.1): K9me3 ≤ K23me3 < K36me3 in 

6+, similar Ω values for leftmost peaks with features c, d for K36me3 and (with higher 

Ω) d for K23me3 in 7+, K36me3 < K23me3 < K9me3 for major peaks in 8+, and K9me3 
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< K23me3 ≤ K36me3 for those in 11+. The starkest similarity is in 9+: here K9me3 has 

one major peak d with feet b and c, K23me3 has three peaks (largest b, smallest c, and 

medium d), K36me3 has two intense peaks (a and larger c), and the overall order is K36a < 

K23b ∼ K9b < K36c ≤ K23c < K9d < K23d. The only difference is that in 10+ all variants 

coincide in Figure 3.4 but K9me3 lies to the left of others in Figure 3.1. 

The results for other PTMs are similar. With acetylation (Figure 3.4), there is 

modest separation in 6+, but K9ac and K18ac are well-resolved from K14ac and K27ac 

(and vice versa) at the peak apexes in 7+. The blow-up of conformational multiplicity in 

8+ obstructs separations, but K27ac is filtered from others at f. The 9+ state permits 

excellent resolution of K14ac from others at the major peak d and intense e (and vice versa 

at the major peaks for others a, b, c) and of K9ac at bfrom K14ac and K27ac. Each variant 

exhibits one major peak in 10+ as with the me3 case, but here those are dispersed enough 

to resolve K9ac and K36ac from others at the apexes. In 11+, all variants are similar except 

K36ac filtered at the major peak a. These properties permit multiple protocols to quantify 

all variants in a mixture. The optimum may be to isolate K9ac in 10+, K14ac in 9+, K27ac 

in 8+, and K36ac in 10+ or 11+ (not truly necessary for the bookends K9ac and K36ac). 

K18ac is not resolved in any state individually but is resolved to binary mixtures 

(K9ac/K18ac at the peak apex in 7+ and K18ac/K27ac right of the c apex in 9+), allowing 

redundant quantification by ETD. The order of peaks across charge states also correlates 

with TWIMS data. For example, that in 10+ is K36ac < K18ac ≤ K27ac < K14ac < K9ac 

in TIMS and similar K36ac < K27ac ≤ K18ac = K14ac < K9ac in TWIMS (Figure 3.1). 

With phosphorylation (Figure 3.4), one can pull out (at apexes) S28p and Y41p in 

6+, T3p in 10+ and 11+, and S10p in 10+. As with ac variants, here one (T6p) is not cleanly 
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resolved in any z but is filtered in T6p/S28p mix at the apex in 6+ and T6p/S10p mix at the 

apex in 10+ (best) and peak i in 8+. Hence, all variants are quantifiable employing ETD. 

The correlation with TWIMS data is clear: e.g., the peak order (Figure 3.1) is consistently 

Y41p < S10p < T3p < T6p < S28p in 6+ and T3p < T6p < Y41p < S28p < S10p in 10+. As 

with TWIMS, the separations projected from individual spectra were confirmed using 

binary mixtures (Appendix 3.9). 

With me variants, the spectra in z = 6–8 provide only a limited separation (Figure 

3.4). We can filter K4me at the major peak apex in 10+ and (less cleanly) K23me at peak 

a in 9+. The K9me is filtered from K4me right of the apex in z = 10 and (not cleanly) from 

K23me on the left of the major peaks in 6+ or 11+. Thus, each variant can be filtered as an 

individual or as a dominant component of binary mixtures. The correlation with TWIMS 

data is seen from the peak order K9me < K4me < K23me in 11+ or intense peaks on the 

left for only K23me in 8+ and 9+ (Figure 3.1). 

3.3.3 Correlations between Separation Dimensions 

The analyses of the same peptide set in FAIMS14 and two linear IMS systems allow 

exploration of pairwise correlations between separations within and between those 

dimensions: across charge states in TWIMS and TIMS and for the same species in the 

TWIMS/TIMS/FAIMS space. 

Separations of all variants in TWIMS notably differ across charge states. This may 

be quantified via pairwise linear correlation between separation parameter sets.14,34 Here, 

the mean r2values for tT correlations over z = 5–11 (Appendix 3.10) equal 0.23, 0.24, and 

0.25 for me3, ac, and p variants, respectively (with 21 pairs each). The values for Ω in 



61 

 

TIMS are the same: 0.23 (ac variants) and 0.24 (p variants) for z = 6, 7, 10, 11 with single 

dominant peaks (Appendix 3.11) and 0.26 and 0.18, respectively, if we add z = 8, 9 using 

Table 3.2. Summary of Linear Correlations between Separations (averaged over all PTMs 

and charge states): r2 values with Standard Errors of Mean. 

 TWIMS (z1) TIMS (z1) FAIMS (z1) 

TWIMS (z1) 0.91 ± 0.03a  0.52 ± 0.10e 

TWIMS (z2) 0.24 ± 0.04b 0.22 ± 0.05f 

TIMS (z1) 0.86 ± 0.05c 0.52 ± 0.11g 

TIMS (z2)  0.22 ± 0.03d 0.22 ± 0.04h 

FAIMS (z2)  0.25 ± 0.05i 

a. In TWIMS at s = 650 vs. 1000 m/s  

b. In TWIMS for same peptides in different z   

c. For same ion species in TWIMS vs. TIMS  

d. In TIMS for same variants in different z   

e. For same ion species in TWIMS vs. FAIMS (8 pairs) 

f. For variants in TWIMS vs. same variants with different z in FAIMS (24 pairs)   

g. For same ion species in TIMS vs. FAIMS (8 pairs) 

h. For variants in TIMS vs. same variants with different z in FAIMS (24 pairs)  

i. In FAIMS for same variants in different z (30 pairs).14 

 
base peaks. The aggregate r2 over all PTMs is 0.24 ± 0.04 standard error (for 63 pairs) with 

Synapt and likewise 0.22 ± 0.03 with TIMS, also equal to 0.25 ± 0.05 (for 30 pairs with z = 

8–12 for me3, ac, and p variants) with14 FAIMS (Table 3.2). This manifests an essentially 

perfect orthogonality across charge states, previously demonstrated in FAIMS14,34 but not 

linear IMS separations of any PTM localization variants. 

We can also quantify the correlation between TWIMS and TIMS seen in 

comparisons of cross sections (Figure 3.2) and spectra (Figure 3.1 and 3.4) best for ac and 

p variants with five tT and Ω points. Calculations for z = 8, 9 are complicated by multiple 

intense features in both data sets that need integration; therefore, we restricted the 

comparison to z = 6, 7, 10, 11 with at most two major peaks. The resulting r2 values 
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(Appendix 3.12) are 0.7–1.0 (mean 0.76) for ac and 0.9–1.0 (mean 0.95) for p variants 

(higher r2 values for the latter reflect a greater variant separation diminishing the relative 

random error of peak spacings). These values with aggregate r2 = 0.86 ± 0.05 (Table 3.2) 

show strong correlation, especially as we ignored the smaller features in TIMS spectra 

and tT is not proportional to Ω. The accord between TWIMS and TIMS data despite 

dissimilar ESI and ion heating regimes and ∼50× longer separation in TIMS shows the ion 

geometries conserved over ∼5–300 ms and supports the formation of equilibrium 

conformers in the source. The present similarity between TWIMS and TIMS separations 

mirrors that for peptides with D/L residue swaps,66 though just two epimers per peptide 

there allowed no r2 values. 

This orthogonality of separations across charge states, their number generated by 

ESI, and impressive resolving power enable TIMS to disentangle all variants tried to at 

least the binary mixtures. That said, separation to individual variants would be beneficial. 

Also, the histone stoichiometries have up to ∼50 known variants,69,70 with further less 

abundant variants likely to be discovered. Fully characterizing such complex endogenous 

samples involving spectral congestion requires yet greater peak capacity (pc) that could 

come from 2-D FAIMS/IMS separations, depending on the orthogonality between 

dimensions. 

The complementarity of FAIMS and linear IMS separations of histone tails is 

evident from different loci of variant resolution across charge states. For example, that for 

me3 variants maximizes for z= 8, 9 in TWIMS (Figure 3.1) and TIMS (Figure 3.4) vs 10 

and 11 in FAIMS.14 Within a given state, some variants resolved by FAIMS may coelute 

in TIMS and vice versa. For instance, in z = 10, the K18ac and K27ac merged in TIMS are 
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separated by the FAIMS baseline,14 whereas TIMS partly resolves K14ac and K27ac 

merged in FAIMS.14 Broadly, the FAIMS dimension is correlated to TWIMS/TIMS with 

mean r2 (over z = 8–11) of 0.51/0.42 for ac and 0.53/0.60 for p variants (Figure 3.6 and  

 

Figure 3.6. Linear correlations between FAIMS and TIMS separations for ac variants (r2 

marked). The plots involving TWIMS and for p variants are in Appendix 3.14.  

 

Appendix 3.13), with the aggregate of 0.52 ± 0.07 for 16 pairs (Table 3.2). Proteomic 

findings are often validated by negative testing of a priori false suppositions using decoy 

databases.71 Inspired by that, we computed the “decoy correlations” of FAIMS to 

TWIMS/TIMS separations for same variants in all wrong charge states (48 pairs, Appendix 

3.14). The associated mean r2 value of 0.22 ± 0.05 (with TWIMS or TIMS) is apart from 

the above for correct states but matches the r2 for correlations across those in TWIMS or 
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TIMS that apparently make the random baseline (Table 3.2). Therefore, the correlation 

between linear IMS and FAIMS is real but is below 50% upon baseline subtraction. 

Accordingly, the 2-D pc of FAIMS/IMS separations for middle-down peptides must be 

over half of the product of pc for each stage (defined as the occupied separation space, d, 

over mean w of peaks). Here in TIMS, the typical d ≈ 100 Å and w ≈ 10 Å in a “good” 

charge state yield pc ∼10 (e.g., 8 for p variants in 6+ and 10+, or 14 and 11 for me3 variants 

in 8+ and 9+). In FAIMS,14 the typical pc in one state was ∼25 (with d ≈ 30 V/cm and w ≈ 

1.2 V/cm). Hence, the pc of FAIMS/IMS would be >125 in one state and easily >500 in all 

(near-orthogonal) states. The values would be greater for more complex samples (as the 

separation space statistically widens), and the number of available charge states can be 

augmented (e.g., via supercharging).72-74 Despite much of this pc taken up by the 

conformers of each variant,14 it should still suffice to largely fractionate the known 

isomeric proteoform sets at least into binary mixtures. 

3.4 Conclusions  

Linear IMS with resolving power >100 (specifically TIMS) can broadly separate 

the PTM localization variants of “middle-down” peptides, here histone tails with ∼50 

residues comprising common PTMs: methylation(s), acetylation, or phosphorylation. 

Although only some variants (at best) are resolved in each charge state generated by ESI, 

the separations are orthogonal across states and all variants were filtered in some to at least 

binary mixtures quantifiable by ETD MS/MS. The serial Bruker timsToF Pro system 

featuring another funnel trap prior to the TIMS cell would deliver similar separations with 

improved sensitivity due to a higher duty cycle. The much lower resolving power of 
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(commercial) TWIMS limits separation to a few variants, but all relative mobilities 

reproduce those in TIMS despite dissimilar ESI and IMS conditions. Separations are also 

independent of the ESI solvent or IMS residence time (from ∼5 to ∼300 ms), though less 

denaturing solvents and/or conditions may change that. This suggests that we deal with 

stable conformers thermalized prior to separation, wherein results transfer to other IMS 

systems including DTIMS.75 This indicates cataloging the Ω values for all histone 

proteoforms. However, ETD (with a normal time scale of ∼10–100 ms) is harder to add 

after time-dispersive separations that output transient ion packets (such as DTIMS and 

TWIMS) in comparison to TIMS, where the ramp can be arbitrarily slow. These findings 

agree with those for D/L peptides66 but extend beyond ∼3 kDa considered there. 

The linear IMS and FAIMS separations14 for same set of variants are ∼50% 

orthogonal (as for tryptic peptides).76 Hence, online FAIMS/IMS based on existing 

technology ought to provide a 2-D peak capacity of several hundred across charge states, 

enabling separation of most complex known proteoform mixtures. 
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4.1 Abstract 

Recently, we showed the advantages of Trapped Ion Mobility Spectrometry 

for the study of kinetic intermediates of biomolecules as a function of the starting 

solvent composition (e.g., organic content and pH) and collisional induced 

activation. In the present work, we further characterize the influence of the bath 

composition (e.g., organic content) on the conformational space of an intrinsically 

disordered, DNA binding peptide: AT-hook 3 (Lys-Arg-Pro-Arg-Gly-Arg-Pro-Arg-

Lys-Trp). Results show the dependence of the charge state distribution and mobility 

profiles by doping the solution and the bath gas with organic modifiers (e.g., 

methanol and acetone). The high resolving power of the TIMS analyzer allowed the 

separation of multiple IMS band per charge state, and their relative abundances are 

described as a function of the experimental conditions. The use of gas modifiers 

resulted in larger ion-neutral collision cross sections, with a direct correlation 

between the size of the modifier and the CCS differences. Conformational isomer 

inter-conversion rates were observed as a function of the trapping time. Different 

from solution experiments, a larger variety of organic gas modifiers can be used to 

tailor the peptide conformational space, since peptide precipitation is not a problem. 

4.2 Introduction 

Mass spectrometry-based methods have increasingly become a 

complementary or alternative research tool for investigating the conformational 

space of biomolecules under a variety of conditions, including biologically relevant 

conditions.1-5 Specifically, ion mobility spectrometry combined with mass 

spectrometry (IMS-MS) has the capability to perform separation and selection of 
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gas-phase ions, from heterogeneous solutions. It provides insight into both stable 

and intermediate structures, allowing for a more dynamic view and native-like 

folding information,6 while resembling solution structures (memory effect).7-15 

Previous studies from our group showed the advantages of ESI-TIMS-MS for the 

study of kinetically trapped intermediates of biomolecules.14, 16-26 Relevant to this 

study, we presented the folding pathways between local, free energy minima of AT-

hook peptide 3 (ATHP3) leading to multiple, stabilized conformations.27 

Protonation site, backbone relaxation and side-chain orientations were implicated in 

defining each structure. We have shown that the conformational space can be altered 

by introducing dopants into the TIMS cell for the case of flavin adenine 

dinucleotide.26  Different from other experiments where gas modifiers are used to 

increase the analytical power of IMS by increasing the size of the collision partner 

or inducing higher order multi-pole interactions,28-33 in this project we focused on 

the influence of the microenvironment on the stabilization of the conformational 

space of biomolecules. 

In the present work, a ten amino acid intrinsically disordered peptide, Lys-

Arg-Pro-Arg-Gly-Arg-Pro-Arg-Lys-Trp, was studied using nanoESI-TIMS-MS as 

a function of starting solvent (e.g. organic content and pH), bath gas collision partner 

and time after desolvation. This study is the first to report on the use of TIMS gas 

modifiers to tailor the peptide conformational space. 
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4.2 Experimental Methods 

4.2.1. Materials and reagents  

AT-hook peptides 3 (Lys-Arg-Pro-Arg-Gly-Arg-Pro-Arg-Lys-Trp) was 

purchased from Advanced ChemTech Inc. (Louisville, KY) and used as received. 

Methanol and acetone solvents, and ammonium acetate salts utilized in this study 

were analytical grade or better and purchased from Fisher Scientific (Pittsburgh, 

PA). A Tuning Mix calibration standard (G24221A) was obtained from Agilent 

Technologies (Santa Clara, CA) and used as received. 

4.2.2. Trapped Ion Mobility Spectrometry – Mass Spectrometry Analysis (TIMS-

MS).  

Details regarding the TIMS operation and specifics compared to traditional 

IMS can be found elsewhere. 34-38 Briefly, mobility separation in TIMS is based on 

holding the ions stationary against a moving gas using an electric field. The 

separation in a TIMS device can be described in the center of the mass reference 

frame using the same principles as in a conventional IMS drift tube.39 Since mobility 

separation is related to the number of ion-neutral collisions (or drift time in 

traditional drift tube cells), the mobility separation in a TIMS device depends on the 

bath gas drift velocity, ion confinement and ion elution parameters. The reduced 

mobility, K, of an ion in a TIMS cell is described by: 

𝐾 =  
𝑉𝑔

𝐸


𝐴

(𝑉𝑒𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑉𝑜𝑢𝑡)
 



75 

 

where vg and E are the velocity of the gas and the applied electric field across the 

TIMS analyzer region.  Velution is the voltage when the ions elute in the Vramp sweep 

and Vout is the voltage applied at the end of the TIMS analyzer region.  

A custom-built, pulled capillary nanoESI source was utilized for all the 

experiments. Quartz glass capillaries (O.D.: 1.0 mm and I.D.: 0.70 mm) were pulled 

utilizing a P-2000 micropipette laser puller (Sutter Instruments, Novato, CA) and 

loaded with 10 L aliquot of the sample solution. A typical nanoESI source voltage 

of +/- 600-1200 V was applied between the pulled capillary tips and the TIMS-MS 

instrument inlet. Ions were introduced via a stainless steel tube (1/16 x 0.020’’, 

IDEX Health Science, Oak Harbor, WA) held at room temperature into the TIMS 

cell. It should be noted that all solvent studies were performed with nitrogen as the 

bath gas, and that all dopant experiments were conducted with peptides sprayed from 

10 mM NH4AC. 

Mobility calibration was performed using the Tuning Mix calibration 

standard (G24221A, Agilent Technologies, Santa Clara, CA) in positive ion mode 

(e.g., m/z = 322, K0 = 1.376 cm2 V-1 s-1 and m/z = 622, K0 = 1.013 cm2 V-1 s-1).38 The 

TIMS operation was controlled using in-house software, written in National 

Instruments Lab VIEW, and synchronized with the maXis Impact Q-ToF acquisition 

program.34-35 Gas modifiers were introduced at the entrance of the TIMS cell via 

vaporization of the respective solvents (e.g., methanol or acetone) at a ratio of 2:1 

air:air modified mix (scheme shown in Figure 4.1).  For simplified mobility 

calibration, the gas velocity was kept constant in all experiments (P1 and P2 values).  
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4.3 Results and Discussion 

The analysis of ATHP3 peptide using nES-TIMS-MS resulted in a charge 

state distribution of [M+H]+ to [M+3H]+3. The ATHP3 motif is mainly comprised 

of basic residues with seven potential locations for protonation (e.g., N-terminus,  

 

Figure 4.1. Scheme utilized for the nESI-TIMS-MS experiments with organic gas 

modifiers. Notice that the gas velocity in the TIMS analyzer is kept constant 

four arginines and two lysines), however, the most abundant ion under all 

experimental conditions was the [M+2H]2+ charge state (Figure 4.2a). The mobility 

distributions observed from our previous study of ATHP 3 [M+2H]+2 using ESI-

TIMS-MS are consistent with the current analysis by nanoESI-TIMS-MS.27 

At native conditions (Figure 4.2b, pink mobility bands) ATHP3 [M+2H]2+ 

populates four conformers (A-D). The mobility bands are also conserved across the 

different organic solvent conditions (Figure 4.2c, pink mobility bands in blue panel). 

At higher trapping times (e.g., 500 ms), a kinetically trapped structure, and what we 

consider a more stable “desolvated” conformer, appears between bands B and C of 

the native. The presence of methanol in the TIMS cell did not alter the [M+2H]2+ 
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conformers, while acetone significantly changed the relative abundance and 

distribution of structures (Figure 4.2d, pink mobility band in pink panel). Three 

structures (A, B and C) were observed for ATHP3 [M+3H]3+ over the range of 

starting solvent solutions (Figure 4.2b and 4.2c, green mobility bands). Conformer 

A was the major structure present in all experiments, followed by conformer B and 

C. The abundance of conformer B, however, increased in the presence of acetone in 

the TIMS cell. The mobility profiles of ATHP3 [M+H]+ showed the presence of two 

structures (A and B) which were observed over the range of experimental conditions 

(Figure 4.2b, 4.2c and 4.2d, blue mobility bands). The distribution of ATHP 3 

structures using acetone solvent cannot be recreated using acetone in the TIMS cell. 

One possible explanation is that the differences in conformational space is due to 

interaction with the ketone functional group of acetone. Unlike methanol’s alcohol 

group, acetone’s ketone group can form various interactions with the peptide, 

including 1) hydrogen bonding with the amide of the peptide backbone, 2) disruption 

of hydrogen bonding networks or, more likely, 3) dipole-dipole interactions with the 

charged residues of the peptide. Confirming this explanation will be the subject of 

future studies. 

Changes in the conformational space as a function of the trapping showed 

stabilization towards more energetically favored structures as a function of the 

trapping time for [M+H]+2 charge state (Figure 4.3). While our measurements are 

only sensitive to the 50-500 ms time scale, potential rearrangements are possible in 

the first 50 ms after desolvation40. In the case of varying the starting solution (10 

mM ammonium acetate, and with methanol and acetone), a common trend in the gas 
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phase kinetics in nitrogen is the increase of the band E, which corresponds to the 

largest 1/K0 for this charge state. However, in the case of gas modifiers, band E is 

not observed, and the trends are best characterized by a decrease  

 

Figure 4.2. a) Typical mass spectra and b) native IMS spectra of ATHP3 as a function of 

c) starting solvent (methanol:H2O or acetone:H2O) or d) dopant bath gas (methanol or 

acetone). 
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Figure 4.3. The relative abundances of ATHP 3 [M+2H]+2 conformers as a function of the 

trapping time, stating solvent conditions and bath gas composition. Starting solvent and 

bath gas are listed to the left of the graphs 
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of band B and band A for methanol and acetone, respectively, which correspond to 

the smallest 1/K0. We interpret these results as the most stable gas-phase structures 

tending to have larger 1/K0 than those initially observed in solution. These effects 

may be a consequence of the absence of the solvent, since in the gas-phase the lack 

of water molecules promotes long range interactions. In the case of the [M+H]+ and 

[M+H]+3 charge states, similar trends were observed regarding the increase of larger 

1/K0 bands as a function of the trapping time (see Figure 4.2). 

4.4 Conclusions 

The results presented here displayed the utility of gas modifiers in TIMS-MS for 

investigating and monitoring solution versus gas-phase microenvironment contribution to 

the peptide conformational space. When ionized from native conditions (10 mM NH4Ac 

and nitrogen bath gas), the mobility profiles of ATHP 3 show an ensemble of conformers, 

which were preserved as a function of increasing organic content (methanol and acetone). 

Although the overall IMS profiles were maintained, changes in the relative abundance of 

conformers (e.g., conformational isomerization to the more stable gas-phase structure) 

were observed and recorded. The interconversion of structures, however, was small and 

often did not exceed growth or decay abundances of ~10%. Comparison between starting 

solvent and bath gas with the same organic modifier showed that acetone as a dopant 

consistently changed the original IMS profiles. We attribute these rearrangements to the 

highly polar ketone functional group of acetone and its interaction with the peptide (i.e., 

disruption of the hydrogen bonding network or interaction with the charged residues). 

Overall, we find evidence for multiple stable conformers of these “disordered” motifs as a 

function of starting solvent (e.g. organic content), bath gas collision partner and time after 
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desolvation. The sensitivity of TIMS-MS allows for the observation of many low abundant 

conformers, separation of closely related structures and tracking of gas-phase stable 

structures via isomerization kinetics. This methodology opens new avenues for the study 

of biomolecules in the presence of gas modifiers that are not accessible during solution 

experiments, due to the typical precipitation of biomolecules during non-native conditions. 
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5.1 Abstract 

In the present work, the conformational dynamics and folding pathways of i-motif 

DNA were studied in solution and in the gas-phase as a function of the solution pH 

conditions using circular dichroism (CD), photoacoustic calorimetry analysis (PAC), 

trapped ion mobility spectrometry - mass spectrometry (TIMS-MS), and molecular 

dynamics (MD). Solution studies showed at thermodynamic equilibrium the existence of a 

two-state folding mechanism, whereas during the pH = 7.0  4.5 transition a fast and slow 

phase (Hfast+ Hslow = 43 ± 7 kcal mol-1) with a volume change associated with the 

formation of hemiprotonated cytosine base pairs and concomitant collapse of the i-motif 

oligonucleotide into a compact conformation were observed. TIMS-MS experiments 

showed that gas-phase, kinetically trapped i-motif DNA intermediates produced by 

nanoESI are preserved, with relative abundances depending on the solution pH conditions. 

In particular, a folded i-motif DNA structure was observed in nanoESI-TIMS-MS for low 

charge states in both positive and negative ion mode (e.g., z = +/- 3 to +/-5) at low pH 

conditions. As solution pH increases, the cytosine deprotonation leads to the loss of 

cytosine-cytosine+ (C•CH+) base pairing in the CCC strands and in those conditions we 

observe partially unfolded i-motif DNA conformations in nanoESI-TIMS-MS for higher 

charge states (e.g., z = - 6 to -9). Collisional induced activation prior TIMS-MS showed 

the existence of multiple local free energy minima, associated with the i-motif DNA 

unfolding at z = -6 charge state. For the first time, candidate gas-phase structures are 

proposed based on mobility measurements of the i-motif DNA unfolding pathway. 

Moreover, the inspection of partially unfolded i-motif DNA structures (z = -7 and z = -8 

charge states) showed that the presence of inner cations may or may not induce 
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conformational changes in the gas-phase. For example, incorporation of ammonium 

adducts does not lead to major conformational changes while sodium adducts may lead to 

the formation of sodium mediated bonds between two negatively charged sides inducing 

the stabilization towards more compact structures in new local, free energy minima in the 

gas-phase. 

5.2 Introduction 

Recent innovations in speed, accuracy, and sensitivity have established Mass 

Spectrometry (MS) based methods as a key technology in the field of structural biology.1 

Over the last two decades, native MS of intact biomolecules and biomolecular complexes 

has permitted structural interrogation at biologically relevant conditions that are not 

accessible by other methods.2-6 Most common gas-phase structural probes are based on (or 

a combination of) tandem mass spectrometry (ergodic and non-ergodic), gas-phase 

hydrogen-deuterium exchange, ion spectroscopy, and ion mobility spectrometry. In 

particular, ion mobility spectrometry combined with mass spectrometry (IMS-MS), can be 

a multifaceted approach that quickly provides insight into both the stable and intermediate 

structures of biomolecules in the gas-phase.  Traditional ion mobility spectrometry (IMS) 

is based on the separation of ions under the influence of a weak electric field as they collide 

with a bath gas of inert neutral molecules.7-9 The mobility provides information on the its 

size and shape via the momentum transfer ion-neutral collision cross section (CCS).10 

While this description holds true for most contemporary IMS analyzers (e.g., periodic 

focusing DC ion guide 11-12, segmented quadrupole drift cell 13, multistage IMS 14-16, 

transient wave ion guide 17-18, trapped ion mobility spectrometers19-23 and SLIM devices 

24), a common feature is that gas-phase studies take advantage of the desolvation process 
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to effectively reduce sample complexity, permitting molecular characterization in the 

absence of bulk solvent by studying gas-phase structures in kinetically trapped 

intermediates. More recently, the combination of IMS-MS measurements with infrared 

multi-photon dissociation (IRMPD) spectroscopy and infrared vibrational spectroscopy for 

structural characterization of gas-phase molecular ions have shown the unique advantage 

of gas-phase studies in order to better understand the intramolecular forces that define the 

conformational space of biomolecules. 25-29 With the recent introduction of a new IMS 

analyzer - Trapped Ion Mobility Spectrometer (TIMS)- the possibility to decouple the time 

domain from the IMS separation allows for the study of kinetically trapped intermediates 

of molecular ions in the gas-phase as a function of the desolvation time, temperature and 

bath gas composition. TIMS’ mode of operation and its advantages over traditional IMS 

are described in ref 19, 30-31. We have shown the use of TIMS for the study of isomerization 

kinetics of small molecules32-34, peptides35-36, and proteins37-42, the influence of the 

collision partner on the molecular structure43, and the factors that affect molecular-adduct 

complex lifetime and stability during TIMS measurements44.  

Here we report on a proton-sensitive DNA molecule based on the i-motif 

conformation (i-motif DNA) that can reversibly fold in response to the solution pH 

conditions.45-47 The i-motif DNA is a four-stranded DNA structure that forms due to 

intramolecular noncanonical base pair interactions between a protonated and a neutral 

cytosine residue (i.e., a CH+:C base pair) under slightly acidic conditions. At higher pH 

values, the cytosines are neutral and the DNA strand adopts a random coil conformation.48-

49 Regardless of its impending role in oncogene regulation and anti-cancer therapies, 50-53 

i-motif DNA has found multiple applications in the field of nanotechnology (e.g., 
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nanomotors, environmental sensors and pH switches). 54  Recent studies have shown that 

nucleic acids can maintain their solution phase topology (e.g., duplexes, triplexes or G-

quadruplexes55-57) when transferred to the gas phase via electrospray sources.58-59  A recent 

work using ESI-TWIMS-MS and ESI-IRMPD-MS concluded that zwitterionic i-motif 

DNA structures are preserved in negatively charged DNA ions.60 However, the detailed 

structural features of the folded i-motif DNA and the variations in structure that occur in 

response to changes in pH have received little attention.  

In the present work, the conformational dynamics and folding/unfolding pathways 

of i-motif DNA are investigated in solution and in the gas-phase.  That is, i-motif DNA 

was studied in solution for the pH range 4.0 – 9.0 at thermodynamic equilibrium using 

circular dichroism (CD) and during the pH 7.0  4.5 transition using photoacoustic 

calorimetry analysis (PAC), and in the gas-phase using nano electrospray ionization 

trapped ion mobility spectrometry - mass spectrometry (nanoESI-TIMS-MS) with and 

without collisional induced activation prior the TIMS-MS analysis. The TIMS-MS 

measured ion-neutral collision cross sections are used to propose candidate structures based 

on molecular dynamics (MD) simulations as a way to better understand the i-motif DNA 

free energy landscape. In addition, the influence of inner cations on the stabilization of gas-

phase structures is discussed for partially unfolded i-motif DNA. 

5.3 Experimental 

5.3.1 Materials and reagents 

A 21 base, cytosine-rich DNA sequence mimicking the telomeric repeat sequence 

5’-[CCCTAA]3CCC-3’ (C198H256N72O121P20, MW 6200 Da) was obtained indistinctly from 
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Eurofins Scientific (Huntsville, AL) and from Integrated DNA Technologies (Coralville, 

IA) and used without further purification. Nitrobenzaldehyde (2-NBA) powder was 

obtained from Sigma-Aldrich (St. Louis, MO). Solvents, hydrochloric acid, sodium 

hydroxide, ammonium acetate, ammonium formate, and ammonium hydroxide salts 

utilized in this study were analytical grade or better and purchased from Fisher Scientific 

(Pittsburgh, PA). A Tuning Mix calibration standard (G24221A) was obtained from 

Agilent Technologies (Santa Clara, CA) and used as received. 

5.3.2 Circular Dichroism Analysis (CD) 

Circular dichroism spectra were collected using a Jasco J-815 CD spectrometer 

(Easton, MD) as a function of the solution pH. Spectra were collected from 1 mm quartz 

cuvettes containing 30 µM i-motif DNA solubilized in deionized water at pH= 4.0, 5.0, 

6.0, 7.0, 8.0 and 9.0. Solution pH was adjusted using hydrochloric acid (HCl) and sodium 

hydroxide (NaOH). 

5.3.3 Photo Acoustic Calorimetry Analysis (PAC) 

A detailed description of PAC principles of operation and data analysis can be 

found elsewhere 61. Briefly,a solution of 30 µM i-motif DNA and 1 mM 2-NBA was 

prepared in deionized water and stored in the dark to prevent unwanted photolysis. Solution 

pH was adjusted using hydrochloric acid (HCl) and sodium hydroxide (NaOH). A 500 L 

solution of i-motif DNA and 2-NBA solution was placed in a 1 cm x 0.5 cm quartz cuvette 

(Starna Cells) and the cuvette was placed in a temperature-controlled sample holder with 

magnetic stirring capability (TC 125, Quantum Northwest). The sample solution was 

stirred during measurements to prevent accumulation of the photoproduct and a fresh 
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aliquot was used for each temperature measurement; the PAC measurements were 

performed over 16-26 oC temperature range. 2-NBA photo-dissociation and concomitant 

proton release was triggered by a 355 nm laser pulse (500 µJ, Surelite I-10, Continuum). 

Fe(III)tetraphenylsulfonato porphyrin (4-SP) solubilized in deionized water at pH 7.0 was 

employed as a reference compound. The absorbance of the reference solution matched the 

absorbance of the sample at the excitation wavelength of 355 nm. A piezoelectric 

transducer (Panametrics RV103, 1 MHz) was adhered to the side of the cuvette and the 

signal was amplified using an ultrasonic preamplifier (Panametrics 5662). The PAC traces 

were recorded using a digital oscilloscope (Wave Surfer 42Xs, LeCroy) and were 

deconvoluted using Sound Analysis software (Quantum Northwest, WA).  

Acoustic transducers used in PAC measurements are sensitive to the amplitude of an 

acoustic wave as well as to its temporal profile. For a two-step sequential decay process on 

the time scale of the transducer resolution (∼50 ns to ∼10 μs), the individual contributions 

of ΔV and ΔH for each kinetic process can be resolved. Changes in the phase and amplitude 

of the PAC traces can then be correlated with structural changes in solution as a 

consequence of the pH jump (reaction volume and enthalpy)61. For the initial process ( < 

50 ns), the ratio of the sample and reference PAC signal amplitudes (1) is related to the 

reaction volume (Vfast) and reaction enthalpy (Hfast) according to Eq. 1: 

Ehv(
1

-1) 𝛷⁄ =∆𝑉𝑓𝑎𝑠𝑡 [
Cpρ

β
] -∆𝐻𝑓𝑎𝑠𝑡      (1) 

where Eh = 80.59 kcal mol-1,  is the quantum yield of the primary photo-reaction, and 

Cpρ/β is a temperature-dependent parameter made up of the heat capacity (Cp), density (ρ) 

and expansion coefficient (β) of the solvent.  
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For slower processes (50 ns<  < 10 s), the ratio of the sample and reference PAC signal 

amplitudes (2) is related to the reaction volume (Vslow) and enthalpy (Hslow) according 

to Eq. 2: 

Ehv(
2

) 𝛷⁄ =Δ𝑉𝑠𝑙𝑜𝑤[
𝐶𝑃𝜚

𝛽
] −Δ𝐻𝑠𝑙𝑜𝑤      (2) 

5.3.4 Trapped Ion Mobility Spectrometry – Mass Spectrometry Analysis (TIMS-MS) 

Details regarding the TIMS operation and specifics compared to traditional IMS 

can be found elsewhere. 19-21, 62-63 Briefly, mobility separation in TIMS is based on holding 

the ions stationary using an electric field against a moving gas. The separation in a TIMS 

device can be described by the center of the mass frame using the same principles as in a 

conventional IMS drift tube.10 Since mobility separation is related to the number of ion-

neutral collisions (or drift time in traditional drift tube cells), the mobility separation in a 

TIMS device depends on the bath gas drift velocity, ion confinement and ion elution 

parameters. The reduced mobility, K, of an ion in a TIMS cell is described by: 

𝐾 =  
𝑣𝑔

𝐸
=  

𝐴

(𝑉𝑒𝑙𝑢𝑡𝑖𝑜𝑛− 𝑉𝑜𝑢𝑡)
        (3) 

where vg  and E are the velocity of the gas and the applied electric field across the TIMS 

analyzer region.  Velution is the voltage when the ions elute in the Vramp sweep and Vout is 

the voltage applied at the end of the TIMS analyzer region.  

A custom-built, pulled capillary nanoESI source was utilized for all the 

experiments. Quartz glass capillaries (O.D.: 1.0 mm and I.D.: 0.70 mm) were pulled 

utilizing a P-2000 micropipette laser puller (Sutter Instruments, Novato, CA) and loaded 

with 10 L aliquot of the sample solution. Sample solutions consisted of 1 µM i-motif 
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DNA in 10 mM ammonium acetate solution at three pH values (pH= 4.5, 7.0 and 9.0). 

Solution pH was adjusted using ammonium formate and ammonium hydroxide salts. A 

typical nanoESI source voltage of +/- 600-1200 V was applied between the pulled capillary 

tips and the TIMS-MS instrument inlet. Ions were introduced via a stainless steel tube (1/16 

x 0.020’’, IDEX Health Science, Oak Harbor, WA) held at room temperature into the TIMS 

cell.  

The TIMS cartridge is comprised of three regions: an entrance funnel, analyzer 

tunnel (46 mm axial length), and exit funnel. A 880 kHz and 200 Vpp RF potential was 

applied to each section creating a dipolar field in the funnel regions and a quadrupolar field 

inside the tunnel. For collisional induced activation experiments prior the TIMS separation 

(CIA-TIMS-MS), 2D-TIMS-MS spectra were collected as a function of the axial electric 

field across the deflector plate and the end of the entrance funnel in 10V intervals of the 

deflector voltage (Vdeflector = 0-200 V); the voltages across the entrance and exit of the 

entrance funnel were adjusted relative to Vdeflector to guarantee an homogenous axial electric 

field in all CIA measurements.  TIMS separation was performed using nitrogen as a bath 

gas at ca. 300 K, at a constant gas flow velocity defined by the pressure difference between 

entrance funnel P1 = 1.1-4.3 mbar, and the exit funnel P2 = 0.6-3.0 mbar.33, 41 

In TIMS operation, multiple geometric isomers/conformers are trapped 

simultaneously at different E values resulting from a voltage gradient applied across the 

TIMS tunnel. After thermalization, geometrical isomers/conformers are eluted by 

decreasing the electric field in stepwise decrements (referred to as the “ramp”). Each 

isomer/conformer eluting from the TIMS cell can be described by a characteristic voltage 
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(i.e., Velution - Vout). Eluted ions are then mass analyzed and detected by a maXis impact Q-

ToF mass spectrometer (Bruker Daltonics Inc, Billerica , MA).  

In a TIMS device, the total analysis time can be described as: 

Total IMS time = ttrap + (Velution/Vramp)*tramp + ToF = to + (Velut/Vramp)*tramp  (4) 

where, ttrap is the thermalization/trapping time, ToF is the time after the mobility separation, 

and Vramp and tramp are the voltage range and time required to vary the electric field, 

respectively.  The elution voltage was experimentally determined by varying the ramp time 

(tramp = 100, 200, 300, 400 and 500 ms) for a constant ramp voltage sweep. This procedure 

also determines the time ions spend outside the separation region to (e.g., ion trapping and 

time-of-flight). The TIMS cell was operated using a fill/trap/ramp/wait sequence of 

10/10/50-500/50 ms. The TOF analyzer was operated at 10 kHz (m/z = 100-3500). The 

data was summed over 100 analysis cycles yielding an analysis time of ~50 s for tramp = 

500 ms. Mobility calibration was performed using the Tuning Mix calibration standard 

(G24221A, Agilent Technologies, Santa Clara, CA) in positive ion mode (e.g., m/z = 322, 

K0 = 1.376 cm2 V-1 s-1 and m/z = 622, K0 = 1.013 cm2 V-1 s-1).21 The TIMS operation was 

controlled using in-house software, written in National Instruments Lab VIEW, and 

synchronized with the maXis Impact Q-ToF acquisition program.19-20 

Reduced mobility values (K0) were correlated with CCS (Ω) using the equation: 

      (5) 
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where z is the charge of the ion, k
B

 is the Boltzmann constant, N* is the number density 

and m
I
 and m

b
 refer to the masses of the ion and bath gas, respectively.10 All resolving 

power (R) values reported herein were determined from Gaussian peak fits of the features 

in the TIMS distributions (R = Ω/ΔΩ) using OriginPro (version 8.0). The FWHM of the 

mobility band was used to calculate the ΔΩ. 

5.4 Theoretical 

Candidate structures search and assignment from TIMS-MS data was performed 

based on the workflow described in reference64.  Briefly, an initial guess was performed 

based on the folded i-motif DNA 1ELN structure from protein data bank 65. Molecular 

dynamic simulations were performed with NAMD 

(http://www.ks.uiuc.edu/Research/namd/)66 using CHARMM36 force field67, which 

shows significant improvements over previous force-fields for simulating the nucleic 

acids.68 CHARMM-GUI69 web-server was used to initialize the MD simulations. The i-

motif DNA was solvated in a 53 Å cubic box with TIP3P water model and the system was 

neutralized by adding eight Mg2+ and two Cl- ions. 

A 10,000-step energy minimization was performed using the conjugate gradient 

and line search algorithm, followed by a 100-ps NVT equilibration at 300 K and 1 atm 

pressure with periodic boundary conditions. The particle mesh Ewald method70 was used 

to treat the long-range interactions with a 12 Å nonbonded cutoff. The RATTLE algorithm 

was used to constrain protein bonds involving hydrogen, and SETTLE was used to 

maintain water geometry.  A 400-ns NPT simulation was performed with a 2 fs integration 

time step at 300 K and 1 atm pressure. A total of 18,000 structures were submitted to the 
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CCS calculation and clustered based on RMSD using our custom-built R-code software64. 

A minimum of five distinct center of mass structures (CM) were selected per experimental 

IMS band observed from the cluster analysis based on energy minimization and CCS 

calculation as a function of the charge state [CM, CCS]charge. The MD force field energy 

minimization did not properly describe the hemiprotonated cytosine interactions leading to 

mostly [CM, CCS]charge of unfolded i-motif DNA. To overcome this limitation, the final 

set of candidate structures also included structures generated based on the trends observed 

during the i-motif DNA unfolding 400-ns trajectory and the previously reported i-motif 

DNA folded structure65. CCSs were calculated using the IMoS (v1.04b)71-73 and PSA74 

packages with nitrogen as a bath gas at ca. 300K. In the IMoS calculations, 100 total 

rotations were performed using the trajectory method with a Maxwell distribution. 

Molecular visualization was performed using Visual Molecular Dynamics software.75  

5.5 Results and Discussion 

This work utilizes solution and gas-phase experiments for the study of equilibrium 

and kinetic intermediates of the i-motif DNA system.  Specifically, CD and TIMS-MS 

provide information of i-motif DNA structures as a function of solution pH, whereas PAC 

and CIA-TIMS-MS interrogate kinetic intermediates during the folding and unfolding 

pathways, respectively. These complementary techniques allow different conformational 

states to be unveiled and provide a more detailed interpretation of the folding pathway and 

unfolding intermediates in the presence and absence of bulk solvent, respectively. The 

focus of this paper is towards a better description of the i-motif DNA free energy landscape. 

At thermodynamic equilibrium in solution, the transition from basic to acidic pH 

solution conditions of the i-motif DNA can be characterized by an increase of the 287 nm 
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band and the concomitant decrease of the 272 nm band in the CD signal (see Figure 5.1), 

being more significant in the pH = 4.0 - 7.0 range.  The observation of two isosbestic points 

at 245 nm and 276 nm suggests a two state folding mechanism (FU) for the i-motif DNA 

as a function of the solution pH. 76 It should be noted that a two state folding mechanism  

 

Figure 5.1. Circular dichroism spectra of i-motif DNA (30 µM in deionized water) as a 

function of the solution pH =4.0 – 9.0 at 20 °C. Notice that no changes in the spectra are 

observed in the pH = 7.0 – 9.0 range. 

does not limit the number of conformations to two; that is, multiple conformations may 

exist at equilibrium in the folded and unfolded states (e.g., the CD signal at pH = 6 contains 

mixed states).  

Complementary gas-phase analysis was performed as a function of the solution pH 

and time after desolvation using nanoESI-TIMS-MS. This gas-phase analysis takes 
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advantage of the desolvation process to effectively reduce sample complexity and permit 

molecular characterization in the absence of bulk solvent.  The rationale is to kinetically 

trap gas-phase structural populations (or ensemble) in local, free energy minima close to 

the initial, thermodynamic equilibrated solution-phase structural populations (or 

ensemble). Previous works have shown the presence of solution memory effects by looking 

at the changes on the IMS profile as a function of the desolvation time.62, 77-80.  

The nanoESI-TIMS-MS analysis of i-motif DNA resulted in the observation of 

molecular ions in positive and negative ion mode (see Figure 5.2). In positive mode, a 

narrow charge state distribution (+3 - +5) is observed with no major variation as the 

solution pH. In negative mode, a broad distribution of charge states (-3 - -9) is observed 

with relative abundances changing with the solution pH. We interpret the changes in the 

MS relative abundances in negative mode with the solution pH increase as a consequence 

of the loosening of the C•CH+ base pairing that stabilizes the folded i-motif conformation 

leading to more deprotonation sites in the partially unfolded i-motif DNA structures. In the 

case of positive mode, as the pH decreases the cytocines become protonated leading to the 

i-motif folding, limiting the number of accessible protonation sites. Notice that this trend 

is unique for the i-motif DNA compare to other reported studies of biological molecules 

(e.g., some peptides and proteins) where denaturing at low pH conditions leads to the 

observation of higher charge states and native conditions (pH = 6 - 8) show a narrow low 

charge state distribution.77, 81-89 That is, the stabilization of the i-motif DNA with the 

reduction of the solution pH results in the observation of a narrow charge state distribution 

in positive mode. Despite the changes in the MS relative abundances of the charge states 

with the solution pH, closer inspection of the mobility profiles did not show any 
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dependence on the solution condition or the time after desolvation (details for the TIMS 

profiles as a function of the time after desolvation overt the 50-500 ms range can be found 

in the supporting information). Moreover, major changes in the CCS values were observed 

as a function of the i-motif DNA charge state. Low charge states (e.g., +3 to +5 and -3 to - 

 

Figure 5.2. Typical positive (red) and negative (blue) mass spectra (top) and mobility 

profiles for i-motif DNA as a function of the solution pH (4.0 – 9.0) using low energy 

injection nanoESI-TIMS-MS. Notice the change in the charge distribution as a function of 

the solution pH. Changes in individual charge states mobility profiles were not observed 

as a function of the solution pH conditions. 
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5) can be described by a single, broad mobility band60, with slightly increasing CCS as a 

function of the charge state. Notice that the increase of CCS with the charge state is an 

expected trend and does not necessarily reflect conformational changes for z = +3 to +5 

and -3 to -5. However, a major transition is observed at z = -6, with the observation of 

partially unfolded i-motif DNA structures in the z = -6 to -9 charge states. The CCS trend 

observed in negative mode as a function of the charge state is in good agreement with 

previous ESI-TWIMS-MS experiments90-93; however, this study takes advantage of 

TIMS’s higher mobility resolution to resolve a higher number of IMS bands and to report 

accurate ion-neutral collision cross sections.  

Solution phase analysis of i-motif DNA  transition (UF) during the pH jump from 

7.0 to 4.5 was performed by PAC and permitted the interrogation of the folding process 

(kinetic intermediates) on the nanosecond to microsecond timescale.  The photolysis of 2-

NBA leads to a prompt pH decrease (pH ~ 2.5 units) due to the 2-NBA photo-conversion 

to nitroso-benzoate (see details in Scheme 1). For the 2-NBA photo-dissociation, reaction 

enthalpy ΔH = -29.2 ± 6.6 kcal mol-1 and volume change ΔV = -5.1 ± 1.6 mL mol-1 were 

observed in agreement with previously published data.94 In the presence of i-motif DNA, 

the fast increase in the proton concentration (pH 7.0  4.5) initiates the folding of i- motif 

DNA . Acoustic traces for the photolysis of 2-NBA in the presence of i-motif DNA show 

a phase shift and amplitude change with respect with the reference acoustic traces, 

indicative of the presence of two processes, one occurring within the first 50 ns (fast phase, 

1), and a temperature-dependent process with a time constant of 140 ns (slow phase, 2) 
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at 20 °C (see Figure 5.3). After subtraction of V/H determined for 2-NBA photolysis in 

the absence of i-motif DNA, the reaction parameters for the fast and slow processes are  

 

Figure 5.3. Plot of the fast (ϕ1) and slow (ϕ2) phases as a function of Cpρ/β in the 16 – 26 

°C temperature range. In the inset, PAC traces for 2-NBA photo-dissociation in the 

presence of i-motif DNA sample (blue) and 4SP reference compound (red) at 16 °C. 

ΔHfast= 8.5 ± 7.0 kcal mol-1 and ΔVfast= 10.4 ± 1.6 mL mol-1 and ΔHslow = -51.5 ± 4.8 kcal 

mol-1 and ΔVslow = -6.6 ± 0.9 mL mol-1, respectively.  

The fast process observed in PAC measurements ( < 50 ns) can be attributed i) to 

the photo-dissociation of 2-NBA and concomitant release of protons (with a time constant 

of ~20 ns95) and ii) to cytosine residue protonation (assuming the rate of pyridine 

protonation in solution ~ tens of picoseconds)96. During the pH jump (pH 7.0  4.5), 

approximately six cytosine residues (pKa = 4.58)97 will be protonated with an enthalpy 
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change of -30 kcal mol-1 (assuming a H = -5.0 kcal mol-1 per cytosine residue98). Since a 

positive enthalpy change of 8.5 ± 7.0 kcal mol-1 was determined for the fast process, an 

additional endothermic process with H ~ 38.5 ± 7.0 kcal mol-1 must occur within 50 ns 

of 2-NBA dissociation. This endothermic enthalpy change can be attributed to the decrease 

in the solvent electrostriction due to reduction of the overall DNA charge.   

The reaction parameters determined for the slow phase are consistent with i-motif 

DNA nucleation. Nucleation of the intramolecular i-motif DNA structure requires the 

formation of at least one hemiprotonated cytosine base pair, an interaction that consists of 

three hydrogen bonds between one protonated and one neutral cytosine residue within an 

oligonucleotide. Though empirical measurements of the enthalpy of this specific base-

pairing interaction are not available, the enthalpy of inter base pair hydrogen bond 

formation was determined for the canonical GC Watson-Crick base to be -8.0 kcal mol-1.99 

Within the intramolecular i-motif DNA with six protonated cytosines, up to six cytosine-

cytosine base-pairing interactions can be formed for a contribution of -48 kcal mol-1 to the 

observed enthalpy for the folding process. In addition, formation of the i-motif structure 

results in stacking of the cytosine bases, an interaction with an enthalpy of -5.0 kcal mol-1 

per base pair stack.100 Formation of the folded i-motif DNA structure results in the 

formation of 5 base pair stacking interactions with a contribution of -25 kcal mol-1 to the 

observed enthalpy.  Therefore, formation of the fully folded i-motif DNA should provide 

ΔHobs= -73 kcal mol-1 or ~-12 kcal mol-1 per hemiprotonated cytosine base pair. The 

enthalpy change determined here for the slow process ΔHslow = -51.5 ± 4.8 kcal mol-1 

reflects the formation of approximately 4.5 hemiprotonated cytosine base pairs. The 

observed volume change (ΔVslow = -6.6 ± 0.9 mL mol-1) is consistent with the formation of 
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hemiprotonated cytosine base pairs and concomitant collapse of the oligonucleotide into a 

more compact conformation with a smaller volume as observed previously using small 

angle X-ray scattering.101 The overall reaction enthalpy change (Hfast+ Hslow = 43 ± 7 

kcal mol-1) is similar to that previously determined by NMR for the intramolecular folding 

of a similar cytosine-rich strand (5’-[TCC]4-3’) with fewer potential base pairing 

interactions (-43 kcal mol-1)102 and for the reverse process of i-motif DNA unfolding using 

differential scanning calorimetry (66 kcal mol-1).100 That is, the PAC experiments suggest 

that during the pH 7.0  4.5 transition, the i-motif DNA folds in two consecutive steps: i) 

protonation of cytosines and ii) nucleation and stacking towards the i-motif DNA structure. 

In addition, the time scale of the PAC measurement (50ns - 10s) does not probe 

rearrangements occurring in timescales larger than a few microseconds; that is, these 

results suggest that due to the nature of the i-motif folding (C•CH+ pairing and stacking) 

other kinetic intermediates are likely to be populated in the millisecond timescale. Notice 

that PAC measurements access kinetic intermediates, not accessible during CD 

measurements performed at thermodynamic equilibrium. That is, CD and PAC 

measurements provide complementary information on the solution conditions and 

intermediate transitions characteristic of the DNA i-motif folding, respectively. 

In the gas-phase, collisional induced activation prior to the TIMS-MS analysis was 

used to access kinetic intermediates not accessible during the solution conditions (e.g., pH 

variation) and desolvation process. Previous reports have shown the advantage of this 

methodology for the study of biomolecules and biomolecular complexes using in-source 

activation and collision induced unfolding (CIU) prior to IMS-MS analysis.14, 80, 103-107 



105 

 

Notice that in the case of CIA-TIMS-MS, the extent of activation is limited by the local 

pressure and the electric field range accessible in the TIMS cartridge (i.e., there is a higher 

limit in the electric field to avoid breakdown). We prefer to called it CIA instead of CIU 

since the cooling process that occurs during the TIMS measurement can also lead to 

refolding into a more compact structure not accessible during the molecular ion formation. 

In the case of i-motif DNA, the intramolecular forces (C•CH+ pairing) that define the folded 

states are overcome for the populations observed at z = -6. Our interpretation of the broad, 

bimodal mobility distribution is the existence of a transition point towards multiple local 

free energy minima: from folded to unfolded i-motif DNA (see Figure 5.2). Notice that the 

observation of a broad distribution can be justify with the co-existence of multiple minima 

reflecting the noncanonical hemiprotonated cytosine base pairing mechanism.  A more 

detailed investigation using collisional induced activation of the i-motif-DNA prior to the 

TIMS mobility separation confirmed that most of the unfolding of the i-motif DNA 

structure occurs for z = - 6 (see Figure 5.4). The z = -5 charge state also showed a movement 

toward unfolding, with the population of a new IMS band at larger CCS value. This result 

suggests that the conformational interconversion energy barriers for the z= -5 and z= -6 

charge state structure can be easily overcome with collisional activation prior to the 

mobility separation and that the existence of multiple, local free energy minima can be 

visualized by the broad IMS profiles observed at z = -5, -6 and -7. The broad distribution 

of z = -5, -6 and -7 IMS bands does not allow to make a discrete annotation on the number 

of conformational states (at least with TIMS measurements performed at room 

temperature). Changes in the mobility profiles for the other charge states upon activation 

were not observed. The bimodal distribution and changes in the mobility profile upon  
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Figure 5.4. Typical CIA-TIMS-MS profiles of i-motif DNA as a function of the deflector 

voltage Vdeflector 60V (top) and 140V (bottom). Notice the change in the mobility 

distribution for the z= −5 and z= −6 as a function of the molecular ion activation prior the 

TIMS-MS analysis. 

 

activation using CIA-TIMS-MS agree with previous reports of i-motif DNA activation in 

the entrance cone of a TWIMS-MS.60 

The search for candidate structures resulted in the generation of an average 

structure for the major mobility trends observed in Figures 5.2 and 5.4. Inspection of the  

candidate structures suggest that the folded state observed for the low charge states ( +3 to 

+5 and -3 to -5) shares the same main interactions: stabilization via cytosine-cytosine+ 

(C•CH+) and adenosine – thymidine (A-T) base pairing at weakly acidic pH values (see 

Figure 5.5). The most compact structure was observed for z = +3, with only small 

differences in the distances between the base pairs (vertical direction in Figure 5.5) as the 



107 

 

charge state increases from +3 to +5 and from -3 to -5. That is, major conformational 

differences were not observed between candidate structures proposed for positive and 

negative ions (e.g., +3 to +5 and -3 to -5); our interpretation is that differences in the CCS 

values are mostly due to the charge state and the internal base pairing stacking.  Inspection 

of the candidate structures at the z = -6 charge state suggests that the broad, bimodal CCS 

distribution is probably due to cytosine neutralization. That is, the i-motif DNA structure 

begins transformation towards an overall larger CCS trend where a semi-open hairpin 

structure with a relaxed 5’ end first appears. Specifically, this larger CCS trend has the 

common loss of the cytosine-cytosine+ (C•CH+) interactions in one of the CCC strands for 

the extended z = -6 and the z = -7 charge states, with a further loss of the second CCC 

strand interactions for the z = -8 and z = -9 charge states. The folding pattern proposed as 

a function of the charge state is in good agreement with the previous studies suggesting 

that the hairpin-like structures are the most stable conformations during the i-motif DNA 

deprotonation.108 While full unfolding of the i-motif DNA is never reached during CIA-

TIMS-MS, the CCS profiles and candidate structures are in good agreement with 

previously reported DNA structural models101. Notice that the proposed candidate 

structures were generated based on a 400ns MD trajectory and the previously reported i- 

motif DNA folded structure65. The MD simulation described the unfolding of the i-motif 

DNA using a starting structure with deprotonated cytosines. Other MD attempts to simulate 

the folding of the i-motif- DNA using protonated cytosines were not successful; our 

interpretation is that further development of the force fields are required to better simulate 

DNA interactions and base pair stacking109. Nevertheless, for the first time candidate 
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Figure 5.5. Candidate structures proposed for the i-motif DNA mobility bands observed. 

Main intramolecular interactions are denoted. CCSs of the candidate structures are reported 

in Table 1. 
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Table 5.1. Experimental and theoretical collision cross sections for i-motif DNA bands 

observed in positive and negative ion mode in nanoESI-TIMS-MS and proposed candidate 

structures, respectively. 

 

z K0
 (cm2 V-1 s -1) 

Experimental 

CCSN2 (Å2) 

Theoretical 

CCSN2 (Å2) 

+3 0.748 800 811 

+4 0.944 846 846 

+5 1.089 922 926 

 

-3 0.729 821 832 

-4 0.931 863 865 

-5 1.096 917 903 

-6 
1.178 

1.013 

1023 (A) 

1190 (B) 

1021 

1166 

-7 

1.267 

1.140 

1.071 

1.034 

1111 (A) 

1234 (B) 

1314 (C) 

1360 (D) 

- 

- 

- 

1378 

-8 

1.204 

1.181 

1.153 

1.119 

1.100 

1.085 

1335 (A) 

1362 (B) 

1394 (C) 

1436 (D) 

1462 (E) 

1482 (F) 

- 

- 

- 

1445 

1455 

1492 

-9 1.168 1548 1546 

 

 

 



110 

 

structures are proposed for kinetically trapped intermediates of the i-motif DNA folding 

which allows for a better mechanistic understanding of the free energy landscape. 

In addition to structural changes of the i-motif DNA as a consequence of the 

noncanonical hemiprotonated cytosine base pairing, the presence of inner cations may also 

induce preference for alternative kinetically trapped conformations in the gas-phase. For 

example, closer inspection of the higher charge state distributions showed the presence of 

multiple sodium and ammonium adducts for z= -7 and z= -8 (see Figure 5.6). These adducts 

can be attached to the i-motif-DNA structure and result in: i) no conformational changes 

(no shift in the IMS profile), or ii) can stabilize the i-motif DNA structure in other folding 

states (shift in the IMS profile).  Inspection of the mobility profiles in the presence of 

adducts shows that while ammonium incorporation does not drive major changes in the 

mobility profile, sodium adducts act as a positively charge contact point between 

negatively charged strands (most likely phosphate groups) of the i-motif-DNA resulting in 

more compact structures. Since both z = -7 and z = -8 are partially unfolded, the appearance 

of new mobility bands suggests that sodium ions acts as bridges between the CCC strands, 

stabilizing the complex in other local free energy minima.  That is, the introduction of the 

sodium cation may allow CCC strands to come together and create a sodium mediated 

bond, forming a tighter structure (smaller CCS). The interaction of inner cations on DNA 

folding will be further investigated utilizing this methodology in a following publication. 
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Figure 5.6. Typical mass spectra and mobility profiles for different i-motif DNA molecular 

ions observed at the z= −7 and z= −8 charge state. Notice the change in the mobility 

distribution in the presence of the ammonium and sodium adducts. 
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5.6 Conclusions 

Folding dynamics of i-motif DNA in solution and in the gas-phase were studied 

using circular dichroism, photoacoustic calorimetry, trapped ion mobility spectrometry and 

molecular dynamics. Solution studies using CD showed a two state folding mechanism 

(FU) for the i-motif DNA as a function of the solution pH = 4.0 – 9.0 at thermodynamic 

equilibrium. The photolysis of 2-NBA in the presence of i-motif DNA displayed a phase 

shift indicating the presence of two processes, one occurring within 50 ns (fast phase) of 

the laser pulse and a temperature-dependent process with a time constant of 140 ns (slow 

phase) at 20 °C with an overall reaction enthalpy change (Hfast+ Hslow = 43 ± 7 kcal mol-

1). The observed volume change during PAC experiments suggested the formation of 

hemiprotonated cytosine base pairs and concomitant collapse of the i-motif oligonucleotide 

into a more compact conformation with a smaller volume during the pH 7.0  4.5 

transition at kinetic equilibrium. The nanoESI-TIMS-MS experiments showed that during 

the nanoESI process the i-motif DNA structures are kinetically trapped in intermediates 

that retain the main conformational motifs (C•CH+ base pairing) for low charge states. In 

particular, an i-motif DNA structure is observed for the low charge states in both positive 

and negative ion mode (e.g., +/- 3 to +/-5) at low pH conditions. With the pH increase the 

cytosines become neutralized leading to the loss of the cytosine-cytosine+ (C•CH+) base 

pairing in the CCC stretches and a charge state distribution increase to higher charges is 

observed in negative mode.  The loss of the cytosine-cytosine+ (C•CH+) base pairing in the 

CCC stretches results in the observation of partially unfolded i-motif DNA conformations. 

CIA-TIMS-MS experiments showed a broad IMS distribution for z = -5, -6 and -7 and the 

existence of multiple, local free energy minima different from those obtained by varying 
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the pH solution conditions. Molecular dynamics simulations were used to sample the gas-

phase conformations and to generate candidate structures during i-motif DNA unfolding. 

For the first time, an unfolding mechanism is supported by average candidate structures 

from mobility measurements as a function of the i-motif DNA unfolding pathway and the 

main intramolecular interactions that stabilized the process are described. Inspection of 

partially unfolded i-motif DNA structures, for intermediate charge states in negative ion 

mode, showed that sodium, but not ammonium, induces changes in the population of gas-

phase kinetic intermediates. 
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6.1 Abstract 

The mammalian high mobility group A2 protein (HMGA2) houses three motifs that 

preferentially bind short stretches of AT-rich DNA regions. These DNA binding domains, 

known as “AT-hooks”, are traditionally characterized as being unstructured. Upon binding 

to substrates, they form ordered assemblies. It is this disordered-to-ordered transition that 

has implicated HMGA2 as a protein actively involved in many biological processes, with 

abnormal HMGA expression linked to a variety of health problems including diabetes, 

obesity and oncogenesis. In the current work, gas-phase ion mobility spectrometry -mass 

spectrometry (IMS-MS) analysis was used to observe the conformations populated by each 

AT-hook peptide (ATHP) and DNA complex. The resulting mobility distributions showed 

that the three ATHPs bind DNA to form a single “key-locked” conformational ensemble. 

Together with molecular models, complex formation was determined to occur between 

ATHP and a pre-folded AT-rich DNA hairpin substrate. Interestingly, candidate structural 

analysis also revealed the ability of the peptides to bind the minor and major grooves of 

the DNA. Employing additional gas-phase IMS-MS studies and solution isothermal 

titration calorimetry (ITC) we observe for the first time results of a 2:1 stoichiometry of 

ATHP:DNA. 

6.2 Introduction 

HMGA2 is a 12 kDa member of the non-histone chromosomal HMG protein 

family. Three DNA binding motifs present in the protein, known as “AT-hook” domains, 

exhibit specificity for binding to AT-rich DNA sequences.1 A conserved set of tripeptide 

core residues (-Arg-Gly-Arg-), primarily surrounded by basic amino acids, are responsible 

for this specificity.2 Variants of HMGA2 have been linked to human height3-5 and levels 
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of expression are associated with obesity,6-7 diabetes,8 human intelligence,9 stem cell 

youth10 and oncogenesis.11-14 Such involvement in significant biological processes, 

specifically the direct binding to transcription factors, has implicated HMGA proteins as 

potential therapeutic drug targets.15-17 

However, HMGA2 provides an additional level of interest because of its 

classification as an intrinsically disordered protein18-19. The presence of ‘unstructured’ 

biomolecules in eukaryotic proteins comprises a surprisingly large number, with as many 

as 25% predicted to be disordered.20 The important role these proteins have in maintaining 

cellular function most likely comes from their ability to conform to multiple binding 

partners. For example, in the absence of an AT-rich DNA substrate, the high mobility group 

AT-hook 2 (HMGA2) is highly flexible and adopts random coils.18 However, it is the 

conformational changes upon DNA binding, and subsequent transition from unstructured 

to structured, that allows HMGA2 to be involved in several fundamental biological 

processes, including DNA replication, translation, recombination and gene regulation.1, 9, 

11, 21-22 

Through the use of various techniques, structural elucidation of protein-DNA 

complexes have grown substantially, as knowledge of complex interfaces have been crucial 

to the development of new therapeutic targets and better disease prevention strategies,23 

yet the specifics still remain unclear regarding the conformational changes required by the 

protein and DNA to form complexes.24 Previous studies, using NMR18 and 

crystallography,15 provide insight into the intermolecular interactions that support the 

binding of the AT-hook motifs with DNA. The consensus is that the tripeptide core motif 

is positioned deep into the minor groove forming hydrogen bond contacts with the bases, 



129 

 

along with a variety of electrostatic and van der waals interactions. More recent 

experimental analysis, involving ATHP complexes, show the ability for RNA binding via 

an extended peptide motif25 and increase in DNA binding affinity upon conjugation to a 

minor groove binder.26 Unfortunately, information comparing the structural differences 

between the three AT-hook domains and their capacity to form DNA complexes is limited, 

confined only to select solution-phase and x-ray diffraction studies.  

However, the combination of solution and gas-phase techniques, has proven to be 

very versatile and powerful in terms of structural analysis of biomolecules. In particular, 

intermediate states can be easily probed by IMS-MS technology, which when 

complemented by solution measurements provides a definitive picture of complex 

structural isomers, binding affinity and molecular stability. 

In the present work, we report on the conformational changes and ATHP-DNA 

complex formation of the three AT-hook peptides of HMGA2 in solution and in the gas-

phase using DNA UV melting studies, florescence spectroscopy, isothermal titration 

calorimetry (ITC), IMS-MS and molecular modeling. The main motifs that define the 

conformational space of the HMGA2 domains (ATHP 1-3) and the DNA-ATHP complex 

formation are described. Although prior studies note only minor groove ATHP interactions, 

here we present solution- and gas-phase experimental and theoretical evidence of both 

ATHP major and minor groove binding capabilities.  

6.3 Experimental 

6.3.1 Materials and reagents 

An AT-rich DNA oligomer, denoted as FL876, sequence 

GGATATTGCCCCCGCAATATCC (C212H270N79O130P21, MW 6655.1561) was 
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purchased from Eurofins Scientific (Luxembourg, Luxembourg) and used as received. This 

22 nucleotide DNA hairpin contains a 9 base pair stem including a 5 base pair AT DNA in 

the middle of the stem. AT-hook peptides 1 (Lys-Arg-Gly-Arg-Gly-Arg-Pro-Arg-Lys), 2 

(Pro-Lys-Arg-Pro-Arg-Gly-Arg-Pro-Lys) and 3 (Lys-Arg-Pro-Arg-Gly-Arg-Pro-Arg-Lys-

Trp) were purchased from Advanced ChemTech Inc. (Louisville, KY) and used as 

received.  Solvents, BPE buffer, and ammonium acetate salts utilized in this study were 

analytical grade or better and purchased from Fisher Scientific (Pittsburgh, PA). A Tuning 

Mix calibration standard (G24221A) was obtained from Agilent Technologies (Santa 

Clara, CA) and used as received. 

6.3.2 DNA UV melting studies 

DNA UV melting curves were determined using a Cary 100 UV-Vis 

spectrophotometer (Agilent Technologies, Santa Clara, CA) equipped with a 

thermoelectric temperature-controller. DNA oligomer FL876 in 1×BPE buffer was used 

for melting studies. DNA-peptide samples were prepared to a final concentration of 2 µM 

by directly mixing at a molar ratio of 1:10 FL876 DNA with each ATHP peptide, followed 

by incubation for 60 min at room temperature to ensure equilibration. Samples were 

typically heated in the 20-100 °C range at a rate of 1 °C min-1, while continuously 

monitoring the absorbance at 260 nm. Primary data were transferred to the graphic program 

Origin (MicroCal, Inc., Northampton, MA) for plotting and analysis. 

6.3.3 Fluorescence Measurements 

Fluorescence spectra of DNA-ATHP 3 were acquired using a Jobin Yvin Horiba 

FluoroMax-3 with excitation wavelength of 355 nm. In the titration experiments, 99 nM 
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FL876 and 50 nM Hoechst stain in 1×BPE was titrated by increasing concentrations of 

ATHP 3. The fluorescence spectra were recorded from 400 to 550 nm.  

6.3.4 Isothermal Titration Calorimetry (ITC) 

ITC experiments were performed using a VP-ITC titration calorimeter (MicroCal, 

Inc., Northampton, MA) interfaced to a personal computer. Origin 7.0 was used for data 

acquisition and processing. A typical ITC experiment was set up so that 10 uL of ATHP 

ligand, i.e. 300 uM ATHP1, 300 uM ATHP2 and 150 uM ATHP3, was injected every 120 

seconds for 30 injections into a 5 uM DNA sample (1 x BPE buffer) in the sample cell. 

6.3.5 Trapped Ion Mobility Spectrometry – Mass Spectrometry Analysis (TIMS-MS) 

Details regarding the TIMS operation and specifics compared to traditional IMS 

can be found elsewhere. 27-31 Briefly, mobility separation in TIMS is based on holding the 

ions stationary against a moving gas using an electric field. The separation in a TIMS 

device can be described in the center of the mass reference frame using the same principles 

as in a conventional IMS drift tube.32 Since mobility separation is related to the number of 

ion-neutral collisions (or drift time in traditional drift tube cells), the mobility separation 

in a TIMS device depends on the bath gas drift velocity, ion confinement and ion elution 

parameters. The reduced mobility, K, of an ion in a TIMS cell is described by: 

𝐾 =  
𝑉𝑔

𝐸
=  

𝐴

(𝑉𝑒𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑉𝑜𝑢𝑡)
 

where vg  and E are the velocity of the gas and the applied electric field across the TIMS 

analyzer region.  Velution is the voltage when the ions elute in the Vramp sweep and Vout is 

the voltage applied at the end of the TIMS analyzer region.  
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A custom-built, pulled capillary nanoESI source was utilized for all the 

experiments. Quartz glass capillaries (O.D.: 1.0 mm and I.D.: 0.70 mm) were pulled 

utilizing a P-2000 micropipette laser puller (Sutter Instruments, Novato, CA) and loaded 

with 10 L aliquot of the sample solution. Sample solutions consisted of 1-10 µM ATHP 

or DNA in 10 mM ammonium acetate solution at physiological pH (pH = 6.7).  For the 

observation of the DNA-ATHP complexes, a 1:1 and 1:2 ratio of 5 µM concentration of 

the DNA and AT-hook peptide (1, 2 or 3) was prepared in 10mM ammonium acetate 

immediately prior infusion. A typical nanoESI source voltage of +/- 600-1200 V was 

applied between the pulled capillary tips and the TIMS-MS instrument inlet. Ions were 

introduced via a stainless steel tube (1/16 x 0.020’’, IDEX Health Science, Oak Harbor, 

WA) held at room temperature into the TIMS cell.  

Mobility calibration was performed using the Tuning Mix calibration standard 

(G24221A, Agilent Technologies, Santa Clara, CA) in positive ion mode (e.g., m/z = 322, 

K0 = 1.376 cm2 V-1 s-1 and m/z = 622, K0 = 1.013 cm2 V-1 s-1).31 The TIMS operation was 

controlled using in-house software, written in National Instruments Lab VIEW, and 

synchronized with the maXis Impact Q-ToF acquisition program.27-28 

Reduced mobility values (K0) were correlated with CCS (Ω) using the equation: 

Ω =
(18𝜋)1/2

16

𝑧

(𝑘𝐵𝑇)1/2
[

1

𝑚𝑖
+

1

𝑚𝑏
]

1/2 1

𝐾0

1

𝑁∗
 

where z is the charge of the ion, kB is the Boltzmann constant, N* is the number density 

and mI and mb refer to the masses of the ion and bath gas, respectively.32  
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3.3.6 Theoretical Calculations 

Candidate structures were proposed for the mobility bands observed in the TIMS-MS 

experiments. The protein data bank (PDB) entry 2EZD was used as a template for the 

peptide-DNA candidate structures. First, a 2-dimensional DNA hairpin structure was 

obtained for the DNA sequence using mFold server33. Based on this structure, a 3-

dimensional hairpin structure was then created by merging PDBs 2EZD (for the stem) with 

2K71 (for the tetra-nucleotide loop) followed by mutations with appropriate bases in order 

Scheme 1. Preparation of PDB template for modeling of DNA. 
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to achieve the desired structure (see Scheme 1). The modeled DNA hairpin structure was 

optimized by energy minimization with CHARMM36 force field34 using NAMD 

Molecular Dynamics package35. Molecular docking was performed using AutoDock vina36 

to generate the DNA-ATHP complexes.. Theoretical CCS were calculated using the IMoS 

(v1.04b) 37-39 and PSA40 packages with nitrogen as a bath gas at ca. 300K. In the IMoS 

calculations, 100 total rotations were performed using the trajectory method with a 

Maxwell distribution. Molecular visualization was performed using Visual Molecular 

Dynamics software.41 

6.4 Results and Discussion 

Gas phase analysis of ATHP 1, 2 or 3 in complex with the FL876 oligonucleotide 

produced [M+4H]+4 and [M+5H]+5 ions (Figure 6.1). MS analysis of equal molar sample 

ratios shows that a 1:1 peptide with DNA stoichiometry is produced, accompanied by each 

species in free form (Appendix 6.1, left panel). Inspection of the corresponding IM 

complex profiles show a single mobility band recorded for each charge state. Structures 

were proposed based off these initial findings and suggest the likelihood of the ATHPs 

attaching to either the major or minor grooves of the DNA hairpin. This contrast from 

current reports in literature (e.g., ATHPs are specific minor groove binding molecules) 

subsequently motivated a series of experiments to evaluate the binding specificity of each 

motif.  

We proceeded by using Hoescht 33528, a fluorescent dye known as a minor groove 

binding (MGB) compound that is highly specific to AT-rich DNA substrates. By blocking 

the minor groove, ATHP attachment was restricted to the major groove of FL876 so that 

the presence or absence of binding could be determined. Although displacement of the 
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Hoescht 33258 compound in the minor groove by ATHPs is possible, we hypothesized that 

the majority of ATHPs would attach to the major groove, if applicable, leaving the minor 

groove occupied by the dye. In fact, experimental IMS-MS results confirmed that all three 

ATHPs have the ability to bind to the FL876 : Hoescht complex, forming 1 : 1: 1 molecular 

assemblies (Figure 6.2). Additional theoretical studies were performed with the MGB 

compound and complement the initial findings of ATHP major groove binding capabilities. 

Comparison between the relative abundance of the complexes in the mass spectra showed 

that ATHP : DNA is significantly favored over the ATHP : DNA : MGB state (data not 

shown), signifying that ATHP bound to the minor groove is preferred.  

Upon confirmation of the interaction between ATHP and the major groove of 

FL876, the peptide concentration was increased two-fold, with respect to DNA, to assess 

the possibility of two peptides with one DNA (bound to the major and minor grooves). An 

increase in ATHP : DNA binding to 2:1 was observed at [M+5H]+5 charge state (Figure 

6.3).  

The experimental IMS-MS results suggest that the small difference in CCS 

distributions (<200 Å2) between the 1:1 and 2:1 complexes could be an indication that the 

peptide(s) is mostly concealed within the DNA hairpin structure. The proposed structures 

provide an illustration of the complex, showing that the size is mostly dictated by the DNA. 

An overview of the experimental and theoretical cross sections for the various complexes 

is provided in Appendix 3.1. Results from our IMS-MS experiments and theoretical 

docking studies are in good agreement with previous structural findings, in that NMR and 

X-ray crystallography studies have reported that the –Arg-Gly-Arg– core of the AT-hook 

peptide is buried into the minor groove of DNA, and that complexes are formed via 
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Figure 6.1. Typical mobility profiles for the [M+4H]4+ and [M+5H]5+ charge states of 

ATHP 1, 2, or 3 in complex with the DNA hairpin (FL876). The isotopic distribution for 

each complex is shown (inset) and candidate structures for each complex are proposed. 
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hydrogen bonds between the oxygen atoms of thymine and/or cytosine, while Van der 

Waals forces govern interactions with adenines. 15, 18, 42 The lysines and arginines outside 

of this core extend tightly along the DNA forming additional points of contact as a 

result of electrostatic interactions with the negatively charged DNA phosphate 

backbone.15, 18, 42 

Comparison of the mobility distributions of the 1:1 and 2:1 peptide : DNA 

stoichiometries suggest that the ATHPs bind to the AT-rich regions of the DNA in a single 

“locked” conformation and that all three ATHPs are selectively stabilized upon binding to 

the pre-formed FL876 hairpin (Scheme 2).43 The schematic model, determined using CCSs 

from IMS, illustrates conformational changes of the peptide (i.e., unfolding) induced upon 

minor and/or major groove substrate binding.44 From this process we begin building a 

picture of the disordered-to-ordered transition of HMGA2 as it assemblies with DNA, 

where the binding occurs indistinctly via the minor or major groove. Specifics regarding 

the HMGA2:DNA complex will be further investigated utilizing IMS-MS methodology in 

a following publication. 

Scheme 2. Mechanism of ATHP attachment to DNA showing the preformed hairpin prior 

to peptide unfolding upon binding. 
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Figure 6.2. Typical mobility and isotopic distribution of DNA complexes. Single mobility 

peaks were observed for all complexes and charge states. Specifically, the DNA and the 

minor groove binding (MGB) Hoescht 33258 compound produced and [M+4H]+4 charge 

state.  ATHP 1 binding to the DNA-Hoescht complex produced [M+4H]+4 and [M+5H]+5 

charge states. Proposed structures are also shown.  
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Figure 6.3. Typical mobility profiles of ATHP 1, 2, or 3 in complex with the DNA hairpin 

(FL876). Stoichiometry of 2:1 was observed at a [M+5H]+5 charge state. The isotopic 

distribution for each complex is shown (inset) and candidate structures shown for the 

FL876 hairpin in complex with ATHP1, ATHP2 and ATHP3.  

 

Complexes were also probed using a variety of complementary solution-phase 

techniques (e.g., DNA melting experiments, isothermal titration calorimetry (ITC) and 

fluorescence measurements) and gas-phase collision induced dissociation (CID-MS) in 

order to further evaluate our IMS findings. ATHP 1, 2 and 3 minor groove binding, via 

fluorescent titration experiments, as a function of Hoechst 33258 compound displacement 

was observed (Appendix 6.1).45 Specifically, increasing concentration of ATHP resulted 
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in a decreased fluorescence signal, an indication of the Hoechst stain being sequentially 

removed from the DNA minor groove and replaced with ATHP.  

Hairpin formation was confirmed by a sharp DNA UV melting transition at 59 °C in 1×BPE 

(see Figure 6.4a). The ATHPs 1- 3 showed a melting temperature (Tm) increase, indicative 

of binding between each peptide and hairpin. The thermal stabilization of FL876 by ATHP 

1 and ATHP 2 is greater than that caused by ATHP 3.  

Results from ITC analysis support observations regarding the two binding site 

hypothesis. Figure 6.4b shows the data retrieved from these experiments. A ‘normal’ 

titration curve was observed for all three peptides titrated into DNA. The enthalpy change 

over the titration period was measured to determine exothermic vs. endothermic binding. 

In fact, the DNA-binding enthalpy for ATHPs attaching in the major and minor grooves 

was estimated.The binding of ATHP1 to FL876 is an exothermic reaction, which yields 

negative enthalpies of -1.24 kcal mol−1 and -1.30 kcal mol−1 referring to binding sites one 

and two (e.g., major or minor groove), respectively. In contrast, the binding of ATHP2 to 

FL876 proved to be an endothermic reaction, with a positive enthalpy of 1.048 kcal mol−1 

calculated for both of the binding sites. The titration of ATHP3 into FL876 also displayed 

a 2:1 binding stoichiometry and the resulting exothermic reaction yielded negative 

enthalpies of -1.17 kcal mol−1 and -1.71 kcal mol−1, respectively.  

Complementary gas-phase, low energy collision induced activation experiments on 

the [M+4H]+4 charge state of ATHP and FL876 1:1 complexes, were used to evaluate the 

relative binding affinities (Figure 6.4c). As the collision energy increases, a decrease in the 

molecular ion signal corresponding to the complex was observed; notice that collision 
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Figure 6.4. a) DNA UV melting curves for uncomplexed FL876 and complexed FL876 

with ATHP 1, 2 or 3 and b) ITC results determining the binding stoichiometry and affinity 

of ATHP 1, 2 and 3 to both the major and minor groove of FL876 DNA and c) Collision 

induced dissociation for FL876 complexed with ATHP1. ATHP2 or ATHP 3 (charge state 

and degrees of freedom were considered) with the curve derivative shown as an inset. 
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energy has been normalize to the charge and calculated per degree of freedom to account 

for mass difference and charge between the experiments, a consideration supported through 

previous work by Clemmers and co-worker.46 Comparison between the CID profiles of the 

ATHP 1-3 : FL876 complexes shows that the weakest binding profile is observed for 

ATHP 2 : FL876, followed by ATHP 3 : FL876 complex, and ATHP 1: FL876 complex. 

We interpret these CID profiles in that as the collision energy increases, multiple collisions 

with the collision gas (nitrogen in this case) leads to an increase in the vibrational modes 

of the complex eventually leading to dissociation into the main constituents (i.e., ATHP 

and FL876). That is, as the CID energy increases the internal energy increases until a 

threshold is achieved, leading to complex dissociation. The increased energy needed to 

begin dissociation of ATHP 1 : FL876 and ATHP 3 : FL876 distribution suggests that two 

distinct binding sites (e.g., minor and major groove) are occupied. The more immediate 

dissociation of the ATHP 2-FL876 complex suggest a predominant single binding site or 

two weaker attachment sites. The CID profiles combined with the fluorescent titration and 

ITC data indicate that ATHP 1, 2 and 3 can bind hairpin DNA and occupy both minor and 

major grooves. 

6.5 Conclusions 

The high mobility resolution and trapping capabilities of TIMS-CID-TOF MS 

allowed for the interrogation of ATHP 1, 2 or 3 in complex with hairpin FL876 

conformational space. IMS-MS results showed that ATHP 1-3 can associate with DNA to 

form a complex in a “locked” mechanism enabled by interactions of the –Arg-Gly-Arg– 

tripeptide core and the AT-rich regions of the DNA duplex. Comparison of the ATHP 1-3 

: FL876 DNA IMS profiles with candidate structures permitted the generation of a 
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mechanistic description of the complex formation. The binding mechanism requires the 

FL876 DNA to be pre-folded into a hairpin that will serve as substrate for the ATHP 1-3 

attachment and transition from unstructured to structured. The experimental evidence from 

TIMS-MS, UV melting studies, fluorescent titration, ITC, and CID-MS experiments infer 

that the ATHP 1-3 peptides can indistinctively bind to the minor and major grooves of 

FL876 DNA.  
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CONFORMATIONAL DYNAMICS AND DNA BINDING OF THE 

INTRINSICALLY DISORDERED AT-HOOK 3 PEPTIDE 
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7.1 Abstract 

The intrinsically disordered ATHP3 was characterized at physiological conditions and 

in complex with DNA using single amino acid substitutions and high-resolution ion 

mobility spectrometry coupled to mass spectrometry (trapped IMS-MS). Results 

showed that ATHP3 can exist in multiple conformations at physiological conditions (at 

least 10 conformers were separated), where differences in the conformational space are 

driven by the proline cis/trans orientation and the number and location of protons. 

When in complex with AT rich DNA hairpins, the -RGRP- core is essential for 

stabilizing the ATHP3 : DNA complex at physiological conditions. In particular, the 

arginine in the sixth position plays the most important role during binding to AT-rich 

regions of hairpin DNA, in good agreement with previous NMR and X-ray data. 

Mobility based correlation matrices are proposed as a way to reveal differences in 

structural motifs across the peptide mutants based on the conformational space and 

relative conformer abundance.  

The mammalian high mobility group protein (HMGA2, MW ~12 kDa), an 

intrinsically disordered protein (IDP) that aids in the regulation and expression of 

certain genes by influencing the remodeling of chromatin structure, 1-3 is also a known 

oncofetal antigen,1, 4 biomarker of cell transformation and metastasis,5, 6 and a target in 

cancer therapeutics.7, 8 In vivo studies have largely established the physiological role of 

the full length HMGA2 by monitoring the effects of overexpression and knockouts in 
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mice models.9 Specifically, HMGA2 gene amplification induces tumorigenesis, as 

observed in several cancers, including leukemia,10 tongue cancer,11 lung cancer,12 breast 

cancer,13, 14 and pituitary adenomas. 15 A pygmy phenotype was observed in null mice,6 

whereas the truncated version of the protein is expressed in oversized mice.16 More 

recently, in vitro analysis implicated HMGA2 in the process of aging 17. HMGA2 

contains three positively charged motifs – known as “AT-hooks” 18 - that bind with 

high affinity AT-rich DNA duplex regions 19 and a negatively charged c-terminal tail. 

HMGA2 can easily form homodimers, 20 an interaction most likely attributed to 

contacts forming between the acidic c-terminal tail of one protein with the basic 

residues of the counterpart protein, and interact with DNA and other proteins, making 

HMGA2 a connected protein with a large interaction network.21 Despite progress made 

using in vivo and in vitro studies, only few studies have contributed to the structural 

characterization (e.g., NMR and crystallography studies of ATHP2 and ATHP3 bound 

to duplex DNA).22, 23 

Ion mobility spectrometry and mass spectrometry (IMS-MS) have shown the 

advantages of these techniques for structural biology, and more specifically, for the 

study of biomolecules and biomolecular complexes.24-27 IMS-MS has addressed specific 

shortcomings of current conventional methods of structural analysis (i.e. NMR and X-

ray crystallography) by reducing analysis time, sample consumption, sample purity 

requirements and restriction on biomolecule flexibility.28, 29 IMS-MS has gained 
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attention for the study of dynamic proteins in their native, partially folded and 

unfolded forms 24, 30-32 and when complemented with molecular dynamic simulations 

has allowed the identification of specific intramolecular interactions that stabilize 

conformational states (i.e. proline and side-chain orientation, protonation site).33 IMS-

MS can capture conformational interconversions and intermediate states for peptides, 

proteins, DNA and complexes.24, 25, 34 For example, in a recent study, the influence of 

solvent composition and time after desolvation dynamics on the ATHP3 

conformational space was reported.33 At the protein level, it has been shown that 

phosphorylation of the c-terminal tail can play a vital role during HMGA2 protein-

protein and protein-DNA interactions.35  

In the present study, the peptide sequence influence on the conformational 

space and DNA binding for the intrinsically disordered ATHP3 is studied using trapped 

IMS coupled to mass spectrometry (TIMS-CID-TOF MS) and single amino acid 

substitutions. A discussion on the conformational space as a function of the charge 

location and proline orientation and binding affinity to DNA follows. 

7.2 Results and Discussion 

Under native conditions, three charge states in positive ion mode ([M+H]+ to 

[M+3H]3+) were observed for the ATHP3 and the seven amino acid substituted peptides 

(see corrected CCS profiles and fingerprint in Figure 7.1 a-b). A correlation matrix of 

the IMS fingerprints (Figure 7.1c) is used for rapid comparison and identification of the 
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single amino acid substitution with the smallest/largest influence in the ATHP3 

mobility profile at physiological condition (first column and first row), as well as 

between the mutants using equation 3. For example, following the color scale, P3A and 

R8A are the most and R2A is the least closely related mutants to ATHP3. That is, a 

quick assessment of the influence of the primary sequence (e.g., single amino acid 

substitution) on the peptide secondary structure can be observed.  

One of the advantages of using single point residue mutations in combination 

with IMS-MS, is the possibility to identify the conformational state of the prolines 

(cis/trans) as well as the charge location for the case of the basic residues by comparison 

of the corrected IMS profiles.26 While it is known that prolines in the trans position are 

energetically more favorable than in the cis position (95% of the time, being ~0.5 

kcal mol-1 lower in energy with ~13 kcal mol-1 barrier),45 when substituted by alanine 

which is energetically more favorable in trans position (~2.5 kcal mol-1 lower in energy 

with ~20 kcal mol-1 barrier),45 allows for the determination of the ATHP3 state by 

looking at the conservation (proline in trans) or absence (proline in cis) of the IMS 

band.26 That is, comparison of the corrected profiles for ATHP3 and for P3A and P7A 

permits the assignment of the proline in ATHP3 for the different bands observed 

(results summarized in Table 1). Analogous, single point mutations of the basic residues 

allow the assignment of the charge. In the case of the ATHP3, up to seven protons can 
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Figure 7.1. Typical, normalized ATHP3 and corrected variant (*) mobility profiles for the 

[M+H]+, [M+2H]2+ and [M+3H]3+ for intrinsic size parameters upon residue substitution 

to alanine (a). Peptide IMS fingerprint (b) and correlation matrix (c) are used for 

assessment of the primary sequence effect on the secondary structure. 
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be attached; however, during native conditions (pH ~ 6.7), a maximum of three protons 

were observed. That is, the high number of IMS bands can be attributed to different 

locations of the proton (i.e., protomers) in addition to the potential constraints 

generated from the proline configuration. Comparison of the ATHP3 profile with those 

of R2A, R4A, R6A and R8A permitted the assignment of the number and position of 

the charge in the intrinsically disordered ATHP3. Moreover, knowing the total charge 

and number of protons per band, the protonation probability of the N-term and the 

lysine at position one was calculated (difference from the charge state and number of 

protonated arginines). In addition to this information, the W10A substitution provides 

insight in the role of the tryptophan on the overall conformational space.  

Inspection of Table 1 shows that ATHP 3 [M+H]+ conformers (i.e., A and B 

bands) differ in the orientation of P3 (trans vs cis) and the location of the charge (R8 vs 

N-term/K). 

In the case of ATHP 3 [M+2H]+2, differences between the five bands (C-G) are 

also associated to the orientation of the prolines P3 and P7 and the protonation of the 

basic residues R2, R4, R6 and R8. In the case of ATHP [M+3H]+3, differences between 

the five bands (H-J) are associated to the proline P7 and the protonation of the basic 

residues R2, 
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Table 7.1. Summary of charge location and cis/trans proline configuration of the Native 

ATHP3 per IMS band (A-J). 

 

R4, R6 and R8. While in some cases the charge residue that is protonated can be 

uniquely assigned, for the case of the IMS band I there are at least two protonation 

patterns that yield the same CCS value; that is, different protonation patterns can share 

the same IMS band. In summary, the data presented in Table 1 shows that the 

intrinsically disordered ATHP3 can exist in a variety of conformations (at least 10), 

where the proline configuration and the charge location drive the intramolecular 

 
A B C D E F G H I J 

Residu

e 

          

R2 N N + + + + + N + + 

P3 trans

* 

cis trans trans trans

* 

trans cis Cis cis cis 

R4 N N + + + + + + + + 

R6 N N + + N N + + + + 

P7 trans trans trans trans cis cis cis Cis trans

* 

trans

* 

R8 + N N N N + + N + N 

W10 - - - - - * * * - - 

N-

ter/K 

N + N N N N N + N + 
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interactions that stabilizes the peptide secondary structure in multiple kinetic 

intermediates.  

Peptide-DNA complexes were formed in solution and observed in the gas-phase 

at [M+4H]4+ and [M+5H]5+ charge states under native spray conditions for all considered 

peptide mutants (Figure 7.2a). Beside the peptide-DNA complexes, unbound DNA and 

peptides were also observed at [M+3H]3+ - [M+4H]4+ and at [M+H]+ - [M+3H]3+charge 

states, respectively. The relative abundance of unbound peptide and DNA was 

consistently higher for the [M+2H]2+ and [M+4H]4+ charge states, respectively. IMS 

profiles of the peptide-DNA complexes (Figure 7.2b and 7.2c) can be characterized by 

a single, broad mobility band - depicting a comparatively stable complex. The IMS peak 

width was consistent as a function of the charge states and the differences in CCS 

between the [M+4H]4+ and [M+5H]5+ charges suggest that no conformational 

rearrangements occur with the charge states (~20-100 Å2). Inspection of the peptide-

DNA fingerprint plots, generated from the corrected IMS profiles, allows for a quick 

description of the influence of the single amino acid substitution on the structure of 

the peptide-DNA complex (Figure 7.2c). Further information can be extracted from the 

correlation matrix (Figure 7.2d). If the single amino acid substitution does not 

dramatically affect the corrected IMS profiles (similar fingerprint) or has a high 

correlation value, the most likely this amino acid has a lower role during the peptide -

DNA complex formation and is not an active participant in the binding site. For 
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example, comparison of the ATHP3 and the R2A/R4A/R8A/W10A peptides shows 

higher similarities and correlation values, which suggest that these amino acids are less 

likely to regulate and participate in the peptide-DNA complex interaction. Moreover, 

P3A/R6A/P7A showed larger differences  

 

Figure 7.2. Typical mass spectra (a) and ‘corrected’ ion mobility profiles (b) of the native 

and substituted ATHP3 : DNA complexes. The IMS profile fingerprint (c) of the 

complexes was used to generate a correlation matrix (d). Values reported in (a) correspond 

to peptide : DNA : complex ratios. 
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and lower correlation values, which suggest that there are most likely involved in the 

peptide-DNA complex interaction. These observations are in good agreement with 

previous NMR results that suggest that the -PRGRP- core most likely interacts with 

the DNA.22 A crystal structure of the ATHP3 in complex with duplex B-form DNA 

revealed that the central core arginine residues protrude inward creating hydrogen 

bonds from the amino acid NH atom to the thymine oxygen atom.23 

A complementary way to evaluate the influence of each amino acid on the 

ATHP3 : DNA complex is through the inspection of the dissociation curve as a function 

of the collision energy (Figure 7.3a). The assumption is that the rupture of the 

intramolecular interactions that stabilizes the peptide-DNA complex using single 

amino acid substitutions will result in different collision energies required to disrupt 

the complex. Inspection of Figure 7.3a shows that the R6A peptide 

presents the largest change in dissociation profiles, which suggest that the arginine in 

the sixth position is essential for the stabilization of the ATHP3 : DNA complex in the 

-RGR- core, in good agreement with previous NMR observations.22, 46 

The probability of peptide : DNA complex formation (or binding affinity) can 

also be evaluate by the differences in the relative abundance of the product (i.e., 

complex) with respect to the initial reactants (i.e., peptide and DNA) using equation 4 

and 5 (Figure 7.3b and 7.3c). Inspection of Figure 7.3b and 3c shows that the 

substitutions R2A/P3A/W10A has higher binding affinity (Ka) relative to the ATHP3 
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peptide, while the substitutions R4A/R6A/P7A has lower binding affinity compared to 

the ATHP3. These results suggest that R4A/R6A/P7A are directly related to the 

ATHP3 : DNA complex formation. 

 

Figure 7.3. Typical CID profiles (a) showing the decrease in intensity of the [M+4H]4+ 

peptide : DNA complexes as a function of collision energy (eV), charge (z) and degrees of 

freedom (DoF). The dissociation threshold (inset) shows the absolute derivative of each 

CID profiles as a function of the collision energy. The binding affinity (b) and distance 

matrix (c) illustrates the influence of the single amino acid substitution on the peptide-

DNA binding affinity. 
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The intrinsically disordered ATHP3 peptide in complex with DNA was studied 

using single amino acid substitutions and IMS-MS at physiological conditions. Seven 

amino acid substitutions were considered and changes in the peptide and peptide-DNA 

complexes conformational space as well as their relative abundance and dissociation 

kinetics were used to establish the amino acid positions that stabilize the ATHP3 : DNA 

complex formation in solution. The high resolution of the trapped IMS (TIMS) analyzer 

permitted the observation of multiple IMS bands for the intrinsically disordered 

ATHP3 peptide (at least 10 conformers). Using the corrected IMS profiles, the proline 

orientations (cis-trans) and charge location (basic residues and N-terminal) per IMS 

band were determined, providing a detailed description of the intramolecular 

interactions that describe the ATHP3 conformational space. These studies provided 

significant insight on the critical role of cis and trans proline configurations and charge 

locations in the populations of ATHP3 structures that are observed in physiological 

conditions. 

The study of peptide-DNA complexes suggests that the -RGRP- core is essential 

for stabilizing ATHP3 : DNA complex at physiological conditions. Moreover, it was 

shown that weakest peptide : DNA complex is form with R6A, suggesting that this basic 

residue plays the most important role during binding to AT-rich regions of the DNA, 

in good agreement with previous NMR and X-ray data.22, 23 
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It should be noted that the IMS-MS workflow permits the study of multiple 

kinetic intermediates simultaneously, in contrast to the most abundant (or 

energetically favored) typically described using NMR and X-Ray measurements. This 

makes IMS-MS a powerful platform for the study of intrinsically disordered 

biomolecules and their kinetic intermediates. This work highlights the potential of 

IMS-MS combined with single amino acid substitutions for the evaluation of the 

peptide primary sequence influence on the secondary structure at physiological 

conditions. When combined with CID-MS, this workflow can be translated to the 

study of peptide complex conformations.  

7.2 Experimental Methods 

7.2.1 Sample preparation  

Native AT-hook peptide 3 (Lys-Arg-Pro-Arg-Gly-Arg-Pro-Arg-Lys-Trp) and all amino 

acid substituted peptides were purchased from GenScript and used without further 

purification. An AT-rich DNA oligomer, denoted as FL876, sequence 

GGATATTGCCCCCGCAATATCC (C212H270N79O130P21, MW 6655.1561) was purchased 

from Eurofins Genomics (Luxembourg City, Luxembourg) and used as received. This 

22 nucleotide DNA hairpin contains a 9 base pair stem comprised of a 5 base pair AT 

rich region in the middle of the stem.  Solvents and ammonium acetate salts utilized in 

this study were analytical grade or better and purchased from Fisher Scientific 
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(Pittsburgh, PA). A Tuning Mix calibration standard (G24221A) was obtained from 

Agilent Technologies (Santa Clara, CA) and used as received. 

7.2.2 Peptide nomenclature 

The amino acid sequence of the ATHP3 and variants are presented in Appendix 7.1, 

along with the nomenclature followed throughout the text. Specifically, the variant 

peptides are referred to by the original amino acid residue followed by their position 

and the replacement amino acid in a single-code nomenclature. 

7.2.3 Ion Mobility Spectrometry-Mass Spectrometry 

Details regarding the trapped IMS (TIMS) operation and specifics compared to 

traditional IMS can be found elsewhere.33, 36-39 Briefly, a custom nESI-TIMS unit was 

coupled to a Maxis Impact Q-TOF mass spectrometer (Bruker, Billerica, MA). The 

TIMS unit is run by custom software in LabView (National Instruments) synchronized 

with the MS platform controls. Sample aliquots (10 L) were loaded in a pulled-tip 

capillary biased at 700-1200 V to the MS inlet. The nitrogen bath gas flow is defined by 

the pressure differential between the entrance funnel (P1 = 2.6 mbar) and the exit 

funnel (P2 = 1.1 mbar) at ca. 294 K. A 880 kHz and 200 Vpp RF potential was applied. 

Deflector, capillary, entrance funnel, entrance and exit analyzer voltages were 60, 50, 

0, -200-0, and 60 V in positive mode (and -60, -50, 200-0, and -60 V in negative mode) 
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to prevent ion heating prior to IMS separation. The reduced mobility, K, of an ion in a 

TIMS cell is described by: 

𝐾 =  
𝑉𝑔

𝐸


𝐴

(𝑉𝑒𝑙𝑢𝑡𝑖𝑜𝑛−𝑉𝑜𝑢𝑡)
        (1) 

where vg, E, Velution and Vout are the gas velocity, applied electric field, elution voltage 

and exit analyzer voltage, respectively. After thermalization, species were eluted from 

the TIMS cell by decreasing the electric field in stepwise decrements (referred to as the 

“ramp”) and can be described by a characteristic elution voltage (Velution). The mobility 

calibration constant A was determined using known reduced mobilities of Tuning Mix 

components (K0 of 1.013, 0.835, and 0.740 cm2/(V.s) for respective m/z 622, 922, and 

1222). The scan rate (Sr=Vramp/tramp) was optimized for every experiment.  

The measured mobilities were converted into CCS (, Å²) using the Mason-Schamp 

equation: 

𝛺 =
(18𝜋)1/2

16

𝑧

(𝑘𝐵𝑇)1/2
[

1

𝑚𝑖
+

1

𝑚𝑏
]

1/2 1

𝐾0

1

𝑁∗
      (2) 

where z is the charge of the ion, kB is the Boltzmann constant, N* is the number density 

of the bath gas and mi and mb refer to the masses of the ion and bath gas, respectively. 

TIMS-MS spectra were analyzed using Compass Data Analysis 5.0 (Bruker Daltonik 
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GmbH) and TIMS Data Viewer 1.4.0.31397 (Bruker Daltonik GmbH). The IMS 

corrected profiles were compared using the correlation coefficient function: 

𝐶𝑜𝑟𝑟𝑒𝑙 (𝑋, 𝑌) =
∑(𝑥−𝑥̅)(𝑦−𝑦̅)

√∑(𝑥−𝑥̅)2(𝑦−𝑦̅)2
       (3) 

where 𝑥̅ and 𝑦̅ are the sample means average for IMS profile 1 and 2. 

7.2.4 Correction of amino acid substituted collision cross sections 

For direct comparison of the mobility profiles between the ATHP 3 and single amino 

acid substituted peptides (e.g. Arg to Ala, Pro to Ala and Trp to Ala), the CCS profiles 

were adjusted based on the method previously described in references.26, 40, 41 To account 

for differences in CCS between N2 and He, the CCSN2 = 1.0857 (CCSHe) + 81.459 [Å2] 

conversion was used.42, 43 This resulted in Arg to Ala, Pro to Ala and Trp to Ala 

substitutions to be corrected by 17.43 Å2, 2.68 Å2 and 17.43 Å2 in N2, respectively. 

Because the tryptophan residue CCS has not been previously reported, the Arg value 

was used instead considering the similarity between the geometries and steric 

hindrances. 

Determination of binding affinities. Peptide-DNA binding affinities (Ka) were 

calculated, using the general equation for an association reaction, based on the peak 

area of the complex divided by the peak area of the unbound DNA and unbound 

peptide.44  
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Ka = 
 (𝐶𝑜𝑚𝑝𝑙𝑒𝑥)

(𝐷𝑁𝐴)(𝑃𝑒𝑝𝑡𝑖𝑑𝑒)
         (4) 

A distance matrix was utilized to better evaluate relative changes associated with the 

single amino acid substitution using the equation: 

D(X,Y)=[
𝐾𝑎(𝑝𝑒𝑝𝑡𝑖𝑑𝑒𝑋)−𝐾𝑎(𝑝𝑒𝑝𝑡𝑖𝑑𝑒𝑌)

< 𝐾𝑎𝑝𝑒𝑝𝑡𝑖𝑑𝑒 (1−8)
>

]        (5) 
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8.1. Introduction 

DNA topoisomerases are ubiquitous enzymes, present in every organism, that 

manage and control DNA topology, both globally and locally.1 Topoisomerases are 

essential proteins for DNA strain release from supercoils during replication and 

transcription, thus warrantying proper super helical density for essential cellular functions 

not disturbed.2 Recent studies have verified bacterial topoisomerase I as a viable and novel 

target utilized for the discovery of new antibiotics.3 A main roadblock is the lack of a three 

dimensional structure for the topoisomerase proteins and their DNA-bound forms. The 

success of traditional structural biology approaches (e.g., NMR and x-ray crystallography) 

have been limited to the description of subdomains or DNA-bound subdomains.4-6 As a 

result, there is a need for alternative approaches to describe the multistep mechanism 

consisting of DNA binding, cleavage and strand religation. 

Native mass spectrometry (MS), and more recently in combination with ion 

mobility spectrometry (IMS), have provided unique insights in structural biology during 

the study of biomolecules and biomolecular complexes in the absence of the bulk solvent.7-

8 In particular, IMS-MS has addressed specific shortcomings of current conventional 

methods by reducing the analysis time, sample consumption, sample purity requirements 

and restrictions on the biomolecule flexibility. Due to these unique advantages, IMS-MS 

has gained great attention for the study of protein dynamics in their native, partially folded 

and unfolded forms8-1024,30-32, and when complemented with molecular dynamic 

simulations, has allowed the identification of specific intramolecular interactions that 

stabilize conformational states.11  
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IMS-MS can capture conformational interconversions and intermediate states for 

peptides, proteins, DNA and complexes.8-9, 122 For example, in a recent study, the influence 

of solvent composition and kinetically trapped intermediates on the intrinsically disordered 

ATHP3 conformational space was reported.11 For DNA bounding proteins, IMS-MS 

studies have described the dimerization of the intrinsically disordered HMGA2 protein,13 

as well as that phosphorylation of the c-terminal tail can play a vital role during HMGA2 

protein-protein and protein-DNA interactions.14  

In this paper, we utilized a second generation trapped IMS coupled to MS for the 

study of topoisomerase IA and IB and their DNA bound states. The higher trapping 

efficiency and mass range of the new TIMS-MS instrument allowed the separation of 

conformational microstates for the topoisomerases and their DNA-protein complexes. In 

particular, first principle ion-neutral collision cross sections are reported for topoisomerase 

IA and IB, and their DNA bound states with a 13 base single strand DNA (ssDNA) and a 

59 base stem loop DNA substrate (MBLong2). This experimental evidence shows the 

flexible nature of topoisomerases IA and IB. 

8.2 Experimental Methods 

8.2.1 Materials and reagents 

A 13 base (Sub 1) and 59 base (MBLong2) DNA oligomer sequence 5’-

AATGCGCTTTGGG-3’ (C128H161N49O78P12, MW 4005.71) and 5’-

GCCCTGAAAGATTATGGAATGCGATTAGGGT 

AAAGGAAGAGAGCATAATCTTTCAGGGC-3’ (C582H722N240O345P58, MW: 18396.14) 

was purchased from Biosearch Technologies (Petaluma, CA) and dialyzed in 100 mM 

ammonium acetate prior to analysis. Sub 1 is a single-stranded DNA, while MBLong2 
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forms a stem loop structure consisting of 16 base pair stem and 27 base loop. E. coli 

topoisomerase I (sequence: UniProt P06612) was purified and vaccinia topoisomerase IB 

(sequence: UniProt P68697) were purified as recombinant proteins. Water and ammonium 

acetate salts utilized in this study were analytical grade or better and purchased from Fisher 

Scientific (Pittsburgh, PA). A Tuning Mix calibration standard (G24221A) was obtained 

from Agilent Technologies (Santa Clara, CA) and used as received. 

8.2.2 Trapped Ion Mobility Spectrometry – Mass Spectrometry Analysis (TIMS-MS) 

Details regarding the TIMS operation and specifics compared to traditional IMS can be 

found elsewhere.15-19 Briefly, mobility separation in TIMS is based on holding the ions 

stationary against a moving gas using an electric field. The separation in a TIMS device 

can be described in the center of the mass reference frame using the same principles as in 

a conventional IMS drift tube.20 Since mobility separation is related to the number of ion-

neutral collisions (or drift time in traditional drift tube cells), the mobility separation in a 

TIMS device depends on the bath gas drift velocity, ion confinement and ion elution 

parameters. The reduced mobility, K, of an ion in a TIMS cell is described by: 

𝐾 =  
𝑉𝑔

𝐸
=  

𝐴

(𝑉𝑒𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑉𝑜𝑢𝑡)
 

where vg  and E are the velocity of the gas and the applied electric field across the TIMS 

analyzer region.  Velution is the voltage when the ions elute in the Vramp sweep and Vout is 

the voltage applied at the end of the TIMS analyzer region.  

A custom-built, pulled capillary nanoESI source was utilized for all the 

experiments. Quartz glass capillaries (O.D.: 1.0 mm and I.D.: 0.70 mm) were pulled 

utilizing a P-2000 micropipette laser puller (Sutter Instruments, Novato, CA) and loaded 

with 10 L aliquot of the sample solution. Sample solutions consisted of 5-10 µM enzyme 
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in 100 mM ammonium acetate solution at native pH (pH = 6.7).  For the observation of the 

complexes, a 1:1 ratio of 5 µM concentration of the DNA and enzyme was prepared in 

100mM ammonium acetate immediately prior infusion. A typical nanoESI source voltage 

of +/- 600-1200 V was applied between the pulled capillary tips and the TIMS-MS 

instrument inlet. Ions were introduced via a stainless steel tube (1/16 x 0.020’’, IDEX 

Health Science, Oak Harbor, WA) held at room temperature into the TIMS cell.  

Mobility calibration was performed using the Tuning Mix calibration standard 

(G24221A, Agilent Technologies, Santa Clara, CA) in positive ion mode (e.g., m/z = 322, 

K0 = 1.376 cm2 V-1 s-1 and m/z = 622, K0 = 1.013 cm2 V-1 s-1).19 The TIMS operation was 

controlled using in-house software, written in National Instruments Lab VIEW, and 

synchronized with the maXis Impact Q-ToF acquisition program.15-16 

Reduced mobility values (K0) were correlated with CCS (Ω) using the equation: 

Ω =
(18𝜋)1/2

16

𝑧

(𝑘𝐵𝑇)1/2
[

1

𝑚𝑖

+
1

𝑚𝑏

]
1/2 1

𝐾0

1

𝑁∗
 

where z is the charge of the ion, kB is the Boltzmann constant, N* is the number density 

and mI and mb refer to the masses of the ion and bath gas, respectively.20  

8.3 Results and Discussion 

In order for topoisomerase enzymes to regulate DNA supercoiling they need to 

exist in a variety of conformations. The proposed action for type IA and IB topoisomerases 

are two very different modes of operation - an enzyme-bridged, strand-passage 

mechanism21 and a strand rotation model,22 respectively. However, structural information 

regarding the dynamics of topoisomerases as they process DNA supercoils is limited 

because of the inherent flexibility of the domains. To better understand the proposed 
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mechanism of DNA cleavage by topoisomerase we took advantage of the sensitivity and 

high mass (~100 kDa) capabilities of the TIMS-MS technique to probe for the presence of 

multiple conformational isomers. We analyzed E. coli topoisomerase IA (EcTopI) and 

eukaryotic vaccinia virus topoisomerase IB (vTopIB). Both of these enzymes are of 

particular interest because they are structurally distinct from each other, therefore allowing 

us to observe two different mechanistic pathways of conformational change.  

Mass spectrometry analysis of the 36 kDa vaccinia topoisomerase IB enzyme 

shows the existence of two main charge state distributions (CSDs), one centered at high 

m/z values (+12) and the other at lower ones (+17, +24 or +28) (Figure 8.1 and appendix 

8.1). Performed at near-native pH conditions (pH=6.7), vTopIB can simultaneously assume 

both a low and high-charged CSD, relating to compact/native conformations or 

extended/denatured conformations, respectively (appendix 8.1). Mobility analysis of all 

observed charge states exhibited a distribution of conformations, spanning a range of 3000 

to 9800 Å2, from native to partially folded, and finally to denatured states. The ‘native-

like” IMS distributions for topoIB are observed at charge states +10 to +13 (Figure 8.1). A 

phase transition at +13 towards conformational open states was observed, followed by 

more extended structures at +29 to +35. The high IMS resolving power of the TIMS 

analyzer allowed the observation of multiple stable IMS bands (often two broad 

conformers) and insight into the conformational transition pathways. Moreover, inspection 

of the +14 to +35 charge states exhibited a widening of IMS band distributions when 

compared to the +10 to +13 charge states, indicating more conformational flexibility of the 

extended structures (appendix 8.1). 
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Assessment of the x-ray structure of vTopIB, in conjunction with DNA,23 shows 

that a flexible linker connects the N-and C-terminal domains, allowing both ends of the  

 

Figure 8.1. a) Typical mass spectra of all charge states observed under native starting 

solvent conditions, and (b) the mobility profiles for the native (+10 to +13) and partially 

folded forms (+13 to +21) of unbound vTopIB. The structure presented is a modified 

version pdb 3IGC,24 without the DNA substrate 
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enzyme to surround the DNA substrate and form contacts on opposite sides of the duplex.25 

This information allows us to better understand the movements that govern the ‘native-

like’ and more conformers of vTopIB. In particular, we deduce that movements of domains 

away from each other due to Coulombic repulsion may initially stem from this region, 

which in the absence of DNA, is not stabilized.  

Evaluation of the 97 kDa E.coli topoisomerase I enzyme by TIMS-MS provided 

information on the structural dynamics of the compact conformers. Specifically, 

experiments carried out at near-native conditions (pH = 6.7) probed only the ‘native-like’ 

states. Six charge states (e.g., +16 to +21) were populated with CCSs ranging from 5250 

Å2 to 6500 Å2 (Figure 8.2a and b). A pattern of conformational change, identified by five 

transition states, was observed under these solvent conditions. Moreover, slight opening of 

the enzyme, followed by conformational change back to a more compact structure is 

observed, most notable for charge states +16 and +18, respectively. This peculiar trend of 

opening and closing, as a function of charge state, can give insight into the mechanism of 

conformational change and inter-molecular interactions that stabilize EcTopI. The flexible 

nature of EcTopI is evident by the variety of gas-phase stable conformers. The most 

populated ion conformer (+19) exists as a broad conformational distribution of ~750 Å2. 

The +18 and +20 charge states are also broad, showing three and two resolved 

conformational isomers, respectively. Ultimately, the mobility data of the free EcTopI are 

in good agreement with previous studies26 which indicate that the overall arrangement of 

the enzyme domains can change in a dramatic way. For example, the hinge between 

domains II and IV may regulate the opening and closing of the N-terminal domains.4  
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Figure 8.2. a) Typical mass spectra of all charge states observed under native starting 

solvent conditions, and (b) the mobility profiles for the native (+16 to +21) state of unbound 

EcTopI. The structure presented is a modified version pdb 4RUL, without the DNA 

substrate. 

Comparison of the CSDs and mobility profiles of vTopIB and EcTopI illustrate 

some obvious differences, relating specifically to the disparity of each enzymes size (36 

kDa vs. 97kDa, respectively). However, closer analysis reveals that charge state unfolding 
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of the vTopIB native conformers are more easily induced in comparison to EcTopI. We 

further predict that the greater conformational flexibility of free vTopIB is most likely 

attributed to the motion of the inter-domain hinge region,27 or the protease-sensitive 

bridge,28 and that greater intramolecular interactions are present in EcTopI that stabilize it 

in a compact form.  

Gas-phase IMS-MS analysis of unbound vTopIB and EcTopI can be followed by 

study of the enzyme-DNA complex. The interaction of topoIB with duplex DNA occurs 

via a single-strand break to form a covalent bond between the catalytic tyrosine and the 3'-

phosphoryl end of the broken strand. IMS studies reveal the formation of the complex at 

charge states +12 to +14 (Figure 8.3a and b). Interestingly, each mobility band is at least 

500 Å2 wide. The presence of such broad conformational ensembles is indicative of several 

closely related conformational structures which have similar CCS values. We observe, 

however, narrowing of the mobility bands as the charge increases (e.g., +12 versus +14). 

Comparison of the +12, +13 and +14 charge states of both the unbound and DNA bound 

enzyme reveal that the complex achieves a more compact conformation. That is, the DNA 

stem loop induces folding of vTopIB. The formation of vTopIB into a folded C-shaped 

clamp, enveloping both the major and minor grooves of DNA, is strongly supported by 

TIMS-MS analyses.  

Due to the inherent flexibility of EcTopI, structural analysis by means of traditional 

techniques often prove difficult. However, in 2015, a near complete x-ray structure of  
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Figure 8.3. a) Typical mass spectra, and (b) mobility profiles for the native states (+12 to 

+14) of vTopIB in complex with a 59 base stem loop DNA substrates (MBLong2), as a 

function of native starting solvent conditions. 
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EcTopI in complex with ssDNA was published, providing important insight into the 

multistep catalytic cycle responsible for removing negative DNA supercoils.4 Briefly, more 

details regarding the action of the N-terminal domain (ssDNA cleavage and rejoining), and 

the C-terminal domain (passing of the intact strand through the enzyme-bridged gate) were 

provided. Complementary gas-phase studies can offer another level of possible data 

interpretation. For example, our mass spectrometry studies revealed four charge states (+17 

to +20) exhibiting a 1:2 binding stoichiometry of EcTopI enzyme to sub  

 

Figure 8.4. a) Typical mass spectra, and (b) mobility profiles for the native states (+17 to 

+20) of EcTopI in complex with two ssDNA substrates (2x sub 1), as a function of native 

starting solvent conditions. 
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1 DNA, respectively (Figure 8.4a). Inspection of the IMS profiles shows that the two 13-

base ssDNA substrates act to inhibit and prevent the opening of the enzyme (Figure 8.4b).  

In fact, the only evidence for formation of a more open strucutre, as a function of 

charge state, is the two low abundant conformers at +20. It should be noted that 1:1 

complexes were not observed. Next, we characterized the complex between the 50 base 

DNA stem loop (MBLong2) and EcTopI. Under native conditions, six charge states were 

formed (+17 to +22) at a 1:1  

 

Figure 8.5. a) Typical mass spectra, and (b) mobility profiles for the native states (+17 to 

+22) of EcTopIBin complex with a 59 base stem loop DNA substrates (MBLong2), as a 

function of native starting solvent conditions. 
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stoichiometry (Figure 8.5a). Inspection of the corresponding conformers exhibited 

narrower distributions, when compared with EcTopI-2xSub1 (Figure 8.5b). 

Comparison of the three topoisomerase-DNA complexes (e.g. vTopIB-MBLong2, EcTopI-

2xSub1, EcTopI-MBLong2) shows that although the charge states, CCSs and overall 

conformations are significantly different, there are similarities. In particular, binding to 

DNA reduces the flexibility of the enzyme and, in the case of vTopIB-MBLong2, actually 

leads to slightly more compact structures. 
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Appendix 2.1 

Full protein sequences from which peptides were identified based on accurate m/z and 

mobility. Determined sequence coverage was based only on fractions analyzed. 

 

 



192 

 

Appendix 2.2 

Peptides corresponding to targeted proteins, identified through discovery-based 

measurements. Observed mass, adduct and protein sequence coverage are reported. 
 

Protein Target Peptide Mass (Da) Adduct 

Protein 
Sequence 
coverage 

(%) 

Calmodulin  MADQLTEEQIAEFK 1651.78 [M+2H]+2 

59.7 

Calmodulin  ADQLTEEQIAEFK 1520.74 [M+2H]+2 

Calmodulin  ADQLTEEQIAEFKEAFSLFDK 2458.19 [M+3H]+3 

Calmodulin  EAFSIFDK 955.47 [M+H]+ 

Calmodulin  EAFSIFDKDGDGTITTK 1843.88 [M+2H]+2 

Calmodulin  DGDGTITTK 906.43 [M+H]+ 

Calmodulin  ELGTVMR 804.42 [M+H]+ 

Calmodulin  MKDTDSEEEIR 1351.59 [M+2H]+2 

Calmodulin  DTDSEEEIR 1092.46 [M+H]+ 

Calmodulin  DTDSEEEIREAFRVFDK 2084.97 [M+2H]+2 

Calmodulin  EAFRVFDK 1010.52 [M+H]+ 

Calmodulin  VFDKDGNGYISAAELR 1753.86 [M+2H]+2 

Calmodulin  DGNGYISAAELR 1264.60 [M+2H]+2 

Calmodulin  HVMTNLGEK 1027.51 [M+2H]+2 

Calmodulin  LTDEEVDEMIR 1348.62 [M+2H]+2 

DJ-1 GAEEMETVIPVDVMR 1674.80 [M+2H]+2 

24.9 

DJ-1 VTTHPLAK 865.50 [M+H]+ 

DJ-1 DGLILTSR 873.49 [M+H]+ 

DJ-1 EQENRK 802.39 [M+H]+ 

DJ-1 GPGTSFEFALAIVEALNGK 1920.00 [M+2H]+2 

Progesterone GDQPAASGDSDDDEPPPLPR 2034.88 [M+3H]+3 

17.4 

Progesterone FYGPEGPYGVFAGR 1515.71 [M+2H]+2 

Progesterone DFTPAELR 947.47 [M+H]+ 

Progesterone ILMAINGK 858.50 [M+H]+ 

Progesterone GLATFCLDK 966.48 [M+H]+ 

Progesterone VFDVTK 707.39 [M+H]+ 
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Progesterone YHHVGK 739.38 [M+H]+ 

Parafibromin ADVLSVLRQYNIQK 1645.92 [M+2H]+2 

42.6 

Parafibromin ADVLSVLRQYNIQKK 1774.01 [M+2H]+2 

Parafibromin GDEVIFGEFSWPK 1509.71 [M+2H]+2 

Parafibromin TNYVVWGTGK 1123.57 [M+2H]+2 

Parafibromin RAATENIPVVR 1224.69 [M+H]+ 

Parafibromin IEDEECVRLDKER 1632.78 [M+2H]+2 

Parafibromin DLLGYLNGEASTSASIDR 1880.91 [M+2H]+2 

Parafibromin LMPQDWDR 1059.48 [M+H]+ 

Parafibromin RAADEVIAEAK 1171.62 [M+2H]+2 

Parafibromin FWETLDR 965.46 [M+H]+ 

Parafibromin AADEVLAEAK 1015.52 [M+H]+ 

Parafibromin EGIVQTEQIR 1171.62 [M+2H]+2 

Parafibromin TDIDDDITAIK 1218.60 [M+2H]+2 

Parafibromin SFVDAEVDVTR 1236.60 [M+2H]+2 

Parafibromin TKQPIPAAYNR 1257.68 [M+2H]+2 

Parafibromin QPIPAAYNRYDQER 1719.83 [M+2H]+2 

Parafibromin GKEETEGFK 1023.49 [M+H]+ 

Parafibromin SVTEGASAR 876.43 [M+H]+ 

Parafibromin DLLQDLK 843.47 [M+H]+ 

Parafibromin FVPSDEK 820.40 [M+H]+ 

Parafibromin QGCQRENETIIQR 1573.76 [M+2H]+2 

Parafibromin WDVTVLELSYHK 1488.76 [M+2H]+2 

Parafibromin RHLDRPVFLR 1307.76 [M+2H]+2 

Parafibromin HLDRPVFLR 1151.66 [M+2H]+2 

Parafibromin FWETIDRYMVK 1486.73 [M+2H]+2 

Parafibromin FWETLDR 965.46 [M+H]+ 

MAP-7 LSASTASELSPK 1189.62 [M+2H]+2 

15.1 

MAP-7 ESPSAAGPEDKSQSK 1516.70 [M+2H]+2 

MAP-7 DKER 546.28 [M+H]+ 

MAP-7 AQAEQEEQERLQK 1585.77 [M+2H]+2 

MAP-7 AQAEQEEQER 1216.53 [M+2H]+2 
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MAP-7 SAVTLPRNGR 1069.60 [M+2H]+2 

MAP-7 SEVSETKQK 1034.52 [M+2H]+2 

MAP-7 REER 588.30 [M+H]+ 

MAP-7 SSATLWNSPSR 1204.58 [M+2H]+2 

MAP-7 GPQPDR 668.32 [M+H]+ 

MAP-7 ARLSASTASELSPK 1416.76 [M+2H]+2 

MAP-7 ESPSAAGPEDK 1086.48 [M+2H]+2 

MAP-7 GPTWGR 672.33 [M+H]+ 

MAP-7 SEVSETK 778.37 [M+H]+ 

MAP-7 ERENEK 803.38 [M+H]+ 

MAP-7 YEAAIQR 849.43 [M+H]+ 

MAP-7 SREEAER 875.41 [M+H]+ 

MAP-7 EEAEARSR 946.45 [M+H]+ 

MAP-7 SVHRCAPAGER (CAM) 1239.60 [M+2H]+2 
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Appendix 3 

Details of nESI/TIMS hardware and mobility calibration  

Nano-ESI source  

Custom nESI emitters were made from quartz glass capillaries (I.D. 0.7 mm, O.D. 1.0 

mm) utilizing a P-2000 micropipette laser puller (Sutter Instruments, Novato, CA). The 

inlet capillary was a stainless steel tube (1/16 × 0.020ʺ, IDEX Health Science, Oak 

Harbor, WA). 

 

TIMS cell 

The TIMS cell is an electrodynamic ion funnel with three regions (see scheme below): 

entrance, analyzer tunnel (46 mm length), and exit. The rf voltage creates a quadrupolar 

field in the tunnel and dipolar field in other regions.  

 

Mobility calibration in TIMS as described in reference 50 

Multiple ion species are first trapped and thermalized at different E values set up by 

voltage profile along the tunnel, then pushed out by “ramping” (decreasing) E in steps 
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with each species eluting at a characteristic voltage (Velution - Vout). The total time an ion 

spends in the system (from gating into the TIMS cell to registration at the ToF detector) 

is: 

ttotal = ttrap + (Velution/Vramp) × tramp + tToF = t0 + (Velution/Vramp) × tramp,  

 

where ttrap is the trapping time, tToF is the flight time from cell exit to detector (through 

MS vacuum), Vramp and tramp are the voltage range and time of ramp, and t0 is the time 

before and after the separation step. The Velution and t0 values are determined 

simultaneously by varying tramp from 100 to 500 ms at fixed Vramp as a function of the m/z 

of interest 
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Appendix 3.1 

Collision cross sections (CCS, Å²) and resolving power (R) values for protonated histone 

tails measured using TIMS. 
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Appendix 3.2 

Relative (approximate) cross sections for K9ac (dominant peaks). Lines guide the eye 

through trends below and above the transition region.  
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Appendix 3.3 

TWIMS spectra for selected mixtures of me3, p, and me variants measured in N2 using 

solvent (i) (solid black lines) with fits by scaled individual traces from Fig. 1 (colored 

lines) and their computed additions (dotted lines). 

 

 (a) K4me3/K9me3 (b) K4me3/K23me3 (c) K4me3/K36me3 
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(d) K27me3/K36me3 (f) K4me/K23me 

K4me/K23me 
(e) T6p/S10p 
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Appendix 3.4 

TWIMS spectra for selected variant mixtures measured in N2 with solvent (i) using the 

traveling wave speeds of 650, 1000, and 1900 m/s. 
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Appendix 3.4 (continued) 

 

 

 

 

 

 

 

 

K4me3/K23me3 8+ K4me3/K23me3 9+ K4me3/K36me3 8+ 
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Appendix 3.4 (continued) 
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Appendix 3.5 

Pairwise linear correlations between transit times for ac and me3 variants at the traveling 

wave speeds of 650 and 1000 m/s. Variants with only three data points and p variants 

with partial data at s = 1000 m/s are not included.  
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Appendix 3.6 

TWIMS spectra measured with different ESI solvents: (a) four me3 variants (z = 9) with 

solvents (i, ii, iii), (b) K23me3 (z = 8 and 9) with solvents (i, iv).  

(a)                                                 (b) 
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Appendix 3.7 

TWIMS spectra for four me3 variants in z = 12 measured in N2 using solvent (ii) and s = 

650 m/s. No signal at 12+ was found for the K4me3 variant.  
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Appendix 3.8 

TIMS spectra (on the cross section scale) measured for exemplary me3, ac, p, and me 

variant species using (a) tramp = 100 - 500 ms from MeOH/H2O solutions, (b) from 

MeOH/H2O and aqueous solutions.  
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Appendix 3.9 

TIMS spectra for selected mixtures of p variants and traces for the two components. 
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Appendix 3.10 

Linear correlations between transit times for me3, ac, and p variants across charge state 

pairs (major peaks from Fig. 1). Variants for me (with three data points) are not included. 
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Appendix 3.11 

Linear correlations between separation parameters in TIMS for the acetylated and 

phosphorylated peptide variants in different charge states. 
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Appendix 3.12 

Linear correlations between separation parameters in Synapt and TIMS for the acetylated 

and phosphorylated peptide variants. 
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Appendix 3.13 

Linear correlations between FAIMS and TIMS (left column) or TWIMS (right column) 

separations for (a) acetylated and (b) phosphorylated variants, r2 marked. To facilitate 

comparison, the left column in (a) repeats the data from Fig. 6 in the text. 
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Appendix 3.14 

Linear correlations between FAIMS and TIMS (left) or TWIMS (right) separations for 

same acetylated (a) and phosphorylated (b) variants with different charge states selected 

in the two dimensions (r2 marked). 
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Appendix 5.1 

TIMS profiles as a function of the desolvation time for [M-5H]-5  i-motif DNA. 
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Appendix 5.2 

 TIMS profiles as a function of the desolvation time for [M-6H]-6 i-motif DNA. 
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Appendix 5.3 

TIMS profiles as a function of the desolvation time for [M-7H]-7 i-motif DNA. 

 
 

800 1000 1200 1400 1600

100 ms

200 ms

300 ms

400 ms

CCS (Å)
2

500 ms

[M-7H]
-7



221 

 

Appendix 5.4 

TIMS profiles as a function of the desolvation time for [M-8H]-8 i-motif DNA. 
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Appendix 5.5 

TIMS profiles as a function of the desolvation time for [M-9H]-9 i-motif DNA. 
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Appendix 6.1 

Typical mass spectrum of 1:1 ATPH:DNA complex (left panel) and 2:1 ATHP:DNA 

complex (right panel). 
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Appendix 6.2 

Collision induced dissociation curves for the +5 charge state of FL876 complexed with 

ATHP 1 and 2 (charge state and degrees of freedom were considered). 
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Appendix 6.3 

Fluorescent measurements for DNA (FL876) and Hoescht 33258 dye titrated with ATHP 

1, ATHP 2 or ATHP 3. 
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Appendix 7.1 

ATHP3 single amino acid substitutions considered and their nomenclature. 
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Appendix 7.2 

Schematic diagram of the TIMS cell used to trap and separate ions based on differences 

in each species ion neutral collision cross section. 
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Appendix 7.3 

Typical, normalized ATHP3 and variant mobility profiles for the [M+H]+, [M+2H]2+ and 

[M+3H]3+(a). Peptide IMS fingerprint (b) and correlation matrix (c) are used for 

assessment of the primary sequence effect on the secondary structure 
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Appendix 7.4 

Typical ion mobility profiles (a) of the native and substituted ATHP3 : DNA complexes. 

The IMS profile fingerprint (b) of the complexes was used to generate a correlation 

matrix (c).  
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Appendix 8.1 

(a)Typical mass spectra of all charge states observed under native starting solvent 

conditions, and (b) the mobility profiles for the native (+10 to +13), partially folded (+13 

to +21) and unfolded forms (+21 to +35) of unbound vTopIB. The structure presented is 

a modified version pdb 3IGC, without the DNA substrate. 
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