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ABSTRACT OF THE DISSERTATION 

AN INTEGRATED MULTIMODAL REGISTRATION TECHNIQUE FOR MEDICAL 

IMAGING 

by 

Xue Wang 

Florida International University, 2017 

Miami, Florida 

Professor Malek Adjouadi, Major Professor 

Registration of medical imaging is essential for aligning in time and space different 

modalities and hence consolidating their strengths for enhanced diagnosis and for the 

effective planning of treatment or therapeutic interventions. The primary objective of this 

study is to develop an integrated registration method that is effective for registering both 

brain and whole-body images. We seek in the proposed method to combine in one setting 

the excellent registration results that FMRIB Software Library (FSL) produces with brain 

images and the excellent results of Statistical Parametric Mapping (SPM) when 

registering whole-body images. To assess attainment of these objectives, the following 

registration tasks were performed: (1) FDG_CT with FLT_CT images, (2) pre-operation 

MRI with intra-operation CT images, (3) brain only MRI with corresponding PET images, 

and (4) MRI T1 with T2, T1 with FLAIR, and T1 with GE images. Then, the results of 

the proposed method will be compared to those obtained using existing state-of-the-art 

registration methods such as SPM and FSL. 
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Initially, three slices were chosen from the reference image, and the normalized mutual 

information (NMI) was calculated between each of them for every slice in the moving 

image. The three pairs with the highest NMI values were chosen. The wavelet 

decomposition method is applied to minimize the computational requirements. An initial 

search applying a genetic algorithm is conducted on the three pairs to obtain three sets of 

registration parameters. The Powell method is applied to reference and moving images to 

validate the three sets of registration parameters. A linear interpolation method is then 

used to obtain the registration parameters for all remaining slices. Finally, the aligned 

registered image with the reference image were displayed to show the different 

performances of the 3 methods, namely the proposed method, SPM and FSL by gauging 

the average NMI values obtained in the registration results. Visual observations are also 

provided in support of these NMI values. For comparative purposes, tests using different 

multi-modal imaging platforms are performed.  
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1. INTRODUCTION 

1.1 Retrospective on Registration in Medical Images 

The difficulties medical experts are facing extend beyond the need for the fusion of 

different imaging modalities, which in itself is a challenging problem, in order to provide 

better assessments of the needed treatment [1, 2]. Such a fusion becomes more 

meaningful only if it is backed by an effective and accurate registration process that 

consolidates the strengths that each of the modalities brings forth.  The contentious issues 

involved with registration is due to the fact that not all modalities are aligned onto a same 

coordinate system, and the transformations that led to this misalignment are often not 

known. Of course, one way to overcome this challenge is to align in time and space by 

having simultaneous recordings performed using different modalities. Such are the cases 

of (1) EEG-triggered fMRI, where the source localization of epilepsy onset is validated 

through the BOLD effect in the fMRI, and where the EEG recording is done while a 

patient is inside the MR machine, (2) PET scans performed on hybrid machines that 

combine PET or SPECT with CT scanners (PET/CT or SPECT/CT) in order to 

consolidate anatomical with metabolic activity or function of a specific region of interest 

under a given pathology. 

Registration of medical images could also involve a single imaging modality but with 

two different radiotracers as in the widely used 18F-fluorodeoxyglucose (18F-FDG) 

radiotracer, which serves as a good imaging tool in Computed Tomography (CT) and is 



2 
 

essential for cancer diagnosis as FDG uptake is higher in cancerous lesions and lower in 

benign ones; while 18F-fluorothymidine (18F-FLT) uptake is shown to be closely 

correlated with cellular proliferation. The registration of both of these tracers, FDG and 

FLT, complement one another to increase both sensitivity and specificity for imaging 

cancer. Accurate registration of both of these imaging modalities is thus sought in this 

study, as an example, to optimize the results of the diagnosis. This paper describes a 

novel feature-based registration method, which employs affine transformation and linear 

interpolation for FDG_CT and FLT_CT image modalities. Instead of using one set of 

affine transformation parameters, three slices have been selected to calculate all of the 

transformation parameters for CT image registration by linear interpolation. Thus, 

effective registration of these two CT images could prove very useful for diagnosis, 

including improved means for quantization and visualization. 

As another example of multimodal imaging registration is in integrating the use of MR 

and CT, as the former is better suited for delineation of tumor tissue (and has in general 

better soft tissue contrast), while the latter is needed for accurate computation of the 

radiation dose. Another eminent example is in the area of epilepsy surgery. Patients may 

undergo various MR, CT, and DSA studies for anatomical reference; ictal and interictal 

SPECT studies; MEG and scalp and/or intra-cranial (subdural or depth) EEG, as well as 

FDG and/or C-Flumazenil PET studies. Registration of the images from practically any 

combination will benefit medical experts in surgical planning. 
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In Alzheimer’s disease (AD) research, the interaction of amyloid load through PET 

imaging, and regional cortical thickness through MRI are also extensively studied; with 

some adding cognition and APOE genotype for a more thorough assessment by 

combining neuroimaging with neuropsychological testing and the APOE gene. 

There are many different kinds of medical images that have both advantages and 

disadvantages, for example, computed tomography (CT) images, contrast CT images, 

magnetic resonance images (MRI), weighted MRI, positron emission tomography (PET), 

and so forth. Hence registering these modalities will consolidate their strengths while 

overcoming their singular limitations. CT is especially useful for soft tissue, such as the 

brain, the thoracic and abdominal viscera, providing precise details for the physician. 

However, CT scanning will expose patients to a dose of radiation many times higher than 

that of X-rays. MRI also provides precise imaging, especially for delineating tumors and 

for extracting key morphological measures and features. MRI does not expose patients to 

radiation, but certain patients do not tolerate the confinements of the scanner bore of MR 

machine, and others with medical implants or other non-removable metal devices 

implanted inside their bodies may are cautioned against such scans. PET, on the other 

hand, is a molecular imaging process that enables visualization and assessment of 

metabolic processes of living cells in the body to gauge physiologic activity, including 

nutrient metabolism and blood flow of the organ or organs being targeted; whereas CT 

and MRI scans can only show static images. PET is thus widely used to diagnose 

conditions, such as heart disease, brain disorders, the spread of cancer, certain forms of 

infection, bone disease, and thyroid disease, among others [1]. Registered medical images 



4 
 

can be used for diagnosis, planning therapy and monitoring disease progression or 

response to therapy. For instance, registering the pre-operation MRI images with an 

normal control MRI image could help physicians to plan the operation before intervening 

in the brain of the patient; registering the series of anatomy CT images obtained at 

different stages could help physicians find the development of the tumor without 

operation; registering multi-modality images, MRI with CT or MRI with PET, could 

integrate various information in both of the images, so physicians could take all the 

structural and functional information into consideration at once, and so on. 

Image registration involves aligning different sets of images into a common coordinate 

system, which could involve both time and space alignments. It is a complex task that 

often requires several steps, including image pre-processing, noise removal, affine 

transformations, interpolation, and optimization. A comprehensive and structured record 

of approaches to the registration of medical images is presented in [2]. Since the review 

in [2] was made in 1998, a more extensive and up to date review is provided in [3], which 

emphasizes the shift from extrinsic registration (in relation to external objects or markers 

when imaging a patient) to intrinsic registration (in relation to information obtained from 

the patient or anatomical landmarks), the prevalence in the use of intensity-based 

registration methods over relying on segmentation or template matching, the advent of 

nonlinear registration methods, the progress in performing inter-subject registration as 

well, and the availability of different software packages, such as FSL and SPM that 

automate the process of registration. 
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Methods are classified according to the different aspects of mutual-information-based 

registration they use as detailed in [4], which also describes aspects of preprocessing of 

images, gray value interpolation, optimization, adaptations to the mutual information 

measure, and different types of geometrical transformations. Image interpolation 

techniques, described in [5], are often required for image generation and processing such 

as resampling or compression. Several interpolation kernels of finite size have been 

introduced and a comparison is done. The goal in [5] was not to determine an overall best 

method, but to enable the reader to select an optimal method for their specific application 

in medical imaging. The relationship between the variations in the images and the type of 

most appropriate registration method to be used is given through a comprehensive survey 

in [6]. The three major types of variations confronted in the registration process are often 

due to: 1) different acquisition methods that lead to image misalignment; 2) difference in 

acquisition and lighting conditions; 3) differences in the images due to object movement 

or other scene changes. This survey is useful for understanding the merits and 

relationships between the wide variety of existing techniques and selecting the best 

technique for a specific registration problem. The problem of medical image registration 

for brain images is addressed in [7]. It includes a survey of recent literature, CT/MR 

registration using mathematical image features such as edges and ridges, mono-modal 

SPECT registration, and CT/MR/SPECT/PET registration using image features extracted 

by the use of mathematically derived morphology. A classification scheme for 

multimodal image matching is considered in [8]. This classification scheme involves 2D 

and 3D images, and it also provides spatial insight into function or anatomy/structure, 

electro-encephalography (EEG) and magnetoencephalography (MEG). 
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A measure of regional and global cerebral volume change derived directly from 

registered repeat MR scans is proposed in [9]. The boundary shift integral (BSI) was used 

to determine brain volume loss in 21 control-scan pairs and 11 scan pairs from 

Alzheimer’s disease patients. The potential of accurate image registration for detecting 

subtle changes in the brain has been tested in [10].  By the sub-voxel registration, subtle 

changes in the brain were detected in a variety of physiological and clinical situations. A 

classification of image registration by type of transformation and by methods employed 

to compute the transformation is provided in [11]. Two approaches to modeling soft 

tissue deformation for applications in image-guided interventions are described in this 

study. Validation of image registration is vital if the algorithms are to be used in clinical 

settings. An automated method to register MRI volumetric datasets to a digital human 

brain model is described in [12]. The non-linear registration method reduces the inter-

subject variability of homologous points in standardized space by 15% over linear 

registration methods. A general-purpose interpolation for labeled point data is developed 

in [13]. This method ties the geometry of image deformation to the classic biometric 

algebra of quadratic forms. A technique for building compact models of the shape and 

appearance of a flexible object such as organs seen in 2D images is described in [14]. 

This technique also can be simply extended to 3D object segmentation or structure 

tracking in image sequences.  

When rotating an image, there is often some loss of image quality. To determine which 

function would provide the best interpolation, including nearest neighbor, linear, cubic B-

spline, high-resolution cubic spline with edge enhancement, and high-resolution cubic 



7 
 

spline, these five functions were compared in [15]. A new interpolation based super-

resolution method, named FIPOCS (Fractal interpolation with Improved Projection onto 

Convex Sets), is discussed in [16]. The new interpolation method shows advantages when 

compared to the bilinear interpolation. A new matching criterion, mutual information 

(MI), is applied to medical image registration in [17]. The MI is assumed to be maximal 

if the images are geometrically aligned. Maximizing the MI measure remains a powerful 

criterion because no assumptions are made regarding the nature of this dependence and 

no limiting constraints are imposed on the image content of the modalities involved. This 

study also confirmed the accuracy of the MI criterion for rigid body registration of 

computed tomography (CT), magnetic resonance (MR), and photon emission tomography 

(PET) images.  

Various image registration techniques are introduced for the purpose of mapping 

functional activity into an anatomical image or a brain atlas. An overview of brain 

functional localization along with a survey and classification of the image registration 

techniques related to that problem is presented in [18]. Recently, a large number of 

medical image registration methods based on the use of metaheuristics such as 

evolutionary algorithms have been proposed, resulting in decisive results. The success of 

such methods is related to their ability to perform an effective and efficient global search 

in complex solution spaces. The most recognized feature-based medical image 

registration methods considering evolutionary algorithms and other metaheuristics are 

presented in [19]. An image registration method carried out by maximizing a Tsallis 

entropy-based divergence using a modified simultaneous perturbation stochastic 
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approximation algorithm is described in [20]. This method has been demonstrated on CT, 

MRI, and PET images. The registration accuracy is enhanced when using this method. A 

new optimization method, named Big Bang-Big Crunch, which generates random points 

in the Big Bang phase and shrinks those points to a single representative point via a 

center of mass or minimal cost approach in the Big Crunch phase, is presented in [21]. 

This method shows superiority over an improved and enhanced genetic algorithm. A 

novel mutual information-based registration method that integrates the use of a Genetic 

Algorithm (GA), the Powell method (PM), and Wavelet decomposition in order to 

register in an optimal fashion the fluorodeoxyglucose (FDG)_CT and 

fluorodeoxythymidine (FLT)_CT image modalities are described in [22]. Registration 

through these tracers, FDG and FLT, increase both sensitivity and specificity for imaging 

cancer and is essential for optimizing the results of the diagnosis.  

Nowadays, there are many mature optimization methods for image registration. Those 

methods could be classified into two categories: local and global. Nature selection is the 

principal source for the global optimization method, such as the genetic algorithm (GA) 

and simulated annealing (SA) method. An original usage of genetic algorithms as a robust 

search space sampler in an application to 3D medical image registration is presented in 

[23]. It focuses on the use of genetic algorithms, and particularly on the problem of 

extracting the optimal solution among the final genetic population. The algorithm is 

applied to the Vanderbilt medical image database to affirm its robustness. The suitability 

of GA for the model objective-function/search procedure is presented in [24]. A robust 

and efficient mutual information based method has been proposed in [25]. It is efficient 
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as it prevents the search process from being trapped at a local maximum. A mutual 

information based MR and CT image registration method is presented in [26]. This study 

chose GA as an optimization technique and demonstrated robustness and efficiency. The 

point-matching problem in image registration was addressed by a nearest-neighbor based 

on the GA algorithm in [27]. A full implementation detail for a global optimization 

method is described in [28]. This method is found to be more reliable at finding the 

global minimum than several other existing methods. Those heuristic population-based 

search procedures are incorporating random variation and selection, which may result in 

heavy computational requirements. A novel hybrid global-local optimization method is 

discussed in [29]. The local optimization method, such as the Powell method (PM), is 

good at determining a local solution with reduced computational load but where the 

solution sought might not be optimal [28, 29].  

The Golden Search algorithm employed by using the Powell method is discussed in [30]. 

The use of local optimization methods together with the standard multi-resolution 

approach is not sufficient to reliably find the global minimum. To address this problem, a 

global optimization method is proposed that is specifically tailored to this form of 

registration. That is why the proposed algorithm is structured to combine/integrate the 

strengths of both GA and PM along with the use of the wavelet decomposition method. 

The slice matching process was improved by calculating the Normalized Mutual 

Information (NMI). The registration results were enhanced by finely choosing the initial 

point of the second registration. The computational time of the GA has been reduced by 

the wavelet decomposition method. We also show that proposed algorithm avoided being 
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trapped in the local best solution. The registration results achieved a non-linear 

registration effect by applying segmented linear interpolation. The study assumes rigid 

body imaging during image acquisition, although difficult to control in a clinical setting. 

Image acquisition at different times, breathing movements, or the position of the subject 

when acquiring images and so forth, all of them could affect our registration results.  

How to estimate the results of medical image registration is still a problem, because no 

“golden estimation criterion” has been proposed. An overview of existing estimation 

criteria for medical image registration is presented in [31], including the advantages and 

shortcomings of each estimation method, it also proposes some improved methods for 

estimation. An investigation of similarity and dissimilarity measures and performance 

evaluation is given in [32].  

To evaluate the registration results of the proposed method, SPM and FSL have been 

deployed to register the same data and compare their results. The Statistical Parametric 

Mapping (SPM) software package has been designed for the analysis of brain imaging 

data. Images are realigned, spatially normalized into a standard space, and smoothed by 

SPM [33]. The FMRIB Software Library (FSL) is a comprehensive library of analysis 

tools for fMRI, MRI and DTI brain imaging data. FLIRT is the FMRIB’s linear image 

registration tool. It is a fully automated, robust and accurate tool for linear intra- and 

inter-modal brain image registration [34, 35]. The average Normalized Mutual 

Information between each pair of the reference image and the registered image, and 

computational time of each method will be assessed in the results section. 
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1.2 General Statement of the Research Area 

This research seeks to align in time and space different imaging modalities in medical 

imaging through an accurate and computationally effective registration. It encompasses 

both brain and whole body multimodal imaging registration.  The intent is to combine in 

one integrated algorithm methods that improve in one setting bot brain and whole body 

registration to attain a similar accuracy of FSL for brain registration, and SPM for whole 

body registration, while minimizing the computational requirements that either of these 

well-established software modules (FSL and SPM) would require. 

1.3 Research Purpose 

The main purpose of this research is to develop effective algorithms that will 

automatically register different imaging modalities to yield the required accuracy for 

optimal fusion of these modalities that ensure optimal diagnosis, decision making, and 

treatment planning. Several experiments with different medical implications are carried 

out to validate the merits and purpose of this research. For example, by combining the 

complementary strengths of the two proven tracers in FDG and FLT is shown to improve 

the delineation of tumors and planning of treatment; and by combining MRI and PET 

imaging helps in gauging the interplay between amyloid deposition observed and cortical 

thinning as seen in the MRI, thus helping identify early stages of Alzheimer’s disease.  

1.4 Significance of the Research 

Multimodal image registration, whether it is FDG_CT and FLT_CT or MRI with PET, 
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could yield validated and more meaningful information from a given patient with 

quantitative measures about the spatial and temporal relationship between all the image 

information. Aligning the spatial and temporal dimensions remains to be a challenging 

problem that this research aims at resolving through an integrated registration approach. 

1.5 Structure of the Research 

Chapter 2 introduces a semi-automatic registration method of FDG_CT and FLT_CT 

images. A brief introduction to the main method and related work is given. Then, the data 

and methods, including control point selection, affine transformation, and interpolation, 

are presented. There are four implementation aspects: 1) Minimizing errors in manual 

selection of control points; 2) testing the middle slice of FDG_CT from set 1 to 5; 3) 

testing all slices in set 1 to 5; 4) performing the experimental procedure. This chapter 

looks also into the evaluation methods, which includes the mutual information, the 

normalized mutual information, and the alignment metric. Then, the experimental results 

are given. Finally, concluding remarks are made on this earlier research initiative. 

Chapter 3 presents an automated registration method for FDG_CT and FLT_CT images. 

A brief introduction on the main method and related work are presented. The focus is on 

its two intrinsic aspects: the image pre-processing, and the procedures of the integrated 

Genetic-Powell-Wavelet (GPW) method. Two experiments support the improved method 

introduced in this Chapter, namely the verification of the Powell method and the 

verification of the Wavelet-Modified Genetic Algorithm. The experimental results and 

analysis are provided, followed by concluding remarks.  
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Chapter 4 provides a more thorough investigation on the challenging steps of multimodal 

image registration augmented with a comparative study which contrasts the results of the 

proposed method with the most notable and well-established software platforms results, 

which are FSL and SPM. The proposed multimodal medical image registration method is 

hence compared to the Statistical Parametric Mapping (SPM) method that excels in 

whole body registration, and to the FMRIB Software Library (FSL) that excels in brain 

registration. The main method and related research are introduced. The datasets used in 

this chapter are described. The experiments conducted include: (a) the goals sought of the 

four different experiments, (b) a description of the implementation steps for the proposed 

method, and the evaluation conducted in assessing the merits of this new approach. Then, 

optimizing methods are discussed in detail, including the Genetic Algorithm (GA), the 

Powell method (PM), and the wavelet decomposition considered for optimizing the 

computational requirements. The registration results of the three different methods are 

shown juxtaposed for visual appreciation. The average normalized mutual information of 

the registered images are provided for evaluating the registration accuracy of each of 

these methods, summarizing the strengths and limitations of each method, with 

concluding remarks on what could be envisioned for future research to improve even 

further the challenging problem of registration. 

Chapter 5 summarizes the dissertation, provides key remarks on what was accomplished 

through this research endeavor. It also summarizes the gains made when the registration 

is performed well.  



14 
 

2. A SEMI-AUTOMATIC REGISTRATION METHOD OF 

COMPUTED TOMOGRAPHY IMAGES 

2.1 Introduction 

The widely used 18F-fluorodeoxyglucose (18F-FDG) serves as a good imaging tool in 

Computed Tomography (CT) and is essential for cancer diagnosis as FDG uptake is 

higher in cancerous lesions and lower in benign lesions, while 18F-fluorothymidine (FLT) 

uptake is closely correlated with cellular proliferation. The registration of both of these 

tracers, FDG and FLT, compensate one another to increase both sensitivity and 

specificity for imaging cancer. Consequently, accurate registration of both imaging 

modalities is essential for optimizing the results of the diagnosis. This chapter describes a 

novel feature-based registration method, which employs affine transformation and linear 

interpolation for FDG_CT and FLT_CT image modalities. Instead of using one set of 

affine transformation parameters, three slices have been selected to calculate all of the 

transformation parameters for CT image registration by linear interpolation.  

This method has the merits of: a) improving the 3D registration results for CT images; b) 

avoiding the arbitrary selection of that one slice for calculating the transformation 

parameters for registration; c) being easy to realize and computationally efficient.  

Experimental results obtained come in support of these assertions.  
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2.2 Related Work 

Medical imaging technologies, such as CT and PET, have a significant impact on medical 

research and diagnostic radiology [36]. As CT is known to generate detailed images of 

soft tissues in the body, combining the complementary strengths of two proven tracers 

like FDG and FLT will only improve the outcome of the diagnosis. Thus integrating 

images to get more subtle information is often a requisite task in seeking such an 

outcome.  

Image registration is the one process required for aligning different sets of data into one 

coordinate system in order to fuse, compare and analyze the data. Pixel values reflecting 

structural and functional information along with their positions should be taken into 

account. Image registration often includes preprocessing, affine transformations, 

interpolation, and overall registration process optimization [37]. Feature-based 

registration methods find correspondence between image features, such as points and 

lines.  By obtaining the correspondence between a number of points in images, a 

transformation is then determined to map the input image to the reference image, 

establishing as a consequence a point-by-point correspondence between a reference 

image and its input counterpart [38]. 

An overview of medical image registration methods reveals that significant progress 

remains to be made towards optimized registration [37]. Feature matching methods could 

make use of similarity measurements as in studies [39, 40].  Mutual information based 

registration method using the point feature location information was developed to 
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estimate the accuracy in aligning the corresponding images. A novel aspect of this 

method is the emergence of correspondence between the two sets of features as a by-

product of information maximization [41].  An approach, which automatically learns new 

corresponding landmarks from a database of 3D whole-body CT scans, using a limited 

initial set of expert-labeled ground-truth landmarks was presented in [42]. Based on 

landmark detection and calibrated camera-projector system, another technique was 

proposed for registration in minimally invasive spinal surgery [43]. An automated 

method for vertebra-based registration systems is proposed and assessed in [44]. 

2.3 Methods 

2.3.1 Control Points Selection 

As a first registration step, a set of control points (cp) is chosen. The cpselect function is 

utilized to start the control point selection tool in MatLab. The input image and the base 

image are displayed in the window of the tool. A blue mark with number 1 will appear 

when the user clicks on the base image once, then by clicking on the corresponding point 

in the input image, another blue mark with number 1 will appear on it. Blue marks with 

number 2 form the second control-points set and so on. Four such control-points sets 

would complete the process.  
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2.3.2 Affine Transformation 

Affine transformation preserves points, straight lines, and planes in affine space. Parallel 

lines remain parallel, and the ratios of distances between points lying on a straight line 

are preserved. Affine transformation includes translation, rotation, and scaling. Affine 

transformation as applied in this study could be formulated as follows: 

𝑥
𝑦 =

𝑎( 𝑎)
𝑎* 𝑎+

𝑢
𝑣 +

𝑎/
𝑎0                                                (2.1) 

According to this model, 𝑥, 𝑦  is a point in the reference image, and 𝑢, 𝑣 	is the point in 

the input image.  Six parameters (𝑎(, 𝑎), 𝑎*, 𝑎+, 𝑎/, 𝑎0) can be calculated from three pairs 

of set points. Therefore, to define an affine transformation, at least three points should be 

chosen from the input image and the reference image respectively [45].  

2.3.3 Interpolation 

Interpolation is used in this case to construct new data points within the range of a 

discrete set of known data points. For example, 3 sets of parameters could be obtained 

from the first, the middle, and the last slices pairs. Those 3 sets are the known data points. 

New data points can then be constructed within the range of set 1 to set 2, as well as 

within the range of set 2 to set 3 by interpolation. Thus, if the total number of slices is k, 

and the middle slice number is i, new data points are the parameters from slice 2 to slice 

(i-1), and slice (i+1) to slice k. 



18 
 

Instead of registering two CT images with a set of registration parameters, k sets of 

parameters have been used to register each pair of slices. When k is the total number of 

slices in the given CT image, k sets of parameters will thus be obtained through linear 

interpolation. 

2.4 Data 

This phase I pilot study includes data from five patients with resectable and unresectable 

pancreatic cancers who underwent 18F-FLT and 18F-FDG imaging, each acquired within 

a week’s duration for the same patient.  In these 5 datasets that have been tested, it is 

noted that each of them had FLT_CT and FDG_CT taken in different days. FDG_CT, in 

this study, is used as the reference image, which is unmoved, while the FLT_CT is used 

as the input image, which is moving in seeking that perfect alignment. Except for data set 

1 which was of size (512*512*186), all other sets were of size (512*512*244) for both 

FDG_CT and FLT_CT image modalities.  

2.5 Experiments 

2.5.1 Minimizing Errors in Manual Selection of Control Points 

To calculate the parameters of the first step of the registration process, control points 

have been chosen manually. With the manual selection process, it is difficult to visually 

select exactly the same point in two CT images; but choosing four vertexes of a rectangle 

as the assumed control points is easier as there is more contextual information. As can be 
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seen in Fig. 2.1, the four vertexes of the rectangle have been marked with a “+”; thus an 

initial test would be that the input image could be simply obtained by rotating the 

reference image by 90 degrees counter-clockwise; Register those two images, and 

overlap the registered image with the original image. The intent here for this simple 

experiment is to see the marks overlap to each other with 100% accuracy. Thus, if the 

control points have been chosen correctly, this registration method would yield perfect 

registration results. 

2.5.2 Testing the Middle Slice of FDG_CT from Set 1 to 5 

For set 1, slice No. 93 is the middle slice of the FDG_CT. That slice has been chosen as 

the reference image because it has more structures that can be chosen as control points 

than the skull. The input image has been obtained by rotating the reference image 90 

degrees for visual convenience. Then register those two images. Fig. 2.2 shows this test. 

For set 2 to 5, slice No. 122 has been taken as the reference image for the same reasons 

mentioned above. 

2.5.3 Testing All Slices in Set 1 through 5 

Select 3 pairs of slices, for example, the first slice, the middle slice, and the last slice in 

each set, and then register each pair in the corresponding FDG_CT and FLT_CT. This 

step constitutes the first part of the registration process. Using the 3 pairs of affine 

transformation parameters obtained thus far, determine all other parameters by linear 

interpolation. 
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2.5.4 Experimental Procedure 

The objective here is to register the 3D reference image FDG_CT.nii, and the 3D input 

image FLT_CT.nii, where nii stands for Nifti format.  The procedure consists of 5 steps: 

Step 1: choose the slices from each 3D image for the first registration step. For example, 

slice No. 1, No. i, and No. k of each 3D image have been chosen.  

Step 2: choose control points manually in each slice to obtain the base points and the 

input points for the first part of the registration process. For affine transformations, at 

least 3 control-points sets should be chosen. In our study, 4 base points and 4 input points 

have been chosen in slice No.1 of FDG_CT and FLT_CT, respectively. 

Step 3: register those pairs of slices chosen in step1 to obtain the needed affine 

transformation parameters. For example, if we choose 3 slices pairs, we will get 3 sets of 

registration parameter for set 1, set 2, and set 3. 

Step 4: use the affine transformation parameters determined in step 3 to calculate all of 

the other parameters by linear interpolation. Take k slices in total; for example, we use 

parameter set 1 and set 2 to calculate the parameters of slice No. 2 to Slice No. (i-1) 

(0<i<k), then we use parameter set 2 and set 3 to calculate the parameters of slice No. 

(i+1) to slice No. (k-1). Finally, all the affine transformation parameters can be obtained 

from slice No. 1 to slice No. k.  

Steps 5: the second part of the registration process registers each pair of slices of the 

FDG_CT and the FLT_CT by using all the affine transformation parameter sets. 
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2.6 Evaluation Methods 

2.6.1 Mutual Information and Normalized Mutual Information 

The mutual information (𝑀𝐼) between image A and image B is: 

𝑀𝐼 𝐴, 𝐵 = 𝐻 𝐴 + 𝐻 𝐵 − 𝐻(𝐴, 𝐵)                                        (2.2) 

𝐻 𝐴 , 𝐻 𝐵 ,𝐻(𝐴, 𝐵) are the entropies of image A, image B, and the joint entropy of 

images A and B [8], where: 

𝐻 𝐴 = − 𝑃:(𝑎)𝑙𝑜𝑔)𝑃:(𝑎)>                                                (2.3) 

𝐻 𝐵 = − 𝑃?(𝑏)𝑙𝑜𝑔)𝑃?(𝑏)A                                                (2.4) 

𝐻 𝐴, 𝐵 = − 𝑃:?(𝑎, 𝑏)𝑙𝑜𝑔)𝑃:?(𝑎, 𝑏)>,A                                        (2.5) 

with 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, and 𝑃: 𝑎 , 𝑃? 𝑏 , 𝑃:?(𝑎, 𝑏) define the probability distribution of gray 

values of image A, B and the joint probability distribution of gray values of images A and 

B. The normalized mutual information (𝑁𝑀𝐼) can thus be defined as: 

𝑁𝑀𝐼 = CD
E : ∗E ?

                                                            (2.6) 

From here onward, this is the NMI measure used throughout this dissertation to gauge the 

accuracy of the registration process. 
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2.6.2 Alignment Metric 

Images 𝐼( 𝑥, 𝑦  and 𝐼) 𝑥, 𝑦  are 𝑀×𝑁  images, and 𝐻( 𝑛  and 𝐻) 𝑛  are their 

corresponding histograms. The gray scale of the image is 0 ≤ 𝑛 ≤ 255. If	𝑛 = 𝑖 , 𝐻( 𝑛  

and 𝐻) 𝑛  are the total number of pixels whose gray value is i in 𝐼( 𝑥, 𝑦 	and 𝐼) 𝑥, 𝑦 . 

The ratios of gray value i in image 𝐼( 𝑥, 𝑦  and 𝐼) 𝑥, 𝑦 are determined as follows: 

𝑝( 𝑖 = 𝐻( 𝑖 /(𝑀×𝑁)                                                    (2.7) 

𝑝) 𝑖 = 𝐻) 𝑖 /(𝑀×𝑁)                                                    (2.8) 

For each gray scale n in image 𝐼( 𝑥, 𝑦 , 𝐻( 𝑛  is the total number of pixels whose gray 

value is n, Determine next  the coordinates of those pixels in 𝐼( 𝑥, 𝑦 , using the same 

coordinates to search for those same pixels in image 𝐼) 𝑥, 𝑦 	and sum the gray values in 

those positions, then we could get the mean vector 𝐸(,) 𝑛 	and the relative variance 

𝜎(,)) 𝑛  as follows: 

𝐸(,) 𝑛 = (
ER S

𝐼) 𝑥, 𝑦DR T,U VS                                           (2.9) 

𝜎(,)) 𝑛 = (
ER S

(𝐼) 𝑥, 𝑦 − 𝐸(,) 𝑛 ))DR T,U VS                               (2.10) 

Similarly, for each gray scale n in image 𝐼) 𝑥, 𝑦 ,	𝐻) 𝑛  defines the total number of 

pixels whose gray value is n, Similarly, determine the coordinates of those pixels in 

𝐼) 𝑥, 𝑦 ,		and using these same coordinates, search for the pixels in image 𝐼( 𝑥, 𝑦  and 
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sum the gray values in those positions, then we could get the mean vector 𝐸),( 𝑛  and the 

relative variance 𝜎),() 𝑛  as follows: 

𝐸),( 𝑛 = (
EW S

𝐼( 𝑥, 𝑦DW T,U VS                                        (2.11) 

𝜎),() 𝑛 = (
EW S

(𝐼( 𝑥, 𝑦 − 𝐸),( 𝑛 ))DW T,U VS                              (2.12) 

These variances based on 𝐼( 𝑥, 𝑦  and on 𝐼) 𝑥, 𝑦  can be determined as follows: 

𝜎(,)) = 𝑝(S (𝑛)𝜎(,)) 𝑛                                                  (2.13) 

   𝜎),() = 𝑝)S (𝑛)𝜎),() 𝑛                                                  (2.14) 

    Let’s define the cross variance (CI) based on 𝐼( 𝑥, 𝑦 	and 𝐼) 𝑥, 𝑦  as given below: 

𝐶𝐼 𝐼(, 𝐼) = YR,WW

YWW
+ YW,RW

YRW
                                                  (2.15) 

where, 𝜇( and 𝜇) are the mean values, and where 𝜎() and 𝜎)) are the variance of image 

𝐼( 𝑥, 𝑦  and 𝐼) 𝑥, 𝑦 , respectively. 

𝜎() =
(
C[

(𝐼( x, y − 𝜇(	))(T,U)                                        (2.16) 

𝜎)) =
(
C[

(𝐼) x, y − 𝜇)	))(T,U)                                        (2.17) 

Obviously, 𝜎() and 𝜎)) are constants. The better images are registered, the smaller are the 

𝜎(,))  and 𝜎),()  values, therefore the smaller is the CI measure. We could thus define the 
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alignment metric (AM) as below, where the AM would consequently increase as the two 

images are registered better.   

𝐴𝑀 𝐼(, 𝐼) = (
^D DR,DW

                                                 (2.18) 

2.7 Results 

Fig. 2.1 shows the control markers, which as expected are almost perfectly overlapping 

with each other. Minimal errors are still observed however for the rectangle as shown in 

Table 2.1 to indicate that manual selection of the control points is still difficult to perfect 

even under visual scrutiny. Table 1 provides the computed MI, NMI, and AM 

measurements, which clearly prove the soundness of the proposed registration method 

between the output image and the reference image.  

 

Fig. 2.2 shows the results when overlapping the output image to the reference image.  

According to the results in Table 1, when the input image is exactly the same as the 

reference image, the average of maximum MI, NMI, and AM are 1.65178, 0.49938, and 

17.72104, respectively. The MI, NMI, and AM are higher when FDG_CT and FLT_CT 

have been registered.  

 
  
Fig.  2.1 The registered image with 4 blue “+” marks overlapping the reference image with 4 red “+” marks. 
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(a)                                        (b) 

 

  
                                               (c)                                          (d) 

 
Fig. 2.2 Images (a) and (b) are the input image and the reference image with four blue 
control points marked in each of them. Image (c) is overlapping the green reference 
image, slice No. 93 of FDG_CT of set 1, and the red input image which is rotating the 
green image 90 degree counter-clockwise. Image (d) is overlapping the output image and 
the reference image. 

 
Table 2.1 Evaluation for sets 1 through 5: I is the input image, R is the reference image, 

and O is the registered FLT_CT image 

DATA SET 1 SET 2 SET 3 
IMAGES I & R O & R I & R O & R I & R O & R 

MI 0.7199 1.9108 0.7647 1.6365 0.6548 1.6894 
NMI 0.2065 0.5472 0.2140 0.4576 0.2061 0.5369 
AM 0.9451 23.0493 1.0930 13.7417 0.7233 20.0637 

DATA SET 4 SET 5 RECTANGLE 
IMAGES I & R O & R I & R O & R I & R O & R 

MI 0.6548 1.5133 0.7374 1.5089 0.0007 0.2300 
NMI 0.2061 0.4776 0.2326 0.4776 0.0029 0.9094 
AM 0.7233 11.8124 1.1149 19.9381 0.5022 26.9311 
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Fig. 2.3 Illustrates the results obtained by registering the 3 selected slices (using, in this 
case, the first, the middle, and last slices) in the first part of the registration process.  

 
 

  
(a) 

 

 
(b) 

 
Fig. 2.3 Set 1: 3 slices for the first registration. Images (a) are the first, the middle, and 

last of the unregistered slices; Images (b) show the registered slices. 
 

Fig. 2.4 shows the plots the AM measurements for all 5 sets for visual appreciation, and 

to see how these measurements vary depending on which parts of the body these slices 

belong to.  

 
(a) Set 1                                                    (b) Set 2 
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(c) Set 3                                                    (d) Set 4 

 

 
 

(e) Set 5 

Fig. 2.4 The AM for set 1 to 5. Green data 1 is the AM of  FLT_CT and FDG_CT; Blue 
data 2 is the AM of registered image and FDG_CT. Blue data is higher than green data 
(registration improved) in these parts: (a) from slice No.1 to slice No.11 and from slice 
No. 105 to slice No.186; (b) from slice No. 40 to slice No. 244; (c) and (d) all of the 
slices;(e)from slice No. 139 to slice No. 244 in set 5. 
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(b) Set 2 

  
(c) Set 3 

  
(d) Set 4 

  
(e) Set 5 

Fig. 2.5 Set 1 to 5: Overlapped the unregistered blue FLT_CT and red FDG_CT; 
overlapped are the registered green FLT_CT and red FDG_CT. These exemplify typical 
slice and whole body registration for all 5 patients 

 

Fig. 2.5 Provides the results of the overall registration process illustrated through a 

typical dataset, with similar good results obtained for the other four datasets. For the 

visual appreciation of the merits of these registration results, focus on the ossature frame, 

and more specifically on the vertebrae as shown in the FDG_CT and their counterpart in 

the FLT_CT. Recall that these image modalities were obtained on different days. 
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2.8 Conclusion 

To sum up, the method as proposed improved the CT registration of the FDG_CT and 

FLT_CT imaging modalities, in support of combining the strengths of both tracers in 

cancer diagnosis.  The registration of these slices provides a comprehensive 3D whole- 

body combined FDG-FLT CT image. To avoid arbitrarily using one set of affine 

transformation parameters to register images, three (first, middle and last) slices were 

initially used to calculate the whole set of transformation parameters for the entire 3D 

whole body CT images through linear interpolation. Improvements could be observed 

obviously in the skull and the bottom parts of the whole body CT.  

Computationally, this method can accomplish the registration of two 512*512*244 bit 

CT images in about 1 minute of processing time using MatLab on a Windows 7 

workstation with 3.40 GHz Intel (R) Core (TM) i7-2600 CPU and 4GB RAM. 

Experimental results clearly demonstrate the soundness of the proposed method in terms 

of both small registration errors as indicated in Table 2.1 as well as and in terms of visual 

scoring or appreciation. 
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3. AUTOMATIC REGISTRATION OF FDG_CT AND FLT_CT 

IMAGES 

3.1 Introduction 

This chapter describes a novel mutual information-based registration method that 

integrates the use of a Genetic Algorithm (GA), the Powell method (PM), and Wavelet 

decomposition in order to register in an optimal fashion the 18fluorodeoxyglucose 

(FDG)_CT and 18fluorodeoxythymidine (FLT)_CT image modalities. By registering 

these two computed tomography (CT) modalities, we combine the strengths of the two 

radiotracers knowing that FDG uptake is higher in cancerous lesions, while FLT uptake is 

closely correlated with cellular proliferation.  

Registration through these tracers, FDG and FLT, increase both sensitivity and specificity 

for imaging cancer and is essential for optimizing the results of the diagnosis.  In this 

study, this integrated approach, which combines the Genetic Algorithm, Powell method 

augmented through the Wavelet decomposition, we refer to as the GPW method, focuses 

on solving three problems: (1) Reducing the computational time of GA required when it 

is searching for the best global solution; (2) Preventing the Powell method (PM) method 

to fall into a local solution while performing image registration; (3) Providing the 

necessary image pre-processing steps for enhanced feature analysis of FDG_CT and 

FLT_CT images. After registration, the location of the cancerous lesions on the liver 

could be observed directly on the FLT_CT image. When registering wavelet decomposed 
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images, the GA is used for determining the maximal value of the NMI between a 

reference image and a moving image, while the Powell method (PM) is implemented in 

search for the best solution starting from an initial set of registration points.  

3.2 Related Work 

Computed Tomography (CT) continues to yield a significant impact on medical research 

and remain one of the viable imaging modality for diagnosis [46]. Combining the 

complementary strengths of two proven tracers FDG and FLT is an effective way to 

improve diagnosis, overcoming their inherent limitations when used separately. 

As indicated earlier, image registration is a subtle and yet complex task that often require 

several steps that include image pre-processing, use of affine transformations, 

interpolation, similarity metrics, and optimization [47]. This involves a thorough 

assessment of the feature space, determining what similarity metrics should be used to 

gauge the mutual information and frame a search strategy that will optimize the 

registration process in terms of both accuracy and computational simplicity. 

An overview of different image registration methods reveals that significant progress 

remains to be made towards a more effective solution to registration [48]. William M. 

Wells III et al. proposed a registration method that was achieved by adjusting the relative 

position and orientation until the mutual information between the images is maximized 

[49]. Lisa Tang and her colleagues offer a registration method that was focused on 

optimizing the mutual information [50]. X. F. Wang et al. use a genetic-based image 
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registration method [51]. X. G. Du et al. propose instead a multi-modal medical image 

registration method based on the gradient of mutual information and hybrid genetic 

algorithm [52]. X. Du et al. describe a multi-resolution image registration method based 

on the so-called firefly algorithm and Powell method [53]. 

Genetic algorithms [51, 52] and Powell method (PM) [53, 54] remain the most popular 

optimization methods applied to mutual information-based medical image registration. 

Genetic algorithms are often used when seeking the best global solution within the whole 

range, which may result in heavy computational requirements; while the Powell method 

is good at determining a local solution with reduced computational load but where the 

solution sought might not be optimal.  

In order to take the advantage of both GA and PM, an automatic registration method 

combining the strength of each, augmented with wavelet decomposition (GPW) is 

proposed in this Chapter, considered as the main contribution of this dissertation. 

3.3 Methods 

3.3.1 Image Pre-processing Methods 

The image preprocessing steps assumed throughout this chapter can be summarized as 

outlined in Fig. 3.1. These pre-processing steps include image normalization, median 

filtering, Laplacian shaping, and histogram enhancement. Assume the pixel value at point 

(x, y) to be p(x, y), and where min[p(x, y)] and max[p(x, y)] are the minimum and 
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maximum of p(x, y), respectively, then expression {p(x, y) - min [p(x, y)]}/{ max[p(x, y)] 

- min[p(x, y)]} is used to normalize the original image. Median filtering is performed on 

the image using the default 3-by-3 neighborhood mask, to remove isolated or spurious 

noise points. Laplacian shaping removes the low-frequency components while keeping 

the high-frequency components in the Fourier domain. The edges thus become much 

more recognizable than in the original image. Histogram enhancement is applied to the 

Laplacian sharpened images in order to observe more details if needed. Fig. 3.2 shows 

the results of the pre-processing steps. 

 

 

Fig. 3.1 Pre-processing steps 

 

Images→Normalization→Median filtering
→Laplacian shaping→Histogram 

enhancement→Pre-processed images  
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Fig. 3.2 Results of pre-processing procedure 
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3.3.2 The procedures of GPW Method 

The flow diagram of the GPW structure is shown in Fig.3.3. FDG_CT and FLT_CT are 

pre-processed as 512* 512 images. 

 

Fig. 3.3 The GPW integrated structure 

First, the wavelet method is applied to both images, yielding two decomposed 256*256 

images (CA1 and CB1). CA1 and CB1 are the low-frequency parts of FDG_CT and 

FLT_CT, respectively. The processing time was thus reduced significantly since the size 

of the images is decreased by half both dimensions from 512*512 to 256*256. 

Second, the GA is used to search for the best global solution in the registration process 

and is applied only on the 256*256 CA1 and CB1, which are smaller than the pre-

processed FDG_CT and FLT_CT images. Furthermore, to save time, the size of the 
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image could be further decomposed several times depending on the requirements and the 

application at hand. 

Thirdly, the best global solution found by the GA is fed as an initial solution (point) to 

the Powell method (PM), which is applied to register the original 512*512 FDG_CT and 

FLT_CT images. Setting the initial point properly is very important when using PM; with 

the initial point being the global best here, searching near this point, PM could find the 

best local solution quickly. 

The GA and PM algorithms are applied to the original FDG_CT images as described in 

Fig. 3.4 and Fig. 3.5.  

 

Fig. 3.4 Registration with GA optimization 

 

Fig. 3.5 Registration with PM optimization 

3.4 Experiments 

3.4.1 Performance Verification of the Powell Method (PM) 

To verify that the Powell method has worked properly, the following experiments were 

conducted: Slice No. 93 (512*512) of FDG_CT used as the reference image, and its 
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rotated version by 90 degrees anti-clockwise serves as the moving image that is going to 

be registered to the reference image. The initial point of Powell method was set randomly, 

and the experiment was repeated 10 times with the results as shown in Table 3.1. 

Table 3.1 Registration results of PM 

# 
X 

(pixels) 
Y 

(pixels) 
Angle 

(degrees) NMI MI 
T 

(seconds) Local Global 

1 -2.00 -3.4 -90.0 0.999 4.569 341 0 1 

2 -2.85 -0.7 -89.7 0.186 0.850 549 1 0 

3 0.25 0 -349.8 0.098 0.449 5783 1 0 

4 -2.00 0 -90.0 0.999 4.568 423 0 1 

5 -2.00 0 -90.0 0.999 4.569 321 0 1 

6 -2.00 0 -90.0 0.997 4.559 423 0 1 

7 -2.00 0 -90.0 0.999 4.566 519 0 1 

8 -2.00 0 -90.0 0.997 4.559 437 0 1 

9 -2.00 0 -90.0 0.999 4.566 541 0 1 

10 -2.00 0 -90.0 0.997 4.559 438 0 1 

 

According to the results of Table 3.1, experiment #1, and #4 to #10 achieved a 

normalized mutual information higher than 0.99, which means the registration is correct 

above 99%, which is the near perfect results that were expected at this point. And the 

average computational time is thus far 431 seconds for one slice. If the total slice number 

is 186, the approximate total computational time will be close to 22 hours. So PM did 

find the global best solution in those eight experiments. But in experiment #2 and #3, PM 
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fell into the local best solution. Thus, the success rate of registration using PM 

optimization is 80% (8 out 10) in this set of experiments. 

This outcome highlights the importance of the initial point when applying the PM, as 

there are possibilities for failure, as was the case in experiments #2 and #3. Assuming 

setting the initial point right at or close to the global best point, PM may on the other lead 

to the right solution and faster. Since the GA is good at finding the best global solution, 

GA is assumed to optimize the search for a solution first, and then passing this best 

global point to the PM as the initial point.  

 

Fig. 3.6 Registration results of experiment # 1 using PM 

Fig. 3.6 shows the registration results of experiment #1:  reference image (FDG_CT), 

moving image (90 degrees anti-clockwise FDG_CT), and the fusion of images before and 

after registration. For visual convenience, the reference image was put into the red 
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channel, and the registered image was put into the green channel. The yellow points show 

the overlapping parts of them after registration. The registration result is excellent in this 

case since the whole fusion image after registration turns into yellow. 

3.4.2 Verification of Wavelet-Modified Genetic Algorithm (GA) 

In this experiment, slice N0.93 (512*512) of FDG_CT is also used as the reference image, 

and its rotated version by 90 degrees anti-clockwise serves as the moving image. Wavelet 

decomposition is applied to the 512*512 image to get the low-frequency part image 

(256*256) and three high-frequency parts of it. And then, wavelet decomposition is 

applied to the low-frequency part (256*256) one more time to get a second level low-

frequency part image (128*128). The experiment here is about using GA to optimize the 

solution in the registration of the 512*512, 256*256, and 128*128 images, respectively. 

The initial point and conditions of GA are set to be the same when registering these 3 sets 

of different size images. The registration results are as recorded in Table 3.2. 

Table 3.2 Registration results of GA 

Image Size 
(pixels) 

X 
(pixels) 

Y 
(pixels) 

Angle 
(degrees) NMI T1 

(seconds) 
T2 

(seconds) 
T 

(seconds) 

512*512 1.99 0.0038 -90.002 0.978 0 3833 3833 

256*256 2.01 -0.0125 -90.013 0.944 0.033 960 960.03 

128*128 2.00 -0.0001 -90.001 0.992 0.037 244 244.04 
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According to the results given in Table 3.2, T1 was the processing time of applying 

wavelet decomposition to the 512*512 images once to get the 256*256 images. T2 was 

the computational time of GA when GA was applied to the original 512*512 FDG_CT 

image, where the computational time was 3833 seconds. As the original image has been 

wavelet decomposed to level one, the size of the image has been decreased to 256*256, at 

the same time, the computational time went down to 960 seconds, which was 2873 

seconds less than before. Then the second level wavelet decomposition was applied to the 

256*256 images, where the computational time went down to 244 seconds, which was 

716 seconds less than before, meanwhile, this time achieved the highest normalized 

mutual information 0.992. Furthermore, the processing time of wavelet decomposition to 

get the first level image and the second level image were 0.033 seconds and 0.037 

seconds, respectively, which are negligible. With respect to the whole algorithm, these 

processing times could as well be ignored. This experiment proved that by using wavelet 

decomposition, the processing time could be significantly reduced, while the GA still 

ensures an optimized image registration process.    

3.5 Results and Analysis 

In this experiment, seven pairs of FDG_CT and FLT_CT images were registered using 

the integrated GPW approach. Slice No. 92 to slice No. 98 of FDG_CT images and slice 

No. 92 to No. 98 of FLT_CT images were tested. Wavelet decomposition was applied 

twice to the pre-processed 512*512 FDG_CT and FLT_CT images to get the 128*128 

images as the reference and moving images. GA is used to obtain the best initial point to 

be used by PM for optimizing the registration results on the original 512*512 images. 



41 
 

Results provided in Table 3.3 show that the total computational time (T3+T4) for 

registering slice No. 92 through slice No. 98 by GPW are: 610 seconds, 706 seconds, 945 

seconds, 928 seconds, 623 seconds, 628 seconds, and 518 seconds, respectively. The 

average computational time for registering a pair of 512*512 FDG_CT and FLT_CT 

image using GPW is 708 seconds. It is 3556 seconds less than registering a pair of 

512*512 image by GA (average computational time is 3833 seconds) plus PM (average 

computational time is 431 seconds). The NMIs of those seven tests were 0.3006, 0.2747, 

0.3032, 0.2391, 0.2212, 0.2254, and 0.2378, respectively. Those NMIs were low, but that 

does not mean that the registration results were poor; in fact, the original images used for 

registration here were different. So the NMIs cannot possibly approach 1. But the goal 

here was to compare the differences between the FDG_CT and FLT_CT images. So the 

goal was still achieved and is validated through visual observation. 

Table 3.3 Register FDG_CT and FLT_CT images by GPW 

# 

GA PM 

Size  
(pixels) 

Initial point T3 

(seconds) 

Size  
(pixels) NMI T4 

(seconds) X 
(pixels) 

Y 
(pixels) 

Angle 
(degrees) 

92 128*128 -8.1 -4.01 -0.01 285 512*512 0.3006 325 

93 128*128 -7.0 -4.01 -0.01 298 512*512 0.2747 408 

94 128*128 -7.0 -2.01 0.04 292 512*512 0.3032 653 

95 128*128 -8.9 -2.5 0.05 301 512*512 0.2391 627 

96 128*128 -8.0 -2.5 -0.08 295 512*512 0.2212 328 

97 128*128 -9.1 -2.0 0.05 297 512*512 0.2254 331 

98 128*128 -10.0 -2.5 -0.01 297 512*512 0.2378 221 
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Fig. 3.7 Registration results of slice No.92 FDG_CT and FLT_CT image 

 

 

          Fig. 3.8 Registration results of slice No.93 FDG_CT and FLT_CT image 
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          Fig. 3.9 Registration results of slice No.94 FDG_CT and FLT_CT image 

 

 
Fig. 3.10 Registration results of slice No.95 FDG_CT and FLT_CT image 
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Fig. 3.11 Registration results of slice No.96 FDG_CT and FLT_CT image 

 

 

Fig. 3.12 Registration results of slice No.97 FDG_CT and FLT_CT image 
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Fig. 3.13 Registration results of slice No.98 FDG_CT and FLT_CT image 

 

The results are shown in Fig. 3.7 through Fig. 3.13 reveal the raw image of FDG_CT and 

FLT_CT before and after registration by GPW. In order to see the different parts of these 

two kinds of CT images, putting FDG_CT in the red channel, and the FLT_CT in the 

green channel, the fusion image of them should yield a yellowish color. The spine in the 

fusion images is not overlapping 100% before registration. But, after registration by 

GPW, the FDG_CT was put into the red channel, and the registered image was put into 

the green channel, then the spine turns to the color yellow. That meant that the spine is 

overlapping better than before. The cancerous lesions parts of the liver could be observed 

directly on the FLT_CT image in red color. 

3.6 Conclusion 

In this chapter, registration of seven pairs of FDG_CT and FLT_CT images using an 

integrated GPW approach is accomplished. Registration results were improved in terms 
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of quality of the fused images in terms of NMI and visual observation, showing a good 

overlap of the two modalities, but also in terms of the significantly reduced 

computational requirements. From the fusion image, the location of the cancerous lesions 

on the liver, which were shown in red color, could be observed directly on the FLT_CT 

image. This outcome could help enhance both the delineation of tumors and cancer 

diagnosis. In retrospect, the GPW approach is shown to reduce the computational burden 

of GA when searching for the best global solution and prevents the PM in locking onto a 

best local solution for image registration, which may not be the optimal solution.  The 

proposed method resolves both of these issues. 
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4. MULTI-MODALITY MEDICAL IMAGE REGISTRATION 

4.1 Introduction 

Medical images have always been essential in the delivery of healthcare to patients who 

have to image for treatment planning. Within medical research, especially neuroscience 

research, they are used to investigate disease processes and understand normal 

development from the disease state. In many of these studies, multiple images are 

acquired from subjects at different times, and often with different imaging modalities. In 

such multimodal research studies, not only is it important in seeking good registration for 

the optimal fusion of the different modalities, but it is also desirable to compare images 

obtained from patient cohorts in support single subjects imaged multiple times. 

This chapter describes a fully integrated multimodal approach to medical image 

registration. For its implementation, this chapter provides the data used in the registration 

experiments and defines the goals sought through these experiments. To assess the 

performance of this integrated method, a comparative study is performed to evaluate the 

results as obtained by the proposed method contrasted with the most established and 

highly successful software platforms of FSL and SPM. 

4.2 Data 

There are 4 sets of data in this study, including one whole-body CT image and the brain-

only images. The details of the data are as follows: 
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Dataset #1 includes five patients with resectable and unresectable pancreatic cancers 

who underwent 18F-FLT and 18F-FDG imaging, each acquired within a week’s duration 

for the same patient.  FDG_CT is short for fluorine18-fluorodeoxyglucose. FLT_CT is 

short for fluorine18-fluorothymidine. In these 5 datasets that have been tested, it is noted 

that each of them had FLT_CT and FDG_CT taken in different days. FDG_CT, in this 

study, is used as the reference image, which is unmoved, while the FLT_CT is used as 

the input image, which is moving in seeking that perfect alignment. Except for data set 1 

which was of size (512*512*186), all other sets were of size (512*512*244) for both 

FDG_CT and FLT_CT image modalities. 

Dataset #2 includes 5 patients with tumors in their brains who underwent pre-operation 

brain MRI and intra-operation brain CT within a week’s duration for the same patient. 

Dataset #3 includes 5 patients with Alzheimer's disease. They underwent brain MRI and 

PET within few days to two months duration for the same patient.   

Dataset #4 includes 1 normal control’s T1, T2, fluid-attenuated inversion recovery image 

(FLAIR), and Gradient and spin-echo images (GE). 
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4.3 Experiments 

4.3.1 The Goal of the Four Experiments 

Experiment 1 compares the whole body registration results using data set # 1 by the 

proposed method, the co-register function of SPM 12, and the FLIRT linear registration 

function of FSL, respectively. 

Experiment 2 compares the multi-modalities registration results using data set # 2 

through registering MRI and CT images by the proposed method, the co-register function 

of SPM 12, and the FLIRT linear registration function of FSL, respectively. 

Experiment 3 compares the multi-modalities registration results using data set # 3 

through registering MRI and PET images by the proposed method, the co-register 

function of SPM 12, and the FLIRT linear registration function of FSL, respectively. 

Experiment 4 compares the same modality registration results using data set # 4 through 

registering T1 and T2, T1 and FLAIR, T1 and GE images by the proposed method, the 

co-register function of SPM 12, and the FLIRT linear registration function of FSL, 

respectively. 
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4.3.2 Procedures of the Proposed Method 

The following flowchart, as shown in Fig. 4.1, illustrates the essential steps that were 

implemented to image registration. The procedure of the proposed method is described in 

the following 7 steps: 

1) Trilinear interpolation to unify dimensions of original reference and moving 

image 

The images obtained from different modalities usually have different dimensions. In 

order to calculate their NMI, it is necessary to interpolate the moving image (Imov) to 

obtain the same dimension of the reference image (Iref). In this study, trilinear 

interpolation is employed to obtain the interpolated moving image. 

2) NMI calculation to find the best matching pair 

Three slices (i, j, and k), whose anatomy characters are easily observed, have been 

manually selected from Iref (i, j, and k are positive real numbers). Based on calculating 

the NMI, three slices (p, q, and r) will be selected form Imov.  For example, the NMIs 

between slice i and each of the slices of Imov have been calculated; then the largest value 

(MaxNMI) among the NMIs will be found; the index of the MaxNMI is p. Therefore, 

slice p of Imov is selected as the best matching for slice i of Iref, the same method for 

slice q and r. Slice i and p is the first pair; slice j and q is the second pair; and slice k and 

r is the third pair (p, q, and r, are positive real numbers). 
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3) Wavelet decomposition to obtain the smaller, low-frequency part of the selected 

three pairs 

The computational time is huge when using the Genetic Algorithm (GA) to optimize the 

registration results, especially for the medical images. Using smaller images instead of 

the original large ones could sharply reduce the consuming time. The wavelet 

decomposition method can offer the smaller size image, meanwhile, maintain most of the 

information of the original image [53]. Therefore, the wavelet decomposition method is 

applied to the selected three pairs of images to get the smaller, low-frequency images (Li, 

Lj, Lk, LP, Lq, and Lr).  

4) Initial Search by GA 

The Genetic Algorithm has been applied to each pair of the image, and three sets of 

registration parameters for the best matching pairs have been obtained. The initial 

searching parameters for Powell Method (PM) are set by the obtained parameters. 

5) Second Search by PM 

The registration results are re-optimized by Powell Method (PM). In this way, the 

registration is enhanced since PM will search around the initial point set found by GA. 

This second search will apply PM to the original large images (Iref and Imov). 

6) Linear Interpolation 

The three sets of registration parameters are segmented linear interpolated to get the other 

sets of parameters for all slices. The registration parameters from slice # i to slice # j can 
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be achieved by linear interpolating the registration parameters between the first pair and 

the second pair. The parameters of slice # 1 to slice # (i-1) can be achieved by linear 

extend the parameters of slice # i. The registration parameters of slice # (j+1) to slice # k 

can be achieved by linear interpolating the registration parameters between the second 

pair and the third pair. The parameters of slice # (k+1) to the end can be achieved by 

linear extend the parameters of slice # k. Therefore, the final solutions for all slices are 

obtained in this way. 

7) Registration 

Based on the final solution for all slices, Imov has been moved to align with Iref through 

Affine transformation [55 - 61]. 
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Fig. 4.1 Flowchart of the proposed method 

4.3.3 Evaluation Method 

In this chapter, the normalized mutual information will be calculated as the evaluation 

standard for image optimization. Unlike many other registration methods, mutual 

information makes fewer priority assumptions about the object, making it adaptable to 

changes in lighting and changes between sensors. It can be applied to larger dimensional 

medical image registration. In order to know the registration quality, normalized mutual 
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information (NMI) is defined below. The value of NMI will be in the range of 0 to 1. The 

closer to 1, the better the registration is. 

4.4 Optimizing Methods 

In this study, between each pair of a reference image and moving image, there can be 

horizontal displacement, vertical displacement, scaling, and rotation. There is however no 

specific functional expression for expressing gradient change. Based on these situations, 

the Powell method (PM) could be a suitable optimization algorithm since it is good at 

finding the best solution where the calculation of the gradient is not possible. However, to 

apply PM here, the initial searching point must be close to the optimal solution. Therefore, 

the Genetic Algorithm (GA) is applied first to find the global optimal solution. Then, 

starting from that global optimal solution, PM will find the best solution for optimization 

of the final results. In addition, GA is time-consuming when applied to the original 

images. To save time, the wavelet decomposition will be used to reduce the dimension of 

the original images. 

4.4.1 Genetic Algorithm (GA) 

The essence of GA is Darwin’s theory of evolution. The main idea is encoding the 

parameters of registration, as different genes, in a chromosome, and generating a 

population of potential solutions as the first generation randomly; then letting them 

evolve with respect to “the fittest survives” rule-selection, crossover, and mutation; 

finally, decoding the best chromosome in the last generation. In this study, the translation 
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of x-axis (x), the translation of y-axis (y), scaling (k), and rotation (angle) are the 

registration parameters. Based on the data, the same scaling parameter k has been used in 

both the x-axis and y-axis direction. Scaling and rotation are both from the image’s center 

of gravity. One set of x, y, k, and angle is a frame. The best registration resolution is the 

best frame, which gains the highest NMI. GA processing procedures are shown in the 

following Fig. 4.2. 

 

Fig. 4.2 Flowchart of the Genetic Algorithm 

1) Generation of the initial M frames 

The population of the potential solution is M. M frames will be generated at the 

beginning of GA. Each of the frame includes a set of x, y, k, and angle. Based on the data 

in this study, -10 to 10 will be enough for the translation, scaling, and rotation. Based on 

the experiment, when M = 320, GA gets the highest NMI. Therefore, 320 frames of x, y, 
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k, and angle will be generated randomly from [-10, 10]. Those 320 frames form the first 

generation of GA.    

2) NMI calculation for each frame 

Calculating NMI values uses equations 1 to 5. NMI is the evaluation parameter for each 

frame in each generation.  In this study, the frames with top 5 highest NMI values, which 

are the elite solutions, will be directly copied into the next generation without Crossover 

and Mutation applied to them. The other 315 frames will go to Selection, Crossover, and 

Mutation. 

3) Selection 

This step will duplicate the frames depending on the Fitness Proportionate Selection 

(Roulette Wheel Selection) method [23, 24]. Each frame is corresponding to an NMI 

value. If 𝑁𝑀𝐼_  is the NMI value of individual 𝑖 in the population 𝑛, its probability of 

being selected (𝑆𝑃_) is as follows:  

							

SPi =
NMIi

NMI j
j=1

n

∑
																																																																	

(4.6) 

 

After calculating the probability of being selected (𝑆𝑃_), the accumulate probability (𝐶𝑃_) 

will be calculated. Then, a number R1 will be randomly generated between [0, 1]. R1 will 

work as a pointer. When it is close to a	𝐶𝑃_, the individual # i will be selected. In this 
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study, n = 315, and i = 1, 2, …, 315.  The total number of R1 is 315. Those R1s will point 

to 315 frames. Those frames will go to the Crossover and Mutation steps. 

For example, Fitness Proportionate Selection method will select 5 frames from 10 frames. 

The NMI values (𝑁𝑀𝐼_ ), the probability of being selected (𝑆𝑃_ ), and the accumulate 

probability (𝐶𝑃_) are shown in table 1: 

Table 4.1 Example of Fitness Proportionate Selection 

Frame # 1 2 3 4 5 6 7 8 9 10 

𝑁𝑀𝐼_ 0.40 0.70 0.18 0.50 0.10 0.30 0.15 0.60 0.60 0.60 

𝑆𝑃_ 0.05 0.09 0.23 0.06 0.13 0.04 0.19 0.08 0.08 0.08 

𝐶𝑃_ 0.05 0.14 0.36 0.43 0.55 0.59 0.78 0.85 0.93 1.00 
 

The 5 numbers randomly selected are 0.94, 0.25, 0.31, 0.66, and 0.53. According to table 

4.1, the selected individual numbers are: 10, 3, 3, 7, and 5, as shown in Fig. 4.3. 

 

Fig. 4.3 Selection operation 

4) Crossover 

The crossover exchanges portions of the frame to produce better candidate frames with 

higher NMI values in the next generation [51, 52]. According to a crossover probability 

(𝑃a), the crossover point will be randomly determined, and then the portion starting from 
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the crossover point will be exchanged. One-point-crossover is adopted in this study. 

Table 4.2 shows an example of that method. First of all, the crossover probability 𝑃a 

between the first frame and each of the odd-numbered frames will be calculated by 

equation 7. The even number frames will go to the Mutation directly.  After that, the 

computer will generate a random number R2 from [0, 1]. Then, each 𝑃a will compare to 

R2, if 𝑃a larger than or equal to R2, a crossover point will be determined randomly from 

the first frame, and the portions starting from the crossover point will be exchanged. If 𝑃a 

is less than R2, no crossover will take place here. The original frame will be kept to the 

next step. That comparison has been done 315 times to make 315 frames, which include 

the exchanged frames and the kept original frames. Those frames will go to the Mutation 

step. 

Table 4.2 Example of One-point-crossover 

Father Frame 1 1 0 1 0 1 1 0 0 1 0 

Father Frame 2 0 1 0 1 1 0 0 1 0 1 

One-point-crossover 

New Frame 1 1 0 1 1 1 0 0 1 0 1 

New Frame 2 0 1 0 0 1 1 0 0 1 0 
 

𝑓>cd is the average NMI value. 𝑓e>T is the maximum NMI value. 𝑓f is the biggest NMI 

value between two frames in the father generation. The crossover probability (𝑃a) can be 

defined as the following [23, 24]: 
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                                                   (7) 

The most common values in applications are:	𝑃a( = 0.9, 𝑃a) = 0.6, which are also used 

in this study.  

5) Mutation 

Mutation is the second way to produce new frames in GA. It randomly modifies some 

bits of the frames and is responsible for the research space exploration [51, 52]. It 

prevents the algorithm from being trapped in the local optimal value. Mutation 

probability (𝑃e) is supposed to be small. In one generation, 𝑓>cd is the average value of 

NMI. 𝑓e>T  is the maximum value of NMI. 𝑓  is the NMI value of the frame before 

mutation. The mutation probability (𝑃e) can be defined as [23, 24] 

                                                   (8) 

The most common values in applications are: 𝑃e( = 0.1, 𝑃e) = 0.001, which are also 

used in this study. First of all, the mutation probability 𝑃e of each frame comes from the 

Crossover and will be calculated by equation 8. After that, the computer will generate a 

random number R3 from [0, 1]. Then, each 𝑃e will compare to R3, if 𝑃e larger than or 

equal to R3, randomly choose one point from the frame. If the value of that point is 0, it 

will be changed to 1; if the value of that point is 1, it will be changed into 0. If 𝑃e less 
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than R3, no Mutation will take place in this frame, it will be kept to the next step. That 

comparison has been done 315 times to make 315 frames which including the exchanged 

frames and the kept original frames. Those 315 frames and the elite solutions (5 frames) 

form the new generation. 

6) Termination criteria 

There are many termination criteria, such as finding an acceptable approximate solution, 

reaching a specific number of generation, the highest NMI value reaching a specific 

number in a generation, or the average NMI value reaching a specific number in a 

generation [48, 49]. In this study, considering the computational time, reaching 800 

generation is the termination criteria. The frames will go through the Selection, Crossover, 

and Mutation 800 times, and then end with 320 frames. The frame with maximum NMI 

value will be the optimal solution. 

4.4.2 Powell Method (PM) 

From the initial point, which is the best solution found by GA, the cost function is 

optimized along a direction using a one-dimensional search method, Golden Section 

Search [62] in this study, and then continues to the next direction. Therefore, after a 

number of one-dimensional searches, PM will get extreme points. In this study, the initial 

point could be the best solution, but PM will search close to this point to verify if it is the 

best or the PM will find the best of the best in the local area. The best solution has the 

highest NMI value. Therefore, PM will calculate the NMI for each solution along the 
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directions to find the maximum NMI value. PM processing procedures are shown in the 

following Fig. 4.4. 

 

Fig. 4.4 Flowchart of PM 

According to Fig. 4.4, GA gives its best frame for initial PM. PM will start its search 

from point (x0, y0, angle0). First, y0 and angle0 are unchanged, and x0 is moving along the 

x-axis till finding the point (x1, y0, angle0) with the maximum value of NMI. Then, x1 and 

angle0 are unchanged, and y0 is moving along the y-axis till finding the point (x1, y1, 

angle0) with the maximum value of NMI. After that, x1 and y1 are unchanged, and angle0 

is moving along the z-axis till finding the point (x1, y1, angle1) with the maximum value 
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of NMI. If the distance between (x1, y1, angle1) and (x0, y0, angle0) is less than or equal to 

e (e = 0.0001 in this study), the solution will be (x1, y1, angle1); if that distance larger 

than e, PM will do one more one-dimension search starting from the point (x1, y1, angle1) 

along the direction of (x1 - x0) till finding the point (x2, y2, angle1) with the maximum 

value of NMI. If the distance between (x1, y1, angle1) and (x2, y2, angle1) is less than or 

equal to e, the solution will be (x2, y2, angle1); if that distance larger than e, PM will do 

another one-dimension search starting from the point (x0, y0, angle0) along the direction 

of (x1 - x0) till finding the point (x3, y3, angle1) with the maximum value of NMI. That 

point will be the solution. 

4.4.3 Wavelet Decomposition 

The Haar wavelet transform is applied, as shown in Fig.4.5, to decompose an original 

image into four sub-bands, including a low-frequency component L1 and three high-

frequency components (H1, D1, V1). Then, L1 is processed by the second level wavelet 

transformation. L1 is decomposed into a second level low-frequency component L2 and 

three-second level high-frequency components (H2, D2, V2).  

 

Fig. 4.5 Wavelet Decomposition to the second level 
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The high-frequency components are similar in the same direction but in different scales. 

The high-frequency components in the lower-resolution frequency band are similar to the 

high-frequency components in the higher-resolution frequency band. That means H2 is 

similar to H1, V2 is similar to V1, and D2 is similar to D1. The same with the low-

frequency component, L2 is similar to L1. [63 - 66] For example, the slice NO.93 of the 

FDG_CT image of dataset # 1 is applied the wavelet decomposition to the second level. 

The size of this slice is 512-by-512. The original slice # 93, the low- frequency and high-

frequency parts of the first level and the second level are as shown in Fig. 4.6 to Fig. 4.8.  

In this study, the second level low-frequency part is used in the Genetic Algorithm. 

 

Fig. 4.6 Original slice # 93 of FDG_CT image, image size: 512-by-512 
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Fig. 4.7 Wavelet decomposition to the first level, image size: 256-by-256, low-frequency 
component: L1, and high-frequency components: H1, D1, and V1 

 

 

Fig. 4.8 Wavelet decomposition to the second level, image size: 128-by-128, low-
frequency component: L2, and high-frequency components: H2, D2, and V2 
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The Genetic Algorithm (GA) needs a lot of processing time. To reduce that time, the 

smaller image, like (c) in Fig. 4.8, is used instead of the original large image in Fig. 4.6. 

In this way, the processing time will decrease significantly, as shown in Table 4.3. 

Table 4.3 Processing times of wavelet decomposition, GA and the total   

Image Size Twavelet (sec) TGA  (sec) Ttotal  (sec) 

512-by-512 0 3833 3833 

256-by-256 0.033 960 960.03 

128-by-128 0.037 244 244.04 

 

According to Table 4.3, Twavelet is the processing time of applying wavelet decomposition 

to the 512-by-512 images once and it takes 0.033 sec and twice takes 0.037 sec. TGA is 

the processing time of GA when the application images are in the three different sizes. 

Ttotal is the total processing time. When using the smallest 128-by-128 image, the GA 

only needs 244 secs, and including the wavelet decomposition time 0.037 sec, the total is 

244.04 secs, which is far less than using the original 512-by-512 image. In this way, 3589 

seconds have been reduced each slice. 6 slices from Dataset #1 have been applied this 

method, and 2.99 hours have been saved in total. 
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4.5 Results and Analysis 

In this study, both of the inter-modality and multi-modality images have been registered 

by the proposed method. In order to compare the results, the co-register function of SPM 

12 and the FLIRT linear registration function of FSL have been employed, too. For 

observation convenience, the reference images, which won’t move, always appear in red; 

the moving images, which will be aligned to the reference image, always appear in blue; 

and the registered images always appear in green. The transverse, coronal, and sagittal 

images of the studying subjects will be displayed at the same time. 

4.5.1 Registration Results of Experiment 1—FDG_CT and FLT_CT 

 

(a) FDG_CT 
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(b) FLT_CT 

Fig. 4.9 Original images 

 

(a) Overlap of the original images 
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(b) SPM 

 

(c) FSL 
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(d) The proposed method 

Fig.4.10 Patient # 1 of data set #1, (a) Original FDG_CT (appears in red) and FLT_CT 
(appears in blue) are overlapped; (b) Registration results using SPM12; (c) Registration 
results using FSL; and (d) Registration results using the proposed method. 

    
 (a) Original      (b) SPM   (c) FSL (d) Proposed method  

Fig. 4.11 Enlarged spine in transverse image 

    
 (a) Original (b) SPM   (c) FSL   (d)Proposed method 

Fig. 4.12 Enlarged skull in sagittal image 
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(a) Original (b) SPM (c) FSL (d) Proposed method 

Fig. 4.13 Enlarged spine and rib in sagittal image 

In Fig. 4.9, the original FDG_CT is in red color, and the original FLT_CT image is in 

blue color. Fig. 4.10 is the registration result of the whole body CT image. The 

misalignment parts are shown inside the rectangle. Image (a) shows the overlapping of 

the original images. Image (b) and (c) show overlapping the registered image and the 

original FDG_CT by SPM and FSL, respectively. Although the misalignment part looks 

better than the corresponding part of the original images in (a), the misalignment includes: 

the spinal column in the transverse image, the rib and neck in the coronal image, and the 

brain and the spinal column in the sagittal image are still observed. Image (d), the 

proposed method corrects the misalignment effectively in the spinal column in the 

transverse image, the neck and rib in the coronal image, and the brain and spinal column 

in the sagittal image. Therefore, our proposed method shows the best function for 

registering the whole body CT image compare to SPM and FSL. For visualization 

purposes, Fig. 4.11 to 4.13 shows the enlarged spine in the transverse image, skull in the 

sagittal image, and spine and rib in the sagittal image. Both SPM and FSL, in (b) and (c), 
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didn’t correct all the misalignments, however, the proposed method shows perfect 

alignment in (d). 

Table 4.4 Processing time and NMI comparison for the 5 data sets of experiment 1 
 

Data set # Evaluation parameter SPM FSL Proposed method 

# 1 T (s) 566 960 610 
Average NMI 0.1989 0.2011 0.5361 

# 2 T (s) 299 1500 706 
Average NMI 0.2040 0.2041 0.5543 

# 3 T (s) 365 1321 945 
Average NMI 0.1991 0.2051 0.5311 

# 4 T (s) 356 1446 928 
Average NMI 0.2011 0.1986 0.4776 

# 5 T(s) 358 1357 518 
Average NMI 0.2026 0.2311 0.4276 

     
In Table 4.4, T is the processing time of registration process, and the average NMI is the 

average value of normalized mutual information between each of the registered images 

and the original reference image. Although the processing time is larger than SPM and 

less than FSL, our proposed method gained the highest average NMI value. 

4.5.2 Registration Results of Experiment 2—Pre-MRI and Intra-CT 

Fig. 4.14 is the original pre-operation MRI with the Intra-operation CT images. Fig. 4.15 

is the registration result. The misalignment parts are shown inside the rectangle in the 

image. Image (a) is overlapping the original images. Image (b) is the registration results 

of SPM. Image (c) is the registration results of FSL. The misalignment in the image (a) is 

still in the image (b) and (c). SPM and FSL didn’t register those kinds of the image well 

here. Image (d) is the registration results of the proposed method. It works very well here 

and corrects most of the misalignment in image (a). Therefore, the proposed method is 
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the best when registering the pre-operation MRI and intro-operation CT image compares 

to SPM and FSL. Fig. 4.16 and 4.17 show the skull in the coronal and the sagittal images. 

Both of the MRI and the CT skull can be visualized in the original image, the registered 

image by SPM or FSL. However, the proposed method only shows one skull. That means 

this registration method works perfectly when registering MRI and CT. 

 
(a) Pre-operation MRI T1 

 
(b) Intra-operation CT 

Fig. 4.14 Original images 
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(a) Original 

 
(b) SPM 

 
(c) FSL 
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(d) The proposed method 

Fig. 4.15 Patient # 1 of data set #2, (a) Original pre-operation MRI (appears in red) and 
intra-operation CT (appears in blue) are overlapped; (b) Registration results using 
SPM12; (c) Registration results using FSL; and (d) Registration results using the 
proposed method 

    
 (a) Original  (b) SPM    (c) FSL (d) Proposed method 

Fig. 4.16 Enlarged skull in the coronal image 

    
   (a) Original     (b) SPM     (c) FSL  (d) Proposed method 

Fig. 4.17 Enlarged skull in the sagittal image 
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Table 4.5 Processing time and NMI comparison for the 5 data sets of experiment 2 

Data set # Evaluation parameter SPM FSL The proposed method 

# 1 T (s) 112 303 181 
Average NMI 0.3516 0.1911 0.5998 

# 2 T (s) 115 301 192 
Average NMI 0.3909 0.2021 0.6021 

# 3 T (s) 96 180 187 
Average NMI 0.3228 0.2004 0.5717 

# 4 T (s) 108 120 179 
Average NMI 0.3217 0.1909 0.5843 

# 5 T (s) 105 300 181 
Average NMI 0.3071 0.1801 0.5621 

 

In Table 4.5, T is the processing time of the registration process, and the average NMI is 

the average value of the normalized mutual information between each of the registered 

images and the original reference image. Although the processing time is larger than 

SPM and less than FSL, the proposed method obtained the highest average NMI value.  

4.5.3 Registration Results of Experiment 3—MRI and PET 

According to Fig. 4.18, the registration results of the MRI and PET image, the 

misalignment parts are shown in the rectangle in the image (a). SPM is not working in 

registering those kinds of image. Image (b) is the registration results of FSL. It registers 

perfectly the MRI and PET in transverse, coronal, and sagittal image. Image (c) is the 

registration results of our method. It works in transverse image, but it miss-matching the 

coronal and sagittal images. Therefore, FSL is the best when register MRI and PET 

image compare to SPM and the proposed method.  
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(a) Original 

 
(b) FSL 

 
(c) The proposed method 

Fig. 4.18 Patient # 1 of data set # 3, (a) Original MRI (appears in red) and PET (appears 
in blue) are overlapped; (b) Registration results using FSL ; (c) Registration results using 
the proposed method. 
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Table 4.6 The Processing time and NMI comparison for the 5 data sets of experiment 3 
Data set # Evaluation parameter FSL The proposed method 

# 1 T (sec) 22 98 
Average NMI 0.5231 0.1919 

# 2 T (sec) 22 87 
Average NMI 0.5621 0.2032 

# 3 T (sec) 23 89 
Average NMI 0.5523 0.2040 

# 4 T (sec) 20 71 
Average NMI 0.5237 0.2021 

# 5 T (sec) 20 69 
Average NMI 0.5229 0.2126 

 

According to Table 4.6, FSL is more suitable for registering MRI and PET images than 

our method. FSL uses less Processing time and obtains higher average NMI value. 

4.5.4 Registration Results of Experiment 4 

According to Fig. 4.19 to 4.21, the registration results of MRI weighted image, SPM, 

FSL and the proposed method all perform well here. T2, FLAIR, and GE images have 

been all matched well to the T1 image by those three methods. Image (b), (c), and (d) are 

the registration results by SPM, FSL, and our method, respectively. According to Table 

4.7, T is the processing time of registration processing, and the average NMI is the 

average value of normalized mutual information between each of the registered images 

and the original reference image. Those three methods gained similar average NMIs. 

However, the processing time of our method is larger than SPM and less than FSL. 
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(a) Original  

 
(b) SPM 

 
(c) FSL 

 
(d) The proposed method 

Fig. 4.19 Registration of T1 and T2 (a) the original T1 (appears in red) and T2 
(appears in blue) are overlapped; (b) Registration results using SPM12; (c) 
Registration results using FSL; and (d) Registration results using the proposed 
method. 
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(a) Original 

 
(b) SPM 

 
(c) FSL 

 
(d) The proposed method 

Fig. 4.20 Registration of T1 and FLAIR (a) the original T1 (appears in red) and FLAIR 
(appears in blue) are overlapped; (b) Registration results using SPM12; (c) Registration 
results using FSL; and (d) Registration results using the proposed method. 
 



80 
 

 
(a) Original 

 
(b) SPM 

 
(c) FSL 

 
(d) The proposed method 

 
Fig. 4.21 Registration of T1 and GE (a) the original T1 (appears in red) and GE (appears 
in blue) are overlapped; (b) Registration results using SPM12; (c) Registration results 
using FSL; and (d) Registration results using the proposed method. 
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Table 4.7 Processing time and NMI comparison for the 5 data sets of experiment 4 

 
Data set Evaluation parameter SPM FSL The proposed method 

T2 T (s) 32 232 92 
Average NMI 0.5121 0.5222 0.5223 

FLAIR T (s) 27 418 93 
Average NMI 0.5475 0.5374 0.5611 

GE T (s) 31 106 92 
Average NMI 0.4577 0.4522 0.4851 

 

4.6 Discussion 

The proposed method has been verified to perform well when registering the whole body 

CT image, MRI and CT image, and MRI weighted image. However, when it comes to 

registering MRI and PET images, the proposed method shows good results in transverse 

image only. The coronal and sagittal images both have been miss-matched. The reason 

that led to the misalignment might be that the proposed algorithm registered the slices of 

the MRI and PET image along the z-axis only.  

4.7 Conclusion 

The proposed method performs well when it has been applied to inter-modality image 

registration, such as CT and MRI. Furthermore, the proposed method works better than 

SPM and FSL when applied to the whole-body CT images, and the pre-operation MRI 

and the intra-operation CT. For MRI and PET image registration, FSL performed best, 

although our method did well in the transversal direction.  Our method is comparable to 

both FSL and SPM when registering MRI T1 to T2 and T1 to FLAIR and T1 to GE.  
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The study sought and succeeded in developing an integrated registration method that is 

effective for registering both brain and whole-body images. The proposed method, which 

has integrated seamlessly a genetic algorithm for an initial optimized search, the Powell 

method for a secondary optimized search, Wavelet theory decomposition to minimize the 

processing requirements, and tri-linear interpolation and finite transformations for 

enhanced registration were successfully implemented to combine in one setting the 

excellent registration results that FMRIB Software Library (FSL) produces with brain 

images and the excellent results of Statistical Parametric Mapping (SPM). 

The genetic algorithm was shown to be successful for determining for each image pair 

the three sets of registration parameters for the best matching pairs that have been 

obtained, defining the best solution found by the GA process. This best solution is then 

fed into the Powell method for a secondary search to ensure that the cost function is 

optimized and that the solution provided by the GA is indeed the solution for the entire 

3D volume.  In other words, the initial point could be the best solution, but PM will 

search close to this point to verify if it is the best or the PM will find the best of the best 

in the local area, with the best solution being the one with the highest NMI value. 

Therefore, PM will calculate the NMI for each solution along the assigned directions to 

find the maximum NMI value.  

Given these determined registration parameters for all remaining slices, as defined 

through the optimal solution, the moving image was hence aligned to the reference image 

using the appropriate affine transformations through the required rotations, translations, 
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and scaling as defined by the obtained registration parameters. The overlapping of the 

registered image and the reference image were then displayed to show the different 

performances of the 3 methods, namely the proposed method, SPM, and FSL by gauging 

the average NMI values obtained in the registration results. Visual observations are also 

provided in support of these NMI values. 
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5. CONCLUSIONS AND FUTURE WORK 

In this chapter, the main results of this dissertation are summarized. Then, the possible 

directions for future work are also discussed. 

5.1 Summary 

In this dissertation, we presented three algorithms for medical image registration. Chapter 

2 to 4 describes them in detail.  

In chapter 2, a semi-automatic registration method improved the CT registration of the 

FDG_CT and FLT_CT imaging modalities by combining the strengths of both tracers in 

diagnosing cancer.  The registration provides a comprehensive 3D whole body combined 

FDG-FLT CT image. To avoid arbitrary using one set of affine transformation 

parameters to register images, three (the first, the middle and the last) slices were 

employed to calculate the whole set of transformation parameters of the 3D whole-body 

CT image by linear interpolation. Experimental results clearly show that the proposed 

method enhanced the normalized mutual information (NMI) for all the 5 sets of data and 

the rectangle. The NMI of set 1 is increased from 0.2065 to 0.5472. The NMI of set 2 is 

increased from 0.2140 to 0.4576. The NMI of set 3 is increased from 0.2016 to 0.5369. 

The NMI of set 4 is increased from 0.2061 to 0.4776. The NMI of set 5 is increased from 

0.2326 to 0.4776. The NMI of the rectangle is increased from 0.0029 to 0.9094. The 

improvement, especially in the skull and the bottom parts of the whole body CT, can be 

observed visually through comparing the registered image to the original image.  
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In chapter 3, The GPW method firstly selects one slice from FDG_CT and the 

correspondence slice from FLT_CT images. After image pre-processing process, wavelet 

decomposition method is to reduce the dimension of the selected two slices to get the 

low-frequency part of them. The Genetic algorithm applies to them and to find the best 

initial point for the Powell method. After the second search by the Powell method applied 

to the original large reference and moving images, the registration parameters will be 

found. Finally, the affine transformation will move the moving image to align the 

reference image through the found registration parameter. The GPW method improved 

the registration results in showing a good overlap of the two modalities and reducing the 

processing requirements by wavelet decomposition method. From the fusion image, the 

location of the cancerous lesions on the liver could be observed directly on the FLT_CT 

image. This outcome could help enhance the diagnosis. In retrospect, the GPW approach 

is shown to reduce the processing burden of GA when searching for the best global 

solution and prevents the PM in locking onto a best local solution for image registration, 

which may not be the optimal solution.  

Multi-modality medical image registration is becoming more and more important 

nowadays. However, making a standard for evaluating the results of multi-modality 

image registration is difficult. In chapter 4, the primary objective is to develop an 

efficient method for registering the whole body FDG_CT with the FLT_CT images, the 

pre-operation MRI with the intra-operation CT images, the brain only MRI and PET 

images, and the MRI T1 with T2, T1 with FLAIR, T1 with GE images. A comparison of 
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the results obtained will then be compared to the existing registration tools, such as 

Statistical Parametric Mapping (SPM) and FMRIB Software Library (FSL). 

Firstly, the proposed method interpolated the original reference and moving image to 

unify their dimension. Three slices were chose from the reference image. In order to find 

the best matching for the three slices, the normalized mutual information (NMI) was 

calculated between each of them and every slice of the moving image. Three pairs with 

the highest three NMI values were chosen and applied the wavelet decomposition method 

to obtain the low-frequency part of the selected three pairs of images. Initial searching 

applied the Genetic algorithm (GA) to the three pairs of low-frequency part images to 

obtain three sets of registration parameters. Using them as the starting points for the 

Powell method (PM), and the proposed method applied the PM to the original reference 

and moving images to get the three sets of registration parameters again. Then, linear 

interpolation method was employed for them to obtain the registration parameters for all 

slices. Finally, the moving image was moved to align the reference image through the 

affine transformation. The overlapping of the registered image and the reference image 

were displayed to show the different performances of the three methods. The average 

NMI values were shown to evaluate the registration results as well. For registering the 

whole-body CT images registration, according to the comparison of the results of the 

three methods, SPM and FSL corrected more or less the misalignments in the original 

image. However, in the same part of the image, the proposed method registered better 

than them, especially for the skull and spinal column. Although the processing time was 

larger than SPM and less than FSL, the proposed method gained the highest average NMI 
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value. For the pre-operation MRI and intra-operation CT image registration, SPM and 

FSL didn’t register them well. Although the processing time was larger than SPM and 

less than FSL, the proposed method gained the highest NMI value and did the best. For 

MRI and PET images, FSL was the best, and the proposed method did well in the 

transversal image. For registering MRI T1 with T2, T1 with FLAIR, T1 with GE, the 

three methods gained similar average NMI values. However, the proposed method used 

less processing time than FSL. The proposed method is better than SPM or FSL when 

registering the whole-body CT images, and the pre-operation MRI with the intra-

operation CT images. For MRI and PET image registration, FSL performed best, 

although our method did well in the transversal direction. Our method is comparable to 

both FSL and SPM when registering MRI T1 with T2, and T1 with FLAIR, and T1 with 

GE. To improve the proposed method for MRI and PET images, registering them along 

the y-axis, and z-axis could perhaps improve the results but at an additional cost of 

processing time. 

This research endeavor has thus shown that when registration of multiple modalities is 

performed optimally, it allows for 

- Developing imaging algorithms, in a common 3D space, that allows for 

contextual analysis, exploiting simultaneously both anatomic structure and 

functional or metabolic correlates and dynamics, in both normal states and under 

specific pathologic conditions.  
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- Far-improved mapping of regions of interest, leading to enhanced diagnosis, 

better treatment planning, and safer surgical outcomes. 

- Multimodal imaging with the ability to consolidate singular capabilities each 

modality brings, and to create a cohesive platform that could combine structure to 

functional correlates and/or consolidate high spatial resolution with high temporal 

resolution. 

- Meet the challenges of database design and management that are augmented with 

mechanisms for visualization on a common 3D space with fast user interaction 

and, as a consequence, effective methods of data representation, visualization, and 

mining could be performed. 

- Resolve compatibility problems arising from the use of dissimilar recording 

modalities and diverse software platforms. 

We will be looking in the future as to why only the transversal direction gave us good 

alignment when registering MRI and PET, this was an intriguing outcome. To improve 

our algorithm, registering images along the y-axis, and z-axis could perhaps improve 

these results but at an additional of the cost of processing time.      
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5.2 Future Work 

In today’s healthcare delivery, imaging plays an important role throughout the entire 

clinical process, from diagnostics and treatment planning to surgical procedures and 

follow-up. Since most imaging modalities are digital, with continually increasing 

resolution, medical image processing has to face the challenges coming from fusing 

multiple images recorded from different modalities. Another issue that is also challenging 

is the processing time required for dealing with large datasets. As a consequence, a 

significant amount of research is focused on advanced parallelization techniques in order 

to achieve acceptable real-time response [67]. Also increasing use of dynamic acquisition 

for example perfusion MRI will have need of using registration mechanisms that could 

overcome for patients’ motion correction [68]. Moreover, during both the intra-operation 

imaging and non-interventional imaging, many body organs, such as heart and lungs have 

natural elastic motion. More complex, in image-guided surgery, the intra-operation 

images are deformed with respect to the pre-operation image, due to tissue shift and 

breathing motion.  

Image registration could be applied to all of those situations to correct for body motion. 

Although rigid body registration is still dominant in the literature, the non-rigid body 

registration is increasingly applied. The non-rigid and elastic method might lead to 

solutions that are correct from a geometrical point, but they are not anatomically 

meaningful. Further study on realistic deformation methods reflecting tissue properties 

would improve the accuracy of the estimation and attain acceptance from the physicians 

[69]. 
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