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ABSTRACT OF THE DISSERTATION 
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by 
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Professor Yuk-Ching Tse-Dinh, Major Professor 

 Multi-drug resistance in bacterial pathogens has become a global health crisis. 

Each year, millions of people worldwide are infected with bacterial strains that are 

resistant to currently available antibiotics. Diseases such as tuberculosis, pneumonia, and 

gonorrhea have become increasingly more difficult to treat. It is essential that novel drugs 

and cellular targets be identified in order to treat this resistance. Bacterial topoisomerase 

IA is a novel drug target that is essential for cellular growth. As it has never been targeted 

by existing antibiotics, it is an attractive target. Topoisomerase IA is responsible for 

relieving torsional strain on DNA by relaxing supercoiled DNA following processes such 

as replication and transcription. The aim of this study is to find novel compounds that can 

be developed as leads for antibiotics targeting bacterial type IA topoisomerase. Various 

approaches were used in order to screen thousands of compounds against bacterial type 

IA topoisomerases, including mixture-based screening and virtual screening. In the 

mixture-based screen, scaffold mixtures were tested against the M. tuberculosis 

topoisomerase I enzyme and subsequently optimized for maximum potency and 

selectivity. The optimized compounds were effective at inhibiting the enzyme at low 
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micromolar concentrations, as well as killing the tuberculosis bacteria. In a virtual screen, 

libraries with hundreds of thousands of compounds were screened against the E. coli and 

M. tuberculosis topoisomerase I crystal structures in order to find new classes of drugs. 

The top hits were effective at inhibiting the enzymes, as well as preventing the growth of 

M. smegmatis cells in the presence of efflux pump inhibitors. Organometallic complexes 

containing Cu(II) or Co(III) were tested as well against various topoisomerases in order 

to determine their selectivity. We discovered a poison for human type II topoisomerase 

that has utility as an anticancer agent, as it killed even very resistant cell lines of breast 

and colon cancer. The Co(III) complexes were found to inhibit the bacterial 

topoisomerase I very selectively over other topoisomerases. The various methods of drug 

discovery utilized here have been successful at identifying new classes of compounds that 

may be further developed into antibiotic drugs that specifically target bacterial type IA 

topoisomerases.  
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I. INTRODUCTION 

 

A. ANTIBIOTIC RESISTANCE: THE GLOBAL HEALTH CRISIS 

The emergence of drug-resistant strains of bacterial pathogens is a global 

problem. According to the World Health Organization, antibiotic resistance is present in 

every single country around the globe, and its effects can be devastating (World Health 

Organization, 2016a). Healthcare costs skyrocket when confronted with resistant bacteria, 

as patients require longer hospital stays, more expensive drugs, and additional tests. More 

troubling than the fiscal aspect of resistance is that without antibiotics, our way of life 

would change drastically. Major surgeries would not be possible, as the risk of infection 

would be too high. Cancer patients, AIDS patients, and other immunocompromised 

people such as infants and the elderly would be at an increased risk of life-threatening 

infections (Friedman et al., 2016). Minor, common infections, like urinary tract 

infections, have become so resistant that there are countries where more than half of all 

patients do not respond to fluoroquinolone antibiotics, the most widely used treatment 

(World Health Organization, 2016a). There were 10.4 million new cases of tuberculosis 

(TB) reported in 2015, and 480,000 new cases of multidrug-resistant tuberculosis (MDR-

TB). Cases of MDR-TB are resistant to at least two of the most powerful first-line drugs 

used for TB treatment, isoniazid and rifampicin. With an estimated death toll of 1.4 

million people in 2015, TB remains one of the top ten causes of death globally (World 

Health Organization, 2016b). In short, in the war against bacterial pathogens, we are 

losing (Alanis, 2005; Carlet et al., 2012).  
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There are many factors that contribute to the rapid evolution of antibiotic 

resistance. The overuse of antibiotics is a huge factor—a recent report from the Centers 

for Disease Control and Prevention reported that 30% of antibiotic prescriptions in 

ambulatory patients were inappropriate (Fleming-Dutra et al., 2016). Uneducated patients 

demand antibiotic prescriptions from their doctors without realizing the damage they can 

potentially cause. Some countries do not even require a prescription to obtain antibiotics, 

promoting excessive overuse. The abuse of antibiotics has long been warned against, and 

epidemiological studies have shown a direct correlation between antibiotic consumption 

and the proliferation of resistant bacteria (Nature Editorial, 2013). Antibiotics wipe out 

the susceptible bacteria, leaving behind only resistant strains to procreate and thrive 

(Ventola, 2015). Poor governance and corruption can play a major role in the 

development of resistance as well (Collignon et al., 2015).  

There are solutions being proposed for these social and political factors, including 

the appointment of antibiotic stewards in hospitals to ensure antibiotics are prescribed 

responsibly, and global meetings to discuss resistance. In September 2016, global leaders 

met in the United Nations to discuss antimicrobial resistance. As only the fourth time in 

the history of the United Nations that a health problem was discussed in the General 

Assembly, the severity of the problem is highlighted (World Health Organization, 

2016c). These are all solutions that fall outside the scope of the present body of work. 

However, there are other ways of combatting antibiotic resistance, namely, the discovery 

of novel drugs and drug targets. 

Bacteria generally become resistant to drugs by developing a mutation in the 

drug’s cellular target. For example, fluoroquinolones have become less effective since 
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their targets, DNA Gyrase and Topoisomerase IV, have become mutated in a way that the 

drugs can no longer bind to them (Hooper, 2001). Through horizontal gene transfer, 

bacteria can also share plasmids that confer resistance, as seen with some carbapenem 

and colistin resistant strains of Escherichia coli (Liu et al., 2016; Poirel et al., 2016). A 

way to address the issue of resistance is by finding new drugs that target novel enzymes 

and cellular processes (Clatworthy et al., 2007). If the bacteria have never been exposed 

to a specific new class of drugs, resistance would take longer to develop. In the past, new 

drugs were created all the time that were simply slightly modified versions of previous 

drugs. Antibiotic classes such as penicillin and sulfonamides have been around so long 

that resistance to similar kinds of drugs is generally swift (Figure I.1), with antibiotic 

resistant strains emerging rapidly in hospitals (Ventola, 2015). For all of the above 

reason, the discovery of novel drug targets and novel drug structures is of utmost 

importance. 

 

 
Figure I.1. Timeline of developing antibiotic resistance: Emergence of resistant 
strains of bacteria on the basis of early reports in literature (Clatworthy et al., 2007). 	
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B. BACTERIAL TOPOISOMERASES: A SOLUTION 

 As mentioned above, antibiotic resistance is a global threat that must be addressed 

as quickly as possible. The need for novel drugs and drug targets is urgent. One such 

novel drug target is bacterial topoisomerase I. 

 Topoisomerases are essential enzymes that are present in all kingdoms of life. 

They are responsible for resolving all the topological barriers that can arise from the 

superhelical structure of deoxyribonucleic acid, DNA (Vos et al., 2011; Wang, 2002). 

During cellular processes such as DNA replication or transcription, the DNA is unwound 

by the replication or transcription fork in order to separate and expose the bases within 

(Figure I.2). Such unwinding activity causes much torsional stress on the DNA structure, 

and the strain can create many problems for the cell. Aside from aiding in relieving the 

torsional strain during replication and transcription, topoisomerases also help with 

maintaining the genome integrity, in DNA repair pathways, and in Holliday-junction 

resolution (Branzei and Foiani, 2010).  

 

	
Figure I.2. Role of topoisomerases in cellular processes: Cellular processes such as 
DNA transcription can cause the formation of positive DNA supercoils ahead of the 
fork, and negative DNA supercoils behind the transcription complex. Topoisomerases 
are responsible for relieving the torsional strain caused by supercoiling (Vos et al., 
2011).  
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 All topoisomerases have the same basic mechanism of action. All possess an 

active-site tyrosine residue that acts as a nucleophile to attack the phosphodiester 

backbone of DNA (Wang, 1996). The enzyme then becomes covalently linked to the 

DNA. Type I topoisomerases have one active site to cleave a single strand of DNA, while 

type II topoisomerases have two active sites on two polypeptides to attack double-

stranded DNA. The phosphotyrosine (PY) bond that is formed covalently links the DNA 

to the enzyme, causing a break on the DNA (Figure I.3). The polarity of the break can 

either leave a 5’ end or 3’ end of DNA, depending on the classification of the 

topoisomerase. The enzyme can then rotate the non-covalently linked strand or pass 

another DNA strand or duplex through the break, again depending on the type of 

topoisomerase. The strand or duplex passage causes the linking number of the DNA to 

change, either winding or unwinding the DNA in order to restore the correct topology 

(Vos et al., 2011; Wang, 1996; Wang, 2002). Type I enzymes change the linking number 

by factors of 1, while type II enzymes change the linking number by factors of 2. The 

topoisomerase then religates the DNA and the enzyme is released to carry out further 

reactions if necessary. In this manner, topoisomerases are responsible for maintaining the 

integrity of the DNA by not allowing it to become tangled, too supercoiled, or too 

underwound. 
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a) 

 
b) 

 
Figure I.3. Mechanism of action of topoisomerase: a) Active-site tyrosine residues 
attack the phosphodiester backbone of DNA in order to form a covalent DNA-enzyme 
intermediate. Shown is an example of a type IA mechanism (Viard and de la Tour, 
2007). b) Classes of topoisomerases have different modes of untangling DNA, either 
through rotation of the free strand or passage of a DNA duplex through the break 
(Pommier et al., 2014). 
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 As was briefly touched on earlier, topoisomerases can be divided into two basic 

groups: type I and type II. Type I enzymes cause one single-stranded break on the DNA, 

while type II enzymes create a double-stranded break (Vos et al., 2011). Their cellular 

roles are very different as a result of their different mechanisms. Topoisomerases can be 

further classified by the polarity of their phosphate linkage—5’ phosphate links are 

classified as type IA or IIA, and 3’ phosphate links are type IB or IIB (Champoux, 2001). 

Topoisomerases can be broken down into further categories and subfamilies on the basis 

of their structures. 

 Different organisms have various types of topoisomerases (Table I.1). For 

example, in the model organism Escherichia coli, there are four different types of 

topoisomerase present: Topoisomerase I and III are both type IA, and DNA Gyrase and 

topoisomerase IV are both type IIA. While some overlap of their functions is present, it 

appears that each topoisomerase enzyme has its own specific role in the cell: DNA 

Gyrase is able to generate negative supercoils on relaxed DNA, while topoisomerase IV 

is better at decatenating and relaxing negatively supercoiled DNA (Champoux, 2001). 

The type IA topoisomerases also have distinct roles that are discussed more in depth in 

following sections. 
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 As may be apparent upon review of their mechanism, topoisomerases are 

extremely important enzymes. Without them, cellular functions would fail. DNA 

replication and transcription would not be possible, because at a certain point the DNA 

would be too tightly coiled for the fork to unravel further. Topoisomerases are also 

interesting because as important as their mechanism is, it also leaves the cell vulnerable 

for as long as the covalent intermediate lasts. In cases where the topoisomerase becomes 

trapped on the DNA, there are specific enzymes whose purpose is to excise the enzyme 

from the DNA and process the 3’ or 5’ end of the DNA. These enzymes are called 

tyrosyl-DNA-phosphodiesterases, and they come in two types as well: TDP1 is 

responsible for processing trapped topoisomerase I linked to the 3’-end of DNA, while 

TDP2 processes trapped topoisomerase II linked to the 5’-end of DNA (Pommier et al., 

2014).  

Breaks along the DNA can lead to cell growth arrest or even apoptosis, and so the 

completion of the topoisomerase’s work is essential. Any disruption of the activity, be it 

Table I.1. Types, classes, and subfamilies of topoisomerases 

Type Polarity 
of bond Representative Members Drugs? 

IA 5’-PY 
Bacterial topoisomerases I and III, 

Yeast topoisomerase III, 
Mammalian topoisomerase IIIα and IIIβ 

None 

IB 3’-PY 
Eukaryotic topoisomerase I, 
Mammalian mitochondrial 

topoisomerase I 
Anticancer 

IIA 5’-PY 
Bacterial Gyrase and topoisomerase IV, 

Yeast topoisomerase II, 
Mammalian topoisomerase IIα and IIβ 

Anticancer, 
antibiotic 
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before or after the reaction has begun, can be lethal to the cell (Pommier, 2013). 

Essentiality is what makes topoisomerases attractive drug targets—disrupting or 

inhibiting the activity of the enzymes can prove to be lethal to the cells. The lethal effect 

applies when targeting cancer cells or bacterial cells. Since the discovery of 

topoisomerases in 1971 (Wang, 1971), there have been a number of anticancer and 

antibiotic drugs that specifically target topoisomerases.  

 Among the most famous anticancer drugs targeting topoisomerases are those in 

the camptothecin family, which target the human type IB topoisomerase (Hsiang et al., 

1985), and a variety of drugs such as mAMSA, doxorubicin, and etoposide, which all 

target the human type IIA topoisomerase (Nitiss, 2009). They are extremely effective 

anticancer agents, with successful uses against a variety of cancers. In the antibiotic 

realm, there are drugs that target the type IIA enzymes. One of the most important classes 

of antibiotics discovered in the past century is the quinolone family. Ciprofloxacin, a 

second-generation fluoroquinolone, has become one of the most widely used antibiotics 

(Goossens et al., 2007). The importance of fluoriquinolones has caused bacterial type IIA 

topoisomerases to be a valuable and popular target for antibiotics. 

 Unfortunately, as stated earlier, bacterial resistance to antibiotics is a major issue. 

Fluoroquinolone resistance is not uncommon (Hooper, 2001), and certain kinds of TB are 

untreatable even with fluoroquinolones as a second-line drug. We can no longer continue 

to crank out the same slightly-tweaked drug over and over. What is required now is to 

find novel drug targets for novel drug structures. An essential cellular target is necessary. 

Bacterial type IA topoisomerase is one such novel target, as there are no clinical drugs 

available that target this particular enzyme (Pommier et al., 2010). 
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C. BACTERIAL TYPE IA TOPOISOMERASES 

 Bacterial type IA topoisomerases seem to perform a variety of functions inside the 

cell. Their most obvious function is to relax negatively supercoiled DNA (Figure I.4), 

generally following cellular processes like DNA transcription and replication. During 

those processes, the DNA is unzipped in order to allow the DNA or RNA polymerase to 

access the base pairs. The unzipping action can lead to the generation of supercoils that 

must be resolved. Bacterial type IA topoisomerases relax the negative supercoils 

generated behind the RNA polymerase (Vos et al., 2011). Some type IA topoisomerases 

can also perform decatenation reactions. Generally, “relaxases” are referred to as 

topoisomerase I, while “decatenases” are topoisomerase III, although there are some 

enzymes that are efficient at both kinds of reactions (Viard and de la Tour, 2007). Type 

IA topoisomerases are also involved in maintaining genome integrity, as well as 

Holliday-junction resolution (Wang, 2002).  



	 11 

 

 Structurally, type IA topoisomerases all share similar N-terminal domains with 

highly variable C-terminal domains. The core N-terminal domain contains the enzyme’s 

active site tyrosine, as well as many conserved motifs necessary for DNA cleavage and 

religation (Champoux, 2001; Viard and de la Tour, 2007). It has been proposed that the 

variable C-terminus, in addition to aiding in DNA binding, is responsible for the 

enzymes’ vastly different roles in the cell (Viard and de la Tour, 2007).  

The general structure of bacterial type IA topoisomerase N-terminal domains is 

divided into four subdomains. Domain I is the TOPRIM (topoisomerase-primase) 

domain—so called because it is present in both type IA and type II topoisomerases, some 

nucleases, and primases (Aravind et al., 1998). It contains a conserved acidic triad: two 

 

 
Figure I.4. Bacterial type IA topoisomerase mechanism: Upon binding a single-
stranded region of DNA, the enzyme cleaves the DNA backbone, passes the other 
strand through the break, reseals the nick, and then finally releases the DNA 
(Champoux, 2001). 
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aspartic acids and one glutamic acid, which have been shown to bind Mg2+ (Zhu and Tse-

Dinh, 2000; Zhang et al., 2011). In E. coli topoisomerase I, the divalent ion is necessary 

for DNA relaxation (Chen and Wang, 1998; Viard and de la Tour, 2007). However, it is 

not necessary for DNA cutting (Zhu et al., 1997). The religation step then is the step that 

requires bound Mg2+. The acidic triad, Asp111, Asp113, and Glu115, is located near the 

active site Tyr319 in EcTopI. The divalent ions may serve to activate the active site 

tyrosine and stabilize the leaving 3’-OH, and they may also help the protein undergo any 

conformational changes necessary for strand passage and subsequent religation and 

release (Zhu et al., 1997). The TOPRIM domain also contains a conserved glutamic acid, 

E9 in EcTopI, that interacts with the 3’ oxygen of the cut phosphate, making it essential 

for the topoisomerase activity (Zhu et al., 1998; Chen and Wang, 1998).  

Domain II is the hinge domain that links domains III and IV. The flexible linkage 

between domains I, III, and IV allows the enzyme to open and close, like a claw (Figure 

I.4). Domain III contains the catalytic tyrosine residue that acts as a nucleophile to attack 

the phosphodiester backbone of DNA. This domain is where the 5’-end of the DNA 

becomes covalently linked to the enzyme during catalysis. Once the DNA is cleaved, the 

topoisomerase swings open to allow the uncut strand to pass into the cleft. The strand 

movement is driven by the superhelical tension, and so bacterial type IA topoisomerases 

do not require adenosine triphosphate, ATP. Domain IV links domains I and II. It 

contains a DNA-binding groove that holds the single-stranded DNA while the reaction 

takes place. It also non-covalently holds the free 3’-end of the DNA after cleavage until it 

can be religated upon restoring the enzyme to its closed state after the DNA is unwound 
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(Viard and de la Tour, 2007). These four domains encompass the N-terminal of the 

enzyme.  

The C-terminal domain, as mentioned earlier, is highly varied from species to 

species. Escherichia coli topoisomerase I, EcTopI, is one of the best-studied enzymes of 

all type IA topoisomerases. It contains three tetra-cysteine zinc-binding motifs in its C-

terminal domain (Tan et al., 2015). Removal of Zn(II) or mutations of the cysteines 

results in the loss of enzyme activity (Tse-Dinh, 1991; Zhu et al., 1995). These zinc 

ribbon motifs are not present in M. tuberculosis topoisomerase I, MtbTopI (Tan et al., 

2016). 

The various roles the type IA topoisomerases have in vivo may be attributable to 

their protein partners that interact with the C-terminal domains (Banda et al., 2016; Viard 

and de la Tour, 2007). Topoisomerase IA may act to relieve hypernegative supercoiling 

that is caused by transcription, or it may act to maintain genome integrity (Figure I.5). 

These differing roles all depend on the protein partners of the individual topoisomerase 

that will vary from species to species. 
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The significance of these enzymes cannot be overstated. They are attractive as a 

target for antibiotics because of their importance to the bacterial cell. When a mutant 

topoisomerase IA that forms a stabilized DNA-enzyme complex was overexpressed in E. 

coli, the DNA was cleaved, but could not then progress to the religation step. With the 

DNA trapped, an SOS response was triggered in the cells, which eventually led to cell 

death (Cheng et al., 2005). The cited study proves that should a drug be introduced into 

the cell that could stabilize the DNA-enzyme complex, it could lead to cell death. A drug 

that stabilizes the covalent intermediate would be an interfacial inhibitor that interacts 

with both the DNA and the enzyme (Pommier, 2013; Tse-Dinh, 2015). Stabilization of 

the covalent complex is called topoisomerase “poisoning”, when the enzyme can cleave 

the DNA, but not religate it. Such an inhibitor would be invaluable in drugging 

 
Figure I.5. Topoisomerase IA binding partners: Interactions with various protein 
partners will affect the in vivo role the topoisomerase assumes (adapted from Viard 
and de la Tour, 2007). 
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topoisomerase IA in E. coli, as the topA-deletion mutant in E. coli is still viable at 37°C 

and 42°C, so simple catalytic inhibition of the enzyme is not sufficient to kill the bacteria. 

The topA mutant is not viable at lower temperatures without the EcTopI as a result of 

excessive negative supercoiling (Stupina and Wang, 2005; Tse-Dinh, 2008). The 

presence of topoisomerase III in E. coli seems to be the reason knockout mutants were 

viable, as mutating both the topoisomerase I and topoisomerase III caused the strain to be 

nonviable (Stupina and Wang, 2005). In cases of stress, it appears that the type III 

enzyme can take over for the loss of the topoisomerase I. 

The redundancy in enzyme function is not present in M. tuberculosis. There is 

only one copy of the topA gene that encodes for a type IA topoisomerase, and so deletion 

mutants are not viable unless complimented by a copy topA gene (Ravishankar et al., 

2015). Strains with down-regulation of MtbTopI activity were less viable, and unable to 

infect mice. Since the enzyme is essential in M. tuberculosis, poisoning drugs are not 

necessary as in E. coli. Simple catalytic inhibition of the enzyme would be sufficient to 

kill the organism. 

As previously stated, there is a necessity for novel drug targets in order to combat 

antibiotic resistance. Bacterial type IA topoisomerases are an under-utilized antibiotic 

target that can potentially help solve the problem of multi-drug resistant superbugs. As 

there are no existing antibiotics that target this enzyme, there would not be resistance up 

front as we see when the same drug targets are utilized over and over. Of course, the war 

on bacterial pathogens is more of an arms race, and bacteria may develop resistance to 

our drugs with new targets. However, with recent pushes for responsible usage of 

antibiotics, we may limit the resistance outcome. The current body of work is mainly 
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concerned with discovering inhibitors of E. coli topoisomerase I and M. tuberculosis 

topoisomerase I (Figure I.6) (Tan et al., 2015; Tan et al., 2016).  

 

 

D. APPROACHES TO DRUG DISCOVERY 

Drug discovery is a massive field. There are many varied approaches to 

discovering novel drug structures, and all have been successful to some extent. Each 

mode of drug discovery has a logical theory behind it, and many advocates for its 

advantages. A very common mode of drug discovery, high-throughput screening of 

compound libraries with up to a million or more compounds, relies on the idea that if one 

screens enough compounds they will eventually encounter a hit. High-throughput screens 

 

 
Figure I.6. Topoisomerase IA crystal structures: Resolved crystal structures of a) 
E. coli topoisomerase I bound to single strand of DNA (PDB 3PX7) (Tan et al., 2015), 
and b) M. tuberculosis topoisomerase I (PDB 5D5H) (Tan et al., 2016). 
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are generally fluorescence-based assays carried out in plates with hundreds or thousands 

of compounds at once. The libraries that are used are curated in many fashions; some 

libraries are made to resemble natural products, others are made to cover a large chemical 

diversity (Brown and Wright, 2016). There has been a general trend in recent years to 

return to natural product-like drugs, but they have the disadvantage of being generally 

complex and difficult to synthetically alter to generate analogues. Some high-throughput 

assays are designed to specifically test compounds against a validated drug target, others 

are testing the compounds’ ability to prevent bacterial growth and the cellular target can 

be determined later (Brown and Wright, 2016; Humnabadkar et al., 2015). There are 

techniques that screen libraries virtually against a specified drug target, and others that 

use high-throughput assays to screen molecular fragments in order to build potent new 

drugs (Bowling et al., 2016; Drwal and Griffith, 2013). Whatever the technique that is 

applied, one thing remains constant: drug discovery is a long and difficult process. The 

difficulty and sheer magnitude of techniques is the reason the current body of work 

utilizes multiple drug discovery techniques—to broaden the chances of finding a novel 

lead for new antibiotic treatments targeting bacterial topoisomerase I. 

The current body of work is divided into three distinct projects. The first chapter 

of my research focuses on a mixture-based screening that was done in collaboration with 

the Torrey Pines Institute for Molecular Studies (TPIMS). The second chapter involves 

the use of virtual docking studies. The third and final chapter, done in collaboration with 

Dr. Alvin Holder at Old Dominion University, discusses the selectivity of various 

organometallic complexes against different topoisomerases. All of these distinct projects 
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had the same aim: to discover novel inhibitors of bacterial topoisomerase I for new 

antibiotic treatments. 

 

Mixture-based Drug Discovery 

The first chapter utilizes a technique known as mixture-based screening in order 

to find novel inhibitors of bacterial topoisomerase IA. The general idea behind mixture-

based screening is that one can screen a single sample—a sample that contains a mixture 

of hundreds of thousands of individual compounds. Each of the individual compounds 

within the mixture share a distinct feature; they will have a common scaffold, or 

backbone, with varying R-groups emerging from the scaffold (Houghten et al., 2008; 

Pinilla et al., 2003). The scaffold mixture can then be screened against the desired end 

effect—enzyme inhibition, bacterial growth inhibition, the ability to bind an opioid 

receptor, etc. In the case of the present research, the scaffolds were tested for selective 

inhibition of bacterial type IA topoisomerases.  

If a scaffold shows promise, it can then be split into smaller mixtures. Each 

mixture will now contain fewer individual compounds, and each will share a specific R-

group (Figure I.7). By thus separating the mixtures, one can positionally scan the library 

and determine which functionalities are responsible for the desired end effect (Pinilla et 

al., 1992). In the final deconvolution step, individual compounds are synthesized to 

combine the best functionalities in the best positions to achieve the most potent end 

effect.  
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The mixture-based screening technique has the advantage over traditional high-

throughput screening because it uses far less material. With a high-throughput assay, 

hundreds of thousands of compounds must be synthesized, purified, and then tested in the 

lab. With a mixture-based approach, millions of compounds can be tested using less 

material and labor than would be needed if they were screened individually (Houghten et 

al., 2008). Mixture-based screening is also advantageous to researchers whose assays are 

not easily adapted to the high-throughput format—gel-based assays, for example, are 

difficult to adapt to a high-throughput format, as they are very labor intensive.  

 

 
Figure I.7. Mixture-based screening: Sample synthesis of a tripeptide mixture (top) 
and hexapeptide mixture (bottom) for mixture-based screens (Pinilla et al., 2003). 
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In the present study in chapter 1, scaffold mixtures were screened against 

bacterial type IA topoisomerases and various bacterial strains in order to create potent 

and selective inhibitors that would be good antibacterial candidates for further study. 

 

Virtual Docking 

The second chapter of the present research utilizes a virtual screening approach to 

find novel inhibitors of bacterial topoisomerase IA. Virtual screening technique is 

generally used in a target-based approach, meaning the structure of the cellular target 

must be known in order to screen compound libraries against it. In the current case, the 

crystal structure of the cellular target is used to virtually dock a library of compounds. In 

the event that no crystal structure is available, a homology model can be used as well 

(Godbole et al., 2014a). One can also use a combination of target-based and ligand-based 

approaches, where the structure of the target and the compound are taken into account. 

Combination efforts allow for specificity to the intended target, and also use existing 

known drug structures as a framework for synthesizing novel structures that are more 

likely to be active (Drwal and Griffith, 2013; Drwal et al., 2014).  

There are many programs that were made specifically to dock small molecules on 

protein structures, including GOLD, DOCK, and AutoDock, among others (Cross et al., 

2009). Generally, the first step is to determine where on the target you wish to attempt to 

dock the compounds. It may be in the active site of the enzyme, or in an allosteric site 

that may affect the enzyme’s activity in other ways. Once the site on the enzyme is 

chosen, the library of compounds can be virtually screened for their ability to bind in the 

specified site on the protein (Figure I.8). Analysis of  compounds’ binding ability is 
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highly complex, as molecules can contort and bend as a result of their flexible bonds. The 

degree of flexibility can be specified in the program as well.  

 

Once the compounds have been screened against the desired site on the protein, 

they are scored for their binding ability. Electrostatic and van der Waals interactions are 

considered. The scoring step is generally very difficult for the reason that the computer 

may be unable to tell a good hit from an unreasonable one. Some ligand poses may be 

highly unlikely to occur in nature because they contort the molecules in improbable ways, 

but to the computer, it is considered a high scorer. Care must be taken at the scoring step 

to ensure accurate results (Bajorath et al., 2004).  

For the current research, the crystal structures for EcTopI and MtbTopI were used 

in various screens against small molecule libraries. In one screen carried out by Dr. 

Renate Griffith at the University of New South Wales, compounds were docked into the 

Mg2+-binding site in E. coli topoisomerase I, crystal structure 3PX7 (Zhang et al., 2011). 

 
 

Figure I.8. Sample docking of topoisomerase inhibitors: (left panel) Amsacrine (m-
AMSA in yellow) was docked on a homology model of MbTopI in the TOPRIM 
domain near Mg2+ binding site. Mg2+ is shown in red (Godbole et al., 2014). (right 
panel) Etoposide was docked on the crystal structure of human topoisomerase IIα. The 
protein surface is shown in cyan. Two interacting residues are shown as sticks (Drwal 
et al., 2014). 
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In the other screen done in collaboration with Dr. Prem Chapagain at Florida 

International University, compounds were docked into the DNA-binding site of M. 

tuberculosis topoisomerase I, crystal structure 5D5H (Tan et al., 2016). The goal of the 

present study was to find novel molecular structures that could act as a gateway into an 

untapped class of antibiotic candidates. 

 

Screening of Organometallic Complexes 

Organometallic complexes have been used as anticancer and antimicrobial agents 

for a long time. Cisplatin, a platinum-based drug, is widely used to treat many cancers 

despite its side effects and high rates of resistance (Wong and Giandomenico, 1999). As a 

result of cisplatin’s increasingly limited utility, there has been an interest in finding new 

non-platinum organometallic drugs for anticancer and antimicrobial purposes (Ott and 

Gust, 2007). There have been reports of ruthenium complexes that are potent 

antimicrobials (Li et al., 2015), and there are new copper complexes that act as anticancer 

agents (Duff et al., 2012). For many of these copper complexes, their mechanism of 

action is believed to be inhibition of the type II topoisomerase in human cells (Das et al., 

2014; Galal et al., 2010; Tabassum et al., 2014a; Tabassum et al., 2014b; Zeglis et al., 

2011). The human type IIα topoisomerase is a popular anticancer target because it is 

overexpressed in the rapidly growing cancer cells (Jarvinen and Liu, 2006; Nitiss, 2009).  

In the interest of expanding the research concerning organometallics as 

therapeutic agents, novel complexes synthesized in the lab of Dr. Alvin Holder were 

tested against various topoisomerases in order to determine selectivity and potency. 

Copper complexes were chosen for their history of targeting topoisomerases—it was of 



	 23 

great interest to find new poison topoisomerase inhibitors. And since ruthenium and other 

metals have been studied and found to be effective antimicrobials, cobalt complexes were 

tested as well to determine if there was another transition metal that could be exploited 

for antimicrobial use.  

 

E. OVERVIEW 

 Antibiotic resistance is a problem that must be addressed. New drugs and drug 

target are needed desperately to combat the multidrug-resistant pathogens. Bacterial 

topoisomerase I is an attractive and novel drug target for antibiotics, as it is essential for 

cellular growth. In this dissertation project, novel inhibitors of bacterial topoisomerase I 

were discovered and studied in order to advance the field of antibiotics research. In 

chapter 1, mixture-based drug discovery was used to find inhibitors of Mycobacterium 

tuberculosis topoisomerase I (MtbTopI). A new class of polyamine inhibitors was found 

to target the enzyme specifically in M. smegmatis and M. tuberculosis. The compounds 

were able to prevent bacterial growth as well, with MIC values increasing with the 

overexpression of the topoisomerase I. These compounds were found to prevent DNA 

cleavage, thus inhibiting the overall activity of the enzyme. In chapter 2, virtual docking 

studies were used to find novel inhibitors of bacterial topoisomerase I. A new structural 

motif was found to help increase the compounds’ docking scores and allow the 

compounds to inhibit the enzyme in vitro as well. The presence of an efflux pump 

inhibitor had a synergistic effect with the compounds and enabled them to prevent 

bacterial growth. The compounds containing the common motif were found to inhibit the 

enzyme activity at a step following DNA binding. In chapter 3, organometallic 
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complexes containing Cu(II) and Co(III) were tested for selective topoisomerase I 

inhibition. The Cu(II) complexes were found to be potent poisons of human 

topoisomerase IIα, with potential as anticancer agents. The Co(III) complexes with 

thiosemicarbazone ligands were found to inhibit bacterial topoisomerase I selectively 

over other topoisomerases, including the human enzymes. The most potent complex 

acted as a catalytic inhibitor. Overall, many varied approaches were used to discover 

novel inhibitors of bacterial topoisomerase I, leading to several interesting and promising 

potential antibiotic drugs. 
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II. CHAPTER 1: 

USE OF MIXTURE-BASED SCREENING TO TARGET MYCOBACTERIUM 

TUBERCULOSIS TOPOISOMERASE I 

 

ABSTRACT 

 Mixture-based screening has been shown to be an effective method for drug 

discovery. In the present study, mixture-based combinatorial libraries were screened 

against Mycobacterium tuberculosis topoisomerase I in order to find novel inhibitors of 

the enzyme. Mycobacterium tuberculosis topoisomerase I, MtbTopI, has been validated 

as a novel drug target that is essential in the pathogenesis of tuberculosis, a disease that is 

among the top ten causes of death worldwide. The screen began with a polyamine 

scaffold library that was determined to have selective inhibition of the bacterial enzyme. 

Using positional-scanning deconvolution, selective inhibitors were identified that were 

both inhibitory toward the topoisomerase I and also bactericidal against Mycobacterium 

smegmatis and tuberculosis. The compounds were able to inhibit the topoisomerase at 

low-µM concentrations, and the MIC values for M. smegmatis growth inhibition 

increased upon overexpression of the topoisomerase—indicating the importance of the 

enzyme in the inhibitors’ cellular mode of action. The top hits all exhibit the same 

mechanism of inhibiting the enzyme; they do not prevent the topoisomerase from binding 

DNA, but rather they prevent the DNA from being cleaved. These compounds are a 

promising new class of antimycobacterials that can be further optimized for potentially 

treating tuberculosis and other non-tubercular mycobacterial infections. 
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INTRODUCTION 

 The need for novel antitubercular drugs is urgent. Tuberculosis is one of the top 

ten leading causes of death from an infectious disease worldwide, with 1.8 million deaths 

per year, and the number one killer of people who are HIV-positive (World Health 

Organization, 2016b). The emergence of multidrug-resistant TB (roughly 20% of new 

cases in 2015) and even extensively drug-resistant TB is a major cause for concern.  

 Topoisomerase IA is a novel drug target because it has never yet been targeted by 

antibiotics used clinically (Tse-Dinh, 2008). Topoisomerases are ubiquitous and essential 

for cellular survival. They are responsible for maintaining the correct level of DNA 

supercoiling in the cell, and care for all topological problems that arise from the double-

helical shape of DNA (Wang, 1996). Topoisomerases all share a common mechanism of 

action—the enzymes use their active site tyrosine residue to attack the phosphodiester 

backbone of the DNA. The enzyme is covalently linked to the DNA as the second free 

strand or DNA duplex is passed through the break. The DNA is then religated and 

released from the enzyme (Vos et al., 2011). 

 Type IA topoisomerases are responsible for changing the DNA linking number by 

factors of one. They cleave a single strand of DNA. In bacteria, topoisomerase IA is 

responsible for relaxing supercoiled DNA (Champoux, 2001). These enzymes, as 

mentioned above, are essential for bacterial growth. In Mycobacterium tuberculosis, the 

pathogen responsible for causing tuberculosis, topoisomerase I is especially valuable 

because there is no other type IA topoisomerase present in the cell (Ravishankar et al., 

2015). Therefore, there is no enzyme that can pick up the slack should the topoisomerase 
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I activity be compromised. The essentiality of the enzyme makes topoisomerase I a very 

attractive target in tuberculosis research. 

 Mixture-based screening is a technique that has been successfully used in the past 

to discover potent new classes of drugs (Pinilla et al., 1992), including novel inhibitors of 

tyrosine recombinases and Holliday junction resolving enzymes (Rideout et al., 2011). 

The Torrey Pines Institute for Molecular Studies (TPIMS) synthesizes scaffold mixtures 

that each contains hundreds of thousands of individual compounds, all with a common 

backbone structure. A scaffold mixture is then screened against the desired drug target, in 

the present case, bacterial topoisomerase I.  

Out of the 50 scaffold mixtures screened, scaffold mixture TPI-2229 was found to 

inhibit bacterial topoisomerase I activity selectively over other topoisomerases, including 

DNA gyrase (Figure 1.1) (Sandhaus et al., 2016a). The scaffold was then broken down 

into 216 smaller mixtures in the process called positional scanning. Positional scanning 

ensures that each mixture contains many individual compounds with one R-group in 

common, while the other R-groups are varied (Houghten et al., 2008). The positional 

scanning procedure allows for identifying certain functional groups in set positions that 

provide the most potent target inhibition. Scaffold TPI-2229 contains three variable R-

groups along a polyamine backbone. The R-groups are generally modified amino acid 

side chains. After testing all 216 mixtures against MtbTopI and various bacterial strains, 

the R-groups that allowed for the most potent inhibition of the enzyme and bacterial 

growth were selected. 

 The results from the positional scan were then used to synthesize 80 individual 

compounds with combinations of R-groups that were shown to increase inhibitory 
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activity. These compounds were tested for inhibition of E. coli and M. tuberculosis 

topoisomerase I. Several of them were able to prevent the growth of M. smegmatis and 

M. tuberculosis as well. In four of these compounds, the MIC values were increased 

when topoisomerase I was overexpressed in M. smegmatis. The shift in MIC indicates 

that topoisomerase I plays an important role in these compounds’ cellular mechanism of 

action. 

 

 Following the identification of the four inhibitors that can target topoisomerase I 

in vivo, 36 new compounds were synthesized. The data from all the previous screens 

were used to build these in order to increase potency. From the new compounds, two 

were particularly promising, with IC50 values that were lower than seen in the previous 

set. The most potent compound had an IC50 = 0.73 µM, and was extremely selective 

 

Figure 1.1. TPIMS scaffold 2229 selectively inhibits bacterial type I 
topoiosmerase: The backbone structure of scaffold TPI-2229 (a) can selectively 
inhibit bacterial topoisomerase I enzymes over other types of topoisomerases, 
including DNA gyrase (b) (Sandhaus et al., 2016a).   
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toward the bacterial topoisomerase I. The overall progression of mixture-based screening 

was highly successful, beginning with a mixture with weak enzyme inhibition and ending 

with multiple individual compounds with IC50 values below 10 µM. 

 

MATERIALS AND METHODS 

Bacterial topoisomerase I relaxation inhibition assay 

 The relaxation activity of bacterial topoisomerase I, including EcTopI and 

MtbTopI, was assayed by the use of agarose gel electrophoresis. One percent agarose 

gels were prepared by dissolving 3 g agarose in 300 mL 1x TAE buffer (Tris-acetate-

EDTA). Recombinant EcTopI and MtbTopI purified in our lab were used for these 

experiments (Zhu and Tse-Dinh, 1999). The enzymes were first diluted 1:10 in a dilution 

buffer containing 100 mM KCl, 20 mM KH2PO4 (pH 7.4), 50% glycerol, 1 mM EDTA, 

0.1% gelatin, and 1 mM dithiothreitol (DTT). The diluted enzyme was then added to a 

reaction buffer containing 10 mM Tris (pH 8.0), 50 mM NaCl, 0.1 mg/mL gelatin, and 

0.5 mM MgCl2 for a final enzyme concentration of 10 ng/reaction. The enzyme mixture 

was then divided into 10 µL aliquots before the addition of 0.5 – 1 µL of the desired 

compound dissolved in 5% dimethylformamide (DMF), or the solvent alone for controls. 

9 µL of the same reaction buffer containing 160 ng of supercoiled pBAD/Thio plasmid 

DNA purified by cesium chloride gradient was added to the enzyme mixture. The 

samples were then incubated for 30 minutes at 37°C before being terminated by the 

addition of 4 µL of 50% glycerol, 50 mM EDTA, and 0.5% (v/v) bromophenol blue. The 

samples were then loaded into a 1% agarose gel and run at 25V overnight. Upon 
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completion, the gels were stained in ethidium bromide and photographed under UV light 

(Cheng et al., 2013). 

 

DNA gyrase supercoiling inhibition assay 

 Supercoiling activity of DNA gyrase was assayed by agarose gel electrophoresis 

as well. The gyrase was obtained from New England BioLabs or was purified in our lab. 

2 U of the enzyme was added to a reaction buffer provided by the manufacturer (35 mM 

Tris-HCl, 24 mM KCl, 4 mM MgCl2, 2 mM DTT, 1.75 mM ATP, 5 mM spermidine, 0.1 

mg/mL BSA, and 6.5% glycerol) and divided into 10 µL aliquots. 0.5 – 1 µL of the 

compounds dissolved in 5% DMF or the solvent alone were added to the enzyme 

mixture. 300 ng of relaxed covalently closed circular DNA provided by the manufacturer 

was then added for a final volume of 20 µL. The samples were incubated for 30 minutes 

at 37°C before termination by the addition of 4 µL of a buffer containing 5% SDS, 0.25% 

bromophenol blue, and 25% glycerol. The samples were then loaded into a 1% agarose 

gel and run at 25V overnight before being stained in ethidium bromide and photographed 

under UV light (Cheng et al., 2013).  

 

Human topoisomerase I relaxation inhibition assay 

 Human topoisomerase I (HTOPI) relaxation activity was assayed via gel 

electrophoresis. Purified human topoisomerase I was purchased from TopoGen. The 

reactions contained 0.5 U of the enzyme suspended in a buffer containing 10 mM Tris 

(pH 8.0), 150 mM NaCl, 0.1% BSA, 0.1 mM spermidine, and 5% glycerol. The 

compounds were then added to the enzyme at the indicated concentrations before the 
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addition of 160 ng of supercoiled pBAD/Thio plasmid DNA suspended in the same 

buffer. The final reaction volume was 20 µL. After the samples were incubated for 30 

minutes at 37°C, they were terminated by the addition of a buffer containing 5% SDS, 

0.25% bromophenol blue, and 25% glycerol. They were then analyzed on a 1% agarose 

gel (Cheng et al., 2013). 

 

Human topoisomerase IIα decatenation inhibition assay 

 The decatenation activity of human topoisomerase IIα (HTOPIIα) was assayed via 

electrophoresis in an agarose gel containing 0.5 µg/mL ethidium bromide. The enzyme 

was obtained from TopoGen. The compounds were added to 180 ng of kinetoplast DNA 

(kDNA) before adding 2 U of the enzyme suspended in an ATP-containing buffer 

supplied by the manufacturer for a final volume of 20 µL. The samples were incubated 

for 15 minutes at 37°C. The reactions were then terminated by the addition of a buffer 

containing 5% sarkosyl, 0.25% bromophenol blue, and 25% glycerol. The samples were 

loaded into a 1% agarose gel containing 0.5 µg/mL ethidium bromide, and were run in 1x 

TAE buffer containing 0.5 µg/mL ethidium bromide as well. The gels were then 

photographed under UV light (Sandhaus et al., 2016a). 

 

Bacterial strains and overexpression plasmids 

 Previously, the M. tuberculosis topA gene that encodes topoisomerase I 

(MtbTopI) was inserted into a pKW08-Lx plasmid under the control of a tetracycline-

inducible promoter by Dr. Thirunnavukarasu Annamalai. The resulting plasmid, pKW-

M+, expresses MtbTopI. A control vector without the gene, pKW-nol, was constructed as 
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well. Both plasmids were electroporated separately into the wild-type M. smegmatis 

strain, mc2155. The resulting strains, M+ and Mnol, were used for growth inhibition 

assays, to indicate whether overexpression of MtbTopI affected the antibacterial activity 

(Sandhaus et al., 2016a). 

 

M. smegmatis growth inhibition and loss of viability 

 The antibacterial properties of the compounds were determined with growth 

assays and cell viability assays. Mycobacterim smegmatis was used as a non-pathogenic 

model system for Mycobacterium tuberculosis (Shiloh and DiGiuseppe Champion, 

2010). Cultures that were grown from streaked LBN/agar plates were used to start 

cultures in Middlebrook 7H9 medium supplemented with 0.2% glycerol, 0.05% Tween 

80, and 10% ADN (albumin, dextrose, sodium chloride) for 1 day. The overexpression 

strains contained 50 µg/mL hygromycin B as well. The cultures were then diluted 1:100, 

1:200, and 1:500 in the same medium without ADN and grown overnight until the OD600 

was between 0.6 and 0.7 (exponential growth phase). The cells were then adjusted to 

OD600 = 0.5 and diluted further 1:10. 50 µL of these diluted cells were added to clear-

bottom 96-well plates containing 50 µL of the compounds serially diluted in the same 

medium. The plates were grown at 37°C with shaking for 48 hours. Absorbance readings 

were taken every ~4 hours until the cells had grown to saturation (OD600 = 1.5). The MIC 

values are recorded as the minimum concentration of compound that prevented increased 

absorbance readings over time. 

 To determine whether the compounds that prevented growth were bactericidal or 

bacteriostatic, the cells from the MIC assays with compound concentrations above the 
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MIC were diluted and spread on LB plates and allowed to grow at 37°C for 3 days. The 

viable colonies were counted and divided by the number of viable cells pre-treatment for 

a ratio of loss of viability. 

 

Inhibition of M. smegmatis biofilm formation 

 The ability of the most potent antibacterial compound to prevent M. smegmatis 

bacterial biofilm formation was assayed in the following manner: the cells were grown in 

Middlebrook 7H9 medium supplemented with 0.2% glycerol, 0.05% Tween 80, and 10% 

ADN (albumin, dextrose, sodium chloride) overnight until they reached saturation. The 

cells were then spun down and the pellet was resuspended in LBN medium. The cells 

were then adjusted to OD600 = 0.002 and added in 100 µL volumes to a Costar 2797 96-

well plate (polyvinyl chloride). The plate was incubated at 37°C for 18 hours before the 

addition of 1 µL of the compound at 100x concentrations. The plate was incubated 

further for 24 hours. After 24 hours, the wells were emptied of the cell cultures. The plate 

was washed in deionized water and allowed to dry for 5 minutes. Then, 125 µL of 0.1% 

crystal violet was added to the wells. After 15 minutes, the crystal violet was removed 

and the plate was washed again in deionized water. The plate was dried again, and then 

200 µL of 30% acetic acid was added. After 15 minutes, 125 µL of the acetic acid was 

transferred to a Nunc flat-bottomed 96-well plate and the absorbance was read at 600 nm. 

 

MtbTopI-DNA binding gel shift assay 

The compounds’ ability to prevent the topoisomerase from binding DNA was 

assayed via gel shift. The enzyme was added to a buffer containing 20 mM Tris, 100 
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µg/mL BSA, 18% glycerol, and 0.5 mM EDTA such that the final amount was ranging 

from 0.1 pmole (10 ng) to 1 pmole (100 ng). The compound was then added to the 

enzyme before 0.5 pmole of the labeled oligonucleotide STS-32 was added. The 32 base 

oligonucleotide substrate STS-32 5′-

CAGTGAGCGAGCTTCCGCT↓TGACATCCCAATA-3′ with an MtbTopI cleavage site 

(indicated by arrow) was labeled at the 5’-end with γ-32P-ATP and T4 polynucleotide 

kinase (Tan et al., 2016). The samples were incubated at 37°C for 5 minutes, and then left 

on ice for another 5 minutes. After the addition of gel shift loading buffer, the samples 

were loaded and run at 100V at 4°C for 5 hours in 0.5x TBE buffer (Tris-boric acid-

EDTA). Once completed, the gels were dried at 80°C for 2 hours before Phosphor-Image 

analysis. 

 

MtbTopI-32P-DNA cleavage inhibition assay 

The ability of the compounds to prevent DNA cleavage was assayed in the 

following manner. 0.5 pmole of the labeled STS-32 oligonucleotide was added 10 mM 

Tris. The compounds were added to the oligonucleotide. Finally, the enzyme was added 

such that the final amount was ranging from 0.1 pmole (10 ng) to 1 pmole (100 ng). The 

samples were incubated for 30 minutes at 37°C. The reactions were stopped by the 

addition of an equal volume of sequencing gel loading buffer. The samples were then 

boiled at 95°C for 5 minutes before being loaded into a 15% urea sequencing gel. The 

samples were run in 1x TBE buffer at 200 – 300V for 4 – 5 hours. The results were 

analyzed by Phosphor-Image analysis. 

 



	 35 

Ethidium bromide MtbTopI-DNA cleavage inhibition assay 

 The cleavage inhibition was also assayed in ethidium bromide gels. The enzyme 

was added to a reaction buffer containing 10 mM Tris (pH 8.0), 50 mM NaCl, and 0.1 

mg/mL gelatin for a final enzyme concentration of 50 ng/reaction. The enzyme mixture 

was then divided into 10 µL aliquots before the addition of 0.5 – 1 µL of the desired 

compound dissolved in 5% dimethylformamide (DMF), or the solvent alone for controls. 

160 ng of supercoiled pBAD/Thio plasmid DNA purified by cesium chloride gradient 

was added to the enzyme mixture. The samples were then incubated for 30 minutes at 

37°C before the addition of 2.5 µL of 10% SDS and 0.625 µL of 20 mg/mL proteinase K. 

The samples were further incubated for 1 hour. The samples were then loaded into a 1% 

agarose gel containing 0.5 µg/mL ethidium bromide and run at 25V overnight. Upon 

completion, the gels were photographed under UV light. 

 

RESULTS AND DISCUSSION 

Positional scan of scaffold TPI-2229 yields selective inhibitor of bacterial 

topoisomerase I 

 Previously, scaffold TPI-2229 was found to be a selective inhibitor of bacterial 

topoisomerase I at 100 µg/mL. The enzyme inhibition was not caused by non-specific 

interactions of the positively charged polyamine backbone, as the activity of DNA gyrase 

was not inhibited. Scaffold TPI-2229 was then split into 216 sample mixtures in a 

positional-scanning library. Each mixture contained one R-group that was held constant, 

while the other two R-groups were varied. Using the positional-scanning technique, the 

R-group position and identity could be linked with activity. The mixtures were screened 
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against EcTopI for relaxation inhibition, and the effects of different R1, R2, and R3 

substitutions on the IC50 values were analyzed. There were several structure-activity 

relationships (SAR) trends that were apparent, such as large aromatic groups or positively 

charged functional groups in the R1 position producing mixtures with IC50 values against 

EcTopI in the low-micromolar range, among others. Aliphatic substitutions in the R1 

positions had IC50 values higher than 100 µM. These data from the positional-scanning 

library was used to direct the synthesis of individual compounds. The SAR data were 

used to include R-groups that would most likely be active, and other R-groups were 

selected to generate diversity in the TPI-2471 library.  

 

Potency and selectivity for bacterial topoisomerase I by individual compounds in 

TPI-2471 library 

 The 80 individual compounds in the TPI-2471 library were tested against EcTopI 

and displayed IC50 values ranging from 1.25 µM to greater than 160 µM (Table 1.1). All 

of the compounds with IC50 values less than 20 µM contained a naphthyl group at the R3 

position. Other substitutions at the R3 position yielded IC50 values greater than 20 µM.  

The results indicate the importance of the naphthyl group in the R3 position. Although 

the compounds were able to inhibit EcTopI at low concentrations, they did not display 

strong antibacterial activity against various strains of E.coli. They did, however, inhibit 

M. tuberculosis topoisomerase I at concentrations similar to those seen against EcTopI. 

They were therefore all tested for antibacterial activity against M. smegmatis, and 14 

compounds showed growth inhibition ≤ 50 µM (Table 1.2). The most potent compound, 

2471-80, was also able to prevent biofilm formation of M. smegmatis cells. 
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Table 1.1. Information on TPI-2471 library: R1, R2, R3 substitutions and IC50 values for inhibition of E. coli 
topoisomerase I 

Compound 
Number R1 R2 R3 

EcTopI 
Relaxation 
Inhibition 
(IC50, µM) 

2471-1 S-4-(methylamino)butyl) S-4-(methylamino)butyl)  2-(3-bromo-phenyl)-ethyl 160 
2471-2 S-4-(methylamino)butyl) S-4-(methylamino)butyl) 2-(3,4-dihydroxy-phenyl)-ethyl 120 
2471-3 S-4-(methylamino)butyl) S-4-(methylamino)butyl) 1-naphthylmethyl 2.5 
2471-4 S-4-(methylamino)butyl) S-3-guanidinepropyl  2-(3-bromo-phenyl)-ethyl 160 
2471-5 S-4-(methylamino)butyl) S-3-guanidinepropyl 2-(3,4-dihydroxy-phenyl)-ethyl >160 
2471-6 S-4-(methylamino)butyl) S-3-guanidinepropyl 1-naphthylmethyl 2.5 
2471-7 S-4-(methylamino)butyl) R-propyl  2-(3-bromo-phenyl)-ethyl 160 
2471-8 S-4-(methylamino)butyl) R-propyl 2-(3,4-dihydroxy-phenyl)-ethyl >160 
2471-9 S-4-(methylamino)butyl) R-propyl 1-naphthylmethyl 5 
2471-10 S-4-(methylamino)butyl) S-butyl  2-(3-bromo-phenyl)-ethyl 160 
2471-11 S-4-(methylamino)butyl) S-butyl 2-(3,4-dihydroxy-phenyl)-ethyl >160 
2471-12 S-4-(methylamino)butyl) S-butyl 1-naphthylmethyl 7.5 
2471-13 S-3-aminopropyl S-4-(methylamino)butyl)  2-(3-bromo-phenyl)-ethyl 160 
2471-14 S-3-aminopropyl S-4-(methylamino)butyl) 2-(3,4-dihydroxy-phenyl)-ethyl >160 
2471-15 S-3-aminopropyl S-4-(methylamino)butyl) 1-naphthylmethyl 1.875 
2471-16 S-3-aminopropyl S-3-guanidinepropyl  2-(3-bromo-phenyl)-ethyl 40 
2471-17 S-3-aminopropyl S-3-guanidinepropyl 2-(3,4-dihydroxy-phenyl)-ethyl >160 
2471-18 S-3-aminopropyl S-3-guanidinepropyl 1-naphthylmethyl 1.25 
2471-19 S-3-aminopropyl R-propyl  2-(3-bromo-phenyl)-ethyl 160 
2471-20 S-3-aminopropyl R-propyl 2-(3,4-dihydroxy-phenyl)-ethyl >160 
2471-21 S-3-aminopropyl R-propyl 1-naphthylmethyl 7.5 
2471-22 S-3-aminopropyl S-butyl  2-(3-bromo-phenyl)-ethyl 160 
2471-23 S-3-aminopropyl S-butyl 2-(3,4-dihydroxy-phenyl)-ethyl >160 
2471-24 S-3-aminopropyl S-butyl 1-naphthylmethyl 10 
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Table 1.1. cont. 
 
2471-25 R-4-(methylamino)butyl S-4-(methylamino)butyl)  2-(3-bromo-phenyl)-ethyl 160 
2471-26 R-4-(methylamino)butyl S-4-(methylamino)butyl) 2-(3,4-dihydroxy-phenyl)-ethyl 80 
2471-27 R-4-(methylamino)butyl S-4-(methylamino)butyl) 1-naphthylmethyl 1.25 
2471-28 R-4-(methylamino)butyl S-3-guanidinepropyl  2-(3-bromo-phenyl)-ethyl 40 
2471-29 R-4-(methylamino)butyl S-3-guanidinepropyl 2-(3,4-dihydroxy-phenyl)-ethyl 120 
2471-30 R-4-(methylamino)butyl S-3-guanidinepropyl 1-naphthylmethyl 2.5 
2471-31 R-4-(methylamino)butyl R-propyl  2-(3-bromo-phenyl)-ethyl 160 
2471-32 R-4-(methylamino)butyl R-propyl 2-(3,4-dihydroxy-phenyl)-ethyl >160 
2471-33 R-4-(methylamino)butyl R-propyl 1-naphthylmethyl 5 
2471-34 R-4-(methylamino)butyl S-butyl  2-(3-bromo-phenyl)-ethyl 160 
2471-35 R-4-(methylamino)butyl S-butyl 2-(3,4-dihydroxy-phenyl)-ethyl >160 
2471-36 R-4-(methylamino)butyl S-butyl 1-naphthylmethyl 20 
2471-37 S-2-naphthylmethyl R-butyl  2-(3,5-Bis(Trifluoromethyl)phenyl)-ethyl 40 
2471-38 S-2-naphthylmethyl R-butyl  4-tert-butyl-cyclohexyl 40 
2471-39 S-2-naphthylmethyl R-butyl 4-cyclohexylbutyl 40 
2471-40 S-2-naphthylmethyl S-3-(methylamino)propyl  2-(3,5-Bis(Trifluoromethyl)phenyl)-ethyl 40 
2471-41 S-2-naphthylmethyl S-3-(methylamino)propyl  4-tert-butyl-cyclohexyl 40 
2471-42 S-2-naphthylmethyl S-3-(methylamino)propyl 4-cyclohexylbutyl 40 
2471-43 S-2-naphthylmethyl R-3-(methylamino)propyl  2-(3,5-Bis(Trifluoromethyl)phenyl)-ethyl 40 
2471-44 S-2-naphthylmethyl R-3-(methylamino)propyl  4-tert-butyl-cyclohexyl 40 
2471-45 S-2-naphthylmethyl R-3-(methylamino)propyl 4-cyclohexylbutyl 40 
2471-46 S-2-naphthylmethyl S-4-fluorobenzyl  2-(3,5-Bis(Trifluoromethyl)phenyl)-ethyl 40 
2471-47 S-2-naphthylmethyl S-4-fluorobenzyl  4-tert-butyl-cyclohexyl 40 
2471-48 S-2-naphthylmethyl S-4-fluorobenzyl 4-cyclohexylbutyl 40 
2471-49 S-cyclohexylmethyl R-butyl  2-(3,5-Bis(Trifluoromethyl)phenyl)-ethyl 40 
2471-50 S-cyclohexylmethyl R-butyl  4-tert-butyl-cyclohexyl 160 
2471-51 S-cyclohexylmethyl R-butyl 4-cyclohexylbutyl 160 
2471-52 S-cyclohexylmethyl S-3-(methylamino)propyl  2-(3,5-Bis(Trifluoromethyl)phenyl)-ethyl 160 
2471-53 S-cyclohexylmethyl S-3-(methylamino)propyl  4-tert-butyl-cyclohexyl >160 
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2471-54 S-cyclohexylmethyl S-3-(methylamino)propyl 4-cyclohexylbutyl >160 
2471-55 S-cyclohexylmethyl R-3-(methylamino)propyl  2-(3,5-Bis(Trifluoromethyl)phenyl)-ethyl 160 
2471-56 S-cyclohexylmethyl R-3-(methylamino)propyl  4-tert-butyl-cyclohexyl 160 
2471-57 S-cyclohexylmethyl R-3-(methylamino)propyl 4-cyclohexylbutyl 160 
2471-58 S-cyclohexylmethyl S-4-fluorobenzyl  2-(3,5-Bis(Trifluoromethyl)phenyl)-ethyl 40 
2471-59 S-cyclohexylmethyl S-4-fluorobenzyl  4-tert-butyl-cyclohexyl 40 
2471-60 S-cyclohexylmethyl S-4-fluorobenzyl 4-cyclohexylbutyl 40 
2471-61 R-cyclohexylmethyl R-butyl  2-(3,5-Bis(Trifluoromethyl)phenyl)-ethyl 40 
2471-62 R-cyclohexylmethyl R-butyl  4-tert-butyl-cyclohexyl 160 
2471-63 R-cyclohexylmethyl R-butyl 4-cyclohexylbutyl 160 
2471-64 R-cyclohexylmethyl S-3-(methylamino)propyl  2-(3,5-Bis(Trifluoromethyl)phenyl)-ethyl 160 
2471-65 R-cyclohexylmethyl S-3-(methylamino)propyl  4-tert-butyl-cyclohexyl 160 
2471-66 R-cyclohexylmethyl S-3-(methylamino)propyl 4-cyclohexylbutyl 160 
2471-67 R-cyclohexylmethyl R-3-(methylamino)propyl  2-(3,5-Bis(Trifluoromethyl)phenyl)-ethyl 160 
2471-68 R-cyclohexylmethyl R-3-(methylamino)propyl  4-tert-butyl-cyclohexyl 160 
2471-69 R-cyclohexylmethyl R-3-(methylamino)propyl 4-cyclohexylbutyl 80 
2471-70 R-cyclohexylmethyl S-4-fluorobenzyl  2-(3,5-Bis(Trifluoromethyl)phenyl)-ethyl 40 
2471-71 R-cyclohexylmethyl S-4-fluorobenzyl  4-tert-butyl-cyclohexyl 40 
2471-72 R-cyclohexylmethyl S-4-fluorobenzyl 4-cyclohexylbutyl 40 
2471-73 R-2-(1H-indol-3-yl)ethyl R-2-(1H-indol-3-yl)ethyl  2-(3,4-dichloro-phenyl)-ethyl 40 
2471-74 R-2-(1H-indol-3-yl)ethyl R-2-(1H-indol-3-yl)ethyl 1-naphthylethyl 40 
2471-75 R-2-(1H-indol-3-yl)ethyl S-3-(methylamino)propyl  2-(3,4-dichloro-phenyl)-ethyl 80 
2471-76 R-2-(1H-indol-3-yl)ethyl S-3-(methylamino)propyl 1-naphthylethyl 20 
2471-77 S-2-naphthylmethyl R-2-(1H-indol-3-yl)ethyl  2-(3,4-dichloro-phenyl)-ethyl 40 
2471-78 S-2-naphthylmethyl R-2-(1H-indol-3-yl)ethyl 1-naphthylethyl 40 
2471-79 S-2-naphthylmethyl S-3-(methylamino)propyl  2-(3,4-dichloro-phenyl)-ethyl 30 
2471-80 S-2-naphthylmethyl S-3-(methylamino)propyl 1-naphthylethyl 2.5 

(Sandhaus et al., 2016a) 
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We were interested in how the compounds’ antibacterial activity would be 

affected by the overexpression of the hypothesized target. To determine whether 

overexpression of the target would have any effect, antibacterial studies were conducted 

using the M+ and Mnol strains; the M+ strain expresses MtbTopI at least 6-fold higher 

than the Mnol strain, even in the absence of the tetracycline inducer (Sandhaus et al., 

2016a). Growth inhibition assays showed that four of the compounds of interest, 2471-

12, 2471-24, 2471-36, and 2471-80, displayed increased MIC values in the presence of 

MtbTopI overexpression, indicating that the topoisomerase I is indeed at least one of the 

cellular targets (Table 1.3). The MIC values were increased 2- to 4-fold when the 

topoisomerase was overexpressed. Conversely, the overexpression of MtbTopI did not 

Table 1.2. Antimycobacterial activity of potent MtbTopI inhibitors 
 

 
(Sandhaus et al., 2016a) 
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affect the MIC of ciprofloxacin, a fluoroquinolone drug that targets the type II 

topoisomerase, DNA gyrase, in the cell. The results indicate that overexpression of 

MtbTopI does not have non-specific effects on the growth inhibition even by drugs with 

similar cellular targets. 

 

Counting of viable colonies indicated that these compounds are bactericidal 

against M. smegmatis. Overexpression of MtbTopI was also able to rescue the cells from 

death to an extent. The time course cell killing of 2471-12 indicated that the compound 

Table 1.3. Effect of MtbTopI overexpression on MICs of select 2471 inhibitors 

(Sandhaus et al., 2016a) 



	 42 

killed the bacteria rapidly, with no viable colonies detected at 22 hours post-treatment in 

the Mnol strain. Again, MtbTopI overexpression provided significant protection, and the 

M+ strain was able to continue growing despite the decrease in viable colonies (Figure 

1.2).  

 

Further studies on M. tuberculosis were performed in the lab of Dr. Kyle Rohde at 

the University of Central Florida. Dr. Rohde’s group confirmed that the cell-killing 

activity of these four compounds was retained in M. tuberculosis, with IC50 values 

ranging from 3.3 µM to 8.4 µM. The CC50 of the compounds in macrophages ranged 

from ~40 µM to ~100 µM, with selectivity index values over 10 for three of the 

compounds (SI = CC50/IC50). These studies proved that the compounds were a relatively 

potent starting point for a hit series. 

 
Figure 1.2. Effect of MtbTopI overexpression on bactericidal activity of 
topoisomerase I inhibitors: The overexpression of MtbTopI in M+ cells was able to 
reduce the bactericidal effect of TPIMS inhibitors. The downward arrow indicates no 
viable colonies were detected after 44 hours post-treatment with 50 µM 2471-12 (a). 
Enzyme overexpression was also able to rescue M+ cells from the rapid killing 
observed in Mnol by 2471-12 at 50 µM. The downward arrow indicates no viable 
colonies were detected at time points later than 8 hours post-treatment (b) (Sandhaus 
et al., 2016a).   
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 The four compounds are also selective in their inhibition of bacterial 

topoisomerase I—concentrations more than 10-fold higher were required to inhibit the 

activity of DNA gyrase, human topoisomerase I, and human topoisomerase IIα (Figure 

1.3, Table 1.4). These results indicate that the mixture-based screening was also 

successful at discovering selective inhibitors; the polyamine compounds are not 

promiscuous inhibitors for just any DNA-binding enzyme. 
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Table 1.4. TPIMS hits are selective inhibitors of bacterial topoisomerase I 
 
 IC50 (µM) for enzyme: 

Compound M. tuberculosis topoisomerase I E. coli DNA gyrase Human topoisomerase I Human topoisomerase IIα 

2471-12 7.5 160 80 80 

2471-24 7.5 >160 >160 160 

2471-36 15 >160 >160 >160 

2471-80 5 160 80 80 

 
 (Sandhaus et al., 2016a).   
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Figure 1.3. TPIMS hits are selective inhibitors of bacterial topoisomerase I: 2471-
80 gel assays shown as example. Inhibition of M.tuberculosis topoisomerase I 
relaxation activity is strong (a), but inhibition of DNA gyrase (b), human 
topoisomerase I (c), and human topoisomerase IIα (d) is weak. The lanes shown here 
are from the same gel (Sandhaus et al., 2016a).   
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Activity of individual compounds in TPI-2580 library surpasses previous hits 

 Following the evaluation of the positional-scanning library and the individual 

compounds library, another set of individual compounds was synthesized at Torrey Pines. 

The newest library was intended to further increase the potency of the MtbTopI 

inhibitors. From the 36 new compounds, a total of eight were very potent inhibitors of 

bacterial topoisomerase I, with IC50 values below 10 µM (Table 1.5). Of the eight, there 

were five with antibacterial activity below 25 µM as well. The most potent by far was 

2580-15, with an IC50 = 0.73 µM. 2580-18 was next most potent, with an IC50 = 3.25 µM. 

The compounds are also extremely selective inhibitors, with no inhibition of human 

topoisomerase I, human topoisomerase IIα, or DNA gyrase seen up to 100 µM (Table 

1.6).  
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Table 1.5. Information on TPI-2580 library: R1, R2, R3 substitutions and IC50 values for inhibition of M. tuberculosis 
topoisomerase I 

Compound 
Number R1 R2 R3 

MtbTopI 
Relaxation 
Inhibition 
(IC50, µM) 

2580-1 R-propyl R-3-guanidinepropyl 2-(4-isobutyl-phenyl)-propyl >10 
2580-2 R-propyl R-3-guanidinepropyl 4-phenylbutyl >10 
2580-3 R-propyl R-3-guanidinepropyl 1-naphthylethyl 6.27 
2580-4 R-propyl R-butyl 2-(4-isobutyl-phenyl)-propyl >10 
2580-5 R-propyl R-butyl 4-phenylbutyl >10 
2580-6 R-propyl R-butyl 1-naphthylethyl >10 
2580-7 R-propyl S-3-(methylamino)propyl 2-(4-isobutyl-phenyl)-propyl >10 
2580-8 R-propyl S-3-(methylamino)propyl 4-phenylbutyl >10 
2580-9 R-propyl S-3-(methylamino)propyl 1-naphthylethyl 10 
2580-10 R-propyl R-2-naphthylmethyl 2-(4-isobutyl-phenyl)-propyl >10 
2580-11 R-propyl R-2-naphthylmethyl 4-phenylbutyl >10 
2580-12 R-propyl R-2-naphthylmethyl 1-naphthylethyl >10 
2580-13 R-3-(methylamino)propyl R-3-guanidinepropyl 2-(4-isobutyl-phenyl)-propyl >10 
2580-14 R-3-(methylamino)propyl R-3-guanidinepropyl 4-phenylbutyl >10 
2580-15 R-3-(methylamino)propyl R-3-guanidinepropyl 1-naphthylethyl 0.73 
2580-16 R-3-(methylamino)propyl R-butyl 2-(4-isobutyl-phenyl)-propyl >10 
2580-17 R-3-(methylamino)propyl R-butyl 4-phenylbutyl >10 
2580-18 R-3-(methylamino)propyl R-butyl 1-naphthylethyl 3.25 
2580-19 R-3-(methylamino)propyl S-3-(methylamino)propyl 2-(4-isobutyl-phenyl)-propyl >10 
2580-20 R-3-(methylamino)propyl S-3-(methylamino)propyl 4-phenylbutyl >10 
2580-21 R-3-(methylamino)propyl S-3-(methylamino)propyl 1-naphthylethyl 10 
2580-22 R-3-(methylamino)propyl R-2-naphthylmethyl 2-(4-isobutyl-phenyl)-propyl >10 
2580-23 R-3-(methylamino)propyl R-2-naphthylmethyl 4-phenylbutyl >10 
2580-24 R-3-(methylamino)propyl R-2-naphthylmethyl 1-naphthylethyl 8 
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Table 1.5. cont. 
 
2580-25 S-2-naphthylmethyl R-3-guanidinepropyl 2-(4-isobutyl-phenyl)-propyl >10 
2580-26 S-2-naphthylmethyl R-3-guanidinepropyl 4-phenylbutyl >10 
2580-27 S-2-naphthylmethyl R-3-guanidinepropyl 1-naphthylethyl 7.5 
2580-28 S-2-naphthylmethyl R-butyl 2-(4-isobutyl-phenyl)-propyl >10 
2580-29 S-2-naphthylmethyl R-butyl 4-phenylbutyl >10 
2580-30 S-2-naphthylmethyl R-butyl 1-naphthylethyl >10 
2580-31 S-2-naphthylmethyl S-3-(methylamino)propyl 2-(4-isobutyl-phenyl)-propyl >10 
2580-32 S-2-naphthylmethyl S-3-(methylamino)propyl 4-phenylbutyl >10 
2580-33 S-2-naphthylmethyl S-3-(methylamino)propyl 1-naphthylethyl 8 
2580-34 S-2-naphthylmethyl R-2-naphthylmethyl 2-(4-isobutyl-phenyl)-propyl >10 
2580-35 S-2-naphthylmethyl R-2-naphthylmethyl 4-phenylbutyl >10 
2580-36 S-2-naphthylmethyl R-2-naphthylmethyl 1-naphthylethyl >10 
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Table 1.6. Most potent and selective inhibitors from TPI-2580 library 
 
 IC50 (µM) for enzyme: 

Compound M. tuberculosis topoisomerase I E. coli DNA gyrase Human topoisomerase I Human topoisomerase IIα 

2580-3 6.3 >100 >100 >100 

2580-15 0.7 >100 >100 >100 

2580-18 3.3 >100 >100 >100 

2580-24 8 >85 >85 >85 

2580-33 8 >85 >85 >85 
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All of these five compounds displayed increased MIC values (the most effective 

showed 2- to 4-fold) when MtbTopI was overexpressed in M. smegmatis, confirming the 

topoisomerase’s role as a cellular target (Table 1.7). These compounds are also 

bactericidal, with complete cell killing activity observed after ~44 hours of treatment 

with 2- to 4-fold MIC concentrations.   

 

 

Table 1.7. Effect of MtbTopI overexpression on MICs of select 2580 inhibitors 

 
 

Compound Structure M+ Mnol

2580-3 23.52 15.68

2580-15 14.62 7.31

2580-18 24.38 6.10

2580-24 13.34 10.00

2580-33 26.67 20.00

MIC (µM) against M. smegmatis strain
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Top compounds act as catalytic inhibitors of bacterial topoisomerase I 

 From the two individual compound libraries TPI-2471 and TPI-2580, there are 

several interesting, potent, and novel inhibitors of bacterial topoisomerase I. The 

compounds act as catalytic inhibitors in their growth inhibition of M+ and Mnol strains—

a poison inhibitor would show lower MIC values for M+, as the increased level of 

topoisomerase I would offer more targets for poisoning, whereas increased target levels 

offsets the effect of catalytic inhibitors—and a catalytic mechanism was supported by in 

vitro studies. Dr. Thirunavukkarasu Annamalai from our lab confirmed that 2471-80 and 

2471-12 do not prevent DNA binding with anisotropy assays (Sandhaus et al., 2016a). 

Gel shift assays indicated the same, and also verified that 2580-15 and 2580-18 do not 

prevent DNA binding as well (Figure 1.4). 

 

 
Figure 1.4. Top compounds do not prevent MtbTopI from binding to DNA 
oligonucleotides: a) Lane 1: STS-32 oligo without enzyme; Lanes 2 – 5: MtbTopI at 
0.1 pmole, 0.2 pmole, 0.5 pmole, and 0.75 pmole; Lanes 6 – 9: MtbTopI at same 
amounts as mentioned, but in the presence of 20 µM 2471-80; Lanes 10 – 13: same 
enzyme amounts, but in the presence of 10 µM 2580-15. b) Lanes 1 – 4: MtbTopI at 
0.1 pmole, 0.2 pmole, 0.5 pmole, and 0.75 pmole; Lane 5: STS-32 oligo without 
enzyme; Lanes 6 – 9: MtbTopI at same amounts as mentioned, but in the presence of 
20 µM 2580-18. 
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 Since the compounds do not prevent the enzyme from binding DNA, they must 

inhibit the activity in another way. Catalytic inhibitors may act by preventing the enzyme 

from cleaving the DNA, and indeed, that does appear to be the mechanism of inhibition 

for these compounds. The compounds 2471-12, 2471-80, 2580-15, and 2580-18 were 

tested in cleavage assays, either with gels containing ethidium bromide, or with 

radioactive-labeled oligonucleotides. As predicted, the compounds all decreased the 

amount of DNA cleavage product produced by the topoisomerase. In the ethidium 

bromide gels, compound 2471-12 was able to prevent approximately 50% of all DNA 

cleavage activity at 5 µM. Compound 2471-80 prevented over 80% DNA cleavage at the 

same concentration. Cleavage inhibition of radioactive-labeled oligonucleotides was also 

seen, with 20 µM 2580-18 reducing activity by ~50%. Compound 2580-15 showed only 

moderate inhibition of cleavage activity, with an 18% reduction seen at 10 µM of the 

compound. 
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Figure 1.5. TPIMS hit compounds prevent MtbTopI from cleaving DNA: a) Lane 1: Negatively supercoiled pBAD/Thio 
plasmid DNA; Lane 2: DMF as negative control; Lanes 3 – 8: 80, 40, 20, 10, 5, and 2.5 µM 2471-12; Lanes 9 – 14: 80, 40, 20, 
10, 5, and 2.5 µM 2471-80. Electrophoresis buffer contained 0.5 µg/mL ethidium bromide. The lanes shown here are from the 
same gel. N: nicked, CC: covalently closed. b) Percent cleavage inhibition by compounds 2471-12 and 2471-80. c) Lane 1: 
Labeled STS-32 oligo without enzyme; Lanes 2 – 5: MtbTopI at 0.75 pmole, 0.5 pmole, 0.25 pmole, and 0.125 pmole; Lanes 6 
– 9: MtbTopI at same amounts as mentioned, but in the presence of 20 µM 2580-18. UC: uncleaved oligo, C: cleaved oligo. d) 
Reduction in band signal for oligo cleavage product by compound 2580-18. 
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CONCLUSION 

 Tuberculosis is a severe threat to global health. With the appearance of multi-

drug resistant strains, the necessity for novel drugs is more pressing than ever. In the 

past, there have been antibacterial and anticancer drugs that inhibit type IB and type 

IIA topoisomerases. Bacterial type IA topoisomerases are a high-value target because 

clinical antibiotics have never targeted them before. In the current study, different 

molecular scaffolds not seen before as bacterial topoisomerase I inhibitors were 

explored. In the original scaffold-ranking library, five polyamine backbones were 

represented among 50 scaffolds (Sandhaus et al., 2016a). Out of all the scaffolds 

screened, only TPI-2229 was able to inhibit the relaxation activity of EcTopI at 100 

µg/mL. The scaffold was selective as well, with no inhibition of DNA gyrase seen. 

Positional scanning was able to identify substitutions that are most favorable for 

inhibition of EcTopI activity. Comparable inhibitory concentrations were observed 

for MtbTopI. The results presented here demonstrate that varying the substitutions on 

the polyamine backbone can lead to a new class of bactericidal antimycobacterial 

agents with topoisomerase I as their cellular target. 

 Lack of compound uptake by E. coli may be responsible for the deficiency of 

whole-cell activity observed. The cell wall of Gram-negative bacteria is notoriously 

difficult to penetrate. Alternatively, the presence of topoisomerase III (an alternate 

type IA enzyme) in E. coli may be a factor as well. The present study did not discover 

broad-spectrum antibiotic candidates, or poison inhibitors of bacterial topoisomerase 

I. Poison inhibitors act not by eliminating topoisomerase activity, but rather by 

stabilizing the covalent DNA-enzyme intermediate. The poisoning causes the 



	 55 

topoisomerase to be trapped on the DNA and can be highly effective at causing 

apoptosis. Topoisomerase poisons would not require that the enzyme activity be 

essential in order to disrupt cellular growth, while catalytic inhibitors necessarily 

require their targets be essential. As topoisomerase I is not essential in E. coli, these 

compounds may be less effective than against M. tuberculosis, where topoisomerase I 

is essential for growth.  

 Our results have shown that the TPI-2471 and TPI-2580 compound libraries 

contained extremely effective inhibitors of MtbTopI. The TPI-2471 compounds 

triggered a rapid cell-killing mechanism involving topoisomerase I, even as they 

acted as catalytic inhibitors rather than as poisons. The DNA binding and cleavage 

studies confirmed the results seen in vivo; the compounds were acting to prevent the 

DNA from being cleaved. As mentioned before, catalytic inhibitors of topoisomerase 

I can be effective in mycobacteria. 

 Penetration and retention of individual compounds in bacterial cells is an 

important determinant of whether an enzyme inhibitor could possess whole-cell 

activity as well. Lack of penetration or retention may be a reason several of the 

compounds seen in the two libraries were potent inhibitors of purified MtbTopI, and 

yet they lacked antimycobacterial growth inhibition activity. There were other 

compounds that were very effective at preventing mycobacterial growth, and yet they 

lacked inhibition of MtbTopI. It is possible that other combinations of substitutions 

along the TPI-2229 scaffold backbone could exert antibacterial activity via an 

unknown mechanism unrelated to topoisomerase I. In future screens, it may be 

advisable to use the mycobacterial strains with different levels of topoisomerase I 
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expression in cell-based assays alongside the enzyme-based assays. Such a 

combination would be complementary, as then the scaffolds or compound mixtures 

that inhibit growth in a manner representative of topoisomerase poisons (i.e., more 

potent growth inhibition when the target is overexpressed) could be selected and 

further optimized.  

 Although we have confirmed that these compounds are acting as catalytic 

inhibitors of topoisomerase I, we do not know precisely how they are preventing 

DNA cleavage. Currently, we have sent samples to Dr. Kemin Tan at Argonne 

National Laboratory in order to potentially obtain a co-crystal of the enzyme bound to 

the drugs. Such a crystal structure would greatly aid in identifying the specific direct 

interactions between the enzyme and the compound. Selection of resistant mutants 

and identification of the causative mutations in the topA gene would further validate 

MtbTopI as the cellular target. 
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III. CHAPTER 2: 

DISCOVERY OF NOVEL BACTERIAL TOPOISOMERASE I INHIBITORS 

BY USE OF IN SILICO DOCKING AND IN VITRO ASSAYS 

 

ABSTRACT 

 Computer-aided drug discovery (CADD) is a popular method of drug 

discovery. In the present study, virtual screening was performed with Escherichia coli 

topoisomerase I (EcTopI) and Mycobacterium tuberculosis topoisomerase I 

(MtbTopI). The crystal structures of these enzymes were used to virtually dock 

compound libraries and find potential hits. Compounds that were able to virtually 

bind well on the specified enzyme site were considered hits. Top hits from the virtual 

screens were tested in the lab to determine potency and specificity. For the screen 

against MtbTopI, the compounds were docked into the DNA-binding site. The first 

round yielded several inhibitors of varying degrees of potency. All the top inhibitors 

shared a common structural motif, and so the motif was used to conduct another 

virtual screen on MtbTopI. The second screen yielded an even more potent inhibitor, 

with a lowest IC50 value of 2 µM. In combination with the known efflux pump 

inhibitor thioridazine, the compounds were able to prevent bacterial growth, and the 

strain overexpressing the topoisomerase showed increased MIC values. These 

inhibitors do not act by preventing DNA binding, and their exact mechanism of 

inhibition must be studied further. For the screen against EcTopI, compounds were 

docked into the Mg2+-binding site. Among the top hits that were tested, there were 

several compounds that showed enzyme inhibition and bacterial growth inhibition. 
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The most potent enzyme inhibitor has an IC50 value between 16 and 30 µM, and it 

shows an increase in MIC value when the topoisomerase I is overexpressed in M. 

smegmatis, indicating the topoisomerase may be a cellular target. The current work 

demonstrates that in silico screening can be used to discover new classes of bacterial 

topoisomerase I inhibitors, which may be further optimized for antibiotic purposes. 

 

INTRODUCTION 

 The use of computer-aided drug discovery (CADD) has become more 

popular, and is now very common. There are many clinically approved drugs that 

were discovered in large part through CADD, including three novel treatments for 

HIV (Van Drie, 2007). Virtual docking studies can be used to improve existing drugs 

by changing certain structural aspects to make the compound fit the target’s binding 

site better, and they can also be used to build new classes of drugs. Another common 

use for virtual studies is to use them as an initial screen, where libraries with hundreds 

of thousands of individual compounds are docked on the target’s crystal structure in 

order to determine whether they can fit and bind. This kind of in silico docking study 

can save a lot of time and money, as the amount of compounds that are purchased and 

physically tested in the laboratory can be reduced tremendously (Sliwoski et al., 

2013). A striking validation of virtual screening potential is when separate research 

groups utilized high-throughput screening and virtual screening, and yet they yielded 

the same top drug candidate against transforming growth factor-β1 receptor kinase 

(Sawyer et al., 2003; Singh et al., 2003). 
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Crystal structures or homology models of the intended drug target are used in 

virtual docking studies. Crystal structures, however, are static, while proteins are not. 

Proteins are in constant motion, and so crystal structures can only provide a limited 

view of the target. Molecular dynamics (MD) studies can be very useful for this 

reason—movement of the protein can be simulated to reveal new potential binding 

sites, and then several snapshots of the protein’s conformation can be used for virtual 

docking. Molecular dynamics was invaluable in the discovery of a novel binding 

trench in HIV integrase, which was then used in the development of raltegravir, a 

drug used to treat HIV (Schames et al., 2004). 

In these studies, bacterial topoisomerase I was the intended drug target. 

Bacterial topoisomerase I is an essential enzyme in Mycobacterium tuberculosis, and 

one that can be exploited for antibiotic purposes. One virtual screen was done with 

the help of Dr. Prem Chapagain from the physics department at Florida International 

University. In the screen, the crystal structure 5D5H for M. tuberculosis 

topoisomerase I (MtbTopI) was used (Tan et al., 2016). The crystal structure is a 

truncated form of the protein, missing the last 230 residues at the C-terminal end, 

which still retains its cutting and rejoining activity of single-stranded DNA. The Elite 

library from Asinex was used to screen the active site region on the enzyme that is 

expected to be the DNA binding site. For the screen, Dr. Chapagain carried out 

molecular dynamics studies to generate 1,000 different poses of the enzyme for 

docking as well. The compound library was first screened against the original crystal 

structure, and then the top 1,000 hits from that screen were docked against 1,000 of 

the MD-generated crystal structure poses. The top hits from the virtual screen were 
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purchased and tested in the lab. From among the most potent inhibitors, there was a 

shared structural motif. A piperidine amide moiety appeared to be aiding the 

inhibitors in binding to essential amino acids on the protein crystal structure.  

The discovery of a common moiety was used to fuel a second round of virtual 

screens, this time with available Chembridge compounds that contained the motif of 

interest. Again, the compounds were screened against all 1,000 poses of the enzyme. 

The top hits were purchased and tested in the lab. From the Chembridge compounds 

that were purchased, there were several of interest. The most potent compound has an 

IC50 against MtbTopI of 2 µM. In the presence of known efflux pump inhibitors, the 

compound also shows growth inhibition of M. smegmatis that is minimized when the 

topoisomerase is overexpressed. These results validated virtual screening as a useful 

tool for discovering novel inhibitors of bacterial topoisomerase I. 

In another virtual screen, conducted by Dr. Renate Griffith at the University of 

New South Wales, the EcTopI crystal structure 3PX7 (Zhang et al., 2011) was used 

as the intended drug target. In the crystal structure, the protein is bound to a single 

strand of DNA. Dr. Griffith used the Specs compound library of nearly 200,000 

compounds to dock on the EcTopI structure. Specifically, Dr. Griffith docked the 

compounds into the Mg2+ binding site. The divalent ion is required for the 

topoisomerase to religate the DNA, and without it, the DNA stays cleaved. A 

compound that could prevent Mg2+ binding might act as a topoisomerase poison. 

Although no poison inhibitors were found, there were several compounds of interest 

that inhibited the EcTopI and were able to prevent M. smegmatis growth, with an 

increase in MIC when the topoisomerase I is overexpressed. These results further 
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confirmed virtual screens as a worthwhile method, and are an interesting start toward 

using virtual screens as a means of discovering novel topoisomerase I inhibitors for 

potential antibiotic use. 

  

MATERIALS AND METHODS 

Bacterial topoisomerase I relaxation inhibition assay 

Relaxation inhibition assays for bacterial topoisomerase I were carried out to 

determine the compounds’ ability to prevent enzyme activity. For the Asinex and 

Chembridge compounds, the assays were carried out in a buffer containing 1 mM 

EDTA, 20 mM NaCl, 40 mM Tris-HCl, and 5 mM MgCl2 (final concentrations). 

Briefly, purified bacterial topoisomerase I was added to a buffer as described above in 

order to achieve 25 ng/reaction mixture. The enzyme mixture was aliquoted into 10 

µL before the addition of 0.5 µL of the compound of interest at various 

concentrations dissolved in DMSO. The mixtures were then incubated for 15 minutes 

at 37°C before adding 150 ng of purified pBAD/Thio plasmid DNA in the same 

buffer for a final volume of 20 µL. The mixtures were further incubated at 37°C for 

30 minutes to allow for the enzyme’s relaxation activity. The reactions were stopped 

by the addition of 4 µL of a buffer containing 5% SDS, 0.25% bromophenol blue, and 

25% glycerol. The samples were then run on a 1% agarose gel overnight at 25V 

before ethidium bromide staining (Godbole et al., 2014b). M. tuberculosis 

topoisomerase I relaxation inhibition assays for the Specs compounds were carried 

out as mentioned in chapter 1. 
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DNA gyrase supercoiling inhibition assay 

 The supercoiling activity of DNA gyrase was assayed by agarose gel 

electrophoresis. The gyrase was obtained from New England BioLabs or was purified 

in our lab. 2 U of the enzyme was added to a reaction buffer provided by the 

manufacturer (35 mM Tris-HCl, 24 mM KCl, 4 mM MgCl2, 2 mM DTT, 1.75 mM 

ATP, 5 mM spermidine, 0.1 mg/mL BSA, and 6.5% glycerol). 0.5 µL of the 

compounds dissolved in DMSO or the solvent alone were added to the enzyme 

mixture. 300 ng of relaxed covalently closed plasmid DNA was then added for a final 

volume of 20 µL. The reactions were incubated for 30 minutes at 37°C before 

termination by the addition of 4 µL of the SDS stop buffer. The samples were then 

loaded into a 1% agarose gel and run at 25V overnight (Cheng et al., 2013). 

 

Human topoisomerase I relaxation inhibition assay 

 The relaxation activity of human topoisomerase I (HTOPI) was assayed via 

gel electrophoresis. Purified human topoisomerase I, purchased from TopoGen, was 

added for 0.5 U of the enzyme suspended in a buffer containing 10 mM Tris, pH 8.0, 

150 mM NaCl, 0.1% BSA, 0.1 mM spermidine, and 5% glycerol. The compounds 

were then added to the enzyme at the indicated concentrations before the addition of 

160 ng of supercoiled pBAD/Thio plasmid DNA. The samples were incubated for 30 

minutes at 37°C and then they were terminated by the addition of a buffer containing 

5% SDS, 0.25% bromophenol blue, and 25% glycerol. They were then run on a 1% 

agarose gel before staining with ethidium bromide (Cheng et al., 2013). 
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M. smegmatis growth inhibition assay 

The antibacterial properties of the compounds were determined with growth 

inhibition assays. Cultures were grown in Middlebrook 7H9 medium supplemented 

with 0.2% glycerol, 0.05% Tween 80, and 10% ADN (albumin, dextrose, sodium 

chloride) for 1 day. 50 µ/mL hygromycin B was added to the overexpression strains 

as well. The cultures were then diluted 1:100 in the same medium without ADN and 

grown overnight until the stationary growth phase was reached. The cells were then 

adjusted to OD600 = 0.1 and diluted further 1:5. 50 µL of diluted cells were added to 

clear-bottom 96-well plates containing 50 µL of the compounds serially diluted in the 

same medium. For assays containing known efflux pump inhibitors, the protocol was 

similar. The efflux pump inhibitors were added by creating 100x stocks and adding 1 

µL to each well. Thioridazine was included at 12.5 µg/mL. The plates were grown at 

37°C for 48 hours. Absorbance readings were taken every ~4 hours until the cells had 

grown to saturation (OD600 = 1.5). After the cells reached saturation, resazurin was 

added for a final concentration of 0.002% in each well. Resazurin is a blue/purple dye 

that becomes fluorescent pink upon reduction by NADH in the presence of living 

cells (Prutz, 1994). Fluorescence readings were taken 18 hours later (Ex = 540 nm, 

Em = 590 nm).  

 

MtbTopI-DNA binding gel shift assay 

The compounds’ ability to prevent the topoisomerase from binding DNA was 

assayed via gel shift as mentioned previously in chapter 1. The enzyme was added to 

the buffer (20 mM Tris, 100 µg/mL BSA, 18% glycerol, and 0.5 mM EDTA) such 
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that the final amount was ranging from 0.1 pmole (10 ng) to 1 pmole (100 ng). The 

compound was then added to the enzyme before 0.5 pmole of the labeled 

oligonucleotide STS-32 was added. The samples were incubated at 37°C for 5 

minutes, and then left on ice for another 5 minutes. After the addition of gel shift 

loading buffer, the samples were loaded and run. Once completed, the gels were dried 

before Phosphor-Image analysis. 

 

RESULTS AND DISCUSSION 

Asinex virtual screen  

 Two screens were carried out sequentially; the first docked the Asinex Elite 

library of 104,000 lead-like compounds against the 5D5H crystal structure using 

AutoDock Vina (Morris et al., 2009). From the first screen, a second round docked 

the top 1,000 scored compounds against the 1,000 MD-generated protein poses. The 

MD-generated structures opened the DNA-binding pocket and allowed the 

compounds to bind much deeper inside the pocket, as opposed to binding closer to the 

surface on the 5D5H crystal structure (Figure 2.1). The output was used to compile a 

list of the top binding compounds. All of the hits were scanned using the FAF-Drugs3 

program to filter out pan-assay interference compounds (PAINS) (Baell and Walters, 

2014; Baell and Holloway, 2010; Lagorce et al., 2008). PAINS compounds tend to 

interfere with screening because of their non-specific interactions, and give false 

positive results in most assays. With any potential PAINS compounds removed, the 

top 82 compounds from the virtual screen were purchased for testing in the lab. 
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(a) 

 
(b) 

	
	

 

Figure 2.1. Molecular dynamics studies opened the DNA-binding pocket on 
MtbTopI: The Asinex compounds bind closer to the surface on the 5D5H crystal 
structure (a), while they can bind deeper inside the pocket on some of the MD-
generated structures (b). Shown is Compound 1. 



	 66 

Top candidates from screening of Asinex library 

 The 82 purchased Asinex compounds were tested for inhibition of the 

relaxation activity of MtbTopI. Six compounds were found to inhibit MtbTopI with 

IC50 ≤ 500 µM (Table 2.1). Compound 1 (SYN 12502158), with an IC50 of 15.6 µM, 

was the most potent inhibitor against MtbTopI, with 4-fold or more selectivity for the 

type IA bacterial topoisomerase versus the type IB human topoisomerase I (HTOPI). 

Compounds 2 – 4 had IC50 values ranging from 62.5 µM to 125 µM, and did not 

inhibit human topoisomerase I when tested at 250 µM.  

 

 

Asinex hits share a common structural moiety 

 Although the first screen was successful at finding some MtbTopI inhibitors, 

there is a need to improve the potency of inhibition. They were an interesting starting 

point for our first virtual screening against topoisomerase I done at FIU. Noticeably, 

the Asinex compounds identified contain a common structural motif—a piperidine 

amide located in the center of the molecule, with extremely varying R-groups 

Table 2.1. IC50 values of Asinex hit compounds against MtbTopI and HTOPI 
 

Compound 
Number Asinex ID 

MtbTopI 
Relaxation 

Inhibition (IC50, 
µM) 

HTOPI Relaxation 
Inhibition (IC50, 

µM) 

1 SYN 12502158 15.6 93.75 
2 AOP 19767246 62.5 >250 
3 ADD 15417014 62.5 >250 
4 ADM 12439418 125 >250 
5 LEG 11118762 250 n.d. 
6 AEM 11113320 500 n.d. 

 
n.d. – not determined 
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attached to either side (Figure 2.2). After noting the similarity, the docking positions 

for these compounds were examined to determine the significance of the common 

moiety.  

 

 In many of the top binding positions of these compounds in the MD-generated 

structures, the motif appears to be interacting with key residues in the DNA-binding 

pocket strictly conserved for catalysis. Specifically, the amide oxygen of the motif 

interacts with Arg167, while the amide nitrogen interacts with Glu115 (Figure 2.3). 

The corresponding residues in E. coli topoisomerase I can be seen to interact with the 

ribose ring on the DNA substrate in the covalent complex (Zhang et al., 2011). These 

residues are both conserved in the topoisomerase I DNA-binding region (Cheng et al., 

2005). 

	
Figure 2.2. Structures of Asinex compounds identified from in silico screening 
and in vitro MtbTopI assay 
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 The common structural motif may serve as a lynchpin to hold the compound 

in place at the active site while the various R-group side chains interact with the 

protein in other ways. It may account for the enzyme inhibition observed in these 

compounds. However, the moiety is not by itself sufficient for enzyme inhibition, as 

many of the Asinex compounds contained the motif and did not show enzyme 

inhibition. Certain substitutions may prevent the compound from binding to the 

enzyme. 

 

  

 Chembridge virtual screen hits can inhibit bacterial topoisomerase I selectively 

 After finding the common structural motif, a second virtual screen was 

conducted to further identify inhibitors of MtbTopI related to this cyclic tertiary 

amide motif. The screen was conducted on compounds from Chembridge that 

contained the similar moieties. Over 200 compounds were found that contained such 

	

 
Figure 2.3. Tertiary amide moiety on Asinex hits interacts with key residues: 
The common piperidine amide moiety on the Asinex hits shows interactions with 
Arg167 and Glu115. Shown are (a) Compound 1 with Arg167, (b) Compound 2 
with both Arg167 and Glu115.  
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cyclic tertiary amide substructures, and they were all docked using the same 

procedure as mentioned in the Asinex screen. Top compounds from the Chembridge 

library were found to exhibit the same interactions in the DNA-binding pocket as 

seen previously in the Asinex library. From the docking scores, the top binders were 

selected and 96 compounds were purchased for further testing.  

First, the compounds were tested in vitro for inhibition of the purified 

MtbTopI to ascertain their ability to inhibit enzymatic activity. Eighteen compounds 

were found to have IC50 ≤ 125 µM (Table 2.2). Compound 7 (Chembridge ID 

49981944) had an IC50 significantly lower than the other compounds tested—2 µM 

when compared with the next-lowest IC50 of 62.5 µM. The six compounds with IC50 

≤ 62.5 µM (Compounds 7 – 12, Figure 2.4) were screened against the human 

topoisomerase I, HTOPI, to determine whether they are selective for bacterial 

topoisomerase. None of the compounds inhibited the human enzyme below 250 µM, 

indicating that they are specific for the bacterial topoisomerase. The top hits were also 

tested against DNA gyrase, and no inhibition was seen up to 500 µM, indicating that 

the compounds are specific to the type I enzyme as well (Figure 2.5).  
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Figure 2.4. Structures of Chembridge compounds with IC50 ≤ 62.5 µM 
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Table 2.2. IC50 values of Chembridge hit compounds against MtbTopI, HTOPI, 
and E. coli DNA gyrase 

Compound 
Number 

Chembridge 
ID 

MtbTopI 
Relaxation 
Inhibition 
(IC50, µM) 

HTOPI  
Relaxation 
Inhibition 
(IC50, µM) 

E. coli DNA 
Gyrase 

Supercoiling 
Inhibition 
(IC50, µM) 

7 49981944 2 >500 >500 
8 9302190 62.5 >500 >500 
9 37097280 62.5 >500 >500 
10 88421238 62.5 >500 >500 
11 73600812 62.5 250 >500 
12 80760557 62.5 >500 >500 
13 17951480 62.5-125 >500 n.d. 
14 15044152 62.5-125 n.d. n.d. 
15 7931615 62.5-125 n.d. n.d. 
16 7875243 125 n.d. n.d. 
17 19138872 125 n.d. n.d. 
18 19046220 125 n.d. n.d. 
19 67687224 125 n.d. n.d. 
20 18538504 125 n.d. n.d. 
21 68171804 125 n.d. n.d. 
22 44982805 125 n.d. n.d. 
23 67941389 125 n.d. n.d. 
24 63920724 125 n.d. n.d. 

 
n.d. – not determined 
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Figure 2.5. Selective inhibition of MtbTopI by Chembridge hit compounds: a) 
Inhibition of MtbTopI relaxation activity by Compound 7. Lane 1: negatively 
supercoiled pBAD/Thio plasmid DNA; Lane 2: DMSO as negative control; Lanes 3 – 
8: 8, 4, 2, 1, 0.5, and 0.25 µM Compound 7. b) Compound 7 does not inhibit DNA 
gyrase supercoiling activity. Lane 1: relaxed covalently closed circular DNA; Lane 2: 
DMSO as negative control; Lane 3: 150 µM ciprofloxacin; Lanes 4 – 8: 500, 250, 125, 
62.5, and 31.3 µM Compound 7. c) Assay of Chembridge top hits for inhibition of 
human topoisomerase I relaxation activity. Lane 1: negatively supercoiled pBAD/Thio 
plasmid DNA; Lane 2: DMSO as negative control; Lanes 3 – 8: Compounds 7, 8, 9, 
10, 11, and 12, respectively, at 500 µM; Lane 9: 200 µM camptothecin. The lanes 
shown here are from the same gel. S: supercoiled DNA, N: nicked DNA, FR: fully 
relaxed DNA, PR: partially relaxed DNA. 
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Top hits can prevent bacterial growth in the presence of efflux pump inhibitors 

 The non-pathogenic M. smegmatis was used in antibacterial assays to assess 

whether the identified MtbTopI inhibitors can inhibit the growth of mycobacteria. If 

inhibition of topoisomerase I catalytic activity is part of the antibacterial mode of 

action, the MIC should increase if recombinant MtbTopI is overexpressed. Either 

weak or no antibacterial activity was observed in the initial antibacterial assays. Due 

to the weak antibacterial activity, the known efflux pump inhibitor thioridazine (TZ) 

was used in combination with the compounds. It has been shown that combining 

drugs with efflux pump inhibitors can have a synergistic effect, and can help in 

sensitizing the cells to antibiotics. Thioridazine can enhance cell killing by inhibiting 

the genetic expression and activity of efflux pumps that can extrude drugs before they 

are able to reach their intended target (Amaral and Viveiros, 2012; Coelho et al., 

2015).  

To study these interactions, assays combining thioridazine with several of the 

top hit compounds were employed to discern any synergistic effects. As predicted, the 

results (Table 2.3) indicate that the presence of thioridazine was able to lower the 

MIC values of the compounds, and more significantly, they are shifted higher with 

the overexpression of recombinant MtbTopI. The shift in MIC suggests that inhibition 

of MtbTopI activity contributes to the antibacterial activity. The difficulty with 

penetration of the mycobacterial cell wall may be the reason for lack of direct 

correlation between MIC and IC50 values. 
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MtbTopI inhibition occurs at a step following formation of the DNA-enzyme 

complex 

 The compounds did not affect the enzyme’s ability to bind DNA. In the gel 

shift studies, the enzyme was titrated in the presence of 2x IC50 of compounds 7 and 

9. There was no observed decrease in DNA binding, indicating that the compounds 

may be inhibiting the enzyme’s activity at a step following DNA binding (Figure 

2.6). From their pattern of growth inhibition observed in M+ and Mnol strains, it is 

likely they are acting as catalytic inhibitors. 

Table 2.3. MIC values for antibacterial activity of identified MtbTopI inhibitors 
against M+ and Mnol strains  
 

Compound 
Number 

Mnol 
Growth 

Inhibition 
(MIC, µM) 

M+ Growth 
Inhibition 
(MIC, µM) 

Mnol 
Growth 

Inhibition 
with TZ 

(MIC, µM) 

M+ Growth 
Inhibition 
with TZ 

(MIC, µM) 

1 >500 >500 >500 >500 
2 187.5 >250 31.3 62.5 
3 250 >250 31.3 62.5 
7 >500 >500 500 >500 
8 >500 >500 23.45 31.3 
9 125 >500 23.45 31.3 
10 125 >500 23.45 46.9 
11 500 >500 46.9 125 
12 >500 >500 500 >500 
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Virtual screen of EcTopI—Specs compounds  

 In a completely separate virtual screen, this time against EcTopI, the Specs 

compound library was screened. 205 of the top compounds were purchased. There 

were several that were found to display inhibition of bacterial type I topoisomerase, 

as well as antibacterial activity. Some of the compounds were strong topoisomerase 

inhibitors with weaker antibacterial activity, such as compound 168, which has an 

IC50 against E. coli and M. tuberculosis topoisomerase I between 15 and 30 µM 

	
 
Figure 2.6. ChemBridge hits do not prevent MtbTopI from binding to DNA 
oligonucleotides: Lane 1: STS-32 oligo without enzyme; Lanes 2 – 6: MtbTopI at 0.1 
pmole, 0.2 pmole, 0.5 pmole, 0.75 pmole, and 1 pmole; Lanes 7 – 11: MtbTopI at 
same amounts as mentioned, but in the presence of 2x IC50 compound 7 (4 µM); Lanes 
12 – 15: same enzyme amounts (until 0.75 pmole) in the presence of 2x IC50 
compound 9 (125 µM).  
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(Figure 2.7). The compound’s antibacterial activity is moderate, with its lowest 

observed MIC90 being 200 µM against wild type M. smegmatis. 

 

Other compounds were found to have very good antibacterial activity, with 

weak inhibition of bacterial type I topoisomerase. These compounds may have other 

targets in the cell besides topoisomerase I. Two particular compounds, compounds 38 

and 161, showed IC50 values against E. coli and M. tuberculosis topoisomerase I of 

500 µM, but low MIC (6.25 – 12.5 µM) values against the M. smegmatis strains. 

Significantly, compound 168, despite its high MIC values, showed a difference in 

growth inhibition between the M+ strain and the Mnol strain. The compound shows a 

2-fold difference in inhibition between the strains, with M+ having a higher MIC. 

Overall, seven compounds showed some desirable activity (Table 2.4, Figure 2.8). 

The shift in MIC indicates catalytic inhibition of topoisomerase, either by preventing 

DNA binding or DNA cleavage. 

	
 
Figure 2.7. Inhibition of EcTopI relaxation activity by Specs compound 168: Lane 
1: negatively supercoiled pBAD/Thio plasmid DNA; Lane 2: DMSO as negative 
control; Lanes 3 – 10: 250, 125, 62.5, 31.3, 15.6, 7.8, 3.9, and 1.9 µM compound 168. 
N: nicked, FR: fully relaxed, PR: partially relaxed, S: supercoiled. 
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CONCLUSION 

 Virtual screening has been successfully used in the past to find novel 

inhibitors of various enzymes. Much work has been done with optimizing docking 

parameters, such that docking tools have become more reliable. To the best of my 

Table 2.4. MIC and IC50 values of top Specs compounds 

Compound 
number SPECS ID# 

EcTopI 
Relaxation 
Inhibition 
(IC50, µM) 

MtbTopI 
Relaxation 
Inhibition 
(IC50, µM) 

M+ 
Growth 

Inhibition 
(MIC, 
µM) 

Mnol 
Growth 

Inhibition 
(MIC, 
µM) 

32 AP-970/42895169 500 500 50 50 
38 AN-465/42889242 500 500 12.5 6.25 
91 AL-182/11269031 62.5 62.5 400 400 

126 AE-641/30177049 500 n.d. n.d. n.d. 
161 AN-465/43411472 500 500 12.5 6.25 
164 AN-465/43411478 500 n.d. n.d. n.d. 
168 AH-262/08804012 31.3 15.7 - 31.3 400 200 

 

 
Figure 2.8. Structures of Specs compounds identified from in silico screening and 
in vitro MtbTopI assay 
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knowledge, this study of virtual screening against the crystal structure of MtbTopI is 

the first of its kind. Previously, homology models of MtbTopI have been used for 

virtual screening (Ekins et al., 2017). While homology models can be used as 

substitutes, there are differences when compared to the actual crystal structure. Here, 

the solved crystal structures for MtbTopI and EcTopI were used to conduct virtual 

screens. 

 In the main part of the study, an active site pocket in the DNA-binding region 

between domains D1 and D4 of MtTopI was targeted for in silico screening. The use 

of molecular dynamics further opened the DNA-binding pocket to allow compounds 

to bind much deeper inside the pocket. The initial docking study identified several 

Asinex compounds that all contained a common piperidine amide moiety that has not 

been seen previously in MtbTopI inhibitors. Examining the docking poses of these 

compounds showed that the sterically rigid amide motif may be interacting with key 

residues inside the pocket. These residues, specifically Arg167 and Glu115, are 

strictly conserved for catalysis in type IA topoisomerases, and they have been 

previously shown to interact with the DNA backbone. When the in silico screening 

was repeated on Chembridge compounds containing similar motifs, a high percentage 

of the compounds were found to inhibit MtbTopI relaxation activity. Selectivity was 

also maintained, as confirmed by the compounds’ lack of inhibition of the human 

type IB topoisomerase. 

 The most potent enzyme inhibitor (compound 7) had an IC50 = 2 µM. 

However, lack of potent whole-cell growth inhibition against M. smegmatis was an 

issue in many of the compounds. The antibacterial activity was improved in the 
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presence of the efflux pump inhibitor thioridazine, and the observed MIC values were 

sensitive to the level of topoisomerase I present inside the cells. The shift in MIC 

indicates that topoisomerase I inhibition is at least partially responsible for the 

antibacterial activity. 

 In the screen against EcTopI, again, some enzyme inhibitors were discovered, 

however they were lacking in their antibacterial activity. Significantly, the 

compounds may have been able to inhibit EcTopI, but they were likely unable to 

penetrate the cell wall for an in vivo effect on E. coli. In both sets of virtual screens, 

the non-potent antibacterial activity must be improved. It is possible that future 

experiments may explore the piperidine amide motif found in the Asinex screen with 

improved side chains for better cellular penetration. Multiple studies have been 

published with various molecular characteristics thought to improve penetration, 

particularly in Gram-negative bacteria (Richter et al., 2017). Other pockets on the 

enzymes may be explored for virtual screening as well.   
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IV. CHAPTER 3: 

SELECTIVITY OF ORGANOMETALLIC COMPLEXES AGAINST 

VARIOUS TOPOISOMERASE ENZYMES 

 

ABSTRACT 

 Organometallic complexes have long been used as a source of antimicrobial 

and anticancer drugs. Many copper-containing complexes have been shown to target 

topoisomerases in human cancer cells as well. In the current chapter, several 

organometallic complexes were screened for inhibition of topoisomerases for use as 

anticancer and antimicrobial agents. Two copper complexes were found to inhibit 

human topoisomerases, specifically, they were found to be human topoisomerase IIα 

poisons. The complexes trapped the topoisomerase on the DNA to prevent religation, 

causing an increase in the amount of cleavage product observed. They were specific 

inhibitors of the type II enzyme, as they were not potent inhibitors of the human type 

I topoisomerase. The complexes also had very potent anticancer properties, 

displaying cytotoxic effects on various colon and aggressive breast cancer cell lines. 

In addition to the copper complexes, several cobalt complexes were found to inhibit 

the bacterial type I topoisomerase more selectively than the human enzymes. All 

three of the cobalt complexes contained thiosemicarbazone ligands, and the most 

potent complex inhibited MtbTopI and EcTopI with an IC50 = 0.8 µM. It was at least 

4x more selective towards the bacterial enzyme than the human type I enzyme. The 

complex inhibited the enzyme by means of preventing DNA cleavage. It also was 

able to prevent the growth of various bacterial species. The present study indicates 
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that organometallic complexes can be a valuable tool when searching for novel 

topoisomerase inhibitors.  

 

INTRODUCTION 

 Since the clinical success of cisplatin as an anticancer drug in the early 19th 

century, there has been substantial effort to discover novel metal-based therapeutics. 

Cisplatin exerts its toxic effect by covalently binding to DNA, causing programmed 

cell death (Wong and Giandomenico, 1999). While binding to DNA is an effective 

way of killing cancer cells, it also leads to extensive unpleasant side effects for 

patients such as nausea, diarrhea, hair loss, and dehydration (Galanski et al., 2003). 

Resistance also decreases the usefulness of cisplatin and its derivatives. Ideally, novel 

metallo-drugs would interact with enzymes and protein targets, rather than DNA, as it 

is difficult to get much selectivity when the drug simply targets DNA. Metal 

complexes with labile ligands have been known to switch ligands, and can freely 

interact with protein residues (Che and Siu, 2010). Many transition metals such as 

gold, cobalt, iron, ruthenium, and copper have been studied for possible therapeutic 

effects, including anticancer and antimicrobial effects. 

 Several copper(II) complexes have been shown to inhibit human 

topoisomerase IIα (Arjmand et al., 2011; Das et al., 2014; Duff et al., 2012). As 

human topoisomerase IIα is overexpressed in many cancer cells, it is an attractive 

anticancer target, with existing drugs such as etoposide and doxorubicin (Jarvinen and 

Liu, 2006). However, many of these copper(II) complexes have not shown poison 

inhibition of human topoisomerase IIα, but rather catalytic inhibition, or else their 
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mechanism of inhibition has not been mentioned at all. The discovery of a poison 

inhibitor is significant, because topoisomerase poisons are highly effective anticancer 

agents. Poison inhibitors cause the trapping of the covalent DNA-topoisomerase 

intermediate, and even just a small percentage of the trapped cleavage complex on 

chromosomal DNA is sufficient to initiate cancer cell death. In contrast, near 

complete inhibition of the catalytic activity of the target enzyme may be needed for a 

catalytic inhibitor of an essential enzyme to be effective in cancer cell growth 

inhibition (Nitiss, 2009). 

 While copper complexes have been studied before with regards to 

topoisomerases, less studied is the effect of cobalt(III) complexes on topoisomerases. 

There have been studies of cobalt complexes as antimicrobial agents, however, many 

of these studies do not identify a cellular target and rather simply state that the 

complexes are antimicrobial (Chai et al., 2017a; Chai et al., 2017b). Certainly, to the 

best of my knowledge, no cobalt(III) complexes have been used to target bacterial 

topoisomerases before. 

In the current study, several copper and cobalt complexes were obtained from 

Dr. Alvin Holder at Old Dominion University. Many of the complexes contained 

thiosemicarbazones as ligands. Thiosemicarbazones have long been studied as 

anticancer ligands for transition metals, and they have been very successful in some 

cases (Zeglis et al., 2011). From the copper(II) complexes obtained from Dr. Holder, 

two were found to poison human topoisomerase IIα and kill several types of cancer 

cells as well. Significantly, these complexes are the first to show measurable 

quantitative increases in the level of linear DNA cleavage product from trapped 
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topoisomerase complexes, with specificity for the type II enzyme over type I. While 

the focus of the study is bacterial topoisomerase inhibitors, the discovery of novel 

human topoisomerase inhibitors is interesting as well, especially when compared to 

bacterial topoisomerase inhibition. More pertinent to the present study then is the 

comparison of several cobalt(III) complexes. Three cobalt(III) complex/ ligand pairs 

were studied and compared for their inhibitory effects on bacterial topoisomerase I. 

All three complexes are identical except for their modified versions of a 

thiosemicarbazone ligand. All of the complexes were more potent against the 

bacterial type I enzyme than against other topoisomerases. 

The most potent complex showed an IC50 against MtbTopI and EcTopI of 0.8 

µM. The complexes were also able to prevent the growth of strains of M. smegmatis, 

as well as methicillin-resistant Staphylococcus aureus. In the strain of M. smegmatis 

overexpressing topoisomerase I, the MIC for two out of three complexes was raised. 

Overexpressing the target is expected to result in increased MIC values when the drug 

acts as a catalytic inhibitor, and indeed the most potent complex appears to exert its 

inhibitory effect by preventing DNA cleavage. These results indicate that cobalt 

complexes with thiosemicarbazone ligands may be an interesting new area in 

antimicrobial drug discovery. 

 

MATERIALS AND METHODS 

Bacterial topoisomerase I relaxation inhibition assay 

 The activity of bacterial topoisomerase I was assayed as described previously. 

Briefly, 10 ng of the enzyme was combined with the compound of interest at varying 
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concentrations in a buffer containing 10 mM Tris (pH 8.0), 50 mM NaCl, 0.1 mg/mL 

gelatin, and 0.5 mM MgCl2. 160 ng of supercoiled pBAD/Thio plasmid DNA was 

added to the mixtures and the samples were then incubated for 30 minutes at 37°C. 

After termination by the addition of an EDTA-stop buffer, the samples were loaded 

and run on a 1% agarose gel. 

 

DNA gyrase supercoiling inhibition assay 

 The DNA gyrase inhibition assay was carried out as mentioned earlier. 

Briefly, 2 U of the enzyme was mixed with 0.5 µL of the compound dissolved in 

DMSO for the correct final concentration in a buffer provided by the manufacturer 

(35 mM Tris-HCl, 24 mM KCl, 4 mM MgCl2, 2 mM DTT, 1.75 mM ATP, 5 mM 

spermidine, 0.1 mg/mL BSA, and 6.5% glycerol). 300 ng of relaxed covalently closed 

plasmid DNA was then added for a final volume of 20 µL. The samples were 

incubated for 30 minutes at 37°C before termination with an SDS stop buffer. The 

samples were loaded on a 1% agarose gel and analyzed. 

 

Human topoisomerase I relaxation inhibition assay 

 The relaxation activity of human topoisomerase I (obtained from TopoGen) 

was assayed as described in previous chapters. Briefly, 160 ng of supercoiled 

pBAD/Thio plasmid DNA was added to 0.5 U of the enzyme containing the 

complexes at the desired concentrations dissolved in DMSO. The samples were 

suspended in a buffer containing 10 mM Tris (pH 8.0), 150 mM NaCl, 0.1% BSA, 

0.1 mM spermidine, and 5% glycerol. The samples were then incubated for 30 
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minutes at 37°C before being stopped by the addition of 4 µL of a buffer containing 

5% SDS, 0.25% bromophenol blue, and 25% glycerol. The samples were then loaded 

in a 1% agarose gel and run overnight at 25V. Upon completion, the gel was stained 

in ethidium bromide and photographed under UV light. 

 

Human topoisomerase IIα relaxation inhibition assay 

 The relaxation activity of human topoisomerase IIα (obtained from TopoGen) 

was assayed by adding the indicated concentration of compound dissolved in DMSO 

to 160 ng of purified supercoiled pBAD/Thio plasmid DNA. 2 U of the enzyme was 

then added to the mixtures in an ATP-containing buffer provided by the manufacturer 

and the samples were incubated for 30 minutes at 37°C. The reactions were stopped 

by the addition of 4 µL of a buffer containing 5% SDS, 0.25% bromophenol blue, and 

25% glycerol. The samples were then analyzed on 1% agarose gels and stained in 

ethidium bromide. 

 

Human topoisomerase IIα religation inhibition assay 

 The ability of the complexes to prevent human topoisomerase IIα from 

religating the DNA (i.e., the ability to act as topoisomerase poisons) was assessed via 

agarose gel electrophoresis. 280 ng of supercoiled pBAD/Thio plasmid DNA was 

used along with 5 U of enzyme. The samples were incubated for 20 minutes at 37°C 

before adding 2 µL of a stop solution containing 10% SDS and 20 mg/mL proteinase 

K. The samples were then incubated further for 30 minutes at 37°C. A loading buffer 

as described before was used. The samples were analyzed on a 1% agarose gel 



	 86 

containing 0.5 µg/mL ethidium bromide, in a 1x TAE buffer containing ethidium 

bromide as well. The increased levels of cleavage products could be observed upon 

introduction to UV light (Sandhaus et al., 2016b). 

 

M. smegmatis growth inhibition assay 

Cultures were grown in Middlebrook 7H9 medium supplemented with 0.2% 

glycerol, 0.05% Tween 80, and 10% ADN (albumin, dextrose, sodium chloride) for 1 

day. 50 µ/mL hygromycin B was added to the overexpression strains. The cultures 

were then diluted 1:100 in the same medium without ADN and grown until the cells 

had reached the exponential phase (OD600 between 0.6 and 0.8). The cells were then 

adjusted to OD600 = 0.5 and diluted further 1:10. 50 µL of the adjusted cells were 

added to clear-bottom 96-well plates containing 50 µL of the compounds serially 

diluted in the same medium. The plates were grown at 37°C for 48 hours. Absorbance 

readings were taken every ~4 hours until the cells had grown to saturation (OD600 = 

1.5). 

 

S. aureus growth inhibition assay 

 Single colonies were grown in lysogeny broth with 0.5 g/L NaCl (LBN) 

overnight until the cultures had reached saturation. The cells were adjusted to OD600 = 

0.1 and then diluted 1:100. 50 µL of the adjusted cells were then added to the clear-

bottom 96-well plates containing 50 µL of the compounds serially diluted in the same 

medium. The plates were incubated for 24 hours at 37°C before the addition of 10 µL 

of 0.02% resazurin (final concentration = 0.002%) and further incubation for 4 – 6 
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hours. The fluorescence was then measured with Ex = 540 nm and Em = 590 nm. The 

MIC is recorded as the minimum compound concentration that can prevent 90% cell 

growth. 

 

MtbTopI-DNA binding gel shift assay 

The topoisomerase-DNA binding was studied in the presence of inhibiting 

compounds. The enzyme concentrations range from 0.1 pmole (10 ng) to 1 pmole 

(100 ng). The compound was added to the enzyme before 0.5 pmole of the labeled 

oligonucleotide STS-32 was added. The samples were incubated and loaded as 

mentioned earlier in previous chapters. The gels were dried and analyzed via 

Phosphor-Image analysis. 

 

MtbTopI-DNA cleavage inhibition assay 

 The cleavage inhibition was assayed with ethidium bromide gels. The enzyme 

was added to a reaction buffer containing 10 mM Tris (pH 8), 50 mM NaCl, and 0.1 

mg/mL gelatin for a final enzyme concentration of 50 ng/reaction. The compounds 

were then added to the enzyme mixture before the addition of 160 ng of supercoiled 

pBAD/Thio plasmid DNA. The samples were incubated for 30 minutes at 37°C 

before the addition of 2.5 µL of 10% SDS and 0.625 µL of 20 mg/mL proteinase K. 

The samples were further incubated for 1 hour. The samples were then loaded into a 

1% agarose gel containing 0.5 µg/mL ethidium bromide. The gels were photographed 

under UV light. 
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RESULTS AND DISCUSSION 

Copper complexes are potent and selective human topoisomerase IIα poisons 

 

 Two copper complexes were tested, [Cu(acetylethTSC)Cl]·0.25C2H5OH 

(where acetylethTSC = (E)-N-ethyl-2-[1-(thiazol-2-

yl)ethylidene]hydrazinecarbothioamide), and [Cu(quin)Cl2] (where quin = trans-2-

(2’-quiolyl)methylene-3-quinuclidione). The complexes, 1 and 2 (Figure 3.1), 

respectively, were both found to inhibit the relaxation activity of human 

topoisomerase IIα (Figure 3.2). Significantly, the ligands alone do not inhibit the 

enzyme’s activity up to 100 µM, rather, it is the complete metal-ligand complex that 

is able to inhibit the enzyme. Inhibition of the relaxation activity of human 

topoisomerase I was not observed for complex 1, and complex 2 showed only very 

minor inhibition at 100 µM. The results indicate that the copper complexes are 

selective toward the type II enzyme. 

	
1 2 

 
Figure 3.1. Structures of copper complexes: (left) 
[Cu(acetylethTSC)Cl]·0.25C2H5OH (complex 1), (right) [Cu(quin)Cl2] (complex 2). 
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 In addition to inhibiting the relaxation activity of human topoisomerase IIα, 

complexes 1 and 2 also produced an increase in the linear DNA cleavage product 

(Figure 3.3) (Sandhaus et al., 2016b). The presence of linear DNA product indicates 

that the complex can act as a poison inhibitor. As mentioned earlier, poison inhibitors 

prevent DNA religation following cleavage by the topoisomerase enzyme. The DNA-

enzyme covalent intermediate persists, and as human topoisomerase IIα is a type II 

	
Figure 3.2. Inhibition of human topoisomerase IIα relaxation activity by copper 
complexes: (A) Lane 1: negatively supercoiled pBAD/Thio plasmid DNA; Lane 2: 
DMSO as negative control; Lane 3: positive control mAMSA at 75 µM; Lanes 4 – 6: 
100, 50, and 25 µM quin; Lanes 7 – 10: 100, 50, 25, and 12.5 µM [Cu(quin)Cl2]. (B) 
Lane 1: negatively supercoiled pBAD/Thio plasmid DNA; Lane 2: DMSO as negative 
control; Lane 3: positive control mAMSA at 75 µM; Lanes 4 – 6: 100, 50, and 25 µM 
acetylethTSC; Lanes 7 – 10: 100, 50, 25, and 12.5 µM 
[Cu(acetylethTSC)Cl]Cl·0.25C2H5OH. N: nicked, FR: fully relaxed, PR: partially 
relaxed, S: supercoiled. 
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enzyme that cleaves both strands, the DNA is trapped with a double-stranded break. 

Free copper, in the form of the copper(II) salt, CuCl2·2H2O, did not result in any 

significant increase in topoisomerase cleavage product. Likewise, the ligand alone 

had no effect on the level of cleavage product. Only the presence of the copper 

complexes increased the linear DNA product, and the levels for complex 1 were 

increased by 3- to 4-fold over the DMSO control lane. Complex 2 was less effective 

than complex 1 at accumulating linear DNA.  
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Figure 3.3. Increase in plasmid DNA cleavage by human topoisomerase IIα in the 
presence of copper complexes: (A) Lane 1: negatively supercoiled pBAD/Thio 
plasmid DNA; Lane 2: DMSO as negative control; Lane 3: positive control mAMSA 
at 25 µM; Lanes 4 – 6: 200, 100, and 50µM CuCl2·2H2O; Lanes 7 – 9: 100, 50, and 25 
µM quin; Lanes 10 – 13: 100, 50, 25, and 12.5 µM [Cu(quin)Cl2]. The lanes shown 
here are from the same gel. (B) Lane 1: negatively supercoiled pBAD/Thio plasmid 
DNA; Lane 2: DMSO as negative control; Lane 3: positive control mAMSA at 25 µM; 
Lanes 4 – 6: 200, 100, and 50µM CuCl2·2H2O; Lanes 7 – 9: 100, 50, and 25 µM 
acetylethTSC; Lanes 10 – 13: 100, 50, 25, and 12.5 µM 
[Cu(acetylethTSC)Cl]Cl·0.25C2H5OH. Electrophoresis buffer contained 0.5 µg/mL 
ethidium bromide. N: nicked, L: linear, CC: covalently closed.  
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The novel effect is significant, since the accumulation of topoisomerase 

cleavage intermediates would be an important mode of action for anticancer activity. 

The copper(II) complex is the first of its kind to show measurable quantitative 

increases in the linear DNA cleavage product from human topoisomerase IIα. The 

quantitative increase is indicative of a poison mechanism of inhibition, as human 

topoisomerase IIα poisons would cause an increase in double-stranded DNA breaks. 

The poison mechanism of action is particularly lethal, and may account for the anti-

proliferative effects exerted on various cancer cell lines. Dr. Holder’s lab determined 

that complex 1 was more effective than etoposide against various colon cancer cell 

lines, and could even kill aggressive forms of breast cancer at concentrations ranging 

from 1 to 20 µM. Only a few stabilized covalent cleavage complexes could be enough 

to trigger the apoptosis pathway, and at 12.5 µM complex 1 increased linear DNA by 

30% over the DMSO control. 
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Comparison of cobalt(III) complexes as bacterial topoisomerase I inhibitors 

 

 As the aim of the current body of research was to discover novel inhibitors of 

bacterial topoisomerase I, the organometallic complexes were all tested for inhibition 

against the enzyme. Both the E. coli and M. tuberculosis topoisomerase I enzymes 

were tested against three complex/ ligand pairs containing Co(III) as their metal 

center (Figure 3.4). When the cobalt(III) complex, 

	
                           3                                                                          4 
 

	
5 
 

Figure 3.4. Structures of cobalt complexes: (top left) 
[Co(phen)2(MeATSC)](NO3)3·2.5H2O·C2H5OH (complex 3), (top right) 
[Co(phen)2(vanillinTSC)](NO3)3 (complex 4), (bottom) 
[Co(phen)2(citralEtTSC)](NO3)3·0.25H2O·1.5C2H5OH (complex 5). 
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[Co(phen)2(MeATSC)](NO3)3·2.5H2O·C2H5OH (where phen = 1,10 phenanthroline 

and MeATSC = 9-anthraldehyde- N(4)-methylthiosemicarbazone), was tested against 

MtbTopI and EcTopI, it was found to be a very potent inhibitor of the bacterial 

enzyme relaxation activity. The complex (3) was able to inhibit both the enzymes’ 

activity with an IC50 of 0.8 µM (Figure 3.5). The MeATSC ligand alone had an IC50 = 

25 µM for both enzymes, indicating that it is not the ligand, but rather the complex, 

that exerts the potent inhibitory activity on the enzyme. 

 

 The complex 3 also inhibited human topoisomerase I at 6.25 µM, a 7.8-fold 

difference from the bacterial enzymes. Some inhibition was also seen against human 

topoisomerase IIα at 25 µM, more than a 30-fold difference from the bacterial 

enzyme. The complex did not inhibit the activity of DNA gyrase up to 100 µM. These 

results indicate that the cobalt complex may be a powerful and selective inhibitor of 

bacterial type I topoisomerase.  

 Two other cobalt(III) complex/ ligand pairs were tested as well. The other 

cobalt complexes also contained the same phenanthroline and thiosemicarbazone 

	
Figure 3.5. Cobalt(III) complex can inhibit EcTopI at low concentrations: Lane 1: 
negatively supercoiled pBAD/Thio plasmid DNA; Lane 2: DMSO as negative control; 
Lanes 3 – 15: 100, 50, 25, 12.5, 6.25, 3.13, 1.56, 0.8, 0.4, 0.2, 0.1, 0.05, and 0.025 µM 
[Co(phen)2(MeATSC)](NO3)3·2.5H2O·C2H5OH. N: nicked, FR: fully relaxed, PR: 
partially relaxed, S: supercoiled. 
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ligands, but the thiosemicarbazones were modified. In the case of complex 3, 

anthracene was attached to the ligand. The other complexes included the attachment 

of o-vanillin (2-hydroxy-3-methoxybenzaldehyde) and citral (3,7-dimethyl-2,6-

octadienal) to the thiosemicarbazones. The activity of these complexes is not nearly 

as potent when compared to complex 3 (Table 3.1). [Co(phen)2(vanillinTSC)](NO3)3 

(complex 4) has an IC50 = 50 µM against the bacterial topoisomerase I, while 

[Co(phen)2(citralEtTSC)](NO3)3·0.25H2O·1.5C2H5OH (complex 5) has an IC50 = 25 

µM. They are still more selective for the bacterial type I enzyme, with 2- to 4-fold 

differences in IC50 when compared to human topoisomerase I, human topoisomerase 

IIα, and DNA gyrase. The thiosemicarbazone ligands alone do not inhibit the 

enzymes up to 100 µM. As was seen with some of the Torrey Pines compounds from 

chapter 1, the large aromatic group increased the potency of the complex against 

bacterial type I topoisomerase. 

 All three cobalt complexes had comparable antibacterial activity against 

strains of M. smegmatis, with MIC values ranging from 4.7 – 18.8 µM. Complex 3 

showed a 3-fold increase in MIC value when topoisomerase I is overexpressed in the 

M+ strain, indicating that the topoisomerase I is a cellular target. Complexes 3 and 5 

also showed growth inhibition of S. aureus, both of the wild-type (SA-14775) and 

methicillin-resistant strain MRSA (SA-BAA-44). 
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Table 3.1. MIC and IC50 values of cobalt-thiosemicarbazone complexes 
 

Number Formula 
EcTopI 

Relaxation 
Inhibition 
(IC50, µM) 

MtbTopI 
Relaxation 
Inhibition 
(IC50, µM) 

HTOPI 
Relaxation 
Inhibition 
(IC50, µM) 

HTOPIIα 
Relaxation 
Inhibition 
(IC50, µM) 

DNA Gyrase 
Supercoiling 

Inhibition 
(IC50, µM) 

M+ Growth 
Inhibition 
(MIC, µM) 

Mnol 
Growth 

Inhibition 
(MIC, µM) 

SA-14775 
Growth 

Inhibition 
(MIC, µM) 

SA-BAA-44 
Growth 

Inhibition 
(MIC, µM) 

3 [Co(phen)2(MeATSC)](NO3)3 0.8 0.8 6.25 25 >100 18.75 6.25 25 50 

  MeATSC 25 25 50 >100 >100 >100 >100 >100 >100 

4 [Co(phen)2(vanillinTSC)](NO3)3 50 50 >100 100 100 6.25 6.25 >100 >100 

  vanillinTSC >100 >100 >100 >100 >100 >100 >100 >100 >100 

5 [Co(phen)2(citralEtTSC)](NO3)3 25 25 100 100 100 9.38 4.69 25 50 

  citralEtTSC >100 >100 >100 >100 >100 >100 >100 >100 >100 
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Cobalt(III) complexes act as catalytic inhibitors to prevent DNA cleavage  

 The mechanism of inhibition was further studied by gel shift and cleavage 

inhibition assays. Gel shift data indicates that complex 3 does not prevent the 

topoisomerase enzyme from binding to DNA. Rather, the complexes all appear to 

prevent DNA cleavage. At the IC50 of complex 3, the complex inhibits approximately 

50% DNA cleavage. Complex 5 appears to be a potent cleavage inhibitor as well—it 

inhibits 80% DNA cleavage at 2x IC50. The complexes all had better cleavage 

inhibition than their ligands alone (Figure 3.6). These data support the assertion that 

these complexes act as catalytic inhibitors of bacterial topoisomerase I. 
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CONCLUSION 

 Organometallic complexes have long been studied for their anticancer and 

antimicrobial properties. The popularity of cisplatin, a platinum-based anticancer 

	
Figure 3.6. DNA cleavage by MtbTopI decreases in the presence of cobalt 
complexes: a) DNA binding is not affected by the presence of cobalt complexes. 
Lanes 1 – 4: MtbTopI at 0.1 pmole, 0.2 pmole, 0.5 pmole, and 0.75 pmole; Lane 5: 
STS-32 oligo without enzyme; Lanes 6 – 9: MtbTopI at same amounts as mentioned, 
but in the presence of 2x IC50 [Co(phen)2(MeATSC)](NO3)3·2.5H2O·C2H5OH (1.6 
µM). b) DNA cleavage is reduced in the presence of cobalt complexes. Lane 1: 
negatively supercoiled pBAD/Thio plasmid DNA; Lane 2: DMSO as negative control; 
Lane 3: addition of 0.5 mM MgCl2; Lanes 4 – 5: 100 and 50 µM MeATSC; Lanes 6 – 
9: 6.3, 3.1, 1.6, and 0.8 µM [Co(phen)2(MeATSC)](NO3)3·2.5H2O·C2H5OH; Lanes 10 
– 11: 100 and 50 µM citralEtTSC; Lanes 12 – 14: 100, 50, and 25 µM 
[Co(phen)2(citralEtTSC)](NO3)3·0.25H2O·1.5C2H5OH; Lanes 15 – 16: 100 and 50 µM 
vanillinTSC; Lanes 17 – 20: 100, 50, 25, and 12.5 µM 
[Co(phen)2(vanillinTSC)](NO3)3. Electrophoresis buffer contained 0.5 µg/mL 
ethidium bromide. N: nicked, CC: covalently closed.  
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drug, led to the desire for new organometallic drugs. Previously, many studies were 

carried out with copper, ruthenium, gold, and others. It was found that many copper 

complexes were targeting topoisomerases in human cancer cells, and were effective 

anticancer agents. In the present study, two copper complexes were found to inhibit 

the activity of human topoisomerase IIα. Not only were they effective at inhibiting 

the relaxation activity, but they also acted by preventing DNA religation. They were 

acting as topoisomerase poisons, and they increased the amount of linear DNA 

cleavage product. Topoisomerase poisons are very effective anticancer agents, as only 

a small number of trapped covalent DNA-enzyme intermediates is sufficient to 

initiate cell death. As such, these copper complexes were very potent anticancer 

agents. Complex 1 was even able to kill resistant strains of breast cancer. 

 Other than the copper complexes, there were three cobalt complexes as well. 

The cobalt complexes, when tested against bacterial topoisomerase I, were found to 

be extremely selective for the bacterial type I enzyme over any other type of 

topoisomerase. One complex, 3, was very potent as well, with an IC50 = 0.8 µM. 

When complex 3 was tested against strains of M. smegmatis, it was found to be 

effective at preventing bacterial cell growth. Also, when topoisomerase I was 

overexpressed, the MIC increased 3-fold. The results indicate that complex 3 is 

targeting the bacterial topoisomerase, and the cellular mechanism of action is likely to 

be topoisomerase inhibition. The complex acted as a catalytic inhibitor, with 

decreased cleavage levels observed. Significantly for all three cobalt complexes, the 

ligands alone were not sufficient to prevent topoisomerase activity or bacterial cell 

growth. Rather, the complete complex was required for inhibition.  
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 All three cobalt complexes, as well as the more potent copper complex 1, 

contained a thiosemicarbazone ligand. Thiosemicarbazones are popular ligands 

because of their reported anticancer, antimicrobial, antimalarial, and antiviral 

properties. As was seen in the current study, the thiosemicarbazone ligands 

complexed with the transition metals made effective topoisomerase inhibitors. While 

poison inhibition was seen for human topoisomerase IIα, we have yet to observe 

poisoning of the bacterial topoisomerase I. The cobalt complexes were not acting as 

poisons, but rather as catalytic inhibitors. As was seen in both the first chapters, we 

were not successful in finding bacterial topoisomerase I poisons. 

 Further studies could be carried out on more cobalt(III)-thiosemicarbazone 

complexes. As we know these kinds of complexes can inhibit bacterial topoisomerase 

I, new ligands may be even more potent. The importance of the ligand could be 

studied as well by possibly obtaining a co-crystal, or by attempting to dock the 

complexes on the enzyme crystal structure. If we understood where the complex was 

interacting with the enzyme, we would be better able to determine how it exerts its 

inhibitory effect. Importantly, the cytotoxicity of these complexes should be 

determined as well. They may act as selective inhibitors of the bacterial enzyme, but 

whether they kill human cells must be determined. Good antibacterial candidates 

obviously must kill bacteria selectively over human cells. The discovery of cobalt 

complexes inhibiting bacterial topoisomerase I is novel, and may open the door for 

many new potential antibiotic treatments.   
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V. SUMMARY 

 

 The present body of research was devoted to discovering novel inhibitors of 

bacterial topoisomerase I. Topoisomerase I is a valuable drug target for antibiotics, as 

there are no existing clinical drugs that specifically inhibit it. As drug resistance is a 

major global health problem, there has been a push to discover new antibiotics. 

Current antibiotics are no longer effective against many bacterial pathogens. 

Tuberculosis, staph infections, and even urinary tract infections are becoming more 

difficult to treat. The population most at risk is immunocompromised patients, like 

AIDS and cancer patients, but antimicrobial resistance affects everyone. Childbirth, 

surgery, and common infections would become life threatening. The use of a novel 

drug target, like topoisomerase I, is helpful, as there would not be resistance at the 

start of clinical use. Responsible use and prescription of new antibiotics would help 

keep resistance to a minimum as well. 

Bacterial topoisomerase I is an enzyme which is responsible for relaxing 

supercoiled DNA inside the cell. The enzyme works by first binding a single strand of 

DNA, then creating a nick on the DNA and passing a separate strand through the nick 

to relax it, and then finally religating the DNA. Inhibitors may act by preventing any 

of the three steps: DNA binding, DNA cleavage, or DNA religation. Inhibition of 

either of the first two steps causes catalytic inhibition—the enzyme cannot perform 

any part of its function. Without a backup enzyme, the cell dies because functions 

such as DNA replication and transcription cannot proceed. Inhibition of the last step, 

DNA religation, is called topoisomerase poisoning—the enzyme cleaves the DNA, 
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but cannot put it back together. The DNA is then trapped with breaks, causing 

apoptosis. There is only one type IA topoisomerase in mycobacteria, thus the enzyme 

is essential. Catalytic inhibition of the enzyme is sufficient to kill the cell. In 

Escherichia coli, catalytic inhibition is not sufficient, as there is another type IA 

topoisomerase that can take over for part of the lost activity. In E. coli then, poison 

inhibition of the enzyme may be necessary to initiate cell death. 

Throughout the body of work, various techniques and approaches were 

utilized in order to find inhibitors of bacterial topoisomerase I. In chapter 1, mixture-

based screening was used to go from a weak topoisomerase I inhibiting mixture to 

multiple potent inhibitors. In chapter 2, virtual screening was used to screen hundreds 

of thousands of compounds in compound libraries in order to find novel 

topoisomerase inhibitors. In chapter 3, novel organometallic complexes were tested to 

find metal-ligand complexes that inhibited bacterial topoisomerase I selectively. All 

three chapters yielded novel, potent, and selective inhibitors of bacterial 

topoisomerase I. 

In chapter 1, we discovered a scaffold backbone that was able to inhibit 

bacterial topoisomerase I selectively over DNA gyrase. The scaffold was a polyamine 

backbone with three varying R-groups, containing thousands of individual 

compounds. Positional-scanning was then used to narrow down R-groups with the 

best tendency to promote potency and selectivity. It was discovered that large 

aromatic groups tended to yield low IC50 values against Escherichia coli 

topoisomerase I (EcTopI) and Mycobacterium tuberculosis topoisomerase I 

(MtbTopI). The individual compounds that were generated were selective and very 
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potent, with a minimum IC50 = 0.7 µM against MtbTopI. The compounds were also 

bactericidal against Mycobacterium smegmatis, with increased MIC values when the 

topoisomerase I was overexpressed. Further studies confirmed that the compounds 

were acting as catalytic inhibitors by preventing the topoisomerase from cleaving 

DNA. Significantly, the bactericidal activity was conserved in M. tuberculosis, and 

the compounds were not cytotoxic against human cells. 

Improvements could be made in future mixture-based studies by beginning the 

screening with cell-based assays using strains expressing topoisomerase I at different 

levels alongside the enzyme-based assays. Using bacterial strains with various levels 

of topoisomerase I, selections could be made early on for poisoning activity and the 

ability to penetrate Gram-negatives, among others.  

In chapter 2, we discovered a novel structural motif that aided in 

topoisomerase binding in silico and in vitro. Through virtual docking, we were able to 

screen hundreds of thousands of compounds against the bacterial topoisomerase I 

crystal structure. The most potent inhibitors, when tested in vitro, all contained a 

piperidine amide that appeared to aid in binding to the enzyme. The motif was 

interacting with residues that are highly conserved for catalysis, indicating that it may 

act as a lynchpin to hold the molecule in place. The side chains attached to the central 

motif varied. When the motif was used to carry out another round of virtual screens, 

the most potent inhibitor had an IC50 = 2 µM against MtbTopI. In the presence of an 

efflux pump inhibitor, the compounds also displayed increased MIC values when the 

topoisomerase I was overexpressed in M. smegmatis. The compounds were found to 
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inhibit the enzyme’s activity at a step following DNA binding, and their in vivo 

activity suggests they act as catalytic inhibitors. 

Future virtual screens against bacterial topoisomerase I may attempt docking 

in other pockets not tried here. Modifications on the piperidine amide motif side 

chains may also improve the compounds’ penetration ability for more potent 

antibacterial activity. 

In chapter 3, we discovered that new organometallic complexes containing 

copper and cobalt bound to thiosemicarbazone ligands were able to inhibit 

topoisomerase enzymes. The copper complexes acted as poisons for human 

topoisomerase IIα, and were effective anticancer agents. The cobalt complexes each 

contained a Co(III) center bound to a slightly-modified thiosemicarbazone ligand. 

When these complexes were tested against various topoisomerases, it was discovered 

that they were more selective for the type I bacterial enzyme, making them interesting 

potential antibacterial agents. The most potent complex had an IC50 = 0.8 µM against 

MtbTopI. Significantly, the ligands alone were unable to prevent relaxation, only the 

complex of metal and ligand could. Cell-based studies and enzyme-based studies 

indicated that the complexes were likely acting as catalytic inhibitors of the enzyme, 

preventing DNA cleavage.  

Altering the thiosemicarbazone ligands to generate more diverse cobalt 

complexes would help with determining structure-activity relationships. If one of the 

complexes was so significantly more potent than the other two with only a small 

change to the overall complex, perhaps we could find others that are even more 

potent. Studies to determine where the complex interacts with the enzyme, such as 
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virtual docking, co-crystallization, etc. would greatly help, as they could guide the 

synthesis of ligands more optimally shaped for binding the topoisomerase. 

While the current body of work was successful in many ways, it was unable to 

find bacterial topoisomerase poisons. The lack of poisoning activity may be 

responsible for another deficiency, namely, the absence of broad-spectrum utility for 

most of the compounds. As mentioned, E. coli possesses a second type IA 

topoisomerase that can take on part of the role of EcTopI in the case of catalytic 

inhibition. Gram-negative bacteria are also famously difficult to penetrate because of 

their cell wall. Compounds with very potent inhibitory activity against purified 

EcTopI were ineffective against whole-cell E. coli, and that was likely the result of 

one of the above reasons. Going forward, screens could be conducted in ways to 

promote the discovery of topoisomerase poisons, such as beginning screens with cell-

based assays against strains expressing different levels of topoisomerase I. If the 

presence of high levels of topoisomerase I causes more cell death, that is a strong 

indication that the compound may be acting as a topoisomerase poison. There are also 

many studies devoted to formulating predictive compound accumulation rules, to 

better allow compounds to penetrate and accumulate inside Gram-negative bacteria 

(Brown et al., 2014; O’Shea and Moser, 2008; Richter et al., 2017). Existing hits 

could possibly be modified to allow for broad-spectrum antibacterial activity. 

Overall, the present work sought to discover novel inhibitors of bacterial 

topoisomerase I for potential antibiotic use, and I believe that goal has been met. 

Multiple potent and selective compounds were found using different approaches, and 

all of the structures are novel. They are widely varied, from polyamines to 
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organometallics, and they are all effective at inhibiting the relaxation activity of 

bacterial topoisomerase I. Further effort is necessary for optimization and fine-tuning, 

but the results displayed in this body of work are a solid foundation for the targeting 

of bacterial topoisomerase I enzymes for novel antibiotic leads. 
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