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by 
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Professor Yuan Liu, Major Professor 

 DNA damage can cause genome instability, which may lead to human cancer. The 

most common form of DNA damage is DNA base damage, which is efficiently repaired 

by DNA base excision repair (BER). Thus BER is the major DNA repair pathway that 

maintains the stability of the genome. On the other hand, BER mediates DNA 

demethylation that can occur on the promoter region of important tumor suppressor genes 

such as Breast Cancer 1 (BRCA1) gene that is also involved in prevention and development 

of cancer. In this study, employing cell-based and in vitro biochemical approaches along 

with bisulfite DNA sequencing, we initially discovered that an oxidized nucleotide, 5’,2-

cyclo-2-deoxyadenosine in DNA duplex can either cause misinsertion by DNA polymerase 

β (pol β) during pol β-mediated BER or inhibit lesion bypass of pol β resulting in DNA 

strand breaks. We then explored how a T/G mismatch resulting from active DNA 

demethylation can affect genome integrity during BER and found that pol β can extend the 

mismatched T to cause mutation. We found that AP endonuclease 1 (APE1) can use its 3'-

5' exonuclease to remove the mismatched T before pol β can extend the nucleotide 

preventing a C to T mutation. The results demonstrate that the 3'-5' exonuclease activity of 
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APE1 can serve as a proofreader for pol β to prevent mutation. We further explored the 

effects of exposure of environmental toxicants, bromate and chromate on the DNA 

methylation pattern on the promoter region of BRCA1 gene with bisulfite DNA 

sequencing. We found that bromate and chromate induced demethylation of 5-

methylcytosines (5mC) at the CpG sites as well as created additional methylation at several 

unmethylated CpG sites at BRCA1 gene in human embryonic kidney (HEK) 293 cells. We 

further demonstrated that the demethylation was mediated by pol β nucleotide misinsertion 

and an interaction between pol β and DNA methyltransferase 1 (DNMT1) suggesting a 

cross-talk between BER and DNA methyltransferases. We suggest that DNA base damage 

and BER govern the interactions among the environment, the genome and epigenome, 

modulating the stability of the genome and epigenome and disease development.   



 viii	  

TABLE OF CONTENTS 

 
CHAPTER                                           PAGE 
 
INTRODUCTION ...............................................................................................................1 
A. DNA DAMAGE CAUSED BY ENVIRONMENTAL TOXICANTS, BROMATE 
AND CHROMATE .............................................................................................................1 
B. BASE EXCISION REPAIR IS THE MAJOR PATHWAY TO REPAIR  
OXIDATIVE DNA DAMAGE AND PLAYS A CRITICAL ROLE IN ACTIVE 
DEMETHYLATION IN CpG DINUCLEOTIDE CLUSTERS ........................................11 
C. DNA DAMAGE DISRUPTS DNA METHYLATION PATTERN BY 
MODULATING ACTIVITIES OF DNA METHYLTRANSFERASES 
(DNMTs)………………... .................................................................................................18	  
D. BREAST CANCER 1 (BRCA1) PLAYS A CRITICAL ROLE IN PREVENTING 
THE DEVELOPMENT OF BREAST CANCER .............................................................20 
OVERVIEW ......................................................................................................................23 
 
CHAPTER 1: BYPASS OF A 5’,8-CYCLOPURINE-2’DEOXYNUCLEOSIDE BY 
DNA POLYMERASE β DURING REPLICATION AND BASE EXCISION REPAIR 
LEADS TO NUCLEOTIDE MISINSERTIONS AND DNA STRAND BREAKS 
ABSTRACT .......................................................................................................................25 
1. INTRODUCTION .........................................................................................................26 
2. MATERIALS AND METHODS  ..................................................................................31 
3. RESULTS  .....................................................................................................................35 
4. DISCUSSION ................................................................................................................47 
 
CHAPTER 2: AP ENDONUCLEASE 1 COMBATS THE EXTENSION OF A T/G 
MISMATCH BY DNA POLYMERASE β TO PREVENT MUTATIONS IN CpGs 
DURING BASE EXCISION REPAIR 
ABSTRACT .......................................................................................................................53 
1. INTRODUCTION .........................................................................................................54 
2. MATERIALS AND METHODS  ..................................................................................58 
3. RESULTS  .....................................................................................................................64 
4. DISCUSSION ................................................................................................................74 
 
CHAPTER 3: ENVIRONMENTALLY-INDUCED OXIDATIVE DNA DAMAGE 
DISRUPTS DNA METHYLATION PATTERN IN HUMAN BREAST CANCER 1 
(BRCA1) GENE VIA BASE EXCISION REPAIR 
ABSTRACT .......................................................................................................................81 
1. INTRODUCTION .........................................................................................................82 
2. MATERIALS AND METHODS ...................................................................................85 
3. RESULTS  .....................................................................................................................90 
4. DISCUSSION ................................................................................................................98 
 



 ix	  

SUMMARY .....................................................................................................................102 
 
REFERENCES ................................................................................................................105 
 
VITA ................................................................................................................................128 
	  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 x	  

LIST OF FIGURES 
 
FIGURE                                            PAGE 
 
INTRODUCTION 
 
I.1 DNA damage and DNA repair pathways .......................................................................1 
 
I.2 FPG removes the DNA damage induced by KBrO3 ......................................................5 
 
I.3 A possible mechanism of guanine oxidation induced by KBrO3 in the presence of 
glutathione/cystein ...............................................................................................................6 
 
I.4 8-oxoG base pairs with C and A .....................................................................................7 
 
I.5 Major steps in uptake, metabolism and formation of DNA damage by Cr (VI) ............9 
 
I.6 Pathways of DNA Base Excision Repair .....................................................................12 
 
I.7 The dRP lyase mechanism of pol β ..............................................................................13 
 
I.8 Cytosine methylation and pathways of active DNA demethylation .............................15 
 
I.9 TET-catalyzed oxidation reactions. ..............................................................................17 
 
I.10 BRCA1 gene is located on the 17th chromosome in human genome ........................20 
 
 
 
CHAPTER 1 
 
1.1 The structures of 5’,8-cyclo-2’-deoxyadenosines ........................................................30 
 
1.2 Pol β plays an important role in bypassing a cdA lesion during DNA replication 
 and BER ............................................................................................................................36 
 
1.3 Pol β DNA synthesis with a template cdA lesion during DNA replication and BER .39 
 
1.4 FEN1 flap cleavage during pol β bypass of a cdA ......................................................42 
 
1.5 Completion of DNA lagging strand maturation and BER through pol β bypass of a 
cdA lesion. .........................................................................................................................43 
 
1.6 Pol β nucleotide insertions in bypassing a cdA lesion during DNA replication and 
BER ....................................................................................................................................46 



 xi	  

	  
1.7 Pol β bypass of a cdA lesion leads to nucleotide misinsertion and DNA strand  
breaks during DNA replication and BER ..........................................................................49 
	  
 
CHAPTER 2 
 
2.1 The activity of TDG in removing a T/G mismatch at a CpG dinucleotide is  
inhibited by an adjacent abasic lesion ................................................................................65 
 
2.2 APE1 can efficiently incise an abasic site that is adjacent to a T/G mismatch in a  
CpG dinucleotide in the presence of TDG. ........................................................................67 
 
2.3 Pol β extends a 3’-terminus mismatched T at a CpG dinucleotide. .............................68 
 
2.4 APE1 3’–5’exonuclease activity removes a 3’-terminus mismatched T in a CpG 
dinucleotide. .......................................................................................................................71 
 
2.5 FEN1 flap cleavage in the presence of a T/G mismatch in a CpG dinucleotide .........72 
 
2.6 The activities of pol β DNA synthesis and APE1 3’–5’ exonuclease in the context  
of a T/G mismatch in a CpG dinucleotide .........................................................................74 
 
2.7 BER reconstitution in the context of a T/G mismatch in a CpG dinucleotide. ............75 
 
2.8 APE1 3’–5’ exonuclease combats the extension of a T/G mismatch by pol β and C  
to T mutations in CpGs during BER. .................................................................................77 
 
	  
CHAPTER 3 
 
3.1 The DNA methylation pattern on BRCA1 promoter from -189 to +27 in HEK293 
cells with and without bromate and chromate treatment ...................................................92 
 
3.2 The DNA methylation pattern on BRCA1 gene promoter and encoding region from  
-189 to +27 in HEK293 cells with or without treatment of bromate and chromate. .........93 
 
3.3 The mutation spectrum of BRCA1 gene in HEK293 cells induced by chromate (A) 
and bromate (B) treatment. ................................................................................................94 
 
3.4 HEK293 cells transfected with GFP-pol β were treated with 10 µM chromate for 1 
hour. ...................................................................................................................................95 
 
3.5 Pol β misincorporated nucleotides to bypass an 8-oxoG .............................................97 
 



 xii	  

3.6 Chromate exposure resulted in the interaction between pol β and DNMT1 ...............99 
 
3.7 The hypothetical model for bromate and chromate to alter DNA methylation  
pattern of the BRCA1 gene via DNA base lesions and BER in human cells ..................100 
	  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xiii	  

ABBREVIATIONS AND ACRONYMS 

°C 

A 

AAG 

ADP 

AID 

degree Celsius 

adenine 

3-alkyladenine DNA glycosylase 

adenosine diphosphate 

activation-induced cytidine deaminase 

APE1 

AP site 

APOBEC 

ATM 

ATP 

ATR 

BER 

BRCA1 

BRCC36 

BRCC45 

BRCTs 

AP endonuclease 1 

apurinic/apyrimidinic site 

apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 

ataxia telangiectasia mutated  

adenosine triphosphate 

ataxia telangiectasia and rad3 related 

base excision repair 

breast cancer gene 1 

BRCA1/BRCA2-containing complex subunit 36 

BRCA1/BRCA2-containing complex subunit 45 

BRCA1-C-termus-domain containing proteins 

BSA bovine serum albumin 

C 

CCDC98/Abraxas 

cdA 

cdG 

cytosine 

coiled-coil domain-containing protein 98/abraxas protein 

5’,8-cyclo-2’-deoxyadenosine 

5’,8-cyclo-2’-deoxyguanosine 



 xiv	  

CDC2 

CDC25 

cdPu 

CFSs 

Chk1 

CLC 

CPDs  

CSC 

DMEM 

cell division cycle protein 2 homolog 

cell division cycle 25 homolog 

5’,8-cyclo-2’-deoxypurines 

common fragile sites 

checkpoint kinase 1 

checkpoint loading complex 

cyclobutane–pyrimidine dimers  

checkpoint sliding clamp 

dulbecco’s modified eagle’s medium 

DMSO 

DNA 

dimethyl sulfoxide 

deoxyribonucleic acid 

dNTP 

dRP 

DSB 

dsDNA 

deoxyribonucleotide triphosphate 

deoxyribose phosphate 

double-strand break  

double-stranded DNA 

DTT 

8-oxoG 

E. coli 

EDTA 

ERCFSs 

5’,8-cdA 

5’-dRP 

dithiothreitol 

8-oxoguanine 

Escherichia coli 

ethylenediaminetetraacetic acid 

early replication fragile sites 

5’,8-cyclo-2’-deoxyadenosine 

5’-deoxyribose phosphate 



 xv	  

5hmC 

5hmU 

5mC 

FEN1 

FPG 

FPLC 

5-hydroxymethylcytosine 

5-hydroxymethyluracil 

5-methylcytosine  

flap endonuclease 1 

formamidopyrimidine-DNA glycosylase 

fast protein liquid chromatography system 

G 

HEPES 

HL60 

HP100 

HR 

●OH 

IARC 

IPTG 

IR 

LB 

LIG I 

LIG III 

LP-BER 

MEF 

MgCl2 

MLH 

guanine 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

human promyelocytic leukemia cells 

human promyelocytic leukemia cells 

homologous recombination 

hydroxyl radical 

international agency for research on cancer 

isopropyl β-D-1-thiogalactopyranoside 

ionizing radiation 

lysogeny broth 

DNA ligase I 

DNA ligase III 

long patch-base excision repair 

mouse embryonic fibroblast 

magnesium chloride 

MutL homologue 



 xvi	  

MMR 

MRN 

MSH 

N 

Nbs1 

NER 

NHEJ 

NP-40 

nt 

mismatch repair 

Mre11-Rad50-Nbs1 complex 

MutS homologue 

Nitrogen 

nibrin 

nucleotide excision repair 

nonhomologous end joining 

nonidet P-40 

nucleotide 

OGG1 

PAGE 

PARP1 

PBS 

PCNA 

PDG 

PI3KK 

PIP 

PMSF 

pol β 

pol δ 

pol ε 

6,4-PP 

8-oxoguanine DNA glycosylase 

polyacrylamide gel electrophoresis 

poly(ADP-ribose) polymerase 1 

phosphate buffered saline 

proliferating cell nuclear antigen 

propano-2’-deoxyguanosine 

PI3-kinase-like kinase 

PCNA-interacting protein 

phenylmethylsulfonyl fluoride 

DNA polymerase β 

DNA polymerase δ 

DNA polymerase ε 

Pyrimidine (6-4) pyrimidone photoproduct 



 xvii	  

RAD51 

RAD3-RAD26 

RAP80 

RNA 

ROS 

SDS 

DNA recombination/repair protein rad51  

reactive attachment disorder 3-reactive attachment disorder 26 receptor 

associated protein 80 

ribonucleic acid 

reactive oxygen species 

sodium dodecyl sulfate 

SP-BER 

ssDNA 

T 

TDG 

TET 

THF 

XRCC1 

short patch base excision repair 

single-strand DNA 

thymine 

thymine DNA glycosylase 

ten eleven translocation protein 

tetrahydrofuran 

X-ray repair cross-complementing protein 1 

U 

UDG 

UNG 

UTR 

UV 

uracil 

uracil DNA glycosylase 

uracil DNA N-glycosylase 

untranslated region 

ultraviolet 



 1	  

INTRODUCTION 
 

A. DNA DAMAGE CAUSED BY ENVIRONMENTAL TOXICANTS, BROMATE 

AND CHROMATE 

 Deoxyribonucleic acid (DNA) is recognized as the “life code” which carries all the 

genetic information of a cell in the form of genes, which are the blueprint that determines 

all the protein sequences, structures, and the biological functions in a specific organism. 

However, double-strand DNA in living cells constantly encounters endogenous and 

exogenous DNA damaging agents (Hoeijmakers, 2001) . As a result, DNA lesions are 

generated throughout every cell’s life cycle. It has been estimated that there are 

	  
	  
Figure I.1 DNA damage and DNA repair pathways. The DNA lesions induced by the DNA 
damaging agents are listed in the middle of Fig. I.1. DNA base lesions including uracil, abasic 
site, 8-oxoguanine (8-oxoG), and single-strand DNA (ssDNA) breaks are repaired by DNA base 
excision repair (BER). The bulky adducts, such as CPD (cyclobutane pyrimidine dimer) are 
repaired through nucleotide-excision repair (NER). The interstrand cross-links, double strand 
breaks are repaired through homologous recombination and nonhomologous end-joining (HR, 
NHEJ). The A-G, T-G mismatches, insertion, deletion errors are repaired by mismatch repair 
(Hoeijmakers, 2001). 
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approximately 70,000 DNA lesions that are generated endogenously in a single human cell 

per day under normal physiological conditions (Lindahl and Barnes, 2000). Among them 

about 75% are single-strand DNA (ssDNA) breaks, which are produced through cell 

metabolism or spontaneous base hydrolysis which disrupts the molecule (Tubbs and 

Nussenzweig, 2017).  

 Another endogenous source of generating DNA damage is through replication and 

repair DNA polymerases. Since the human genome contains approximately 3 billion  base 

pairs formed on the 23 chromosomes in the nucleus of each cell (Voet and Voet, 2011), 

which means that about 6 × 109 nucleotides are synthesized by DNA polymerases during 

DNA replication each time a cell divides.  During DNA replication an error, can be made 

by nucleotide misinsertions of DNA polymerases at a low rate. Thus, a high frequency of 

cell divisions increases the probability of DNA replication errors by DNA polymerases 

which means the total number of cell divisions in normal stem cells derived from a specific 

type of tissue is usually used to assess the risk for cancer development in different tissues 

(Tomasetti and Vogelstein, 2015). Moreover, specific loci and DNA sequences in the 

genome also leads to susceptibility of DNA damage and mutations. For example, early 

replicating fragile sites (ERCFSs) that occur at the origins of replication in mammalian 

cells usually have highly expressed gene clusters enriched for repetitive sequences and 

CpG dinucleotides (Barlow et al., 2013) compared with late replicating common fragile 

sites (CFSs). These loci are hotspots of oncogene-induced DNA damage that preferentially 

attack the fragile sites (Sarni and Kerem, 2016).  

Gene transcription can also form a source of endogenous DNA damage and plays 

a role in causing DNA damage and mutations. For example, transcription can induce the 
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formation of an R-loop that in turn forms hotspots of endogenous DNA damage resulting 

from ROS and activation-induced cytidine deaminase (AID) leading to high frequencies of 

mutations and recombination (Tubbs and Nussenzweig, 2017). An increase in gene 

transcription stimulates spontaneous mutations in yeast (Datta and Jinks-Robertson, 1995). 

In mammalian cells, transcriptionally active gene loci bear more gene translocations and 

are more fragile than less-active loci (Barlow et al., 2013; Chiarle et al., 2011; Klein et al., 

2011). A recent result from DNA sequencing of the genome of individual neurons in the 

human prefrontal cortex has shown that each neuron has more than 1,000 mutations that 

are induced by DNA damage in its own distinct genome (Lodato et al., 2015) which also 

appears to be a result of highly active transcriptional activity in human neurons. The 

mutations induced by DNA damage in neuron genomes further indicates that neuronal 

genome are constantly exposed to endogenous and exogenous DNA damage leading to 

mutations.  

The exogenous DNA damaging sources include ionizing radiation, UV and a 

variety of environmental toxicants and pollutants that can induce DNA base lesions and 

DNA strand breaks. If not repaired, the damage can result in point mutations, 

recombination, genome instability, cell death and ultimately development of diseases 

including cancer and neurodegeneration. Early studies have shown that exposure to 

environmental pollutants can significantly increase the risk of cancer development. One 

well-known case is the high rate of skin carcinoma in chimney sweeps, which was first 

described in 1775 by Percivall Pott (Waldron, 1983b), and the soot exposure was confirmed 

as the cause of scrotal cancer in chimney sweeps (Waldron, 1983a).  Another case was the 

experiment done in 1912 by Bayon who injected coal-tar into rabbit ears (Bayon, 1912) 



 4	  

which resulted in coal tar-induced cancer. Katsusaburo Yamagiwa and Koichi Ichikawa 

repeated this experiment in 1915 by brushing coal-tar on to the ears of rabbits and also 

successfully induced cancer (Fujiki, 2014). These studies raised the awareness in the public 

that environmental pollutants play an important role in cancer development. Throughout 

many years of research, now we understand that DNA damage result from the exposure to 

both endogenous and exogenous sources plays a significant role in cancer development.  

 The environmental pollutant, potassium bromate (KBrO3) had been a widely used 

as a food additive that was mainly added to flour as maturing agent to improve its texture 

in the bread-making process. Bromate was also widely used in beer malting and cheese 

making (Ahmad et al., 2014). However, later it was found that oral administration of 

bromate for 104 weeks induced renal cell tumor in F344 rats (Kurokawa et al., 1986) and 

was prohibited from being used as a food additive (IARC 1999). Nevertheless, bromate is 

currently still used in cold-wave hair lotions and textile dyeing with sulfur dyes (Ahmad et 

al., 2012; Ajarem et al., 2016; Khan et al., 2004; Kurokawa et al., 1986). Furthermore, 

because of the use of ozonation of drinking water, bromate has been generated as one of 

the major water disinfection byproducts (Campbell, 2006; Cavanagh, 1992; Dongmei et 

al., 2015). In vivo studies have shown that expose of human cell lines (HL-60 cells, HP100 

cells) to bromate can significantly increased the cellular level of 8-oxo-7,8-dihydro-2’-

deoxyguanine (8-oxoG) in comparison with the non-treated cells (Murata et al., 2001). 

Employing an in vitro experiment, the Murata group found that bromate did not induce 

alkylated DNA bases or DNA backbone breakage (Figure I.2A). Instead, bromate directly 

induced the formation of an 8-oxoG, which can be removed by formamidopyrimidine-

DNA glycosylase (FPG) (Figure I.2B). Since FPG can specifically remove an 8-oxoG, the 
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results along with the previous results all indicate that bromate can induce the production 

of 8-oxoGs in living cells. A possible mechanism by which bromate generates 8-oxoGs in 

cells have been proposed and demonstrated in Figure I.3. 

 

 

 

 

	  
	  
	  
Figure I.2 FPG removes the DNA damage induced by KBrO3. DNA was treated with hot 
piperidine (A) or Fpg protein (B). Data are taken from (Murata et al., 2001) 
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As is shown in Figure I.3, guanine is the hotspot for bromate to generate the most 

prevalent DNA damage, 8-oxoGs. It was estimated that under physiological conditions, 

more than 10,000 8-oxoGs can be generated per cell per day. 8-oxoGs can be generated at 

a guanine at any location in the genome, and they can base pair with adenine through 

Hoogsteen base pair that results in mismatched base pairs and point mutations (Figure I.4) 

(David et al., 2007). Thus, mutations created by an 8-oxoG can happen at any site of any 

genes in the human genome.  

 
Figure I.3 A possible mechanism of guanine oxidation induced by KBrO3 in the presence 
of glutathione/cystein (Kawanishi and Murata, 2006).   
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Chromium (Cr) VI and its compounds including chromate. have been used in 

manufacturing of stainless steel and pressure-treated wood for years. About half a million  

industrial workers in the US and other countries undergo occupational exposure to Cr (VI) 

(Occupational and Health Administration, 2006). Chromium VI is a potent carcinogen and 

mutagen. The oxidation state of chromium has been found to be the key factor that 

determines the carcinogenicity and mutagenicity of various Cr (VI) compounds (Jennette, 

1979). Under neutral pH, Cr (VI) exists as a mixture of chromate (CrO4
2-) or 

hydrochromate (HCrO4
-) anions with the ratio around 3:1 (Zhitkovich, 2005). Chromium 

VI enters human cells readily through the sulfate channels (Alexander and Aaseth, 1995). 

In cells Cr (VI) can be reduced to Cr (III), the final oxidized form of Cr found in all 

 
 
Figure I.4  8-oxoG base pairs with C and A (David et al., 2007) 
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biological systems which is thermodynamically stable. Animal studies have shown that all 

Cr (IV) compounds including calcium chromate, potassium chromate, lead chromate, 

chromic chromate, and strontium chromate, can result in sarcomas (spindle cell carcinomas 

and fibrosarcomas) in animals (Jennette, 1979). In contrast, Cr (III) compounds are not 

mutagenic. When Cr (VI) is reduced to Cr (III) extracellularly, it is usually considered as 

a detoxification Cr (VI) because of the poor cellular permeability of Cr (III) compounds. 

However, when Cr (VI) reduction occurs inside cells, it can exhibit genotoxicity (Salnikow 

and Zhitkovich, 2008). It has been shown that ascorbate is the main reducer of Cr (VI) in 

cells, particularly in cells that contain abundant ascorbate such as human lung cells (1.3 

mM). In cells with a low level of ascorbate such as human nonhepatic cells, thiols are 

responsible for reducing Cr (VI) (Zhitkovich, 2005). Although various amounts of Cr (V), 

Cr (IV) and organic chromium radicals can be generated during the Cr (VI) reduction 

process (Stearns and Wetterhahn, 1994), the end-product of its metabolism is always Cr 

(III), which forms complexes with proteins and nucleic acids.  

The DNA damage generated during Cr (VI) reduction includes Cr-DNA adducts, 

DNA-protein crosslinks, DNA interstrand crosslinks, DNA breaks, and DNA base damage 

(Salnikow and Zhitkovich, 2008). Adducts of the Cr-DNA are the most abundant form of 

DNA lesions. They are induced by Cr (VI) reduction mediated by cysteine and ascorbate 

in mammalian cells (Figure I.5) (Salnikow and Zhitkovich, 2008). The reduction products 

include glutathione-Cr-DNA, cysteine-Cr-DNA, histidine-Cr-DNA and ascorbate-Cr-

DNA complexes (Quievryn et al., 2002; Voitkun et al., 1994; Zhitkovich et al., 1995). It 

has been shown that acorbate-Cr-DNA crosslinks are the major pre-mutagenic Cr-DNA 
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modifications (Quievryn et al., 2003; Voitkun et al., 1998). Chromate causes elevation of 

NADPH oxidase activity and mitochondrial damage, which can ultimately lead to an 

increase of H2O2 level (Salnikow and Zhitkovich, 2008). In addition, it can result in the 

single-strand DNA (ssDNA) breaks in cells of animal tissues (Gao et al., 1992; Hodges et 

al., 2001; Sugiyama et al., 1986; Ueno et al., 2001). The generation of ssDNA breaks has 

been shown to be caused by oxidizing free radicals generated during the reactions between 

Cr (V) and H2O2 (Messer et al., 2006).  

Since Cr (VI) can lead to an increase of H2O2 level and oxidative stress in cells, 

which can further cause additional severe biological consequences. Chromium VI can 

	  
	  
Figure I.5  Major steps in uptake, metabolism and formation of DNA damage by Cr (VI) 
(Salnikow and Zhitkovich, 2008)	  
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damage a variety of cellular components including proteins, lipids, DNAs and RNAs. Cr 

(VI)-induced oxidative DNA damage plays critical roles in causing genome instability and 

carcinogenesis (Kawanishi et al., 2002; Kawanishi et al., 2001). Earlier studies showed that 

chromate exposure can induce both ssDNA breaks and abasic sites (Casadevall and 

Kortenkamp, 1994, 1995). Although there is no direct evidence showing that chromate 

exposure can induce 8-oxoG, the indicator of oxidative damage on DNA, Slade et al. have 

reported that ascorbate-mediated Cr (VI) reduction yields significant amount of 

spirominodihydantoin, which is a guanine oxidation product (Slade et al., 2005) indicating 

that chromate can also attack guanine in DNA.  

Taken together, both bromate and chromate exposure can cause severe oxidative 

DNA damage in the genome by attacking guanines in the DNA, in particular the guanines 

located at G rich regions such as CpG islands in the promoter region of genes as well as 

the regions containing trinucleotide repeats, which are the hotspots of DNA damage 

induced by bromate and chromate. If the mutations remain in the genome, they can further 

modulate genome and epigenome stability.  Thus, understanding how bromate and 

chromate exposure can alter modulate genome and epigenome stability is important for us 

to further explore the etiology, prevention and diagnosis of environmentally-induced 

cancer.  
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B. BASE EXCISION REPAIR IS THE MAJOR PATHWAY TO REPAIR 

OXIDATIVE DNA DAMAGE AND PLAYS A CRITICAL ROLE IN ACTIVE 

DEMETHYLATION IN CpG DINUCLEOTIDE CLUSTERS. 

As summarized in the previous section, the unrepaired DNA damage can cause 

DNA base lesions, strand breaks, distortion of the double helix structure of DNA, 

ultimately mutations which can alter the expression of tumor suppressors or oncogenes 

promoting cell proliferation which will result in cancer development. In mammalian cells, 

different types of DNA damage are repaired thorough different DNA repair pathways as 

summarized in Figure I.1. The pathway that removes oxidative DNA damage including 

DNA base lesions and single-strand DNA breaks, which are the most common form of 

DNA damage, is the DNA base excision repair (BER) pathway (Neeley and Essigmann, 

2006). The BER pathway was discovered more than thirty years ago, when Thomas 

Lindahl searched for enzymes that repair an uracil, which is the product of cytosine 

deamination. Later the enzyme that removes the lesion, uracil DNA glycosylase was 

discovered (Friedberg and Lindahl, 2004). The enzyme recognizes and removes the uracil 

which initiates the first step of the BER pathway (Barnes and Lindahl, 2004; David and 

Williams, 1998; Fromme and Verdine, 2004). There are 2 subpathways of BER that have 

been discovered, the short-patch BER (SP-BER, also known as single-nucleotide BER, 

(SN-BER) and long-patch BER (LP-BER) (Figure I-6). The difference between the two 

subpathways falls into the number of the nucleotides synthesized and replaced during the 

repair, as well as the repair enzymes and cofactors that participate in the repair process 

(Biade et al., 1998b; Fortini et al., 1998; Frosina et al., 1996; Klungland and Lindahl, 1997; 

Liu and Wilson, 2012). The enzymes that initiate the BER pathway are called DNA 
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glycosylases (Fromme and Verdine, 2004). These enzymes catalyze the cleavage of the 

glycosidic bond that link a damaged base with a deoxyribose, thereby removing the base 

lesion from the DNA backbone (Fromme and Verdine, 2004). In human cells, different 

DNA glycosylases exhibit their specific activity to different types of base lesions (Brooks 

et al., 2013; Fromme et al., 2004; Sampath et al., 2012; Wallace, 2014). Uracil DNA 

glycosylase (UDG) that specifically removes an uracil. 8-oxoG DNA glycosylase 1 

 
 
 
 
Figure I.6 Pathways of DNA Base Excision Repair (Liu and Wilson, 2012) 
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(OGG1) specifically removes an 8-oxoG, and 3-alkyladenine DNA glycosylase (AAG) 

preferentially 

 

remove an alkylated base such as 3-methyl-A. Removal of a base lesion will leave an abasic 

site (AP site), which is then recognized by AP endonuclease 1 (APE1). Subsequently, 

APE1 incises the AP site at the 5’-side of the site resulting in the formation of a one-

nucleotide gap with an 3’-hydroxyl in the upstream, and a 5’-dRP in the downstream (Liu 

and Wilson, 2012; Masuda et al., 1998; Wilson et al., 1995). Then the oxidation of the 

sugar on the 5’-dRP group determines which BER subpathway the lesion follows. If the 

5’-dRP group is unmodified and remains as a native sugar, pol β dRP lyase directly 

removes the group with its dRP lyase activity (Stevens et al., 2013) through β-elimination 

(Figure I.7) that involves the formation of a Schiff base and formation of a temporary pol 

β-DNA crosslink intermediate. The pol β polymerase activity then synthesizes one 

nucleotide to fill in the gap generating a nick, which is then sealed by DNA Ligase I (LIG 

Figure I.7 The dRP lyase mechanism of pol β (Stevens et al., 2013) 
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I) or DNA Ligase III (LIG III)-X-ray cross-complementing group 1 (XRCC1) complex. In 

above subpathway, the repair is accomplished with replacement of one nucleotide, i.e. SN-

BER or SP-BER.  

However, if the 5’-dRP sugar is further oxidized by oxidative stress, pol β dRP 

lyase activity cannot remove the sugar. The repair of the lesion must be subject to LP-BER 

where pol b fills the gap by synthesizing two or two more nucleotides. A 5'-sugar phosphate 

is then recognized and removed by flap endonuclease 1 (FEN1) (Figure I.6, subpathway 

2a and 2b) (Frosina et al., 1996; Liu and Wilson, 2012). There are two subpathways for 

LP-BER, the “Hit and Run” subpathway and the “strand displacement synthesis” 

subpathway that fulfill the process of base lesion repair (Figure I.6). In the “Hit and Run” 

subpathway, APE1 incises an abasic site leaving a 1 nt gap with a 5' modified sugar residue. 

One nucleotide is inserted by pol β to fill the gap creating a sugar flap attached to a 

downstream nucleotide. Subsequently, FEN1 captures the dRP flap by cleaving the 

downstream nucleotide that is attached to the modified sugar, leaving an additional 1 nt 

gap. The pol β capture fill the gap, leaving a nick which is then sealed by LIG I. In the 

demonstrated subpathway, only two nt are replaced (Liu and Wilson, 2012). In another 

subpathway of LP-BER, three or more nucleotides are synthesized and replaced via the 

“strand displacement synthesis” that can be mediated by either pol b or replication DNA 

polymerases, DNA polymerase δ (pol δ) or DNA polymerase ε (pol ε). In this subpathway, 

after APE1 incision of an abasic site, pol β and/or pol δ or pol ε perform strand 

displacement synthesis by inserting 3 or more nucleotides to elongate the upstream strand. 

As a result, the downstream strand is displaced, resulting a 5’-flap (Dianov et al., 1999; 

Klungland and Lindahl, 1997; Parikh et al., 1998; Podlutsky et al., 2001). Flap 
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endonuclease 1 (FEN1) can then capture the flap and be loaded flap through threading 

through the free 5’-end of the flap and track down to the base of the flap where it makes 

cleavage of the flap, thereby removing the modified sugar (Harrington and Lieber, 1994; 

Murante et al., 1995; Prasad et al., 2000). The above process results in a nick that is sealed 

by LIG I completing LP-BER (Liu and Wilson, 2012). The efficiency of the LP-BER 

subpathways is also modulated by the coordination among BER enzymes and cofactors.  

BER also plays essential role in mediating the active demethylation of 5’-

methylcytosines (5mCs). Active DNA demethylation regulates DNA methylation pattern 

in gene promoters and protein encoding regions, which plays critical roles in many 

biological processes including regulation of gene expression, retrovirus silencing, X 

chromosome inactivation among others (Ito and Kuraoka, 2015; Smith and Meissner, 

2013). The pattern of DNA methylation, determined by the combination of methylation at 

the 5-position of a cytosine (5mC) and its demethylation at CpG clusters and islands in 

	  
 
Figure I.8 Cytosine methylation and pathways of active DNA demethylation (Bacolla et al., 
2014) 
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gene promoters, governs gene expression by regulating chromatin structures and 

accessibility of transcription factors to the promoter regions. If a CpG island in a promoter 

region is hypomethylated, i.e., a low level of 5mCs, chromatin adopts an open 

configuration, allowing transcriptional factors to access the promoter regions to initiate 

gene transcription. If a CpG island is hypermethylated, i.e., a high level of 5mCs, 

methylated Cs will attract methylC binding proteins (MBDs) to bind to the promoter 

region. The binding of MBDs to the promoter subsequently recruits histones that bear 

posttranslational modifications for a closed chromatin configuration, thereby preventing 

the binding of transcription factors to the DNA and inhibiting transcription initiation and 

silencing gene expression. Thus, hypermethylated CpG islands can serve as a “switch off” 

mark of a specific gene. By participating in the demethylation of 5mCs in the CpG islands, 

BER can modulate gene expression in embryonic and somatic cells (Bellacosa and Drohat, 

2015; Drohat and Coey, 2016b; Fleming et al., 2017; Furlan et al., 2017; Li et al., 2013; 

Seisenberger et al., 2013). 

The first step of the BER-mediated active demethylation is the oxidation of 5’-

methylcytosine that is catalyzed by the Ten-Elven Translocation (TET) oxidases during 

which 5mCs are converted to 5’-hydroxycytosines (5hmCs) (Figure I-8). Subsequently, an 

enzyme, AID/apolipoprotein B editing complex (APOBEC) protein, converts a 5hmC to a 

5-hydroxymethyluracil (5hmU), which is recognized by the DNA glycosylase, single-

strand-selective monofunctional uracil-DNA glycosylase I (SMUG1). Furthermore, a 5mC 

can also be spontaneously deaminated into thymine, which can be recognized and removed 

by thymine DNA glycosylase (TDG). The oxygenases, TET 1, 2 and 3 enzymes can oxidize 

5hmC into 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) (Figure I.8). Figure I-9 
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illustrates the mechanisms by which TETs convert 5mC to 5hmC, 5fC, and 5caC (Bochtler 

et al., 2017). The 5fC and 5caC base lesions that base pair with a guanine can also be 

recognized and removed by TDG (Bellacosa and Drohat, 2015; Drohat and Coey, 2016a; 

Gong and Zhu, 2011; Ito and Kuraoka, 2015; Mahfoudhi et al., 2016; Maiti and Drohat, 

2011; Niehrs and Schafer, 2012; Wallace, 2014). Thus, the active DNA demethylation is 

mediated by enzymatic conversion of 5mCs into a series of modified cytosines that are 

recognized as DNA base lesions by DNA glycosylases. Removal of the DNA base lesions 

initiate the BER pathway that efficiently repairs the lesions generated from 5mCs. Through 

BER, a 5mC is replaced by an unmodified cytosine, thus resulting in the completion of 

active DNA demethylation (Wallace, 2014) that modulates gene expression.  

 
 
 
Figure I.9 TET-catalyzed oxidation reactions. A) Incorporation of an oxygen molecule into 
5mC, 5hmC, and 5fC. B) Activation of molecular oxygen and formation of the Fe(IV)=O 
intermediate (Bochtler et al., 2017). 
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C. DNA DAMAGE DISRUPTS DNA METHYLATION PATTERN BY 

MODULATING ACTIVITIES OF DNA METHYLTRANSFERASES (DNMTs). 

 During DNA replication, mammalian cells, both genetic and epigenetic information 

including DNA methylation, chromatin structure and histone modifications, must be 

replicated (Mortusewicz et al., 2005). Methylation of a cytosine in the CpG islands is 

catalyzed by DNA methyltransferases (DNMTs), which transfer a methyl group from the 

methyl donor, S-adenosyl-L-methionine (SAM) to the 5-position of the cytosine in DNA 

(Robertson, 2005). The DNMTs family has four members including DNA 

methyltransferase 1 (DNMT1), DNMT3a, DNMT3b, and DNMT3L. Since DNMT3L does 

not exhibit any enzymatic activity in cells (Kareta et al., 2006), the mammalian DNA 

methylation is carried out by three DNA methyltransferases, DNMT1, DNMT3a, and 

DNMT3b.The compounds DNMT3a and 3b can methylate a cytosine on CpG islands and 

are called de novo DNMTs. However, DNMT1 recognizes a hemi-methylated DNA strand 

as the substrate. Thus, it methylates cytosines at the newly synthesized DNA strand by 

recognizing a 5mC in the parental strand after DNA replication. As a result, DNMT1 

sustains an established DNA methylation pattern (Chuang et al., 1997; Leonhardt et al., 

1992). Thus, DNMT1 is called a maintenance DNA methyltransferase. Several studies also 

have shown that there is functional overlap between the de novo and maintenance 

methyltransferases (Egger et al., 2006; Riggs and Xiong, 2004), This indicates that 

DNMT1 may play more complicated roles in modulating methylation pattern than thought 

before. Previous studies showed that knockout of DNMT1 or DNMT3b resulted in 

embryonic lethality in mice, indicating the critical role of DNA methylation during 

embryonic development. Previous studies have also found that the mutations of DNMTs 



 19	  

caused genetic disorders (Li et al., 1992; Okano et al., 1999). Furthermore, disruption of a 

normal DNA methylation pattern such as the hypermethylation in the promoters of tumor 

suppressor genes and the global hypomethylation, is commonly detected in cancer cells 

(Jones and Baylin, 2002) indicating its association with cancer development. Because 

CpGs are composed of Cs and Gs that can be readily deaminated enzymatically and 

spontaneously as well as oxidized by endogenous and exogenous oxidative DNA damage, 

they can readily form hotspots of DNA base damage that can be repaired by BER. Recent 

studies have shown that DNMTs can cooperate with each other to efficiently methylate 

repetitive elements in the genome to prevent the expression of these elements in cells 

(Subramaniam et al., 2014). Moreover, earlier studies also show that DNMT1 helps restore 

the epigenetic information during DNA repair by interacting with a DNA repair cofactor, 

proliferating cell nuclear antigen (PCNA) (Mortusewicz et al., 2005). By interacting with 

PCNA through its PCNA binding domain, DNMT1 can be recruited to double strand DNA 

breaks (DSBs) (Chuang et al., 1997; Leonhardt et al., 1992; Mortusewicz et al., 2005). The 

recruitment of DNMT1 to DSBs is also mediated through the interaction between DNMT1 

and Rad 9, which is a component of the Rad 9-Hus 1-Rad 1 sliding clamp (Ha et al., 2011). 

Furthermore, during DSB break repair mediated by homologous recombination (HR), 

DNMT1 can interact with the growth arrest and DNA-damage-inducible protein α 

(GADD45α) protein to precisely select the DNA strand that needs to be methylated (Lee 

et al., 2012). This suggests that DNMTs can modulate DNA repair by coordinating with 

DNA repair enzymes and cofactors. Since BER is the pathway to repair the small DNA 

lesions such as 8-oxoG as well as the modified DNA bases generated by active DNA 

demethylation, i.e., 5hmC, 5fC, and 5caC, it is possible that DNMT1 may also interact with 
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BER enzymes such as pol β during BER and/or active demethylation process. In this 

scenario, BER and DNMTs may crosstalk with each other on the sites with modified or 

damaged DNA bases to ensure the efficiency of damage repair as well as maintenance of 

integrity of DNA methylation and demethylation.  

D. BREAST CANCER 1 (BRCA1) PLAYS A CRITICAL ROLE IN PREVENTING 

THE DEVELOPMENT OF BREAST CANCER.  

Breast cancer is one of the most common invasive cancers in women and the leading cause 

of cancer death in women under 40 years old (Alabdulkareem et al., 2017). It has been 

found that development of breast cancer is associated with the breast cancer 1 gene 

(BRCA1), which is located at the 17th chromosome in human genome (Figure I-10). The 

BRCA1 protein is a 1863 amino acid protein and functions as a tumor suppressor 

(Henderson, 2012). The problem is involved in DNA repair regulation, genome 

maintenance, cell survival, and apoptosis (Clark et al., 2012; Henderson, 2012; Long and 

Walter, 2012) and directly participates in repair of DSBs caused by endogenous and 

exogenous DNA damaging agents by interacting with other DNA repair proteins 

(Cousineau et al., 2005; Hu et al., 1999; Huen et al., 2010; Kote-Jarai and Eeles, 1999; Liu 

 
 
Figure I.10 BRCA1 gene is located on the 17th chromosome in human genome 
(NIH U.S. National Library of Medicine BRCA1). 
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et al., 2007a; Moynahan et al., 1999).  For example, BRCA1 can interact with BRCA2 to 

promote efficient and precise repair of DSBs resulting in maintenance of genomic stability.  

During DSB repair, BRCA1 is recruited to DSB sites. This is mediated by ubiquitination 

of histone H2A and H2B. Initially DSBs induces the phosphorylation of the histone protein, 

H2AX on the DNA damage via ATM and ATR (Burma et al., 2001). Subsequently, an E3 

ubiquitin ligase RNF8 and a phosphor-module binding mediator MDC1 are recruited to 

DSB sites (Huen et al., 2007; Kolas et al., 2007; Mailand et al., 2007; Stucki et al., 2005). 

RNF8 then interacts with the E3 ubiquitin conjugase UBC14 to ubiquitinate histone H2A 

and H2B at the lesions in the chromatin. This then recruits BRCA1 to the DNA damage 

sites (Wu et al., 2009; Zhao et al., 2007). BRCA1 then recruits RAD51 to DSB sites 

mediating DNA strand branch migration during DSB repair via HR (Scully et al., 1997). 

BRCA1 also interacts with other DNA repair machineries and recruits them to the DNA 

damage sites. These include RAP80, CCDC98/Abraxas, NBA1/MERIT40, BRCC36 and 

BRCC45 (Feng et al., 2009; Kim et al., 2007; Liu et al., 2007c; Shao et al., 2009; Sobhian 

et al., 2007; Wang et al., 2009; Wang et al., 2007). The formation of the complex between 

these proteins and BRCA1 is mediated by a series of sequential steps starting from 

ubiquitination of histones at the sites of DNA damage. This is recognized by RAP80 

leading to the formation of a BRCA1-RAP80 protein complex. Moreover, BRCA1 is also 

involved in the activation of cell cycle check point induced by DSBs to initiate cell cycle 

arrest. This allows cells to have sufficient time to repair the DNA damage (Hartwell and 

Kastan, 1994), thereby preventing the duplication of damaged DNA and passage of the 

damaged DNA to daughter cells. BRCA1 is involved in the activation of all the cell 

checkpoints including G1/S, S-phase, and G2/M checkpoints. BRCA1 can act as a scaffold 
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protein to facilitate ATM-mediated p53 phosphorylation resulting in activation of p21 that 

eventually induces G1/S arrest (Fabbro et al., 2004). BRCA1 can participate in S-phase 

checkpoint initiation along with ATM and Nbs1 (Xu et al., 2001). Its roles in inducing the 

G2/M checkpoint have been most intensively studied. DNA damage can activate PI3-

kinase-like kinase (PI3KK), ATM and ATR (Greenberg et al., 2006). This subsequently 

activates a series of protein kinases that regulate cell-cycle checkpoints. For example, 

PI3KK, ATM, and ATR phosphorylate Chk1 on serine 317 and serine 345 (Cousineau et 

al., 2005; Xu et al., 2001; Zhao et al., 2002). This further activates Wee1 (Greenberg et al., 

2006; O'Connell et al., 2000), which can then inactivates Cdc25 that dephosphorylates 

Thr14 and Thr15 of Cdc2. The inactivation of Cdc25 sustains the phosphorylated Thr14 

and Thr15 of Cdc2 (Perry and Kornbluth, 2007; Yarden et al., 2002), thereby activating 

G2/M checkpoint. In addition, BRCA1 can cooperate with the reactive attachment disorder 

3-reactive attachment disorder 26 (Rad3-Rad26) complex to cause the phosphorylation of 

Ser317 and Ser345 on Chk1 that activates G2/M checkpoint. BRCA1 is also involved in 

DNA damage-induced activation of ATM and ATR (Greenberg et al., 2006). Furthermore, 

BRCA1 can cooperate with BRCA1-C-terminus-domain containing proteins (BRCTs), 

checkpoint loading complex (CLC), and checkpoint sliding clamp (CSC) to activate G2/M 

checkpoint (O'Connell et al., 2000). Also it has been shown that the phosphorylation of 

BRCA1 at serine1423 by ATM is implicated to be important for activation of IR-induced 

G2/M checkpoint (Xu et al., 2001). Thus, BRCA1 plays multifaceted roles in maintaining 

genome stability by facilitating DSB repair and regulating the check points cell cycle.  
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OVERVIEW 
Cellular DNA is frequently damaged by endogenous and exogenous DNA 

damaging agents. It has been estimated that more than 10,000 base lesions are generated 

per cell per day. These lesions are efficiently repaired by the BER pathway. However, a 

base lesion with a covalent bond formed between the C5 of a deoxyribose and C8 of a 

purine such as 5’,8-cyclopurine-2’-deoxynucleoside (cdPu) can be only repaired by NER 

with a low efficiency readily accumulating in the genome. Accumulated cdPu lesions can 

effectively block replication DNA polymerases, and have to be bypassed by lesion bypass 

synthesis via repair DNA polymerases for cell survival. Yet, the mechanisms by which 

cdPu lesions are bypassed remain to be elucidated. On the other hand, DNA bases are 

chemically modified at CpG clusters and islands located at gene promoters and protein 

encoding regions, and this serves as an essential step to initiate and regulate cellular 

epigenetic features through DNA methylation and demethylation mediated by BER for 

regulation of gene expression. However, CpGs can also form hotspots of DNA base 

damage such as uracils and thymines from deamination of Cs and 5mCs as well as 8-oxoGs. 

Thus, cellular DNA methylation and demethylation frequently converges with DNA base 

damage and repair. It appears that BER evolves as a central component in mediating the 

interplay between epigenetics and DNA damage and repair as a part of genome and 

epigenome interaction which can be further modulated by environmental toxicants such as 

bromate and chromate that can oxidize DNA bases. The DNA damage induced by the 

environmental toxicants may further alter DNA methylation pattern on the promoter 

regions of tumor suppressor genes, leading to cancer development. In CHARPTER 1, 

employing pol β wild-type (WT) and pol β knockout (KD) mouse embryonic fibroblast 
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(MEF) cell extracts, we provided the first evidence showing that pol β plays a critical role 

in bypassing a R’-cdA lesion efficiently. We further demonstrated that pol β performed 

nucleotide misinsertion in bypassing a R’-cdA indicating a pol b-mediated mutagenic 

effect during its lesion bypass synthesis. In CHARPTER 2, we further examined the effects 

of an abasic lesion next to a DNA demethylation intermediate, the T/G mismatch in a CpG 

dinucleotide on the activity of major BER enzymes and the integrity of CpGs. We showed 

that pol b extended a mismatched T generated by DNA demethylation resulting in a C to 

T mutation.  However, we found that the mismatched T was efficiently removed by APE1 

3’-5’ exonuclease activity, which prevented pol b-mediated mutations during BER and 

active DNA demethylation. In CHARPTER 3, we further explored the effects of 

environmental toxicants, bromate and chromate on the DNA methylation pattern of the 

human tumor suppressor, BRCA1 gene. We showed that oxidative DNA damage induced 

by bromate and chromate altered DNA methylation pattern by inducing additional DNA 

methylation sites, loss of DNA bases and point mutations in the promoter region of BRCA1 

gene and encoding region of BRCA1 protein. Moreover, we provided the first evidence 

showing that DNMT1 was recruited to the DNA damage sites through the interaction with 

pol β, thereby resulting in additional DNA methylation sites.  
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 BYPASS OF A 5’,8-CYCLOPURINE-2’DEOXYNUCLEOSIDE BY DNA 
POLYMERASE β DURING REPLICATION AND BASE EXCISION REPAIR LEADS 

TO NUCLEOTIDE MISINSERTIONS AND DNA STRAND BREAKS 
 

ABSTRACT 

 The DNA lesion 5’,8-cyclopurine-2’-deoxynucleosides including 5’,8-cyclo-dA 

(cdA) and 5’,8-cyclo-dG (cdG) are induced by hydroxyl radicals resulting from oxidative 

stress such as ionizing radiation. 5’,8-cyclopurine-2’-deoxynucleoside lesions are repaired 

by nucleotide excision repair with low efficiency, thereby leading to their accumulation in 

the human genome and lesion bypass by DNA polymerases during DNA replication and 

base excision repair (BER). The present study, for the first time, we discovered that DNA 

polymerase β (pol β) efficiently bypassed a 5’R-cdA, but inefficiently bypassed a 5’S-cdA 

during DNA replication and BER. We found that cell extracts from pol β wild-type mouse 

embryonic fibroblasts exhibited significant DNA synthesis activity in bypassing a cdA 

lesion located in replication and BER intermediates. However, pol β knock-out cell extracts 

exhibited little DNA synthesis to bypass the lesion which indicates that pol β plays an 

important role in bypassing a cdA lesion during DNA replication and BER. Furthermore, 

we demonstrated that pol β inserted both a correct and incorrect nucleotide to bypass a cdA 

at a low concentration. Nucleotide misinsertion was significantly stimulated by a high 

concentration of pol b, indicating a mutagenic effect induced by pol β lesion bypass 

synthesis of a 5’,8-cyclopurine-2’-deoxynucleoside. Moreover, we found that bypass of a 

5’S-cdA by pol β generated an intermediate that failed to be extended by pol b, resulting 

in accumulation of single-strand DNA breaks. Our study provides the first evidence that 

pol β plays an important role in bypassing a 5’,8-cyclo-dA during DNA replication and 
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repair, as well as new insight into mutagenic effects and genome instability resulting from 

pol β bypassing of a cdA lesion.  

Keywords: 5’,8-cyclopurine-2’-deoxynucleoside, DNA polymerase β, Lesion bypass 

synthesis, Base excision repair, DNA replication, Mutagenesis 

 

1. INTRODUCTION 

 Reactive oxygen species (ROS) induced by endogenous oxidative stress and 

environmental factors such as ionizing radiation can attack genomic DNA and result in 

various types of DNA damage such as oxidized DNA base lesions, strand breaks and DNA-

protein cross-links in the human genome (Cadet et al., 1999; Dizdaroglu et al., 2001b). 

Because of its high reactivity with DNA bases, the hydroxyl radical (●OH) leads to the 

formation of the majority of oxidized base lesions (Cadet et al., 2003). One type of oxidized 

DNA base lesion induced by ●OH is the 5’,8-cyclopurine-2’-deoxynucleosides (cdPu), 

which includes 5’,8-cyclo-2’-deoxyadenosine (cdA) and 5’,8-cyclo-2’-deoxyguanosine 

(cdG). These lesions can exist in a 5’R or 5’S configuration. It has been found that both 

configurations of cdPu lesions including 5’R-cdA and 5’S-cdA lesions can form naturally 

in the genomic DNA of mammals (Chatgilialoglu et al., 2011b; Jaruga and Dizdaroglu, 

2008; Mitra et al., 2012; Randerath et al., 2001; Shaked et al., 2012; Tilstra et al., 2012; 

Zhang et al., 2013). Because cdPu lesions caused by the highly reactive free radical, ●OH, 

which can be generated in cells by both endogenous and exogenous sources such as 

ionizing radiation and carcinogens, cdPu lesions have been also proposed to be used as an 

oxidative DNA damage marker to evaluate the level of oxidative stress in mammals 

(Chatgilialoglu et al., 2011b; Jaruga and Dizdaroglu, 2008; Wang, 2008). Previous studies 
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have shown that 180-320 cdPus/cell can be produced in fetal and postnatal rat liver per day 

(Randerath et al., 2001). In addition, it has been estimated that cdA lesions occur at a 

frequency of one lesion/107 DNA bases (Dizdaroglu et al., 2001a). In vitro studies have 

shown that the ratio of the amount of 5’R-cdA to 5’S-cdA in DNA is about 3:1 

(Chatgilialoglu et al., 2011b),  suggesting a different efficiency in production of various 

forms of cyclopurine lesions. The cdPus contain an extra covalent bond that links the C5’ 

of the 2'-deoxyribose and C8 of the purine in addition to the glycosidic bond. The extra 

covalent bond can alter DNA structure (Chatgilialoglu et al., 2011a), thereby stabilizing 

the glycosidic bond of the lesions (Das et al., 2012; Kamakura et al., 2012; Lindahl and 

Wood, 1999) and preventing the cleavage of the bond by a DNA glycosylase (Das et al., 

2012; Kamakura et al., 2012; Lindahl and Wood, 1999). Because 5’,8-cyclopurine-2’-

deoxynucleoside lesions can induce distortions to double-stranded DNA that can be 

recognized by nucleotide excision repair (NER) proteins, NER is the only repair pathway 

that can remove this type of DNA damage (Brooks et al., 2000; Kropachev et al., 2014; 

Kuraoka et al., 2000). However, the efficiency of removal of a 5’R- and 5’S-cdA lesion by 

NER is two- to four-fold less than that for other bulky DNA adducts such as a cis-B[α]P-

N2-dG adduct (Kropachev et al., 2014). The low efficiency of repairing cdPus results in 

the accumulation of a high level of cdPus in the genome which is supported by previous 

studies showing that a significant amount of cdPu lesions were detected in genomic DNA 

of cells and tissues of mammals and other organisms (Chatgilialoglu et al., 2011b; 

Dizdaroglu et al., 2001a; Jaruga and Dizdaroglu, 2008). The cdPus can severely impair 

normal cellular functions such as DNA replication and transcription (Yuan et al., 2011). It 

has been shown that both 5’R-cdA and 5’S-cdA can directly block RNA polymerase II 
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synthesis by inhibiting recruitment of RNA polymerase II to a promoter region (Brooks et 

al., 2000; Marietta et al., 2002).  The cdPus can also completely block DNA synthesis of 

human replication polymerases such as pol δ, causing replication fork stalling (Kuraoka et 

al., 2000). To resolve the stalled replication fork and restart DNA replication, Y family 

DNA translesion polymerases are recruited to perform translesion synthesis to bypass the 

base lesions (Friedberg et al., 2005). However, a template 5’S-cdA can also block lesion 

bypass synthesis by Y family polymerases such as pol η and pol ι, resulting in accumulation 

of DNA strand breaks and apoptosis (Kuraoka et al., 2001; Pednekar et al., 2014; You et 

al., 2013). Furthermore, the lesion bypass of a cdA by Y family polymerases is highly 

mutagenic (You et al., 2013). Thus, unrepaired cdPus in the genome may lead to adverse 

biological effects, resulting in the development of human diseases and pathological 

conditions such as cancer, neurodegeneration, and aging (Brooks, 2008; Jaruga and 

Dizdaroglu, 2008; Kirkali et al., 2009; Wang et al., 2012; Wang et al., 2011). 

 DNA polymerase β (pol β) is the smallest DNA polymerase identified in cells thus 

far (Beard and Wilson, 2014). It belongs to the X family of DNA polymerases (Braithwaite 

and Ito, 1993). Pol β is composed of two subdomains, a 31 kDa polymerase domain and 

an 8 kDa deoxyribose phosphate (dRP) lyase domain (Beard and Wilson, 2006). Pol β 

plays an essential role in filling gaps and removing a 5’-dRP group during BER (Beard and 

Wilson, 2006, 2014). Similar to the Y family translesion synthesis polymerases, pol β can 

also perform translesion synthesis to bypass a DNA base lesion during replication and BER 

(Bassett et al., 2002a; Batra et al., 2006; Beard et al., 2009; Chary et al., 2012a; Efrati et 

al., 1997; Hashim et al., 1997b; Hoffmann et al., 1996b; Maga et al., 2009b; Servant et al., 

2002b; Vaisman and Chaney, 2000b; Villani et al., 2011b). Previous studies have shown 
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that pol β can bypass small base lesions including 8-oxoG and apurinic/apyrimidinic sites 

(AP sites), as well as bulky DNA lesions including a cisplatin adduct, propano-2’-

deoxyguanosine (PdG), benzo(a)pyrene expoxide (BaP), DNA adduct, BaP-dG adduct, 

pyrimidine(6-4)pyrimidone photoproduct (6,4-PP) and cyclobutane pyrimidine dimer 

(CPD) (Bassett et al., 2002a; Batra et al., 2006; Beard et al., 2009; Chary et al., 2012a; 

Efrati et al., 1997; Hashim et al., 1997b; Hoffmann et al., 1996b; Maga et al., 2009b; 

Servant et al., 2002b; Vaisman and Chaney, 2000b; Villani et al., 2011b). Because pol β 

lacks 3’-5’ exonuclease activity for proofreading, it can insert an incorrect nucleotide to 

bypass a DNA base lesion, leading to a high frequency of mutation (Bassett et al., 2002a; 

Batra et al., 2006; Beard et al., 2009; Beard and Wilson, 2014; Chary et al., 2012a; Efrati 

et al., 1997; Hashim et al., 1997b; Hoffmann et al., 1996b; Servant et al., 2002b; Vaisman 

and Chaney, 2000b). For example, during its bypass of an AP site, pol β can insert an 

adenosine opposite to the lesion that may ultimately result in C to T transition if the abasic 

site is originally derived from an 8-oxoG (Beard et al., 2009). Pol β bypass of bulky DNA 

adducts such as Pt-adducts can also induce mutations in the genome with a high frequency 

(Bassett et al., 2002a; Batra et al., 2006; Chary et al., 2012a; Hashim et al., 1997b; 

Hoffmann et al., 1996b; Servant et al., 2002b; Vaisman and Chaney, 2000b). Thus, pol β 

lesion bypass DNA synthesis can lead to mutations that may further result in the 

development of human cancer.  

 Previous studies have shown that several Y family DNA translesion synthesis 

polymerases can bypass a cdPu lesion during DNA replication with moderate efficiency 

(You et al., 2013). It remains to be elucidated whether other DNA repair polymerases that 

can bypass DNA base lesions, such as pol β, may also bypass a cdPu during DNA 
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replication and repair and whether the lesion bypass of a cdPu by these DNA polymerases 

may affect genome integrity and stability. We hypothesized that pol β can bypass a 5’R-

cdA and a 5’S-cdA during DNA replication and BER, and this may subsequently cause 

genome instability. Our hypothesis is supported by our recent study showing that pol β can 

bypass both a 5’R-cdA and 5’S-cdA located in a CAG repeat tract by skipping over the 

lesions, thereby resulting in CTG repeat deletion (Xu et al., 2014). To test this hypothesis, 

we initially examined DNA synthesis for bypassing a cdA with pol β deficient and 

proficient cell extracts. We then characterized pol β DNA synthesis in bypassing a cdA 

during DNA replication and BER and determined nucleotide insertions during pol β lesion 

bypass of a template cdA. For the first time, we found that pol β efficiently bypassed a 5’R-

cdA during DNA replication and BER. However, the enzyme bypassed a 5’S-cdA with a 

low efficiency. Moreover, we further demonstrated that pol β bypass of a cdA also led to 

 
 
Figure 1.1 The structures of 5’,8-cyclo-2’-deoxyadenosines.	  
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nucleotide misinsertions and single-strand DNA breaks, indicating that pol β lesion bypass 

of a cdA lesion during DNA replication and repair can induce mutations and strand breaks 

in the genome that ultimately results in genome instability. 

2. MATERIALS AND METHODS  

2.1 Materials 

 The DNA oligonucleotides containing a 5’R-cdA or 5’S-cdA were synthesized and 

purified by HPLC as described previously (Chatgilialoglu et al., 2014). The structures of 

5’R-cdA and 5’S-cdA were illustrated in Figure 1.1. All other oligonucleotides were 

synthesized by Integrated DNA Technologies (IDT, Coralville, IA, USA). 

Deoxynucleoside 5’-triphosphates (dNTPs) were purchased from Fermentas (Glen Burnie, 

MD, USA). Radionucleotides, [γ-32P] ATP (6000 mCi/mmol) and cordycepin 5’-

triphosphate 3’-[α-32P] (5000 mCi/mmol) were purchased from Perkin Elmer Inc. (Boston, 

MA, USA). Micro Bio-Spin 6 chromatography columns were from Bio-Rad (Hercules, 

CA, USA). All other standard chemical reagents were from Sigma-Aldrich (St. Louis, MO, 

USA) and Thermo Fisher Scientific (Pittsburgh, PA, USA). Purified pol β, flap 

endonuclease 1 (FEN1) and DNA ligase I (LIG I) were generous gifts from Dr. Samuel H. 

Wilson at the National Institute of Environmental Health Sciences (NIEHS)/National 

Institutes of Health, Research Triangle Park, North Carolina.   

2.2 Oligonucleotide substrates 

 Substrates containing a 31-nt template strand with a 5’R-cdA or 5’S-cdA located at 

the 19th nucleotide counted from the 3’-end were designed to mimic DNA replication or 

BER intermediates with a cdA lesion on the template strand. The upstream primer of the 

substrates is an 18-nt strand without or with a 3’-terminus dT that base paired with the 
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template cdA. The downstream primer of the substrates is a 13-nt strand with a 5’-

phosphate or 5’-phosphorylated tetrahydrofuran (THF) residue, an abasic site analog. 

 Substrates that mimic the lesion bypass intermediates formed during DNA leading 

strand synthesis were constructed by annealing an18-nt upstream primer containing a 3’-

terminus dT with the cdA-containing template strand at a molar ratio of 1:2. Substrates 

representing the intermediates with a 1-nt gap opposite a template cdA formed during DNA 

lagging strand synthesis and BER were constructed by annealing the 18-nt upstream primer 

and a 13-nt downstream primer with a 5’-phosphate or 5’-THF residue with the template 

strand containing a 5’R-cdA or 5’S-cdA at a molar ratio of 1:1:2. Substrates were 

radiolabeled at the 5’-end of the upstream primers or the 3’-end of downstream primers for 

measuring the activities of different enzymes. The sequences of the oligonucleotide 

substrates are listed in Table 1.1.  
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2.3 Translesion DNA synthesis in bypassing a cdA in mouse embryonic fibroblast 

(MEF) cell extracts 

 The MEF cell extracts were prepared according to the procedure described 

previously (Biade et al., 1998a). Briefly, pol β null (pol β−/−) and wild-type pol β (pol β+/+) 

MEF cells were grown to near confluence. Cells were then harvested and lysed with 

rotation at 4 °C in lysis buffer. Cell lysates were then subject to centrifugation at 12,000 

rpm for 30 min to obtain whole-cell extracts. The whole-cell extracts were subsequently 

dialyzed into BER reaction buffer containing 50 mM Tris-HCl, pH 7.5, 50 mM KCl, 0.1 

mM EDTA, 0.1 mg/ml bovine serum albumin and 0.01% Nonidet P-40. Levels of pol β 

protein in different cell extracts were determined by immunoblotting using rabbit anti-

mouse pol β antibody (a generous gift from Dr. Samuel H. Wilson at National Institute of 

Environmental Health Sciences/National Institutes of Health) (Data not shown). The DNA 

synthesis activity was measured by incubating 60 µg of cell extracts with open template 

substrates with an upstream primer, that contained a 5’R-cdA or 5’S-cdA on the template 

strand, or with gapped substrates with a 1-nt gap opposite a template 5’R-cdA or 5’S-cdA 

with a 5'-phosphate or 5'-phosphorylated THF residue. Reaction mixtures were assembled 

on ice and incubated at 37 °C for 30 min. Reactions were terminated by addition of 15 µl 

of stopping buffer containing 95% formamide and 10 mM EDTA and subsequent 

incubation at 95 °C for 5 min. Substrates and DNA synthesis products were separated by 

15% or 18% urea-denaturing PAGE and detected by Pharos FX Plus PhosphorImager from 

Bio-Rad (Hercules, CA, USA). 
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2.4 In vitro BER reconstituted with purified enzymes 

In vitro BER of an abasic lesion that is opposite acdA was performed by incubating 

purified pol β, FEN1, LIG I with the substrates containing a 1-nt gap opposite a 5’R-cdA 

or a 5’S-cdA on the template with a downstream 5’-THF residue. The 10-µl reactions were 

reconstituted with the indicated concentrations of BER enzymes and substrates in BER 

reaction buffer with 50 µM dNTPs, 5 mM MgCl2 and 2 mM ATP. Reaction mixtures were 

assembled on ice and incubated at 37°C for 30 min. Reactions were terminated by addition 

of stopping buffer containing 95% formamide and 10 mM EDTA and incubation at 95 °C 

for 5 min. Substrates and products were separated by 15% or 18% urea-denaturing PAGE 

and detected by Pharos FX Plus PhosphorImager. All substrates were 32P-labeled at the 5’-

end of the upstream primer. 

2.5 Enzymatic activity assays 

 Lesion bypass synthesis activity of pol β was determined with the open template 

and gapped substrates with a 5’R-cdA or 5’S-cdA in the template. Pol β lesion bypass DNA 

synthesis activity on the open template was determined with the substrates without or witha 

3'-terminus dT that is opposite a template 5’R-cdA or 5’S-cdA. The lesion bypass DNA 

synthesis activity was determined at 37 °C for 30 min in a 10-µl reaction mixture in BER 

reaction buffer with 50 µM dNTPs and 5 mM MgCl2. Reaction mixtures containing various 

concentrations of pol β and 25 nM substrates and BER buffer with 5 mM MgCl2 and 50 

µM dNTPs, were assembled on ice and incubated at 37 °C for 30 min. FEN1 cleavage 

activity was measured by incubating the substrates containing a 1-nt gap without or with a 

downstream 5’-phosphorylated THF with the enzyme  in the absence or presence of pol β 

in BER buffer with 5 mM MgCl2 and 50 µM dNTP at 37 °C for 30 min. Reactions were 
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terminated by addition of stopping buffer containing 95% formamide and 10 mM EDTA 

and incubation at 95°C for 5 min. Substrates and products were separated by 15% or 18% 

urea-denaturing PAGE and detected by a Pharos FX Plus PhosphorImager. 

 

3. RESULTS 

3.1 Pol β plays an important role in bypassing a cdA lesion 

Pol β is a key enzyme that plays an essential role in mediating efficient BER in 

mammalian cells by removing a 5’-dRP group as well as filling in a single- or multi-

nucleotide gap (Liu and Wilson, 2012). It also plays a critical role in lesion bypass synthesis 

during DNA leading and lagging strand synthesis (Maga et al., 2009b; Villani et al., 2011b) 

to facilitate Okazaki fragment maturation (Maga et al., 2009b). Therefore, pol β may also 

play an important role in bypassing a cdA lesion during DNA replication and BER. To 

determine whether pol β can play a role in bypassing a cdA, we initially determined DNA 

synthesis in bypassing a 5’R-cdA and 5’S-cdA in cell extracts with pol β deficiency (pol β-

/-) and pol β proficiency (pol β+/+) with the open template substrates containing a 5’R-cdA 

or 5’S-cdA on the template strand (Figure 1.2A) as well as the 1 nt-gapped substrates 

containing a template 5’R- or 5’S-cdA with a 5'-phosphate (Figure 1.2B) and 5’-

phosphorylated THF residue (Figure 1.2C). The results showed that a significant amount 

of lesion bypass products were generated with the substrates containing a template 5’R-

cdA in pol β+/+ cell extracts (lane 3 of Figure 1.2A, 2B and 2C). However, pol β-/- cell 

extracts exhibited very weak lesion bypass synthesis with the substrates (lane 2 of Figure 

1.2A, 2B, and 2C). On the other hand, pol β+/+ cell extracts performed weak DNA synthesis 

on the substrates containing a template 5’S-cdA (lane 6 of Figure 1.2A, 2B and 2C). 
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However, little lesion bypass synthesis products was generated by pol β-/- cell extract with 

the substrates (lane 5 of Figure 1.2A, 2B and 2C). The results showed that in the presence 

	  



 37	  

of pol β, the amount of lesion bypass products was increased by about 2 to 5-fold (the 

bottom panel of Figure 1.2A, 2B and 2C) which indicated that pol β played an important 

role in bypassing a cdA lesion during DNA replication and BER.  

 

3.2 Pol β bypasses a 5’R-cdA efficiently and stalls at a 5’S-cdA 

Previous studies have shown that some Y family translesion synthesis polymerases 

such as pol η can bypass a 5’R-cdA and 5’S-cdA with different efficiency (Kuraoka et al., 

2000; Kuraoka et al., 2001). To further determine if pol β can bypass a 5’R-cdA and 5’S-

cdA during DNA replication and BER, we examined pol β DNA synthesis in bypassing 

cdA lesions by incubating increasing concentrations of purified pol β with open template 

substrates, as well as 1 nt-gapped substrates containing a template cdA. The results showed 

that with the open template substrates, 10 nM of pol β efficiently bypassed a 5’R-cdA and 

performed its multi-nucleotide DNA synthesis (Figure 1.3A, lane 2). With increasing 

concentrations of pol β (25 nM and 50 nM), the amount of pol β DNA synthesis products 

from bypass of a 5’R-cdA was significantly increased (Figure 1.3A, lanes 3-4). However, 

pol β exhibited weak DNA synthesis activity during its bypass of a 5’S-cdA (Figure 1.3A, 

lane 6). With increasing concentrations of pol β, the amount of its 1-nt insertion product 

was increased along with a slight increase in its multi-nucleotide DNA synthesis (Figure 

1.3A, lanes 7-8). The results indicated that pol β efficiently bypassed a 5’R-cdA, but stalled 

after it inserted a dT for bypassing a 5’S-cdA. The stalled pol b DNA synthesis suggests 

that the base lesion conferred a strong inhibitory effect on polymerase lesion bypass 

synthesis during DNA leading strand synthesis. To further determine whether pol β can 

continue to perform its lesion bypass synthesis after it inserts one nucleotide that base pairs 
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with a template cdA, we examined pol β synthesis activity with the open template 

substrates containing a 3’-terminus dT that base paired with a template 5’R-cdA or 5’S-

cdA (Figure 1.3B). These substrates mimic the intermediates resulting from pol β 1-nt 

insertion that are generated during leading strand synthesis. We found that pol β at 10-50 

nM performed efficient DNA synthesis to extend a dT, which base paired with a 5’R-cdA 

(Figure 1.3B, lanes 2-4). However, the polymerase failed to extend a dT that base paired 

with a 5’S-cdA (Figure 1.3B, lanes 6-8), indicating that the 5’S-cdA lesion completely 

inhibited pol β DNA synthesis. Similar to its lesion bypass DNA synthesis with the open 

template substrates, pol β exhibited efficient DNA synthesis with the 1-nt gapped 

substrates containing a 5’R-cdA without or with a 5’-phosphorylated THF residue that 

mimic a lagging strand maturation and BER intermediate, respectively (Figure 1.3C, lanes 

2-4 and lanes 10-12). However, with the gapped substrates containing a 5’S-cdA, the 

enzyme only inefficiently inserted one nucleotide to base pair with the lesion (Figure 1.3C, 

lanes 6-8 and lanes 14-16). For the nicked substrates containing a 3’-terminus T that base 

paired with a 5’R-cdA without or with a 5’-THF residue, pol b efficiently extended the dT 

(Figure 1.3D, lanes 2-4 and lanes 10-12), but failed to extend a 3’-terminus dT that paired 

with a 5’S-cdA (Figure 1.3D, lanes 6-8 and lanes 14-16). The results indicated that pol β 

effectively bypassed a 5’R-cdA, but stalled at a 5’S-cdA after it inserted a dT that base 

paired with the lesion which further suggests that a 5’S-cdA on the template distorted the 

DNA double-helix structure. This subsequently disrupted pol β binding to the substrates 

and its nucleotide insertion and further inhibited pol β multi-nucleotide DNA synthesis 

during its lesion bypass.  
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Figure 1.3 Pol β DNA synthesis with a template cdA lesion during DNA replication and BER. 
(A) Pol β bypass of a cdA at an open template during DNA replication was examined with the 
substrates containing a 5’R-cdA or 5’S-cdA with an upstream primer alone annealed with the 
template strand. (B) Pol β DNA synthesis in extending a 3’-terminus dT that base paired with the 
template cdA lesion during DNA replication was measured with the open template substrates under 
the experimental conditions. For panels (A) and (B), lanes 1 and 5 represent substrates only. Lanes 
2–4 and lanes 6–8 correspond to reaction mixtures with 10 nM, 25nM and 50 nM pol β, respectively. 
(C) Pol β bypass of a cdA during Okazaki fragment maturation and BER was examined with the 
substrates containing a 1-nt gap opposite a template 5’R-cdA or 5’S-cdA and the downstream primer 
with a 5’-phosphate or a 5’-phosphorylated THF residue. (D) Pol β DNA synthesis after a template 
cdA was bypassed during Okazaki fragment maturation and BER was examined with nick substrates 
in which the cdA was base paired with a dT. Pol β DNA synthesis to extend a dT that was base 
paired with a template cdA during BER was measured by using nick substrates that contained a 
downstream primer with a 5’-phosphorylated THF residue. For both panels (C) and (D), lanes 1, 5, 
9 and 13 correspond to substrates only. Lanes 2–4, 6–8, 10–12 and 14–16 correspond to reaction 
mixtures with 5, 10 and 25nM pol β, respectively. Substrates were 32P-labeled at the 5’-end of the 
upstream primer as indicated. Substrates are illustrated schematically above the gel.	  
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3.3 FEN1 cleavage activity during pol β lesion bypass of a 5’R-cdA and 5’S-cdA 

FEN1 plays an essential role in both Okazaki fragment maturation and long-patch 

BER by removing a 5’-flap created by strand displacement synthesis of replicative DNA 

polymerases, pol δ/ε, or repair polymerases such as pol β (Balakrishnan and Bambara, 2013; 

Liu et al., 2004). Removal of an oxidized or reduced deoxyribose phosphate during long-

patch BER is dependent on FEN1 flap cleavage activity (Liu and Wilson, 2012; Wilson et 

al., 2010). Because pol β DNA synthesis can result in the formation of a flap, it may affect 

FEN1 cleavage. To further determine if FEN1 cleavage during Okazaki fragment 

maturation and BER can be affected by pol b lesion bypass of a cdA, we examined FEN1 

cleavage activity on the 1 nt-gapped substrates containing a template cdA without or with 

a 5’-THF residue in the absence and presence of pol b (Figure 1.4).  The results showed 

that for the substrates with a template 5’R-cdA, in the absence of pol β, FEN1 mainly 

removed 1 or 2 nucleotides from the downstream strand (Figure 1.4, lanes 2 and 8). In the 

presence of pol β, FEN1 cleavage was significantly stimulated, and it predominantly 

removed a flap containing 5 or 6 nucleotides (Figure 1.4, lanes 3 and 9). This indicated that 

after pol b efficiently bypassed a 5’R-cdA, it kept inserting nucleotides to perform strand 

displacement synthesis, creating a 5-nt or 6-nt downstream flap for FEN1 cleavage. In 

contrast, for the 5’S-cdA containing substrates, in the absence of pol β, FEN1 removed 2 

to 4 nucleotides (Figure 1.4, lanes 5 and 11). The presence of pol β did not significantly 

alter FEN1 cleavage activity (Figure 1.4, lanes 6 and 12), indicating that pol β failed to 

efficiently bypass a 5’S-cdA. This allowed FEN1 to remove more nucleotides than were 

inserted by pol β, leaving a gapped intermediate that failed to be sealed by LIG I. This 

subsequently led to accumulation of a single-strand break intermediate.  
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3.4 A 5’S-cdA lesion disrupts the completion of Okazaki fragment maturation and 

BER by inhibiting pol β lesion bypass synthesis 

 When genomic DNA is under the challenge of oxidative stress, oxidative DNA 

damage including 8-oxoGs and cdPus can be generated simultaneously in DNA in vitro 

and in vivo at a significant percentage (Belmadoui et al., 2010; Kirkali et al., 2008). 

Because cdPus including cdA lesions can only be repaired by nucleotide excision repair 

with low efficiency, this allows the accumulation of the lesions in the genome readily. Thus, 

8-oxoGs and cdA lesions may occur simultaneously in the complementary strands of DNA 

with high frequency, and it is likely that BER of an 8-oxoG and an abasic lesion in one 

strand of the genome may encounter a cdA base lesion accumulated in the template strand. 

This could allow pol β to perform DNA synthesis to bypass a cdPu lesion, thereby 

subsequently altering the efficiency of lagging strand maturation and BER. It has also been 

suggested that BER of a uracil opposite a 5’S-cdA is compromised because the lesion can 

alter the geometry of duplex DNA (Karwowski et al., 2014). To test this possibility, we 

reconstituted DNA lagging strand maturation and BER with the substrates containing a 1-

nt gap opposite a 5’R-cdA or 5’S-cdA without or witha 5’-THF residue (Figure 1.5). With 

the substrates containing a 5’R-cdA, pol β exhibited efficient lesion bypass synthesis 

leading to the production of a significant amount of replication and repair products (Figure 

1.5, lanes 2-4 and 10-12), indicating that pol β bypass of a 5’R-cdA led to the completion 

of lagging strand maturation and BER. However, with the substrates containing a 5’S-cdA, 

pol β only inserted a dT to bypass a template 5’S-cdA and failed to further extend the 

nucleotide by inserting additional nucleotides (Figure 1.5, lanes 6-8 and 14-16), resulting 

in the accumulation of a single-strand DNA break intermediate with a template 5’S-cdA. 
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These results demonstrated that inefficient bypass of a 5’S-cdA by pol β prevented the 

completion of lagging strand maturation and BER. This further suggests that a 5’S-cdA 

induced DNA strand distortion more severely than a 5’R-cdA, thereby inhibiting pol β 

lesion bypass and preventing the completion of Okazaki fragment maturation and BER. 

 

 

 

 

 

	  
	  
Figure 1.4 FEN1 flap cleavage during pol β bypass of a cdA. FEN1 flap cleavage on the 
substrates containing a 5’-phosphate or 5’-THF residue with a 1-nt gap opposite a template 
5’R-cdA or 5’S-cdA was examined as described in Section 2. Lanes 1, 4, 7 and 10 represent 
substrates only. Lanes 2, 5, 8 and 11 correspond to reaction mixtures with 10nM FEN1. Lanes 
3, 6, 9 and 12 correspond to reaction mixtures with 10nM FEN1 in the presence of 5 nM pol 
β. Substrates were 32P-labeled at the 3’-end of the downstream primer as indicated. Substrates 
are illustrated schematically above the gel. 
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3.5 Pol β can bypass a 5’,8-cdA through nucleotide misinsertion during DNA 

replication and BER 

Previous studies have shown that cdA lesions can completely block DNA synthesis 

of human replication polymerases such as pol δ, causing replication fork stalling through 

inducing the distortion of DNA backbone (Kuraoka et al., 2000). To resolve the stalled 

	  
	  
Figure 1.5 Completion of DNA lagging strand maturation and BER through pol β bypass of a 
cdA lesion. Reconstituted DNA lagging strand maturation and BER were performed to determine 
the effects of pol β bypass of a cdA on completion of DNA lagging strand maturation and BER. 
Substrates containing a 5’-phosphate or 5-THF residue with a 1-nt gap opposite a template 5’R-cdA 
or 5’S-cdA were incubated with indicated BER enzymes at the experimental conditions described 
in Section 2. Lanes 1, 5, 9 and 13 represent substrates only. Lanes 2–4, 6–8, 10–12 and 14–16 
correspond to reconstitution reaction mixtures with 10nM FEN1 and 5 nM LIG I in the presence of 
5, 10 and 25nM pol β, respectively. Substrates were 32P-labeled at the 5’-end of the upstream primer 
as indicated. Substrates are illustrated schematically above the gel. 
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replication fork and restart DNA replication, Y family DNA translesion polymerases are 

recruited to perform translesion synthesis for bypassing the base lesions (Friedberg et al., 

2005). However, a template 5’S-cdA can also block the lesion bypass synthesis by Y family 

polymerases such as pol η and pol ι, resulting in the accumulation of DNA strand breaks 

leading to apoptosis (Kuraoka et al., 2001; Pednekar et al., 2014; You et al., 2013). Because 

pol β has also been shown to exhibit translesion synthesis to bypass a DNA base lesion 

during DNA replication and BER (Bassett et al., 2002a; Chary et al., 2012a; Hashim et al., 

1997b; Hoffmann et al., 1996b; Maga et al., 2009b; Servant et al., 2002b; Vaisman and 

Chaney, 2000b; Villani et al., 2011b) Thus, it is possible that pol β can be recruited to 

perform translesion synthesis to bypass a cdA lesion. However, several studies have shown 

that pol β lesion bypass synthesis can induce a high frequency of mutations in the genome 

(Bassett et al., 2002a; Batra et al., 2006; Beard et al., 2009; Beard and Wilson, 2014; Chary 

et al., 2012a; Efrati et al., 1997; Hashim et al., 1997b; Hoffmann et al., 1996b; Servant et 

al., 2002b; Vaisman and Chaney, 2000b). Furthermore, because of lacking a proofreading 

3’-5’ exonuclease activity, high levels of pol β are associated with high mutation rates in a 

variety of cancer cells (Canitrot et al., 2000; Scanlon et al., 1989; Srivastava et al., 1999). 

To investigate whether pol β bypass of a cdA can induce mutations in the genome, pol β 

nucleotide insertion during its bypass of a cdA was determined by incubating the open 

template and gapped substrates that contained a template 5’R-cdA or 5’S-cdA with 5 nM 

and 50 nM pol β.  The results showed that at a low concentration (5 nM), pol β mainly 

inserted a dT to base pair with a 5’R-cdA with the open template substrates (Figure 1.6A, 

lane 3). However, the enzyme also inefficiently inserted a dA, dC or dG to base pair with 

the 5’R-cdA (Figure 1.6A, lanes 2, 4 and 5). On the other hand, the same concentration of 
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pol β only inserted dT to base pair with a template 5’S-cdA (Figure 1.6A, lane 8) and failed 

to insert a dA, dC or dG to bypass the lesion (Figure 1.6A, lane 7 and lanes 9-10). 

Surprisingly, we found that with the 1-nt gapped substrates without a 5’-THF residue, 5 

nM pol β efficiently inserted both dT and dC to bypass a template 5’R-cdA (Figure 1.6A, 

lanes 13-14) and inefficiently inserted a dA and dG to bypass the lesion (Figure 1.6A, lanes 

12 and 15). For the 1-nt gap substrate containing a 5’S-cdA, 5 nM pol β mainly inserted a 

dT to bypass the lesion (Figure 1.6A, lane 18). It also inserted a dA with a very low 

efficiency (Figure 1.6A, lane 17), but it failed to insert dC and dG (Figure 1.6A, lanes 19-

20). For the 1-nt gap substrates with a 5’-THF residue, 5 nM pol β predominantly inserted 

a dT and dC to bypass a 5’R-cdA (Figure 1.6A, lanes 23-24), although the enzyme also 

managed to insert a dA and dG inefficiently to bypass the lesion (Figure 1.6A, lanes 22 

and 25).  The same concentration of pol β inefficiently inserted a dT to bypass a 5’S-cdA 

(Figure 1.6A, lane 28) and failed to insert other types of nucleotides to bypass the lesion 

(Figure 1.6A, lanes 27, 29 and 30). At a high concentration of 50 nM, pol β misinsertion 

in bypassing a cdA lesion with all the substrates was significantly increased (Figure 1.6B, 

lanes 2, 4-5, lanes 12, 14-15, lanes 17, 19-20, and lanes 22, 24-25, 27). The high 

concentrations also significantly increased pol β correct nucleotide insertion in bypassing 

a 5’S-cdA (Figure 1.6B, lanes 8, 18 and 28). However, the high concentrations of pol β 

failed to increase the pol β misinsertion of a dA to pair with a 5’S-cdA with the open 

template substrate (Figure 1.6B, lane 7). The results indicated that at both a low and high 

concentration, pol β efficiently misinserted dC to bypass a 5’R-cdA during DNA lagging 

strand maturation and BER. However, a high concentration of pol b also significantly 

promoted its misinsertation of dA and dG during its lesion bypass. The results further 
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suggest that pol β bypass of a 5’R-cdA or 5’S-cdA lesion during replication and BER may 

be mutagenic, especially in the presence of a high level of pol β.  

 

 

 

	  

	  
Figure 1.6 Pol β nucleotide insertions in bypassing a cdA lesion during DNA replication and 
BER. Pol β nucleotide insertion in bypassing a cdA during DNA lagging strand maturation and 
BER was examined by incubating the open-template substrates and 1-nt gap substrates that 
contained a downstream 5’-phosphate or 5’-THF residue and a template 5’R-cdA or 5’S-cdA with 
5 nM (A) or 50nM (B) pol β in the presence of 50 nM dATP or dTTP or dCTP or dGTP, 
respectively, under the experimental conditions described in Section 2. In both panels, lanes 1, 6, 
11, 16, 21 and 26 represent substrates only. Lanes 2–5, 7–10, 12–15, 17–20, 22–25 and 27–30 
correspond to reaction mixtures with 5 nM or 50 nM pol β in the presence of 50 nM dATP, dTTP, 
dCTP or dGTP. Substrates were 32P-labeled at the 5’-end of the upstream primer as indicated. 
Substrates are illustrated schematically above the gel. 	  
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4. DISCUSSION  

In this study, for the first time we discovered that pol β played an important role in 

bypassing a cdA lesion during DNA replication and BER (Figure 2). We provided the first 

evidence that pol β efficiently bypassed a 5’R-cdA via multi-nucleotide insertions, whereas 

the enzyme mainly inserted 1 nt to bypass a 5’S-cdA lesion and failed to further perform 

its multi-nucleotide lesion bypass DNA synthesis (Figures 2-3). This resulted in disruption 

of its DNA synthesis in bypassing a 5’S-cdA during DNA replication and BER. 

Furthermore, we discovered that a 5’S-cdA on the template strand also slightly facilitated 

FEN1 removal of a long flap (Figure 1.4), suggesting that the lesion induced a distortion 

on the DNA structure, thereby promoting dissociation of the downstream DNA strand from 

its template. This further resulted in the formation of a flap that can be efficiently cleaved 

by FEN1 leaving gapped DNA thereby inhibiting the completion of DNA replication and 

repair and leading to accumulation of single-strand intermediates (Figure 1.5). Moreover, 

we found that during DNA replication and BER, a low concentration of pol β inserted both 

a correct and incorrect nucleotide to bypass a cdA, whereas a high concentration of pol β 

stimulated its nucleotide misincorporation in bypassing a cdA (Figure 1.6). Our results 

support a model in which a 5’R-cdA induced by ROS during DNA replication or BER can 

be efficiently bypassed by pol β. In the presence of a low concentration of pol β, a correct 

nucleotide is inserted to base pair with the lesion. Pol β continues to perform strand 

displacement synthesis, creating a long flap which is subsequently cleaved by FEN1. This 

leads to the production of a nicked DNA that is sealed by LIG I, resulting in no mutation 

in the replication and repair products (Figure 1.7, sub-pathway 1, left). However, both a 

low and high concentration of pol β can also insert a dC or dG or dA to bypass a 5’R-cdA, 
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resulting in mutations (Figure 1.7, sub-pathway 1, right). On the other hand, a template 

5’S-cdA induces the DNA distortion promoting dissociation of the downstream strand from 

its template strand resulting in the formation of a small flap. Pol β inefficiently inserts a dT 

to base pair with a template 5’S-cdA and stalls (Figure 1.7, subpathway 2). Subsequently, 

this allows FEN1 to remove more nucleotides than pol β synthesizes, resulting in 

accumulation of single-strand DNA break intermediates (Figure 1.7, subpathway 2). 
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 Employing the cell extract-based in vitro approach, we have demonstrated the 

involvement of pol β in cdA lesion bypass during DNA replication and repair explicitly. 

	  
Figure 1.7 Pol β bypass of a cdA lesion leads to nucleotide misinsertion and DNA strand 
breaks during DNA replication and BER. Reactive oxygen species (ROS) can result in 
oxidized DNA lesion, including cdAs with two different configurations, 5’R-cdA or 5’S-cdA., 
during DNA replication and BER. A 5’R-cdA can be efficiently bypassed by pol β. In the 
presence of low concentration of pol β, a correct nucleotide can be inserted to base pair with a 
template cdA lesion. Polβ can continue to perform strand displacement synthesis, resulting in 
the formation of a long flap which is subsequently cleaved by FEN1. This leads to a nicked 
DNA for LIG I to seal, resulting in no mutation in the replication and repaired product (Sub-
pathway 1, left). However, a low level of pol β can also insert a dC to base pair a cdA, and the 
nucleotide misinsertion is promoted at a high level of pol β (Sub-pathway 1, right). This 
subsequently results in mutation during DNA replication and BER. On the other hand, a 
template 5’S-cdA can induce DNA distortion that promotes dissociation of the downstream 
strand from its template strand, thereby leading to the formation of an intermediate with a gap 
and short flap (Sub-pathway 2). The lesion also strongly inhibits pol β lesion bypass synthesis 
as well as extension of the lesion bypass intermediate (Sub-pathway 2). Subsequently, FEN1 
cleaves the flap removing more nucleotides than pol β synthesizes, causing accumulation of 
gapped intermediates that can further lead to DNA strand break intermediates (Sub-pathway 
2).  
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Our results obtained from pol β+/+ and pol β-/- MEFs indicate that pol β plays an important 

role in bypassing cdA lesions (Figure 1.2). This is also supported by a study from the 

Wilson group showing that pol β-/- MEFs exhibited hypersensitivity to the oxidative DNA 

damaging agent, hydrogen peroxide than pol β+/+ MEFs (Horton et al., 2002). Because 

hydrogen peroxide is the precursor for generating hydroxyl radicals that can subsequently 

lead to cdA lesions, this further indicates that the hypersensitivity of pol β-/- MEFs to 

hydrogen peroxide results from the accumulation of oxidized DNA lesions including cdA 

lesions and DNA strand breaks caused by the deficiency of lesion bypass in the absence of 

pol β. 

           Our results indicate that pol β efficiently bypassed a 5’R-cdA (Figure 1-2). However, 

it also inserted a significant amount of incorrect nucleotides to bypass the lesion at a low 

concentration (5 nM), and this was significantly stimulated at a high concentration (50 nM) 

(Figure 6). Given the fact that in mammalian cells, during BER of oxidative DNA damage, 

a large number of pol β molecules can be recruited to damaged sites resulting in a high 

concentration of the enzyme that is accumulated at oxidized base lesions (Lan et al., 2004), 

it is likely that pol β nucleotide misinsertions can frequently occur during its bypass of a 

cdA in cells. This can then lead to a high frequency of mutations in genomic DNA. Our 

results are also consistent with previous findings showing that in human cancer cells, pol 

β protein level has been increased significantly compared with normal cells, thereby 

inducing a high frequency of mutations (Canitrot et al., 2000; Scanlon et al., 1989; 

Srivastava et al., 1999). Moreover, because of the lack of an intrinsic 3’-5’ exonuclease, 

pol β lesion bypass can induce more mutations in the genome than replication polymerases 

through its nucleotide misinsertion during its lesion bypass synthesis (Beard et al., 2014). 
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It is conceivable that an extrinsic 3’-5’ exonuclease that can remove a mismatched base 

may improve pol β fidelity during its bypass of a template cdA. It has been reported that in 

addition to its cleavage of an abasic site during BER, APE1 also has 3’-5’ exonuclease 

activity that can remove mismatched bases at the 3’-end in nicked or gapped DNA (Chou 

and Cheng, 2002; Parsons et al., 2005). Previous studies have also found that p53 can 

efficiently remove a misinserted base prior to the extension of the mismatched 3’-terminus 

by a DNA polymerase (Bakhanashvili, 2001; Rahav, 2013). Because APE1 can form a 

complex with pol β (Liu et al., 2007b), and p53 can interact with pol β (Zhou et al., 2001), 

it is possible that these proteins may cooperate with pol β to remove a misinserted 

nucleotide incorporated by pol β during its bypass of a cdA lesion. It is of interest to 

determine if APE1 and p53 can remove a mismatched base that pairs with a template 5’R-

cdA, improving pol β fidelity during its lesion bypass synthesis of a 5’,8-cyclopurine-2’-

deoxynucleoside. 

Our results also demonstrated that bypass of a 5’S-cdA is a challenge for pol b 

(Figures1.2, 1.3). We found that pol β failed to extend the 3'-terminus after it inserted one 

nucleotide to base pair with a 5’S-cdA. This subsequently results in the accumulation of 

single-strand break intermediates that may subsequently lead to double-strand breaks and 

cell death. Previous studies have shown that pol β DNA synthesis in bypassing an AP site 

during Okazaki fragment maturation can be promoted by proliferating cell nuclear antigen 

(PCNA) and replication protein A (RPA) (Maga et al., 2009b). It has been also shown that 

through coordination with FEN1 and RPA, pol β strand displacement synthesis activity is 

also facilitated after it bypasses an abasic site (Maga et al., 2009b). It is conceivable that 

the replication and repair cofactors that can facilitate pol β lesion bypass activity and primer 
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extension may facilitate pol β bypass of a 5’S-cdA as well as its extension of the lesion 

bypass intermediates. Therefore, it is of interest to investigate how BER cofactors, PCNA 

and RPA may also facilitate pol β bypass of a 5’S-cdA, preventing the formation of DNA 

strand break intermediates and cell death.  

In summary, we identified that pol β played an important role in bypassing a 

template cdA lesion during DNA replication and BER. We provided the first evidence that 

pol β can efficiently bypass a 5’R-cdA, but inefficiently bypass a 5’S-cdA, resulting in the 

incompletion of DNA replication and repair and accumulation of strand break 

intermediates. Moreover, we found that pol β inserted an incorrect nucleotide to bypass a 

cdA, and this was promoted by a high concentration of pol β, indicating that the fidelity of 

pol β bypass of a cdA lesion during DNA replication and BER can be modulated by the 

concentrations of pol β. This may further result in mutations in the genome. In addition, 

we demonstrated that a template 5’S-cdA severely inhibited pol β lesion bypass synthesis 

and induced dissociation of the downstream strand from the template strand resulting in 

the formation of a short flap (Figure 1.4 and Figure 7 sub-pathway 2). This subsequently 

led to poor pol β DNA synthesis along with relatively efficient FEN1 flap cleavage on the 

downstream strand, resulting in the accumulation of strand break intermediates (Figure 1.5, 

lanes 6-8 and lanes 14-16). Our results reveal that pol β bypass of a cdA can result in 

nucleotide misinsertions and DNA strand breaks during DNA replication and BER, thereby 

resulting in genome instability.   
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AP ENDONUCLEASE 1 COMBATS THE EXTENSION OF A T/G MISMATCH BY 

DNA POLYMERASE β TO PREVENT MUTATIONS IN CpGs DURING BASE 

EXCISION REPAIR 
 

ABSTRACT 

 Dynamics of DNA methylation and demethylation at CpG clusters are involved in 

gene regulation. CpG clusters have been identified as hot spots of mutagenesis because of 

their susceptibility to oxidative DNA damage. Damaged Cs and Gs at CpGs can disrupt a 

normal DNA methylation pattern through modulation of DNA methylation and 

demethylation, leading to mutations and deregulation of gene expression. DNA base 

excision repair (BER) plays a dual role of repairing oxidative DNA damage and mediating 

an active DNA demethylation pathway on CpG clusters through removal of a T/G 

mismatch resulting from deamination of a 5mC adjacent to a guanine that can be 

simultaneously damaged by oxidative stress. However, it remains unknown how BER 

processes clustered lesions in CpGs and what are the consequences from the repair of these 

lesions. In the present study, we examined BER of an abasic lesion next to a DNA 

demethylation intermediate, the T/G mismatch in a CpG dinucleotide, and its effect on the 

integrity of CpGs. Surprisingly, we found that the abasic lesion completely abolished the 

activity of thymine DNA glycosylase (TDG) for removing the mismatched T. However, 

we found that APE1 could still efficiently incise the abasic lesion leaving a 3-terminus 

mismatched T, which was subsequently extended by pol β. This in turn resulted in a C to 

T transition mutation. Interestingly, we also found that APE1 3’-5’ exonuclease activity 

efficiently removed the mismatched T, thereby preventing pol β extension of the 

brandiethomas
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mismatched nucleotide and the resulting mutation. Our results demonstrate a crucial role 

of APE1 3’-5’ exonuclease activity in combating mutations in CpG clusters caused by an 

intermediate of DNA demethylation during BER.  

1. INTRODUCTION  

 Dynamics of cytosine methylation, i.e., formation of 5-methyl cytosine (5mC) and 

demethylation of 5mC in CpG islands (CGIs), in the mammalian genome are actively 

involved in the regulation of gene expression, inactivation of the X chromosome, and gene 

imprinting, among others (Bhutani et al., 2011; Chen and Riggs, 2011; Jones, 2012; Jones 

and Takai, 2001). It is estimated that only approximately 1-2% of cytosines in the 

mammalian genome are unmethylated (Bird et al., 1985; Bird, 1986; Illingworth et al., 

2008; Suzuki and Bird, 2008), whereas 60-90% of CpGs are methylated (Jones and Takai, 

2001; Siegfried and Cedar, 1997). The DNA methylation pattern regulates gene 

transcription by facilitating or blocking access of transcription factors to gene promoter or 

transcribed regions directly (Becker et al., 1987; Tate and Bird, 1993), or by modulating 

the recruitment of methyl CpG binding proteins (Lewis et al., 1992; Meehan et al., 1989; 

Tate et al., 1996), as well as by altering histone modifications and chromatin structures 

(Berger, 2002; Cheung et al., 2000; Clark et al., 1997; Hendrich and Bird, 1998). A normal 

DNA methylation pattern is essential for maintaining the homeostasis of gene expression 

and cellular function, whereas an aberrant DNA methylation pattern is associated with the 

onset and progression of many diseases (Jones and Baylin, 2007; Robertson, 2005; 

Valinluck and Sowers, 2007). It has been found that hypermethylation of CpGs on tumor 

suppressor genes (TSGs) (Rideout et al., 1990; Stirzaker et al., 1997) and hypomethylation 
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of CpGs on oncogenes result in deregulation of expression of the genes leading to the 

development of cancer (Jones, 2012). 

 5-methylcytosine (5mC) can be removed by a process called DNA demethylation, 

which can occur either passively or actively. Passive DNA demethylation results from the 

failure of DNA methyltransferases to methylate a cytosine during DNA replication and cell 

division (Bhutani et al., 2011). Passive DNA demethylation may also result from the loss 

or substitution of cytosines by DNA damage and repair in the context of CpGs. Active 

DNA demethylation is mediated by sequential enzymatic reactions that can occur 

independent of DNA replication and cell division (Bhutani et al., 2011; Chen and Riggs, 

2011; Cortellino et al., 2011; Zhu, 2009). Removal of a 5mC by active DNA demethylation 

is initiated by modifications of the nucleotide through several types of enzymatic reactions, 

including hydroxylation, deamination and oxidation that convert the 5mC into a modified 

base or base lesion that is recognized and cleaved by DNA glycosylases (Bhutani et al., 

2011; Chen and Riggs, 2011) which subsequently leads to replacement of the 5mC through 

the DNA base excision repair (BER) pathway (Bhutani et al., 2011; Chen and Riggs, 2011; 

Cortellino et al., 2011). It has been shown that BER-mediated active DNA demethylation 

is accomplished through several pathways depending on the type of modifications of 5mC 

that are removed by different types of DNA glycosylases (Bhutani et al., 2011; Chen and 

Riggs, 2011; Gehring et al., 2009; Zhu, 2009). One of the pathways is initiated by a direct 

deamination of 5mC by activation-induced cytidine deaminase (AID) that converts a 5mC 

to a thymine, resulting in a T/G mismatch (Morgan et al., 2004). The mismatched T can be 

subsequently excised by thymine DNA glycosylase (TDG) (Cortellino et al., 2011; 

Neddermann and Jiricny, 1993, 1994; Zhang et al., 2012), leaving an abasic site that is then 
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subjected to BER which ultimately leads to replacement of the 5mC with an unmethylated 

C (Bhutani et al., 2011). Another BER-mediated DNA demethylation pathway is initiated 

by single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1) that 

removes a 5-formyluracil generated from oxidation of a 5mC by a family of enzymes called 

Ten Eleven Translocation (TET), a methylcytosine dioxygenase (He et al., 2011; Ito et al., 

2011; Williams et al., 2011), or from oxidative DNA damage induced by hydroxyl radicals 

(Bjelland et al., 1995; Masaoka et al., 2003). Thus, in mammalian cells, DNA base damage 

and BER are strategically used as a mechanism for both passive and active DNA 

demethylation (Gehring et al., 2009). 

 While the cytosine in a CpG dinucleotide is a substrate for DNA methylation and 

demethylation, the neighboring 3’-guanine is a hotspot of oxidative DNA damage. As the 

most abundant form of oxidative DNA damage in mammalian cells, 8-oxoguanine (8-oxoG) 

readily accumulates in CpGs and may affect the integrity of CpGs by modulating the 

production and processing of DNA demethylation intermediates. It has been found that 8-

oxoG can cause accumulation of T/G mismatched base pairs when it occurs adjacent to 

5mC by inhibiting the removal of the mismatched T (Sassa et al., 2014).  Moreover, when 

BER of 8-oxoG encounters active DNA demethylation, repair of the lesion may be affected 

by a DNA demethylation intermediate which has been supported by a recent study from 

the Wilson group showing that the efficiency of removal of 8-oxoG by OGG1 was 

significantly reduced by an adjacent 5’-T/G mismatch, a DNA demethylation intermediate 

generated from deamination of 5mC in CpGs (Sassa et al., 2014). This subsequently 

inhibited the completion of BER. This suggests that a base lesion interferes with an 

essential step of BER-mediated DNA demethylation, thereby compromising the efficiency 
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and fidelity of DNA demethylation in CpGs. These studies further suggest that BER of 

oxidative DNA damage in CpGs and DNA demethylation intermediates has to be properly 

coordinated to maintain the integrity and fidelity of CpGs. However, it remains unknown 

how the fidelity of CpGs may be maintained by BER in coordinating its dual function in 

repairing a base lesion as well as in mediating active DNA demethylation.  In the current 

study, we explored how an abasic lesion that occurs in a CpG at the 3’-side of a T/G 

mismatch could affect the integrity of a CpG dinucleotide by modulating the removal of 

the mismatched T during BER, and how BER may coordinate the removal of the base 

lesion and maintenance of the fidelity of CpG dinucleotides. For the first time, we show 

that the abasic lesion completely inhibited the removal of its adjacent 5’-mismatched T by 

TDG leading to accumulation of the mismatched nucleotide. We show that DNA 

polymerase β (pol β) readily tolerated the mismatched T and efficiently extended the 

mismatched nucleotide, allowing the sustainment of the T/G mismatch and leading to a C 

to T transition mutation during BER. Interestingly, we discovered that AP endonuclease 1 

(APE1) 3’-5’ exonuclease efficiently removed the mismatched T, thereby preventing the 

mutation. Our results indicate that APE1 3’-5’ exonuclease plays a crucial role in 

maintaining the integrity of CpGs during BER and DNA demethylation. This demonstrates 

that the coordination between BER enzymes effectively removes a 3’-mismatched T, thus 

preventing mutations that result from BER and BER-mediated active DNA demethylation. 

Our study provides new insights into the molecular mechanisms underlying the roles of 

BER in preventing T/G mismatches and sustaining the integrity of CpGs during BER and 

active DNA demethylation.  
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2. MATERIALS AND METHODS 

2.1 Materials  

 Oligonucleotides were synthesized by Integrated DNA Technologies Inc. 

(Coralville, IA). The radionucleotides [γ-32P] ATP (6000 Ci/mmol) and cordycepin 5'-

triphosphate 3'- [α-32P] (5000 Ci/mmol) were purchased from PerkinElmer Inc. (Boston, 

MA).Micro Bio-Spin 6 chromatography columns were from Bio-Rad (Hercules, CA). T4 

polynucleotide kinase (PNK) and terminal deoxynucleotidyl transferase (TdT) were from 

Fermentas (Glen Burnie, MD). Adenosine 5’-triphosphate (ATP) (100 mM) was from USB 

(Cleveland, Ohio). Purified thymine DNA glycosylase (TDG) was from Enzymax, LLC 

(Lexington, Kentucky). Purified APE1, pol β, flap endonuclease 1 (FEN1) and DNA ligase 

I (LIG I) were generous gifts from Dr. Samuel H. Wilson at the Genome Integrity and 

Structural Biology Laboratory, National Institute of Environmental Health 

Science/National Institutes of Health (NIEHS), Research Triangle Park, NC. All other 

reagents were from Thermo Fisher Scientific (Pittsburgh, PA) and Sigma-Aldrich (St. 

Louis, MO). 

2.2 Oligonucleotide substrates  

 An oligonucleotide substrate containing a T/G mismatched base pair adjacent to a 

G/C matched base pair or a tetrahydrofuran (THF), an abasic site analog, was designed to 

mimic the intermediates resulting from deamination of a 5-methylcytosine by AID in a 

CpG dinucleotide with an undamaged G or an abasic lesion (AP site) that substituted G.  

Substrates containing a T/G mismatch at the upstream primer and a 5’-THF residue at the 

downstream primer were designed to mimic the BER intermediates containing an oxidized 

AP site adjacent to a T/G mismatch that is 5’-incised by APE1 opposite to a template C or 
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T. The substrate containing an intact or preincised AP site opposite to a template C and 

adjacent to a C/G matched base pair was used as the control. Substrates for measuring TDG 

activity were constructed by annealing the strand containing a T with the template strand 

containing a G that was base paired with the T at a molar ratio of 1:1.5. Substrates for 

measuring BER enzymatic activity were constructed by annealing the upstream primer 

with a 3’-T that mispaired with a template G and the downstream primer with a 5’-THF 

residue to the template strand at a molar ratio of 1:1:2. The sequences of the oligonucleotide 

substrates are listed in Table 2.1. 

Table 2.1 Sequences of the oligonucleotide substrates 
Oligonucleotides nt Sequence (5’-3’) 

Damaged Strands 

D1 31 GCA CCG GAT CCG CAC CTG GCA TCA GCT GCA 
G 

D2 30 GCA CCG GAT CCG CAC CTF GCA TCA GCT GCA 
G 

Upstream Strands 

US1 37 CGA GTC ATC TAG CAT CCG TAG CAC CGG ATC 
CGC ACC C 

US2 37 CGA GTC ATC TAG CAT CCG TAG CAC CGG ATC 
CGC ACC T 

Downstream 
Strands 

  

DS1 33 pF-GCA TCA GCT GCA GTA CGT AGA CTT ACT 
CAT TGC 

Template Strands 

T1 31 CTG CAG CTG ATG CCG GGT GCG GAT CCG GTG 
C 

T2 
71 GCA ATG AGT AAG TCT ACG TAC TGC AGC TGA 

TGC CGG GTG CGG ATC CGG TGC TAC GGA TGC 
TAG ATG ACT CG 

T3 
71 GCA ATG AGT AAG TCT ACG TAC TGC AGC TGA 

TGC TGG GTG CGG ATC CGG TGC TAC GGA TGC 
TAG ATG ACT CG 

aThe damaged base is in boldface. F, tetrahydofuran.  
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2.3 Measurement of TDG activity in removing a T/G mismatch adjacent to a THF 

residue, an analogue of an AP site  

 The TDG activity for removing the T from a T/G mismatch adjacent to a THF 

residue was measured by incubating increasing concentrations of TDG from 50 nM to 70 

nM with 25 nM substrate containing a T/G mismatch with or without the THF residue. The 

activity was examined at 37 oC for 30 min in 10 µl reaction buffer with 50 mM Tris-HCl, 

pH 7.5, 1 mM EDTA, 1 mM DTT, 0.1 mg/ml BSA, and 0.01% Nonidet P-40. Reactions 

were terminated by transferring to 95 oC for 5 min. The reaction mixture was then treated 

with 0.1 M NaOH and denatured at 95oC for 10 min in buffer containing 95% formamide 

and 10 mM EDTA. Substrates and products were separated by 15% urea-denaturing 

polyacrylamide gel electrophoresis (PAGE) and detected by a Pharos FX Plus Imager (Bio-

rad Laboratories, Hercules, CA). 

2.4 Measurement of APE1 activity in removing an abasic site adjacent to a T/G 

mismatch  

 The APE1 incision of the THF residue, an abasic site analog, that is adjacent to 

5mC or a T/G mismatch, was measured at 37 oC in a 20 µl reaction mixture containing 50 

mM Tris-HCl, pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mg/ml BSA, 5 mM MgCl2, and 

0.01% Nonidet P-40. APE1 activity was examined by incubating 5 nM APE1 with 25 nM 

substrate containing the THF residue adjacent to a mismatched T or matched C/G in the 

absence and presence of increasing concentrations of TDG (10, 25, 50 and 70 nM). 

Reactions were terminated by transferring to 95 oC for 5 min in stopping buffer containing 

95% formamide and 10 mM EDTA. Substrates and products were separated by 15% urea-

denaturing PAGE and detected by a Pharos FX Plus Imager. 
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2.5 Measurement of pol β DNA synthesis activity in extending the 3’-terminus 

mismatched T of a T/G mismatch 

 The Pol β DNA synthesis on a single-nucleotide gapped substrate to extend a 3’-

mismatched T or 3’-matched C was measured using a one-nucleotide gapped substrate 

containing a T/G mismatch or a C/G match at the 3’-terminus of the upstream primer and 

a 5'-THF residue at the downstream primer. Enzymatic reactions were performed by 

incubating 25 nM substrate with various concentrations of pol β at 37 oC for 15 min in a 

10 µl reaction mixture containing BER buffer (50 mM Tris-HCl, pH 7.5, 50 mM KCl, 0.1 

mM EDTA, 0.1 mg/ml BSA, 0.01% Nonidet P-40, 5 mM MgCl2). APE1 3’-5’ exonuclease 

activity of removing the T from the 3’-T/G mismatch was measured in BER buffer at 37 

oC for 15 min. FEN1 cleavage activity on the THF residue was examined in BER reaction 

buffer with 50 µM dNTPs in the absence or presence of 5 nM pol β at 37 oC for 15 min. 

Reactions were terminated by transferring to 95 oC for 5 min in stopping buffer containing 

95% formamide and 10 mM EDTA. Substrates and products were separated by 15% urea-

denaturing PAGE and detected by a Pharos FX Plus Imager. 

2.6 Measurement of the efficiency of pol β and APE1 activities in the context of a 3’-

T/G mismatch 

 The efficiency of pol β and APE1 in extending or removing a 3'-terminus 

mismatched T was determined by measuring pol β gap-filling synthesis activity and APE1 

3’-5’ exonuclease activity at various time intervals. Reactions were conducted by 

incubating 25 nM 5’-32P-labeled substrate with 5 nM pol β or increasing concentrations of 

APE1 alone at 5 nM, 50 nM, and 100 nM. The reaction mixture was assembled on ice and 

incubated at 37 oC for 1, 2, 5, 10, 15, and 30 min intervals. Reactions were subsequently 
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terminated by transferring to 95 oC for 5 min in stopping buffer containing 95% formamide 

and 10 mM EDTA. Substrates and products were separated by 15% urea-denaturing PAGE 

and detected by a Pharos FX Plus Imager. 

2.7 In vitro reconstituted BER assay 

 The BER in the context of a T/G mismatch was reconstituted with purified APE1, 

pol β, FEN1, LIG I and the 1 nt-gapped substrate with a 3’-terminus matched C/G or T/G 

mismatch on the upstream primer, and a THF residue on the downstream primer opposite 

a template C or T. Ten microliter reaction mixture contained BER buffer (50 mM Tris-

HCl, pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mg/ml BSA, 0.01% Nonidet P-40, 5 mM 

MgCl2), 25 nM substrate, 5 mM Mg2+, 50 µM dNTPs, 2 mM ATP and the indicated 

amounts of BER enzymes. The reaction mixture was assembled on ice and incubated at 37 

oC for 15 min. Reactions were terminated by transferring to 95 oC for 5 min in stopping 

buffer containing 95% formamide and 10 mM EDTA. Substrates and products were 

separated by 15% urea-denaturing PAGE and detected by a Pharos FX Plus Imager. 

2.8 Sequencing of repair products resulting from BER of an abasic lesion adjacent to 

a T/G mismatch  

 The BER of an abasic lesion adjacent to a T/G mismatch was performed by 

incubating 50 nM purified APE1, 5 nM pol β, 50 nM FEN1, and 5 nM LIG I with 25 nM 

1 nt-gapped substrate with a 3’-terminus T/G mismatch on the upstream primer, and a 5’-

THF residue on the downstream primer. The BER reaction (20 µl) was reconstituted with 

the indicated concentrations of BER enzymes and substrates in BER reaction buffer (50 

mM Tris-HCl, pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mg/ml BSA, 0.01% Nonidet P-

40, 5 mM MgCl2) that contained 50 µM dNTPs, 5 mM Mg2+ and 2 mM ATP. The reaction 
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mixtures were assembled on ice, and incubated at 37°C for 15 min. Reactions were then 

terminated by transferring to 95°C for 10 min. To isolate the repair products, the template 

strand of the substrate was biotinylated at the 5’-end. The repair products were incubated 

with avidin agarose beads (Pierce-Thermo Scientific, Rockford, IL) in binding buffer that 

contained 0.1 M phosphate, 0.15 M NaCl, pH 7.2 and 1% Nonidet P-40 at 4°C for 2 h with 

rotation. The agarose beads were centrifuged at 5000 rpm for 1 min and were washed three 

times with binding buffer. The repaired strands were then separated from their template 

strands through incubation in 0.15 M NaOH for 15 min with rotation under room 

temperature, followed by centrifugation at 5000 rpm for 2 min. The repaired strands were 

then precipitated with ethanol and dissolved in TE buffer. The repair products were then 

subjected to PCR amplification with a forward primer (5’-GCA GTC CTC TAG TCG TAG 

TAG-3’) and a reverse primer (5’-GCA ATG AGT AAG TCT AGC TAC TAC-3’). The 

PCR amplification was performed under the following conditions: 95°C for 5 min, 1 cycle; 

95°C for 30 s, 55°C for 30 s and 72°C for 1 min, 35 cycles; 72°C for 30 min. The PCR 

products were then subjected to TA cloning using a TA cloning kit by following the 

manufacturer’s instructions (Thermo Fisher Scientific, Pittsburgh, PA). White colonies 

were picked for amplifying plasmids that contained the inserts (repair products). Plasmids 

were isolated with a Miniprep plasmid isolation kit (Promega, Madison, WI), dissolved in 

TE buffer (10 mM Tris-HCl, pH 7.5, and 1 mM EDTA), and subjected to DNA sequencing. 

Sequencing reactions were performed with the BigDye Terminator v3.1 Cycle Sequencing 

Kit (Thermo Fisher Scientific, Pittsburgh, PA) and were subjected to capillary 

electrophoresis (Florida International University DNA Sequencing Core Facility). 

Sequencing results were analyzed by MacVector 12.5.1 (MacVector, Apex, NC). 
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3. RESULTS 

3.1 TDG is completely inhibited by an abasic lesion 

 In CpG dinucleotide clusters, a 5mC can be converted to a T during active DNA 

demethylation, thereby resulting in a T/G mismatch (Morgan et al., 2004). On the other 

hand, guanines serve as hot spots of oxidative DNA damage, and guanines located in CpG 

dinucleotide clusters can be damaged leading to the production of a base lesion such as an 

abasic site adjacent to the 5mC. However, it remains unknown whether an abasic lesion 

can affect TDG removal of a T/G mismatch. To test this possibility, we initially examined 

the removal of the mismatched T from a T/G mismatch adjacent to an abasic site by TDG. 

A substrate containing a mismatched T/G adjacent to an abasic site analog, a THF residue, 

was used to mimic the intermediate with an abasic lesion generated after deamination of 

5mC. This would allow TDG to remove the 3’-mismatched T generating a native abasic 

site, which was subsequently broken by a high temperature at 95 °C into single-strand break 

intermediates as TDG products. The results showed that 50 nM TDG removed the 

mismatched T next to a normal G (Figure 2.1, lane 2). Its activity was significantly 

increased with increasing concentrations of TDG from 60 nM to 70 nM (Figure 2.1, lanes 

3-4). Surprisingly, the same concentrations of TDG (50 to 70 nM) failed to remove a 

mismatched T next to an abasic site (Figure 2.1, lanes 6-8). This indicated that TDG activity 

was completely inhibited by an abasic lesion adjacent to a T/G mismatch. This further 

suggests that the presence of an abasic lesion next to an intermediate of 5mC demethylation 

in CpG dinucleotide clusters can lead to accumulation of T/G mismatches. 
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3.2 APE1 can efficiently incise an abasic site that is adjacent to a T/G mismatch in the 

presence of TDG  

 To further determine if a 3’-mismatched T affects APE1 activity, APE1 5’-incision 

of an abasic site adjacent to a T/G mismatch was examined in the absence and presence of 

TDG. Substrates containing a 3’-mismatched T next to a THF residue opposite to a C or a 

T were used for measuring APE1 activity. The substrates mimic the intermediates 

	  
Figure 2.1 The activity of TDG in removing a T/G mismatch at a CpG dinucleotide is inhibited 
by an adjacent abasic lesion. An oligonucleotide substrate that contained random DNA sequence 
with a THF residue next to a 5’-T/G mismatch in a CpG dinucleotide was used to mimic a BER 
intermediate generated from removal of 8-oxoGby OGG1 and deamination of 5mC. The substrate 
that contained a G with a 5’-T/G mismatch was employed to mimic an intermediate generated by 
deamination of 5mC alone. TDG activity in removing a T/G mismatch was measured as described 
in “Materials and methods”. Substrates were32P-labeled at the 5’-end of the damaged strand. Lanes 
1 and 5 correspond to the substrate only. Lanes 2 and 6 correspond to reaction mixtures with 50 nM 
TDG. Lanes 3 and 7 correspond to reaction mixtures with 60 nM TDG. Lanes 4 and 8 correspond 
to reaction mixtures with 70 nM TDG.TDG cleavage products are indicated. Substrates are 
illustrated schematically above the gel.	  
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generated by deamination of the 5mC on the damaged strand alone or the 5mCs on both 

the damaged strand and template strand simultaneously. The results showed that 5 nM 

APE1 efficiently carried out 5’-incision of an abasic site in the absence and presence of 

TDG (Figure 2.2, lanes 2-6 and lanes 8-12).  

3.3 Pol β can efficiently extend the 3’-mismatched T of a T/G mismatched base pair  

 Since APE1 5’-incision of an abasic site next to a T/G mismatch resulted in the 1-

nt gap intermediate with a 3’-mismateched T, which would be subsequently passed to pol 

β for continuation of repair of the lesion, we then asked if pol β could still perform DNA 

synthesis in the presence of a 3’-mismatched T. To test this, we examined pol β gap-filling 

synthesis using the substrates with a 3’-matched C or a 3’-mismatched T adjacent to a pre-

incised THF residue or a 3’-T along with a template T opposite a preincised THF residue.  

We found that 1 nM, 5 nM and 10 nM pol β efficiently extended the 3’-matched C (Figure 

2.3, lanes 2.4). However, surprisingly, pol β also efficiently extended a 3’-mismatched T 

(Figure 2-3, lanes 6-8 and lanes 10-12), particularly at the concentrations of 5 nM and 10 

nM (Figure 2-3, lanes 7-8 and 11-12). For all substrates, pol β mainly inserted one 

nucleotide to extend the 3’-terminus T and fill in the gap. Interestingly, pol β extension of 

a 3’-mismatched T with a template T was much weaker than its synthesis with a template 

C, indicating that the polymerase had difficulty in extending a 3’-mismatched T when it 

incorporated A to base pair with a template T. The results further suggest that pol β can 

tolerate a 3’-terminus mismatched nucleotide, similar to DNA translesion synthesis 

polymerases such as pol κ and pol µ that exhibit mismatch tolerance (Wolfle et al., 2003; 

Zhang et al., 2001). Moreover, pol β extension of a 3’-terminus matched C, but not 3’-

mismatched T resulted in small amount of products with more than one nucleotide insertion 
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(Figure 2-3, lanes 3-5). This indicates that pol β performed strand-displacement synthesis 

to extend a 3’-matched C, however it failed to perform this synthesis when it extended a 

3’-mismatched T indicating that the mismatched base inhibited further pol β DNA 

synthesis. In conclusion, pol β tolerated and efficiently extended a 3’-mismatched T 

resulting from deamination of a 5mC in CpG dinucleotides during BER. 

 

	  
	  
Figure 2.2 APE1 can efficiently incise an abasic site that is adjacent to a T/G mismatch in 
a CpG dinucleotide in the presence of TDG. APE1 5’-incision of an abasic site that is adjacent 
to a 5’-T/G mismatch in a CpG dinucleotide was examined under the conditions described in 
“Materials and methods”. Substrates were 32P-labeled at the 5’-end of the damaged strand. Lanes 
1 and 7 correspond to the substrate only. Lanes 2 and 8 correspond to reaction mixtures with 5 
nM APE1 alone. Lanes3 and 9 correspond to reaction mixtures with 5 nM APE1 in the presence 
of 10 nM TDG. Lanes 4 and 10 correspond to reaction mixtures with 5 nM APE1 in the presence 
of25 nM TDG. Lanes 5 and 11 correspond to reaction mixtures with 5 nM APE1 in the presence 
of 50 nM TDG. Lanes 6 and 12 correspond to reaction mixtures with 5 nM APE1in the presence 
of 75 nM TDG. Substrates and APE1 cleavage products are indicated. The substrates are 
illustrated schematically above the gel. 
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3.4 APE1 3’-5’ exonulcease activity efficiently removes a 3’-mismatched T 

 It has been reported that APE1 3’-5’ exonuclease activity can remove mismatched 

nucleotides (Chou and Cheng, 2002; Cistulli et al., 2004; Liu et al., 2007b). Thus, we 

further hypothesized that APE1 might also remove the 3’-mismatched T from a T/G 

mismatch to increase the fidelity of pol β in a CpG dinucleotide. To test the hypothesis, we 

examined APE1 3’-5’ exonuclease activity on the substrate (25 nM) with a 3’-matched C 

or 3’-mismatched T on the upstream strand and a 5’-THF residue on the downstream strand 

	  
Figure 2.3 Pol β extends a 3’-terminus mismatched T at a CpG dinucleotide. Polβ DNA 
synthesis in the context of a T/G mismatch was examined as described in “Materials and 
methods”. Substrates were designed to mimic a BER intermediate containing a 3’-terminus 
matched C, or 3’-terminus mismatched T in a CpG dinucleotide with an abasic site preincised 
by APE1 opposite to a C or T on the template strand. Substrates were32P-labeled at the 5’-end 
of the damaged strand. Lanes 1, 5, and 9 correspond to the substrate only. Lanes 2, 6, and 10 
correspond to reaction mixtures with 1 nM polβ. Lanes 3, 7, and 11 correspond to reaction 
mixtures with 5 nM polβ. Lanes 4, 8, and 12 represent reaction mixtures with 10 nM polβ. 
Substrates and pol β DNA synthesis products are indicated. Substrates are illustrated 
schematically above the gel. 
	  



 69	  

with a template C or T opposite an abasic site. We found that APE1 (5 nM, 10 nM, 25 nM 

and 50 nM) exhibited poor cleavage activity to remove the 3’-matched C (Figure 2.4, lanes 

2-5), indicating inefficient removal of a 3’-matched nucleotide by APE1 3’-5’ exonuclease 

activity. However, APE1 removed the 3’-mismatched T much more efficiently than it 

removed a 3’-matched C (Figure 2.4, lanes 12-15 and 7-10). For all the substrates with a 

T/G mismatch, APE1 mainly removed one nucleotide from the upstream primer containing 

a 3’-mismatched T. Thus, APE1 3’-5’ exonuclease efficiently removed the 3’-mismatched 

T. Interestingly, we found that APE1 3’-5’ exonuclease exhibited much weaker activity in 

removing the 3’-mismatched T located next to a template T than in removing the 

mismatched nucleotide next to a C on the template strand (Figure 2.4, lanes 7-10), 

indicating that simultaneous demethylation of 5mCs on both the damaged and template 

strands also decreased APE1 3’-5’ exonuclease activity.  

3.5 FEN1 cleaves a sugar phosphate flap adjacent to a 3’-T/G mismatch 

 To further determine whether a 3'-terminus mismatched T will have any effect on 

FEN1 cleavage, we characterized FEN1 cleavage activity with the substrates (25 nM) 

containing an upstream 3’-C or 3’-T and a downstream 5’-THF residue and a template C 

or T in the absence and presence of pol β. We found that in the absence of pol β, FEN1 (5 

nM, 10 nM and 25 nM) exhibited poor cleavage activity in removing the 5’-THF flap 

(Figure 2.5, lanes 2-4, 9-11 and 16-18), indicating inefficient removal of a 5’-THF flap 

adjacent to a one-nucleotide gap by FEN1. In the presence of pol β DNA synthesis, FEN1 

cleavage of the substrate with a 3’-matched C resulted in an increased amount of smaller 

products resulting from FEN1 cleavage of a longer flap (Figure 2.5, lanes 5-7), indicating 

that pol β strand-displacement synthesis created a longer flap for FEN1 cleavage. 
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 However, the presence of pol β DNA synthesis did not significantly improve FEN1 

flap cleavage on the substrate with a 3'-mismatched T (Figure 2.5, lanes 12-14 and 19-21). 

This indicated that FEN1 cleavage of a flap next to a 3’-mismatched T was inhibited even 

in the presence of pol β. This appeared to result from the inhibition of pol β strand-

displacement synthesis by a 3’-T/G mismatch (Figure 2.3). 

3.6 The efficiency of pol β extension of a 3’-mismatched T and APE1 3’-5’ exonuclease 

to remove the 3’-mismatched T 

 Since our previous results indicate that removal of a 3’-mismatched T by APE1 is 

critical for improving pol β fidelity, we then asked if APE1 could remove a 3’-mismatch T 

before pol β could extend the mismatched nucleotide during BER. We tested this by 

examining the efficiency of pol β DNA synthesis at 5 nM and that of APE1 3'-5' 

exonuclease activity at 5 nM, 50 nM and 100 nM using the substrate containing a 3’-

mismatched T and a 5’-THF residue with a template C opposite the THF residue. The 

enzymatic reaction products were measured at different time intervals ranging from 0 min 

to 30 min. The percentage of products was plotted against time (Figure 2.6). The results 

revealed that 5 nM pol β extended a 3'-mismatched T much more efficiently than APE1 3’-

5’ exonuclease removed the mismatched nucleotide at the same concentration. However, 

the 3’-5’ exonuclease activity of APE1 at 50 nM and 100 nM removed the mismatched T 

much more efficiently than 5 nM pol β extended the mismatched nucleotide (Figure 2.6). 

This indicated that a high concentration of APE1 was sufficient to combat pol β extension 

of a mismatched nucleotide. Since APE1 is much more abundant than pol β in mammalian 

cells, the results further suggest that APE1 can remove a mismatched T before it is extended 

by pol β in cells. 
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3.7 BER can occur in the presence of 3’-T/G mismatch 

 

 To examine whether a 3’ T/G mismatch can ultimately result in the production of 

BER products, we reconstituted BER by incubating the substrates without or with a T/G 

mismatch with APE1, pol β, FEN1 and LIG I. We found that a significant amount of repair 

products were produced during BER with a 3'-mismatched T in the absence of APE1 

	  
Figure 2.4 APE1 3’–5’exonuclease activity removes a 3’-terminus mismatched T in a 
CpG dinucleotide. APE1 3’–5’ exonuclease activity in removing a 3’-mismatched T in a 
CpG dinucleotide was measured as described in “Materials and methods”. Substrates were 
32P-labeled at the 5’-end of the damaged strand. Lanes 1, 6 and11 correspond to the substrate 
only. Lanes 2, 7 and 12 correspond to reaction mixtures with 5 nM APE1. Lanes 3, 8 and 13 
correspond to reaction mixtures with 10 nM APE1. Lanes 4, 9 and 14 correspond to reaction 
mixtures with 25 nM APE1. Lanes 5, 10 and 15 correspond to reaction mixtures with 50 nM 
APE1. Substrates and APE1 cleavage products are indicated. Substrates are illustrated 
schematically above the gel. The quantification of the APE1 3’–5’ exonuclease cleavage 
products are shown below the gels. 
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(Figure 2.7A, lanes 6 and 10) although the amount of products was less than those formed 

from the substrate with a 3'-matched C (Figure 2.7A, lane 2). This indicated that in the 

absence of APE1, pol β extended a 3'-mismatched T resulting in repair product with a T/G 

mismatch. We found that presence of high concentrations of APE1 (50 nM and 100 nM) 

significantly stimulated the production of repair products (Figure 2.7A, lanes 7-8) during 

BER with the substrate containing a 3'-mismatched T and a template C. However, this 

effect was not evident with the substrate containing a 3'-mismatched T and a template T 

(Figure 2.7A, lanes 11-12). This indicated that BER was accomplished through pol β 

	  
Figure 2.5 FEN1 flap cleavage in the presence of a T/G mismatch in a CpG dinucleotide. 
FEN1 flap cleavage activity in the presence of a T/G mismatch in a CpG dinucleotide was 
examined as described in “Materials and methods”. Substrates were 32P-labeled at the 3’-end of 
the damaged strand. Lanes 1, 8 and 15 correspond to the substrate only. Lanes 2, 9 and 16 
correspond to reaction mixtures with 5 nM FEN1. Lanes 3, 10 and 17 correspond to reaction 
mixtures with 10 nM FEN1. Lanes 4, 11 and18 correspond to reaction mixtures with 25 nM 
FEN1. Lanes 5, 12 and 19 correspond to reaction mixtures that contained 5 nM FEN1 in the 
presence of 5 nM pol β. Lanes 6, 13 and 20 represent reaction mixtures that contained 10 nM 
FEN1 in the presence of 5 nM pol β. Lanes 7, 14 and 21 represent reaction mixtures that 
contained 25 nM FEN1in the presence of 5 nM pol β. Substrates and FEN1 cleavage products 
are indicated. Substrates are illustrated schematically above the gel. 
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tolerance of a 3'-mismatched T suggesting that this can further result in a C to T mutation, 

and APE1 may reduce the production of the mutation.  

3.8 APE1 significantly reduces C to T mutations resulting from a T/G mismatch 

during BER 

 To further confirm whether APE1 can reduce mutations resulting from extension 

of a 3’-mismatched T by pol β during BER, we sequenced the repair products generated 

from reconstituted BER with the substrates containing a 3’-mismatched T adjacent to a 

THF residue opposite a template C or T in the absence and presence of APE1. The results 

showed that in the absence of APE1, all repair products (100%) contained a mismatched T 

(Figure 2.7B). This indicated that the mismatched T was fully extended by pol β during 

BER. However, in the presence of 50 nM APE1, only 7.7%-13% of the repair products 

contained a mismatched T, and 87%-92.3% of the mismatched Ts were converted into 

matched Cs (Figure 2.7B). This indicated that APE1 3’-5’ exonuclease activity efficiently 

removed mismatched Ts allowing pol β to insert a C to base pair with a template G during 

BER. Taken together, our results indicated that APE1 3’-5’ exonuclease significantly 

reduced T/G mismatches, thereby preventing mutations in CpG dinucleotides during BER.  
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4. DISCUSSION 

 In this study, for the first time, we explored the role of BER in maintaining the 

integrity of CpG islands by removing a mismatched base when DNA base damage occurs 

next to a T/G mismatch resulting from deamination of a 5mC in a CpG dinucleotide. Since 

CpGs are susceptible to oxidative DNA damage, a DNA base lesion such as 8-oxoG or an 

abasic site can be readily generated next to a T/G mismatch. In this scenario, both the 

mismatched T and base lesion need to be resolved by the BER pathway. Thus an important 

	  
Figure 2.6 The activities of pol β DNA synthesis and APE1 3’–5’ exonuclease in the context 
of a T/G mismatch in a CpG dinucleotide. The activities of pol β and APE1 in extending or 
removing a 3’-terminus mismatched T were determined at various time intervals (1, 2, 5, 10, 15 
and 30 min) with a substrate containing a 3’-terminus mismatched T in a CpG dinucleotide with 
a THF residue preincised by APE1 as described in “Materials and methods”. The amount of 
products resulting from pol βDNA synthesis or APE1 3’–5’ exonuclease activity were 
quantified by using Quantity One Software (Bio-Rad Laboratories, Hercules, CA). The 
percentage of products was calculated as the amount of products over total amount of substrates 
and was plotted against time. 
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issue is how BER, in the context of the two different types of base lesions, may be initiated. 

	  
	  

	  
	  
Figure 2.7 BER reconstitution in the context of a T/G mismatch in a CpG dinucleotide. 
(A) BER reconstitution in the context of a T/G mismatch was performed as described in 
“Materials and Methods”. Substrates, were 32P-labeled at the 5’-end of the damaged strand. 
Lanes 1, 5 and 9 correspond to substrate only. Lanes 2, 6 and 10 correspond to reaction 
mixtures that contained 5 nM pol β, 50 nM FEN1 and 5 nM LIG I. Lanes 3, 7 and 11 
correspond to reaction mixtures that contained 50 nM APE1, 5 nM pol β, 50 nM FEN1 and 5 
nM LIG I. Lanes 4, 8 and 12 correspond to reaction mixtures that contained 100 nM APE1, 5 
nM pol β, 50 nM FEN1 and 5 nM LIGI. Substrates and repair products are indicated. 
Substrates are illustrated schematically above the gel. (B) DNA sequencing results of repair 
products resulting from BER of a T/G mismatch and abasic lesion in a CpG dinucleotide. 
Repair products were separated from the template strand with avidin beads. Subsequently, 
repair products were amplified by PCR and cloned into a TA vector and subjected to DNA 
sequencing. The percentage of repair products that contained a mismatched T or matched C 
from the different substrates are shown.	  
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It has been shown that OGG1 removes an 8-oxoG next to a 5’-T/G mismatch about 3.5-

fold faster than TDG removes the mismatched T (Sassa et al., 2014). This indicates that 

the 8-oxoG is usually removed by OGG1 prior to the removal of the mismatched T by TDG. 

This results in an abasic site next to the 5’-T/G mismatch. Surprisingly, we found that the 

activity of TDG of removing the mismatched T adjacent to an abasic site was completely 

inhibited by the abasic lesion (Figure 2.1, lanes 6-8) indicating that an abasic lesion next 

to the mismatched nucleotide completely suppressed the removal of the mismatched T by 

TDG. However, we showed that APE1 incised an abasic lesion efficiently in the presence 

of the mismatched T (Figure 2.2, lanes 3-6 and lanes 9-12) leading to the production of a 

single-strand break intermediate with the 3'-terminus mismatched T. We found that pol β 

efficiently extended the 3’-mismatched T (Figure 2.3, lanes 6-8 and lanes 10-12), thereby 

resulting in maintenance of the mismatched base in the repair products (Figure 2.7A, lanes 

6-8 and lanes 10-12). This subsequently led to a C to T transition mutation in the repair 

products (Figure 2.7B). However, the pol β-mediated mutagenic effect was significantly 

reduced (Figure 2.7B) through the removal of the 3’-mismatched T by APE1 3’-5’ 

exonuclease activity (Figure 2.4, lanes 7-10 and lanes 12-15 and Figure 6). Our results 

support a model whereby a base lesion such as an abasic lesion occurs adjacent to a T/G 

mismatched basepair in a CpG dinucleotide during DNA demethylation. Removal of the 

mismatched T by TDG is completely inhibited by the abasic lesion. This allows APE1 to 

incise the abasic site at its 5'-end to initiate BER. This subsequently  
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leads to a 1nt gapped DNA with a 3'-mismatched T that can be subjected to two different 

subpathways (Figure 2.8). If the 3'-mismatched T is captured by pol β before it is removed 

	  
	  
Figure 2.8 APE1 3’–5’ exonuclease combats the extension of a T/G mismatch by pol β and 
C to T mutations in CpGs during BER. During active DNA demethylation of 5mC in CpG 
dinucleotides, the 5mC is deaminated to T thereby leading to production of a T/G mismatch, 
while the adjacent G can also be damaged by oxidative stress resulting in an abasic lesion. TDG 
activity in removing the T/G mismatch is completely inhibited by the abasic lesion. This allows 
the accumulation of T/G mismatches that are adjacent to abasic lesions. APE1 can efficiently 
incise the resulting abasic site, leading to a 1nt gap with a 3’-terminus mismatched T. Pol β can 
extend the mismatched T to create a short flap with a sugar phosphate. Subsequently, 
FEN1removes the flap, generating a nick for ligation by DNA ligase I. This leads to a C to T 
transition mutation (Sub-pathway 1). In a scenario where the 3’-terminus mismatched T is 
efficiently removed by APE1 3’–5’ exonuclease prior to polβ extension of the mismatch 
nucleotide, pol β incorporates a C to base pair with a template G. This prevents a C to T mutation 
(Sub-pathway 2).	  
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by APE1 3’-5’ exonuclease activity, it is extended by pol β. This then results in the 

sustainment of the 3'-mismatched T during BER, thereby causing a C to T transition 

mutation (Figure 2.8, subpathway 1). However, if the 3'-mismatched T is removed by 

APE1 3'-5' exonuclease activity before it is extended by pol β, pol β fills in the gap by 

incorporating a correct nucleotide to accomplish BER (Figure 2.8, subpathway 2). In this 

scenario, APE1 3'-5' exonuclease activity prevents mutation during BER in the context of 

a T/G mismtach DNA demethylation intermediate.   

 Here, we provided the first evidence that APE1 3’-5’ exonuclease can prevent C to 

T mutations during BER of an abasic lesion adjacent to a T/G mismatch in a CpG 

dinucleotide, thereby maintaining the integrity of CpGs. APE1 3’-5’ exonuclease activity 

was initially reported to be able to remove a 3’-mismatched nucleotide in DNA (Chou and 

Cheng, 2002). It has been found that the efficiency of the 3’-5’ exonuclease in removing a 

mismatched nucleotide is 160-fold higher than that in removing a matched nucleotide 

(Chou and Cheng, 2002). Thus, it has been proposed that APE1 3’-5’ exonuclease serves 

as a proofreading enzyme for correcting mismatched nucleotides incorporated by pol β. 

This is further suggested by a previous finding showing that APE1 forms a complex with 

pol β on a nicked or 1 nt gapped DNA with a deoxyribonucleotide phosphate (dRP) flap 

(Liu et al., 2007b). Although the APE1-pol β-DNA ternary complex failed to significantly 

stimulate APE1 3’-5’ exonuclease activity on the nicked DNA (Liu et al., 2007b), it is 

possible that the complex may facilitate APE1 3’-5’ exonuclease activity at a gapped DNA 

with a sugar phosphate. Moreover, our results showed that high concentrations of APE1 

removed the 3’-mismatched T more efficiently than pol β extension of the 3’-mismatched 

nucleotide. Thus, it is conceivable that a relatively high concentration of APE1 in 
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mammalian cells exhibits a robust 3’-5’ exonuclease activity that can cooperate with pol β 

to remove a T/G mismatch in CpGs and ensure that the polymerase inserts a correct 

nucleotide. Thus, sufficient amounts of APE1 in mammalian cells should lead to 

prevention of C to T transition mutations resulting from DNA demethylation during BER, 

thereby sustaining epigenome stability.   

Our results showed that pol β efficiently extended a mismatched T basepaired with a 

template G that is adjacent to a single-nucleotide gap. This is consistent with the findings 

from a study from the Wilson group (Sassa et al., 2012). A study from the Sweasy group 

has shown that pol β exhibits low fidelity in gap-filling and strand displacement synthesis 

(Shah et al., 2003). Pol β can extend a T basepaired with a G adjacent to a 6 nt gap, albeit 

with a low efficiency compared with extension of a matched C (Shah et al., 2003). All these 

findings indicate that pol β can tolerate a 3’-terminus mismatch next to a single-nucleotide 

gap. A translesion synthesis polymerase, pol κ, has been found to extend a 3’-mismatched 

T via a primer-template misalignment or direct extension (Wolfle et al., 2003). However, 

our results showed that pol β could extend a mismatched T only by direct extension, 

suggesting that pol β interacted with the 3’-mismatched T and the template strand in a more 

rigid manner than pol κ.    

 Our study has also provided new insight into a mechanism underlying mutations in 

CGIs that can be readily generated through BER and BER-mediated DNA demethylation. 

We have demonstrated that in the scenario where 3’-mismatched T is adjacent to an abasic 

site in a CpG dinucleotide, the mismatched T was efficiently removed by APE1 before pol 

β extended it (Figure 2.7B), and a C to T mutation was prevented (Figure 2.7B). However, 

in the scenario where a T occurs at the template strand and is opposite an abasic site 
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(Figures 2.2-2.5 and Figure 2.7), the T could not be removed by APE1 3’-5’ exonuclease. 

Instead, pol β filled in the gap by inserting an A to basepair with the template T leading to 

a C to T transition. Thus, in this scenario, C to T mutations cannot be prevented by APE1 

3’-5’ exonuclease. Our discoveries provide new mechanistic evidence underlying the high 

frequency of mutations at CGIs. In conclusion, our study demonstrates that APE1 

exonuclease activity functions as a proofreader for pol β to sustain the integrity of CGIs 

during BER and DNA demethylation by removing a 3'-terminus T/G mismatch. 
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ENVIRONMENTALLY-INDUCED OXIDATIVE DNA DAMAGE DISRUPTS DNA 

METHYLATION PATTERN IN HUMAN BREAST CANCER 1 (BRCA1) GENE VIA 

BASE EXCISION REPAIR 
 

ABSTRACT 

 Mutations of breast cancer 1 (BRCA1) gene have been shown to play a crucial role 

in breast cancer development. Yet, downregulation of BRCA1 expression has commonly 

been observed in breast cancer cells, and this may result from disruption of DNA 

methylation pattern in the promoter region of the gene. We examined the effects of 

environmentally induced oxidative DNA damage on the DNA methylation pattern of 

BRCA1 gene with bisulfite DNA sequencing. We discovered that environmental oxidative 

DNA damaging agents, bromate and chromate disrupt DNA methylation pattern at CpG 

dinucleotides in the BRCA1 gene that range from -189 to +27 in human cells. We found 

that bromate and chromate resulted in the demethylation of the 5-methylcytosine (5mC) in 

the CpGs at the sites of -189, -134, -29, -19, +16, +19. Surprisingly, we found that the 

DNA damaging agents created a series of new DNA methylation sites at the CpGs located 

at the sites of -80, -55, +8, +27 in BRCA1 gene. We showed that bromate and chromate-

induced demethylation of 5mC at the CpGs was mediated through deletion of cytosines 

and base substitutions via BER, and this was accomplished by nucleotide misinsertion of 

pol β on the CpGs. Moreover, we identified an interaction between DNA polymerase β 

with DNA methyltransferase 1 in cells. Our results indicate that bromate and chromate alter 

DNA methylation pattern in the promoter and transcribed region of BRCA1 gene via 

brandiethomas
Typewritten Text
CHAPTER 3
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oxidative DNA damage. We further suggest that BER crosstalks with DNA 

methyltransferases to induce additional DNA methylation sites.  

1.  INTRODUCTION 

      Methylation of DNA is associated with important biological functions including 

silencing of retrovirus, gene expression, genomic imprinting, X-chromosome inactivation, 

embryonic development, genomic instability, cancer development, among others (Bird, 

1992, 2002; Ehrlich, 2005; Kass et al., 1997; Smith and Meissner, 2013). In mammalian 

cells, 60~90% of cytosines in CpG dinucleotide clusters are methylated at its 5-carbon 

(Ehrlich et al., 1982). Unmethylated CpG dinucleotide clusters usually locate at the 

promoter (the upstream) regions of the genes in a tissue-specific manner. A normal DNA 

methylation pattern at a specific gene is maintained upon the balance between DNA 

methylation and demethylation, and the underlying mechanisms remain to be elucidated 

(Niehrs, 2009). While DNA methylation can be modulated by the activities of DNA 

methylation transferases and supplies of the methylation cofactor S-adenomethionine 

(SAM), in general, DNA demethylation is mediated by both passive and active pathways 

in mammalian cells (Gong and Zhu, 2011) and can be modulated by the inhibition of the 

activities of methyltransferases as well as altered activities of BER enzymes and their 

coordination. Since Cs and Gs in CpGs form hotspots of oxidative DNA base damage and 

mutations (Lutsenko and Bhagwat, 1999), DNA base lesions can directly lead to 

deamination of 5mCs resulting in loss of the methylated Cs through BER leading to 

substitution of a C with other nucleotides and mutations. In addition, a base lesion that 

occurs on CpGs and the adjacent regions may also affect the activity of DNMTs and even 
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inhibit their activities. All these can lead to passive loss of a 5mC, thereby disrupting a 

normal DNA methylation pattern. 	  

 The Environmental toxicant Chromium, Cr (VI) has been reported to be associated 

with lung cancer (Zhou et al., 2009). The Cr (VI) can also alter the DNA methylation 

pattern and histone modifications, thereby activating or suppressing gene expression. This 

may lead to carcinogenesis (Salnikow and Zhitkovich, 2008; Sun et al., 2009; Zhou et al., 

2009). Bromate, on the other hand, is an environmental pollutant that can be generated 

during water disinfection and beverage fermentation (Ballmaier and Epe, 2006). Bromate 

can induce oxidative DNA damage such as 8-oxoGs (Kawanishi and Murata, 2006) at 

CpGs that may in turn inhibit the activities of DNMTs causing loss of 5mCs. Since BER 

mediates active DNA demethylation while it repairs DNA base lesions at CpGs 

simultaneously, BER may result in mutations via nucleotide misinsertions by pol b during 

these processes because of a low fidelity of DNA synthesis of the DNA polymerase (Jiang 

et al., 2015). This can also lead to loss of 5mCs and passive DNA demethylation. Thus, 

DNA base lesions can modulate DNA methylation patterns through different mechanisms. 

 As one of the most prevalent cancers among American women, breast cancer has 

been shown to be associated with mutations in the tumor suppressor genes, BRCA1 and 

BRCA2 (Bosviel et al., 2012; Miki et al., 1994; Wooster et al., 1995). However, recent 

studies have demonstrated that more than 90% of breast cancer cases do not have a 

BRCA1/2 mutation (sporadic breast cancer). However, downregulation of BRCA1 gene 

expression has been found to be associated with sporadic tumor development (Bosviel et 

al., 2012; Dobrovic and Simpfendorfer, 1997; Esteller et al., 2000). It appears that the DNA 

hypermethylation at the promoter of the BRCA1 gene may play a critical role for 
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suppressing of the gene expression in sporadic breast cancer (Esteller et al., 2000; Herman 

and Baylin, 2003; Jones and Baylin, 2007; Matros et al., 2005; Rice et al., 1998; Rice et 

al., 2000; Wei et al., 2005). On the basis of these studies, we hypothesized that the 

environmental toxicants, bromate and chromate, can cause DNA base lesions in the 

BRCA1 promoter as well as the encoding region of BRCA1 protein, and this then initiates 

BER that may subsequently modulate DNA methylation pattern at the BRCA1 gene. This 

may then result in downregulation of BRCA1 gene expression, leading to development of 

breast cancer. To test this hypothesis, in this study, we examined the effects of bromate 

and chromate on the DNA methylation pattern of BRCA1 gene in human embryonic kidney 

293 (HEK293) cells treated with different concentrations of the environmental toxicants 

using bisulfite DNA sequencing. We found that bromate and chromate not only altered the 

DNA methylation pattern at the BRCA1 gene, but also caused mutations in the gene. We 

found that bromate and chromate resulted in the loss of 5mCs as well as C to G and C to A 

mutations at several CpGs of the BRCA1 gene. We further demonstrated that the mutations 

were caused by pol β nucleotide misinsertion during its synthesis in bypassing a base 

lesion, 8-oxoG located at the template strand. This was further supported by the fact that 

pol b was recruited to DNA damaging sites induced by bromate and chromate in HEK293 

cells. Surprisingly, we found that bromate and chromate also induced additional DNA 

methylation sites at the BRCA1 gene, and pol β interacted with DNMT1. This suggests 

that pol β recruited DNMT1 to the sites that surround a DNA base lesion. This may 

stimulate DNA methylation by DNMT1 at the sites adjacent to the damaging sites. Our 

study provides new insights into the molecular mechanisms underlying oxidative DNA 
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damage induced alterations of DNA methylation at BRCA1 gene and its effects on 

epigenetic changes of the BRCA1 gene and its expression.  

 
2. MATERIALS AND METHODS 
 
2.1 Materials 

      Human embryonic kidney (HEK) cells were purchased from Life Technologies 

(Carlsbad, CA, USA). The fetus bovine serum (FBS), RPMI 1640 and Dulbecco’s 

Modified Eagle’s Medium (DMEM) cell culture medium were purchased from Thermo 

Fisher Scientific (Waltham, MA, USA). The genomic DNA isolation kit was purchased 

from Promega (Agora, WI, USA). The Lightning Bisulfite Conversion kit was purchased 

from ZYMO Research (Irvine, CA, USA). The Dream Taq polymerase master mix and the 

Original TA Cloning kit were purchased from Invitrogen (Carlsbad, CA, USA). The Rapid 

DNA Ligation kit was purchased from Thermo Scientific (Carlsbad, CA, USA), and the 

BigDye kit for sequencing was purchased from Applied Biosystems (Austin, TX, USA). 

       The DNA oligonucleotides containing an 8-oxoguanine were synthesized by the 

Midland Certified Reagent Company Inc. (Midland, TX, USA). All other oligonucleotides 

were synthesized by Integrated DNA Technologies (IDT, Coralville, IA, USA). 

Deoxynucleoside 5’-triphosphates (dNTPs) were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). Radionuleotides, [γ-32P] ATP (6000 mCi/mmol) and cordycepin 5’-

triphosphate 3’-[α-32P] (5000 mCi/mmol) were purchased from MP Biomedicals (Santa 

Ana, CA, USA). Micro Bio-Spin 6 chromatography columns were from Bio-Rad 

(Hercules, CA, USA). All other standard chemical reagents were purchased from Thermo 

Fisher Scientific (Pittsburgh, PA, USA) and Sigma-Aldrich (St. Louis, MO, USA). Pol β 

were purified by FPLC as described previously (Liu et al., 2005). The pol β expression 
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plasmid was a generous gift from Dr. Samuel H. Wilson at the National Institute of 

Environmental Health Sciences (NIEHS)/National Institutes of Health, Research Triangle 

Park, North Carolina. 

       Polyclonal anti-pol b primary antibody (ab26343), monoclonal anti-pol b primary 

antibody (ab175197), polyclonal anti-DNMT1 primary antibody (ab19905), and 

monoclonal anti-DNMT1 primary antibody (ab188453) were purchased from Abcam 

(Cambridge, MA, USA). Pierce protease inhibitor tablets (B2162578) and protein A 

agarose beads were purchased from Thermo Scientific (Waltham, MA, USA). The LI-COR 

C-DiGit Chemiluminescence Western Blot Scanner (Model: 3600) for western blot was 

purchased from LI-COR Biotechnology (Lincoln, NE, USA) 

2.2 Oligonucleotide substrates 

 Substrates containing a 76-nt template strand with an 8-oxoG or THF at the 39th 

nucleotide counted from the 5’-end were designed to mimic a DNA base lesion generated 

after the genome is damaged oxidative DNA damaging agent. Substrates mimicking the 

Table 3.1 Sequences of the oligonucleotide substrates 
Downstream 
strand 

nt Seq. 5’-3’ 

D1 37 pGAGCTCACGCCGCGCAGTCGCAGTTTTAATTTATCTG 
D2 37 pFGAGCTCACGCCGCGCAGTCGCAGTTTTAATTTATCTG 
Template 
strand 

  

T1 76 CAGATAAATTAAAACTGCGACTGCGCGGCGTGAGCTCG 
CTGAGACTTCCTGGACGGGGGACAGGCTGTGGGGTTTC 

T2 76 CAGATAAATTAAAACTGCGACTGCGCGGCGTGAGCTC(8-
oxoG) 
CTGAGACTTCCTGGACGGGGGACAGGCTGTGGGGTTTC 

Upstream 
strand 

  

U1 38 GAAACCCCACAGCCTGTCCCCCGTCCAGGAAGTCTCAG 
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intermediates with a 1-nt gap opposite a template 8-oxoG formed during DNA lagging 

strand synthesis and BER, were constructed by annealing the 38-nt upstream primer and a 

37-nt downstream primer with a 5’-phosphate or 5’-THF residue with the template strand 

containing a G or 8-oxoG at a molar ratio of 1:2:2. Substrates were radiolabeled at the 5’-

end of the upstream primers for measuring the activities of different enzymes. The 

sequences of the oligonucleotide substrates are listed in Table 3.1. 

2.3 Treatment of HEK293 cells by bromate and chromate 

      The HEK293 cells were grown in DMEM with 10% FBS to near confluence. Cells 

were then exposed to 5 mM bromate or 10 µM of chromate for 24 hours. Cells were washed 

by PBS twice and supplied with the whole medium (10% FBS) for additional 24 to 48 

hours for recovery and DNA damage repair.  Cells were then harvested, and the genomic 

DNA was isolated according to the protocol provided by the Promega genomic DNA 

isolation kit. Genomic DNA was then subject to bisulfite conversion with Bisulfite 

Lightning Conversion kit purchased from ZYMO Research. The DNA fragments in 

BRCA1 gene were amplified. The bisulfite PCR reactions were set up by using the primers 

shown in Table 3.2. 

Table 3.2 Primers for bisulfite sequencing 
Sense 
strand 

nt Seq. 5’-3’ 

Forward 36 GAGGCTAGAGGGCAGGCACTTTATGGCAAACTCAGG 
Reverse 25 GTCCCCCGTCCAGGAAGTCTCAGCG 
Anti-sense 
strand 

  

Forward 38 TTTTAGAATAYGAAATTAAGGTATAATTAGAGGATGGG 
Reverse 37 CAATAAACCRCAACTAAAAAAATAAAAACTAAAAAAC 
Y: either C/T; R: either G/A 
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2.4 Recruitment of pol β to DNA damage sites  

         The HEK293 cells were grown in DMEM with 10% FBS to 70~80% confluence. 

Cells were then transfected with a plasmid that expresses a green fluorescence protein 

tagged human pol β (GFP-hPol β) 24 hours. Cells were then seeded in a chamber slide and 

grown for 24 hours. Cells were subsequently treated with 5 mM bromate or 10 µM 

chromate for 1 h and fixed with 4% paraformaldehyde. Cells were washed twice by ice 

cold PBS and stained by mounting media containing 1% of DAPI and were imaged with 

the Olympus Laser Confocal Microscope (FIU Confocal Microscopy Facilities).  

2.5 Pol β DNA synthesis in bypassing an 8-oxoG  

      In vitro pol β DNA synthesis in bypassing an 8-oxoG on the template strand that is 

opposite the C at -166 nt of the BRCA1 promoter was performed by incubating purified 

human pol β with the substrates bearing aG or an 8-oxoG opposite the C at -166 nt strand 

that is complementary to the strand ranging from -189 to -80 nt of the BRCA1 promoter. 

Various concentrations of pol β and substrates were incubated in BER reaction buffer with 

5 mM MgCl2, and 50 µM dNTPs in 10-µL reaction mixture. Reaction mixtures were 

incubated at 37oC for 30 min. Reactions were terminated with 2x stopping buffer that 

contains 95% formamide and 10 mM EDTA followed by incubation at 95oC for 5 min. All 

substrates were 32P-labeled at the 5’-end of the upstream strand. Substrates and products 

were separated with 15% or 18% urea-denaturing PAGE gel and were detected with the 

Pharos FX Plus PhosphorImager (Bio-Rad, Hercules, CA, USA) 

2.6 Pol β nucleotide misinsertion	  

       In vitro pol β misinsertion activity was performed by incubating various 

concentrations of pol β with the substrates containing a normal G or 8-oxoG on the 
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template. The 10-µL reaction was assembled with the substrates and different 

concentrations of pol β in BER reaction buffer with 5 mM MgCl2 and 50 µM dA or dT or 

dG or dC, respectively. Reaction mixtures were assembled on ice and incubated at 37oC 

for 30 min. Reactions were terminated by addition of 2 × stopping buffer containing 95% 

formamide and 10 mM EDTA and incubation at 95% for 5 min. Substrates and products 

were then separated by 15% or 18% urea-denaturing PAGE gel and detected with Pharos 

FX Plus PhosphorImager. All substrates were 32P labeled at the 5’-end of the upstream 

primers. 

2.7 Pol β-DNMT1 interaction detected by co-immunoprecipitation (Co-IP) to detect 

in HEK293 cells after bromate/chromate exposure 

       The interaction been DNMT1 and pol β was examined by employing Co-IP assay. 

The HEK293 cells were treated with 10 µM chromate for 24 hours with or without 24 hours 

of recovery.  Cells were harvested in cold PBS buffer, then resuspended in cold lysis buffer 

with 0.1% NP40 with protease inhibitors (Thermo Scientific, Waltham, MA, USA). 20 µL 

of cell lysate was taken and set aside as an input. 800 ng of cell lysate was precleared with 

20 µL of protein A agarose beads (Thermo Scientific, Waltham, MA, USA) (50% protein 

A agarose at a ratio of 100 µL for a 1 mL lysate) for 30 min at 4oC. The amount of total 

protein of cell lysate was determined with Bradford assay. Cell lysate was then diluted with 

PBS to the total protein of 5 µg/µL. Seventy five microliters cell lysate was incubated with 

3 µL of polyclonal anti-pol b primary antibody (Abcam, Cat. No. ab26343, Cambridge, 

MA) at 4 oC overnight. Cell lysate was then incubated with 100 µL 50% protein A agarose 

beads at 4oC with rotation for 2 hours and subject to centrifugation at 14,000 g for 1 min 
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at 4oC for agarose bead precipitation. The beads were washed 3 times with wash buffer 

containing 20 mM HEPES, pH 7.5, 150 mM NaCl, 1% NP-40 and 2 mM EDTA. 	  Protein 

complexes precipitated with the antibody were eluted in SDS-loading buffer with heating 

at 50 oC for 10 mins. Individual proteins in the precipitated protein complexes were then 

subjected to SDS-PAGE and immunoblotting with monoclonal anti-pol b antibody 

(1:2000, ab175197, Abcam) and monoclonal anti-DNMT1 primary antibody (1:2000, 

ab188453, Abcam). Western Sure Premium secondary antibody (1:2000, 926-80011, LI-

COR) was employed for detecting the proteins with measurement of chemiluminescence 

that was detected by LI-COR C-DiGit scanner. 

 

3. RESULTS 

3.1 Bromate and chromate treatment altered DNA methylation pattern on BRCA1 

gene 

       Since bromate and chromate-induced oxidative DNA damage can change the 

DNA methylation pattern and histone post-translational modifications by targeting Cs, 

5mCs and Gs on CpGs, it is conceivable that these toxicants can also cause oxidized 

bases on CpGs at BRCA1 gene and subsequently the loss of 5mCs and point mutations, 

thereby affecting activation and/or repression of BRCA1 gene expression as well as 

breast cancer development. To test this, we initially determined the DNA methylation 

pattern on the promoter and encoding region of BRCA1 gene in untreated HEK293 cells 

and HEK293 cells treated with bromate and chromate using bisulfite DNA sequencing 

(Figures 3.1A and 3.2A). The results showed that in the promoter region of BRCA1 gene 

of untreated cells, the CpGs located at -189, -134, -29, -19, +16, and +19 on the sense 
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strand of the gene are partially methylated (Figures 3.1A and 3.2A). On the antisense 

strand, the CpGs located at -189, and -80 are partially methylated (Figure 3.2A). 

However, cellular treatment of 5 mM bromate for 24 h led to the formation of additional 

methylation sites at the CpGs located at -80, -55, -21, and +8 (Figures 3.1B and 3.2B). 

The treatment also resulted in the loss of methylation at -189, -134, +16 and +19 (Figures 

3.1B and 3.2B). Chromate treatment at 10 µM led to the formation of new methylation 

sites at -80, -55, and +27 while it resulted in loss of DNA methylation at -189, -29, -19, 

+16, and +19 (Figures 3.1C and 3.2C).
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Bromate and chromate treatment caused the loss of 5mCs at the CpGs located at -34 and 

+16 via mutations.  Further mutation analysis showed that bromate treatment resulted in C 

to A mutation (Figure 3.3B), whereas chromate treatment mainly led to C to G mutation at 

-189, -173, -166, and -127, (Figure 3.3A). The mutation spectrum showed that the major 

mutations induced by bromate and chromate on the BRCA1 gene is C to G mutation 

(Figure 3.3). 

 

	  
Figure 3.2 The DNA methylation pattern on BRCA1 gene promoter and encoding region 
from -189 to +27 in HEK293 cells with or without treatment of bromate and chromate. 
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Figure 3.3 The mutation spectrum of BRCA1 gene in HEK293 cells induced by chromate 
(A) and bromate (B) treatment.  
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3.2 Pol β recruits to the DNA damage sites induced by bromate and chromate  

To determine whether pol β can be recruited to bromate and chromate-induced DNA 

damage sites in cells, we exposed HEK293 cells transfected with a plasmid expressing 

GFP-tagged human pol β to 5 mM bromate. We found that GFP-pol β proteins were located 

in the nucleus stained with DAPI (Figure 3.6 upper panel). Upon treatment of chromate, 

the green loci of GFP-pol β formed in the nucleus of HEK293 cells. This indicates that 

GFP-pol β was recruited to DNA damage induced by chromate (Figure 3.4, bottom panel). 

	  

	  
Figure 3.4 HEK293 cells transfected with GFP-pol β were treated with 10 µM 
chromate for 1 hour. The green foci of pol β inside the nucleus pointed by the yellow 
arrows. The HEK293 cells were transfected with a plasmid expressing GFP-tagged pol β 
for 24 hours.  
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3.3 Pol β can bypass an 8-oxoG during DNA replication and BER through nucleotide 

misinsertion. 

Previous studies have shown that during DNA replication and BER, pol β exhibits 

translesion synthesis activity to bypass a DNA base lesion (Bassett et al., 2002b; Chary et 

al., 2012b; Hashim et al., 1997a; Hoffmann et al., 1996a; Maga et al., 2009a; Servant et al., 

2002a; Vaisman and Chaney, 2000a; Villani et al., 2011a). Pol β lesion bypass synthesis 

can further induce a high frequency of mutations in the genome (Bassett et al., 2002a; Batra 

et al., 2006; Beard et al., 2009; Beard and Wilson, 2014; Chary et al., 2012a; Efrati et al., 

1997; Hashim et al., 1997b; Hoffmann et al., 1996b; Servant et al., 2002b; Vaisman and 

Chaney, 2000b). Furthermore, since pol β does not bear a 3’-5’ exonuclease activity for 

proofreading, high levels of pol β may cause high mutation rates, and this is associated 

with development of a variety of cancer cells (Canitrot et al., 2000; Scanlon et al., 1989; 

Srivastava et al., 1999). Thus, it is possible that pol β was recruited to DNA damage 

induced by bromate and chromate to bypass an 8-oxoG through its translesion synthesis 

activity. To test this, we examined whether pol β can bypass an 8-oxoG through nucleotide 

misinsertation to create a G:G mispair at the promoter region of BRCA1. This was 

determined by incubating 20 nM purified pol β protein with the substrate without the 

downstream strand (open template) and the gapped substrate that contained a template 8-

oxoG at CpG located at -166 of human BRCA1 promoter. The results showed that 20 nM 

pol β inserted all four dNTP to base pair with the 8-oxoG on the open template substrate 

(Figure 3.5A and 3.5, lanes 2, 3, 4 and 5) but with a higher efficiency in inserting dA and 

dC (Figure 3.5, lanes 2 and 4). For the 1-nt gap-THF substrate containing an 8-oxoG, 20 
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nM pol β mainly inserted dA and dC when bypassing the lesion (Figure 3.5, lanes 12, 14). 

It also inserted dT and dG with a relatively low efficiency in bypassing an 8-oxoG (Figure 

3.5, lanes 13, 15). Interestingly, the results showed pol β preferentially to insert dG when 

bypassing an 8-oxoG in the open template, 1-nt gap and 1-nt gap-THF substrates (Figure 

3.5, lanes 5, 10, and 15). Furthermore, pol β exhibited a higher efficiency to insert dG when 

bypassing an 8-oxoG in the 1-nt gap-THF substrate compared to the 1-nt gap substrate. 

The results indicate that pol β misinserted dG to bypass an 8-oxoG lesion during BER in 

CpGs. This is consistent with our results showing that bromate and chromate 

predominantly induced a C to G mutation via a G:G mispair (Figures 3.1 and 3.2). 

3.4 Pol β interacts with DNMT1 in HEK293 cells upon chromate treatment 

Previous studies have shown that DNA repair proteins such as HR enzymes can 

interact with DNMT3a, The BER enzyme TDG can also interact with DNMT3a alteration 

 
Figure 3.5 Pol β misincorporated nucleotides to bypass an 8-oxoG. Lanes 2, 7 and 12 
correspond to reaction mixtures with 20 nM pol β (panel B) in the presence of 50 µM dA. Lanes 
3, 8 and 13 correspond to reaction mixtures with 5 nM pol β (panel A) and 20 nM pol β (panel 
B) in the presence of 50 µM dT. Lanes 4, 9, and 14 correspond to reaction mixtures with 20 nM 
pol β (panel B) in the presence of 50 µM dC. Lanes 5, 10 and 15 correspond to reaction mixtures 
with 20 nM pol β (panel B) in the presence of 50 µM dG. Substrates are illustrated schematically 
above the gel. 
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of DNA methylation pattern and gene transcription (Li et al., 2007; Russo et al., 2016). 

Since our results showed that bromate and chromate induced additional DNA methylation 

site at BRCA1 gene, this suggests a crosstalk between DNA damage, BER and DNMTs. 

We then examined a possibility that pol β and DNMT1 may interact with each other in 

cells with co-immunoprecipitation. We found that pol β and DNMT1 co-

immunoprecipitated upon treatment of 10 µM chromate without recovery (Figure 3.6, lane 

6) suggesting that pol β recruited DNMT to the region adjacent chromate-induced DNA 

base lesions in cells. Interestingly, pol b exhibited little interaction with DNMT1 after 24 

h recovery from chromate treatment (Figure 3.6, lane 7) suggesting that the two proteins 

interacted immediately after DNA damage occurred at BRCA1 gene. 

 

4. DISCUSSION 

 For the first time, we showed that environmental toxicants, bromate and chromate 

altered the DNA methylation pattern of the BRCA1 gene by directly causing the loss of 

5mCs, mutations and indirectly creating additional new 5mCs. We found that bromate- and 

chromate-induced oxidative DNA damage resulted in the loss of 5mCs specifically on 

CpGs located at -134, -29, -19 and +19 as well as point mutations on CpGs at -189 and +16 

(Figure 3.2). We further demonstrated that bromate and chromate predominantly caused C 

to G and C to A mutations (Figure 3.3), and this was mediated by pol b nucleotide 

misinsertion in bypassing an 8-oxoG on the template strand (Figure 3.5). Surprisingly, we 

discovered that bromate and chromate induced additional methylation on CpGs at -80, -55, 

-21 and +8, which are adjacent to the sites with loss of 5mCs and point mutations (Figures 
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3.1 and 3.2). We further identified an interaction between pol b and DNMT1 (Figure 3.6). 

On the basis of the results, we propose a hypothetical model during which bromate and 

chromate induce oxidative DNA base damage on the CpGs at the BRCA1 gene. Pol b is 

then recruited to the lesions to perform its gap-filling synthesis. This subsequently leads to 

loss of 5mCs via substitution of a 5mC with a C and mutations at the CpGs via pol b-

mediated nucleotide misinsertion for bypass of an 8-oxoG on the template strand. 

Simultaneously, bromate- and chromate-induced base lesions induce the interaction 

between pol b and DNMT1, which recruit DNMT1 to create additional methylated CpGs 

at the BRCA gene (Figure 3.7).  

	  

	  
	  
Figure 3.6 Chromate exposure resulted in the interaction between pol β and DNMT1. 
Lane 1 represents molecular weight marker. Lanes 2-3 represent the input control. Lanes 4-
5 illustrate the immunoprecipitates resulting from a pol b antibody. Lanes 6-7 represent the 
immunoprecipitates resulting from a DNMT1 antibody. Lane 8 correspond to the IgG 
control. Lanes 3, 5, 7 illustrate the samples obtained after 24 h recovery. Cells were treated 
with 10 µM chromate for 24 h. 
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 Previous studies showed that DNMT1, DNMT3a can interact with DNA repair 

enzymes such as TDG, therefore alter DNA methylation pattern via DNA damage (Li et 

al., 2007). Giusi Russo’s group has further demonstrated that DSBs also modulate DNA 

methylation (Russo et al., 2016). However, the mechanisms and biological significance of 

DNA damage-induced DNA methylation pattern change remain unknown. Since TDG 

plays a critical role in mediating one of the subpathways of BER-mediated active DNA 

	  
 
Figure 3.7 The hypothetical model for bromate and chromate to alter DNA 
methylation pattern of the BRCA1 gene via DNA base lesions and BER in human 
cells.  
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demethylation, the interaction between TDG and DNMTs suggests that the BER-mediated 

active DNA demethylation coordinates with DNMTs to sustain the stability of DNA 

methylation. Here, we provided the first evidence showing that a repair DNA polymerase, 

pol b interacted DNMT1 to recruit it to the sites adjacent to a base lesion producing 

additional 5mCs on the CpGs at BRCA1 gene. The results further suggest that DNA base 

lesions can modulate DNA methylation pattern of BRCA1 gene by facilitating the 

interactions between BER enzymes and DNMT1.  

Recent studies have shown that oxidative DNA damage can induce the recruitment 

of DNMT1 and DNMT3B and histone posttranslational modification enzymes to DNA 

damaging sites, and this has been implicated in inflammation-induced tumorigenesis 

(Maiuri et al., 2017; O'Hagan et al., 2011). It has been further shown that the mismatch 

repair proteins, MSH2 and MSH2-MSH6 can be recruited to oxidative DNA damage to 

recruit DNMT1 to the damaging sites causing DNA methylation pattern changes (Ding et 

al., 2016; Maiuri et al., 2017). This indicates that mismatch repair proteins may mediate 

the recruitment of DNMTs to DNA base lesions. Yet, it remains unknown if DNA repair 

enzymes and proteins from the other DNA repair pathways can interact DNMTs and recruit 

them to DNA damage sites. Here, we made the first discovery that the central component 

of BER, pol b interacted with DNMT1 to modulate DNA methylation pattern in the 

BRCA1 gene. Interestingly, we have recently found that MSH2-MSH3 can physically 

interact with pol b in cells (Lai et al., 2016). Thus, it is possible that pol b may interact 

with DNMT1 through MSH2 protein in cells. 
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SUMMARY 

 DNA base excision repair (BER) is responsible for repairing DNA base lesions 

such as alkylated, oxidized and deaminated bases as well as ssDNA breaks. Thus, it is an 

essential repair pathway of maintaining genomic stability and integrity. Moreover, BER 

plays a critical role in mediating active DNA demethylation thereby exhibiting a dual role 

in DNA damage repair and regulation of DNA methylation. In addition, BER is also 

involved in lesion bypass during DNA replication and repair particularly the bypass of 

cyclodeoxynucleotides (cdPu) lesions that are resistant to DNA repair and readily 

accumulate in the genome. In Chapter 1 of this dissertation, we explored the mechanisms 

underlying bypass of cdA lesions by pol β during DNA replication and repair. We showed 

that pol b knockout MEF cell extract failed to produce repair product via bypass of a R-

cdA or S-cdA lesion during BER indicating that pol b played a major role in bypassing 

cdA lesions. We demonstrated that pol b bypassed a R-cdA by incorporating both correct 

and incorrect nucleotides and failed to bypass a S-cdA lesion, thereby resulting in 

accumulation of DNA strand breaks. This study identified a new role of pol b, the central 

component of BER in bypassing cdPu lesions during DNA replication and BER. In Chapter 

2, we explored the dual roles of key BER enzymes, pol b and APE1 in processing an 

intermediate formed during active DNA demethylation and a BER intermediate 

simultaneously in the context of CpGs and their effects on genome integrity. We found that 

when the BER intermediate, abasic site (AP site) is generated next to the 5-methylcytosine 

deamination product, a T/G mismatch, TDG failed to remove the mismatched T. Yet, the 

abasic site could still be efficiently incised by APE1 leading to a 3'-mismatched T. We 
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found that pol b efficiently extended the 3'-mismatched T resulting in the sustainment of a 

C to T mutation. However, we found that high concentrations of APE1 3'-5' exonuclease 

activity efficiently removed the mismatched T before pol β could extend the 3'-mismatched 

T, thereby preventing the C to T mutation. We found that APE1 3'-5' exonuclease cleaved 

the mismatched T 10-fold faster than pol b extended the 3'-mismatched T during BER. 

Since the amount of APE1 is much more abundant than pol b in cells, the results indicated 

that APE1 3'-5' exonuclease cooperated with pol β to serve as a proofreading factor of pol 

β improving the fidelity of the polymerase during BER and preventing pol β-mediated 

mutagenesis. In Chapter 3, we further explored how bromate and chromate-induced 

oxidative DNA base lesions may modulate DNA methylation pattern at the tumor 

suppressor, BRCA1 gene via BER. We found that bromate and chromate-induced oxidative 

base lesions resulted in loss of 5mCs and mutations in the promoter and encoding regions 

of BRCA1 gene in HEK293 cells. Surprisingly, we found that bromate and chromate also 

induced additional DNA methylations at the CpGs adjacent to the CpGs bearing loss of 

5mCs and mutations. Further mutational analysis on the mutation spectrum showed that 

bromate and chromate predominantly resulted in C to G and C to A mutations at the CpGs 

located at the BRCA1 gene promoter and encoding region. Furthermore, employing 

immunofluorescence, we showed that bromate and chromate induced the formation of pol 

β foci in the nucleus of HEK293 cells indicating that pol β was recruited to the DNA 

damage sites induced by the DNA damaging agents. We further demonstrated that the C to 

G and C to A mutations were mediated by pol β nucleotide misinsertion in bypassing an 8-

oxoG on the complementary strand of the gene.  Furthermore, employing co-

immunoprecipitation, we discovered an interaction between pol β and DNMT1 in HEK293 
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cells upon bromate and chromate treatment. The results showed that pol β and DNMT1 

interacted immediately after cells were treated with the DNA damaging agents. Yet, the 

interaction disappeared after 24 h recovery from the DNA damaging agents. We suggest 

that bromate and chromate-induced oxidative DNA damage recruited pol β which in turn 

interacts and recruits DNMT1 to the sites adjacent to the DNA damage sites. This 

subsequently may allow DNMT1 to create additional 5mCs at the CpGs located at BRCA1 

gene promoter and encoding regions, thereby altering DNA methylation pattern of the 

gene. Our results provide new insights into the mechanisms by which DNA base lesions 

modulate epigenetic features via BER that plays a central role in mediating the interaction 

between the human genome and epigenome. 
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