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Abstract

Solar cells are a competitive alternative to nonrenewable energy sources such as
fossil fuels. However, the efficiency of these devices is limited by photogenerated
carrier recombination. We use a finite difference numerical model to study
recombination phenomena in the absorber layer of solar cells including alternate
recombination models and the effects of spatial distribution of recombination
centers. We compare the effect of using the constant lifetime approximation
for recombination to the full Shockley-Read-Hall expression in silicon solar cells
and find that the constant lifetime approximation holds for high defect densities
but not for high photon flux densities. Finally, we simulate a defect layer in a
thin film solar cell such as CdTe by varying the spatial distribution of defects.
We find that this additional complication to the model is equivalent to using an
average, constant defect density across the cell.
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1 Introduction

Solar cells are opto-electronic devices that convert the energy of photons emitted
by the sun into usable power. These devices are often built from materials called
semiconductors. Semiconductors are special materials due to their electronic
structure which consists of an energy bandgap, a band of energy states forbidden
to electrons. Most electrons in equilibrium sit in the valence band, which is the
most energetic band of energy below the bandgap. Once the semiconductor
absorbs a photon that has an energy higher than the bandgap, an electron in
the valence band is promoted to the energy level above the energy bandgap,
which we call the conduction band. Electrons at this energy are free to move
and they contribute to the current within the material. The empty state in the
valence left by the promoted electron is called a hole and is a quasi-particle which
also contributes to the current in the semiconductor. This is the generation
mechanism that contributes charges to the current output by the solar cell.

Silicon solar cells, as well as many other types of solar cells, have a p-n junc-
tion structure. This structure consists of two layers of doped semiconductor: an
n-doped layer with excess electrons and a p-doped layer with excess holes. The
excess charge is generated by doping, or introducing impurities whose electronic
structure leads to their ionization within the semiconductor lattice. At the in-
terface of the two n and p layers, the ionized donor and acceptor impurities
create a potential difference between the two layers. The electric field that is
created sweeps charge carriers away from this region, which is why it is referred
to as the space-charge or depletion region. This built in electric field is what
drives charge separation and the current extracted from the cell. The electrons
generated in the p region and holes generated in the n region diffuse to the
junction where they are swept to the other side of the junction where they can
be collected by the external circuit.

2 Background

2.1 Recombination

Recombination is an important loss mechanism in semiconductors. It occurs
when electrons and holes recombine, effectively decreasing the number of charge
carriers available for extraction and use in a circuit. There exist various path-
ways and corresponding models of recombination including radiative, Auger,
and defect assisted recombination. The recombination rate in a semiconductor
can be expressed as the density of photogenerated carriers over the characteristic
carrier lifetime:

R =
n− n0

τn
(1)

for electrons where n is the electron density and n0 is the equilibrium carrier
density [1]. The equation for holes is identical.

3

4

Macalester Journal of Physics and Astronomy, Vol. 6, Iss. 1 [2018], Art. 2

http://digitalcommons.macalester.edu/mjpa/vol6/iss1/2



The most important type of recombination in indirect bandgap semicon-
ductors such as silicon and materials with high defect densities is recombination
through defect states within the bandgap. A widely-known model of this type of
recombination was developed by Shockley, Read, and Hall (SRH). The general
expression for SRH recombination is given by

R =
np− n2

i

τn(p+ p1) + τp(n+ n1)
. (2)

where ni is the intrinsic electron density when the semiconductor is not
doped, and n1 and p1 are the electron and hole carrier densities when the trap
energy is set to the Fermi level respectively. In addition,

τn =
1

Ntσnvn
(3)

and

τp =
1

Ntσpvp
(4)

are effective carrier recombination lifetimes and Nt is the defect density, vn and
vp are the electron and hole thermal velocities respectively, and σn and σp are
electron and hole capture cross sections respectively [2]. Equation 2 accounts
for the emission and capture of charge carriers from defect states within the
bandgap. It is derived by calculating the rate at which a carrier is emitted from
the defect state and subtracting off the rate at which the carrier is captured
by the defect state; this is accomplished using the probability that a carrier is
in the defect state along with the carrier capture and emission cross sections.
This expression is non-linear and coupled in the terms n and p. For this reason,
many models use equation 1 with the constant lifetimes of equations 3 and 4 at
the expense of losing the expression’s dependence on carrier density.

2.2 Analytic Model

The movement of charged carriers within a semiconductor is modeled by the
drift diffusion equations: two coupled, second-order partial differential equations
for the electron and hole densities n and p respectively. For simplicity, we
consider only one-dimensional models through a cross section of the solar cell.
The carriers move due to diffusion caused by gradients in the concentration of
particles at a certain point in space and due to electric fields within the material.
The drift-diffusion equations are

∂n

∂t
= Dn

∂2n

∂x2
+ µnE

∂n

∂x
−R+G (5)

and

∂p

∂t
= Dp

∂2p

∂x2
+ µpE

∂p

∂x
−R+G, (6)
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where D is the diffusion coefficient, µ is the mobility, E is the electric field [3].
The recombination rate R within the p layer is given by the general expression

R =
n− n0

τn
, (7)

where n0 is the equilibrium electron density in the p layer, and the generate
rate G is given by the expression

αΓ(λ)

Dn
e−α, (8)

where α is the absorption coefficient, Γ is the photon flux density. Once we
solve for the carrier density as a function of position, we can obtain the current
density with the equation

Jn = qDn
dn

dx
(9)

for electrons within the p layer. This equation is the same for holes within the
n layer.

In order to solve this complicated set of equations, we must make some
simplifying assumptions. Most models in the literature [3] [4] make the following
key assumptions in order to solve the equations analytically:

Depletion Approximation:

• There is no electric field in the ”neutral” n and p regions and all of the
electric field is confined to the depletion region.

• The current only stems from diffusion of carriers in neutral regions.

Superposition Principle:

• The minority carrier density is much lower than the majority carrier den-
sity and thus the photocurrent and dark current can be treated indepen-
dently.

After making the assumptions described above, we can neglect the electric
field term E within the neutral n and p regions. In addition, we are only in-
terested in the steady-state characteristics of the system so we set the time
derivative equal to 0. We are left with the following equation:

d2n

dx2
− n− n0

Dnτ
= −αΓ(λ)

Dn
e−αx. (10)

We can solve this second order differential equation analytically but the
resulting equations are complicated. The analytic model referenced in this work
and that we use to compare to our numerical results is derived by Fahrenbruch
and Bube [3]. The equation for the short-current density they derive is

5

6

Macalester Journal of Physics and Astronomy, Vol. 6, Iss. 1 [2018], Art. 2

http://digitalcommons.macalester.edu/mjpa/vol6/iss1/2



Figure 1: Short-circuit current vs ratio of width of the n layer to the width of
the entire cell.

Jn(x) =
qΓ

1− (αLn)−2

{
1

αLn
sinh(

x

Ln
+ e−αx)− 1

αLn{
(SnLn

Dn
)[cosh( x0

Ln
)− e−αx0 ] + sinh( x0

Ln
) + αLne

−αx0

(SnLn

Dn
) sinh( x0

Ln
) + cosh( x0

Ln
)

}
cosh(

x

Ln
)

}
,

(11)

where Sn is the electron surface recombination velocity, Ln is the electron dif-
fusion length, and x0 is the total width of the layer.

Using a full cell analytic model developed by Nelson [4][5], we can study
how solar cells function by varying our simulation parameters. For example, we
can vary the width of the n doped layer while keeping the cell width constant
in order to see the effect of the relative widths of the n and p regions on the
performance of the cell (see Figure 1). We find that as we increase the width
of the n layer relative to the p layer, Jsc decreases significantly. The reason for
this result is that typical values for the lifetime of electrons in silicon are several
orders of magnitude larger than hole lifetimes. This motivates us to focus on
the p absorbing layer of the cell.

3 Numerical Model

While it is possible to solve the drift diffusion equations analytically, it requires
many assumptions and simplification as we have shown. Numerical models allow
us to relax some of the assumptions made to solve the problem analytically and
allow us to study inhomogeneities in some of the parameters used to model
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the solar cell such as defect density. The model used in this work was built in
Python using the finite difference methods. We assume that contributions to
the current from the n layer are small for the parameters we use and thus we
only focus on the absorbing p of the solar cell.

3.1 Solving the Boundary Value Problems

In order to solve second-order differential equations numerically, we use the cen-
tral finite difference method. This method approximates derivatives by calcu-
lating the slope of the function over a discrete interval ∆x. The finite difference
expression for the second derivative is

d2n

dx2
=
n(x+ ∆x)− 2n(x) + n(x−∆x)

∆x2
. (12)

Once we discretize all of the derivatives in the drift diffusion equation, we rear-
range the equation such that all of the terms that depend on n are on the left
side and all of the constant terms are on the right hand side. This linear system
of equations can then be put into matrix form and formulated as an Ax = b
problem. Every equation depends on ni−1, and ni, and ni+1, where ni is the
electron density at the ith bin in our discrete space, so our matrix is a sparse
tridiagonal matrix. If we put equation 10 into this form, we obtain the following
matrix


− 2L2

n+∆x2

∆x2L2
n

1
∆x2 0 . . . 0

1
∆x2 − 2L2

n+∆x2

∆x2L2
n

1
∆x2 . . . 0

...
. . .

. . .
. . .

0 . . . 0 1
∆x2 − 2L2

n+∆x2

∆x2L2
n



n(1)
n(2)

...
n(N)

 =


− αΓ
Dn
e−αx1

− αΓ
Dn
e−αx2

...
− αΓ
Dn
e−αxN

 .

3.2 Boundary Conditions

In order to solve this boundary value problem, we must choose appropriate
boundary conditions. We use mixed boundary conditions, where

n− n0 = n0(e
qV
kT − 1) (13)

for V = 0 at the right boundary with the junction and

q
dn

dx
= Sn(n− n0) (14)

at the left, external boundary. The right boundary condition is determined by
the voltage across the depletion layer. The left boundary condition is set by the
surface recombination velocity [3].
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4 Results

We use our numerical model to study two different problems. The first problem
is solving the diffusion equation with the full SRH expression and comparing
this result to an analytic model with a constant lifetime for silicon solar cells.
The second problem is studying the effect of a nonhomogeneous distribution of
defect densities throughout the width of the layer to simulate a defect layer.
This problem is especially relevant to thin films such as CdTe layers in thin film
solar cells where there are high defect densities.

4.1 Validation of the Constant Lifetime Approximation

It is common practice to assume that the recombination rate modeled by Shockley-
Read-Hall reduces to a rate with a constant lifetime across the cell when the
minority carrier density is much smaller than the majority carrier density. We
relax this assumption and keep the lifetime’s carrier density dependence to cal-
culate the characteristic carrier lifetime using the SRH recombination expression
as follows:

τ =
n− n0

R
=
τp(n1 + n) + τn(p1 + p0)

p0
(15)

We choose p = p0, which decouples the equations. This assumption that the
majority carrier density is much higher than the minority carrier density is
similar to the assumption of the analytic model, but here we retain a first order
dependence on carrier density. Thus, the majority carrier density is constant
and independent of the photogenerated minority carriers within the p region so
we only consider contributions from minority carriers.

This equation is nonlinear in the variable n which we are solving for. In
order to solve the diffusion equation with this non-linear term, we linearize the
expression with an iterative algorithm. We begin with an initial guess n0 for
the electron density which we plug into the equation for τ above. We solve the
diffusion equation for n, which we call n1, our first iteration. We use n1 to solve
for τ and calculate n2. We continue this process until the norm of the difference
between nk and nk−1 is below a threshold that is sufficiently low to ensure the
convergence of the algorithm (see Appendix B for the algorithm).

We solve the diffusion equation with the nonlinear expression derived above
and compare it to the result of the analytic model previously introduced, which
assumes a constant recombination lifetime. We vary the defect density Nt from
106 to 1016 1

cm3 to study the effect that high defect densities has on the constant
lifetime approximations. The short-circuit current density Jsc as a function of
defect density is shown in Figure 2. Jsc decreases and approaches 0 for high
Nt, which agrees with our intuition that the greater the number of defects, the
higher the recombination and thus the lower the current. We also compare the
electron density across the cell for a range of defect densities and observe a
significant decrease in carrier density beginning at Nt = 1011cm−3. We find

8

9

Chery: Modeling Recombination in Solar Cells

Published by DigitalCommons@Macalester College, 2018



Figure 2: (Left) Short-circuit current density vs defect density for analytic
model with constant τ and numerical model with τ dependent on carrier density.
(Right) Carrier density across the layer for a range of defect densities.

that the approximation holds for high values of Nt because the models match
closely.

Next, we study the effect of increasing the photon flux density Γ to deter-
mine when the approximation breaks down. We vary Γ across three orders of
magnitude above typical values of 1015 photons

cm2 . We see from Figure 3 that the

constant lifetime model begins to diverge from the full SRH at 5 ∗ 1017 photons
cm2 .

The total photon flux from the AM1.5 spectrum is on the order of 1017 photons
cm2 ,

so our model begins to diverge when values of the photon flux become unre-
alistically high. We observe this same trend in the electron density for high Γ
(see Figure 4). However, these values of Γ may be more reasonable for solar
concentrators where the intensity of the incident light is significantly higher. At
these values of Γ, the assumption that n << p is no longer valid so we must
use a different model that accounts for the contributions from majority carriers.
This is not within the scope of this work.

From this investigation, we conclude that the constant lifetime approxima-
tion used in analytic models of solar cells are robust for high defect densities and
over a reasonable range of photon flux densities, but begin to fail for unphysical
values of photon flux densities.

4.2 Simulating a Defect Layer in Thin Film Solar Cells

The second problem we study with our numerical model is that of simulating
a defect layer in a semiconductor. This is especially relevant to thin film solar
cells where there are high defect densities. One example of a thin film solar cell
we studied is CdTe. We want to know whether simulating a nonhomogeneous
distribution of defects differs from using an average defect density across the
layer.

9
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Figure 3: Short-circuit current density vs photon flux density for analytic model
with constant τ and numerical model with τ dependent on carrier density.

Figure 4: Electron density across p layer for Γ = 1016cm−2 (left) and Γ =
1018cm−2 (right).
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Figure 5: Nonhomogeneous defect density profile across CdTe layer.

We simulate a defect layer in the cell by imposing a nonhomogeneous defect
density profile as shown in Figure 5. The defect density is constant at a value
of 2 ∗ 1014 for 2

3 of the length of the layer. For the remaining third of layer,
we increase the defect density linearly up to five times the constant value. In
addition, we set the surface recombination velocity to a reasonable value of
105 cm

s . We solve the diffusion equation numerically and calculate the total bulk
recombination, ignoring the surface recombination, with the equation

R =
N∑
n=1

ni − n0

τi
∆x (16)

where

τi =
1

Ntσnvn
, (17)

the lifetime given by the Nt at a specific position within the layer. We repeat
the same steps above but with a constant Nt across the entire layer. We fix
Sn = 105 cm

s and modify Nt until the total bulk recombination is approximately
equal to that of the system described above.

We compare the electron density across the layer for the inhomogeneous de-
fect density profile and the constant defect density profile (see Figure 6). We
expect differences in the profile as we vary the wavelength of the incident pho-
tons. The carrier density profile for blue light differs less than for red light when
comparing a constant and nonhomogeneous distribution of defects because the
high energy photons get absorbed more quickly so the photogenerated electrons
do not feel the effect of the defect layer. While we observe differences in the
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Figure 6: Comparison of nonhomogeneous defect density distribution and con-
stant defect density distribution for blue light (left) and red light (right).

carrier density profiles for the two systems, the effect of simulating a defect
layer does not change the short-circuit current density by more than 3% in our
experiments. When using red light, we obtain a Jsc of 5.2mAcm2 for the case of

spatially constant defect density and 5.5mAcm2 for the case of spatially inhomo-

geneous defect density. For red light, we obtain values for Jsc of 13.3mAcm2 and

13.7mAcm2 for the constant and varied cases respectively. Since our main concern
is the performance of the absorbing layer, we conclude that adding a spatially
nonhomogeneous distribution of defects does not differ significantly from using
a constant, average defect density across the layer.

5 Conclusion

We began by describing how analytic models are built and derived. We used a
full analytic model to study the performance of a cell as we vary the relative
widths of the doped layers of the cell. Then, we described how to setup and
solve a numerical model using the finite difference method. We studied two
problems: the effect of the dependence of carrier lifetime on the electron den-
sity in order to validate the constant lifetime approximation, and the effect of
simulating a defect layer instead of using an average defect density throughout
a layer of a thin film solar cell. For the first problem, we found that for a wide
range of defect densities, the constant lifetime approximation holds. However,
as we increase the carrier generation rate, the analytic and numerical models
begin to diverge. For the second problem, we found that using a nonhomoge-
neous, linearly increasing defect density could be simulated by using an average
and constant defect density across the layer while keeping bulk recombination
constant.
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Appendices

A Table of Simulation Parameters

A.1 Silicon

The parameters listed below were taken from [3] and [4] and were in our model
of p-type silicon.

Cell Width 300µm
Sn 100000 cms
Dn 25 cm

2

s

σn 10−12cm2

σp 10−15cm2

vnt 2.3 ∗ 105

vpt 1.65 ∗ 105

A.2 CdTe

The parameters listed below were taken from [7][8] and were used in our model
of CdTe.

Cell Width 1µm
Sn 100000 cms
µe 320 cm

2

V s

σn 10−12cm2

σp 10−15cm2

vnt 105m
s

vpt 105m
s

Nc 8 ∗ 1017 1
cm3

Nv 1.8 ∗ 1019 1
cm3

B Code

Listing 1: Code written in Python to solve non-linear diffusion equation with
full SRH expresion. All parameters are in SI units.

import math
import matp lo t l i b
import matp lo t l i b . pyplot as p l t
import numpy as np
import s c ipy . spar s e
import s c ipy . spar s e . l i n a l g
%matp lo t l i b i n l i n e
font = { ’ fami ly ’ : ’ normal ’ ,

14
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’ weight ’ : ’ normal ’ ,
’ s i z e ’ : 20}

matp lo t l i b . rc ( ’ font ’ , ∗∗ f ont )

a = 0 #s t a r t x
b = 300 ∗ 10∗∗(−6) #end x
N = 1000 #number o f b ins
dx = (b − a ) / (N − 1) #bin spac ing
x = np . l i n s p a c e ( a , b , num=N+1) #array o f b ins f o r the l ength o f the l a y e r

#FUNDAMENTAL CONSTANTS AND DEVICE PARAMETERS
V = 0.0 #app l i ed vo l tage
T = 300 #room temperature
q = 1.602 ∗ 10∗∗(−19) #fundamental charge
k = 1.381 ∗ 10∗∗(−23) #Boltzmann constant
Sn = 1000 #e l e c t r o n s u r f a c e recombinat ion v e l o c i t y
Dn = 25∗10 ∗∗(−4) #d i f f u s i o n c o e f f i c i e n t
alpha = 1/(1.56∗10∗∗(−4)) #absorpt ion c o e f f i c i e n t
bs = (10∗∗17) ∗ (10∗∗4) #photon f l u x dens i ty
p0 = 10.0∗∗17 ∗ (10∗∗6) #equ i l i b r ium hole concent ra t i on
n i = 9 .65 ∗ 10∗∗9 ∗ 10∗∗(6) #i n t r i n s i c e l e c t r o n dens i ty
n0 = ( n i ∗∗2)/ p0 #equ i l i b r i um e l e c t r o n concent ra t i on
Et = 0.6∗1.602∗10∗∗(−19) #trap energy
Eg = 1.12∗1.602∗10∗∗(−19) #bandgap energy
Ei = Eg/2 #i n t r i n s i c energy l e v e l
n1 = ni ∗math . exp ( ( Et − Ei )/ ( k∗T) )
p1 = ni ∗math . exp(−(Et − Ei )/ ( k∗T) )
Nt = 10∗∗11 #d e f e c t dens i ty
sp = 10∗∗(−15) ∗(10∗∗(−4)) #ho le capture c r o s s s e c t i o n
sn = 10∗∗(−12) ∗(10∗∗(−4)) #e l e c t r o n capture c r o s s s e c t i o n
vnt = 2 .3∗ (10∗∗5) #e l e c t r o n thermal v e l o c i t y
vpt = 1 .65∗ (10∗∗5) #ho le thermal v e l o c i t y
Cp = 1/( sp∗Nt∗vpt ) #constant ho le l i f e t i m e
Cn = 1/( sn∗Nt∗vnt ) #constant e l e c t r o n l i f e t i m e

###################Solv ing non−l i n e a r d i f f u s i o n equat ion######################

#i n i t i a l i z i n g ar rays f o r subsequent c a l c u l a t i o n s
rhs = np . z e ro s (N) ; #r i g h t hand s i d e o f matrix equat ion
ns = np . z e r o s (N+1) #i n i t i a l guess at e l e c t r o n dens i ty
ns [ 0 ] = n0
n = np . z e ro s (N+1) #e l e c t r o n dens i ty
n [ 0 ] = n0 #boundary cond i t i on

z = 0
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c h i s = [ ]
whi l e ( True ) :

tau = np . z e ro s (N)
A = sc ipy . spar s e . l i l m a t r i x ( (N, N) )
f o r i in range (0 ,N−1):

#c a l c u l a t i n g SRH l i f e t i m e
tau [ i ] = (Cp∗( n1 + n [ i + 1 ] ) + Cn∗( p0 + p1 ) )/ p0
#updating the matrix equat ion with nonhomogeneous l i f e t i m e
rhs [ i ] = (−bs∗ alpha /Dn)∗math . exp(−x [ i +1]∗ alpha ) − ( n0 /(Dn∗ tau [ i ] ) )
A[ i , [ i − 1 , i , i +1] ] = np . array ( [ 1 / dx∗∗2 , (−2/(dx ∗∗2))

+ (−1/(Dn∗ tau [ i ] ) ) ,1/ dx ∗∗2 ] )
#Se t t i ng boundary c o n d i t i o n s
tau [N−1] = (Cp∗( n1 + n [N] ) / ( p0 ) ) + (Cn∗( p0 + p1 )/( p0 ) )
rhs [N−1] = −(2∗Sn∗n0 )/ (Dn∗dx ) + (−bs∗ alpha /Dn)∗math . exp(−x [N]∗ alpha )

− ( n0 /(Dn∗ tau [N−1]))
A[ 0 , N−1] =0
A[N−1, N − 2 ] = 2/( dx∗∗2)
A[N−1,N − 1 ] = (−2/(dx ∗∗2)) − (1/(Dn∗ tau [N−1])) − ( (2∗Sn )/(Dn∗dx ) )

#s o l v i n g matrix equat ion
A = A. to c s c ( )
n [ 1 : ] = sc ipy . spa r s e . l i n a l g . sp so l v e (A, rhs )

#c a l c u l a t e the norm o f the d i f f e r e n c e between the cur rent
#and prev ious i t e r a t i o n
ch i = np . l i n a l g . norm(n − ns )
c h i s . append ( ch i )
np . copyto ( ns , n )

#i f the norm o f the norm does not change over
#the prev ious i t e r a t i o n , the a lgor i thm has converged
i f ( z > 2 and abs ( ch i − c h i s [ z−1]) < 0 . 0 0 1 ) :

break
z += 1

#i f the a lgor i thm has not converged in 100 i t e r a t i o n s ,
#the system most l i k e l y w i l l not converge or i s o s c i l l a t i n g
i f ( z > 1 0 0 ) :

p r i n t (” reached max number o f i t e r a t i o n s ”)
break

Listing 2: Code written in Python to compare constant defect density profile to
spatially inhomogeneous defect density profile. All parameters are in SI units.

import math
import matp lo t l i b
import matp lo t l i b . pyplot as p l t
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import numpy as np
import s c ipy . spar s e
import s c ipy . spar s e . l i n a l g
%matp lo t l i b i n l i n e
font = { ’ fami ly ’ : ’ normal ’ ,

’ weight ’ : ’ normal ’ ,
’ s i z e ’ : 20}

matp lo t l i b . rc ( ’ font ’ , ∗∗ f ont )

a = 0 #s t a r t x
b = 1 ∗ 10∗∗(−6) #end x
N = 1000 #number o f b ins
dx = (b − a ) / (N − 1) #bin spac ing
x = np . l i n s p a c e ( a , b , num=N+1) #array o f b ins f o r the l ength o f the l a y e r

#FUNDAMENTAL CONSTANTS AND DEVICE PARAMETERS
V = 0.0 #app l i ed vo l tage
T = 300 #room temperature
q = 1.602 ∗ 10∗∗(−19) #fundamental charge
k = 1.381 ∗ 10∗∗(−23) #Boltzmann constant
Sn = 1000 #e l e c t r o n s u r f a c e recombinat ion v e l o c i t y
mu e = 320 ∗ 10∗∗(−4) #e l e c t r o n mob i l i ty
Dn = ( mu e∗k∗T)/ q #d i f f u s i o n c o e f f i c i e n t
alpha = 10∗∗4 ∗ 10∗∗2 #absorpt ion c o e f f i c i e n t
bs = (10∗∗17) ∗ (10∗∗4) #photon f l u x dens i ty
p0 = 2∗10∗∗14 ∗ 10∗∗6 #equ i l i b r ium hole concent ra t i on
Et = 0.6∗1.602∗10∗∗(−19) #trap energy
Eg = 1.5∗1.602∗10∗∗(−19) #bandgap energy
Ei = Eg/2 #i n t r i n s i c energy l e v e l
Nc = 8 ∗ 10∗∗17 ∗ 10∗∗6
Nv = 1 .8 ∗ 10∗∗19 ∗ 10∗∗6
n0 = Nc∗math . exp ((−0.5∗Eg)/( k∗T) ) #equ i l i b r i um e l e c t r o n concent ra t i on
n1 = Nc∗math . exp ((−(2∗Eg−Et )/ ( k∗T) ) )
p1 = Nv∗math . exp(−Et /( k∗T) )
Nt = 10∗∗11 #d e f e c t dens i ty
sp = 10∗∗(−15) ∗ 10∗∗(−4) #ho le capture c r o s s s e c t i o n
sn = 10∗∗(−12) ∗ 10∗∗(−4) #e l e c t r o n capture c r o s s s e c t i o n
vnt = 10∗∗5 #e l e c t r o n thermal v e l o c i t y
vpt = 10∗∗5 #hole thermal v e l o c i t y
Cp = 1/( sp∗Nt∗vpt ) #constant ho le l i f e t i m e
Cn = 1/( sn∗Nt∗vnt ) #constant e l e c t r o n l i f e t i m e

#################Constant average d e f e c t dens i ty####################
Nt = 3.16195∗10∗∗ (14) ∗ 10∗∗6 #d e f e c t dens i ty
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tau = 1/( sn∗vnt∗Nt) #constant recombinat ion l i f e t i m e
rhs = np . z e ro s (N) ; #i n i t i a l i z i n g the rhs o f matrix equat ion
n = np . z e ro s (N+1) #i n i t i a l i z i n g e l e c t r o n dens i ty array
n [ 0 ] = n0 #s e t t i n g boundary cond i t i on

#s e t t i n g up spar s e matrix equat ion
A = sc ipy . spar s e . l i l m a t r i x ( (N, N) )
f o r i in range (0 ,N−1):

rhs [ i ] = (−bs∗ alpha /Dn)∗math . exp(−x [ i +1]∗ alpha ) − ( n0 /(Dn∗ tau ) )
A[ i , [ i − 1 , i , i +1] ] = np . array ( [ 1 / dx∗∗2 , (−2/(dx ∗∗2))

+ (−1/(Dn∗ tau ) ) ,1/ dx ∗∗2 ] )

#s e t t i n g boundary c o n d i t i o n s
rhs [N−1] += −(2∗Sn∗n0 )/ (Dn∗dx )
A[ 0 , N−1] =0
A[N−1, N − 2 ] = 2/( dx∗∗2)
A[N−1,N − 1 ] = (−2/(dx ∗∗2)) − (1/(Dn∗ tau ) ) − ( (2∗Sn )/(Dn∗dx ) )
A = A. to c s c ( )
n [ 1 : ] = sc ipy . spa r s e . l i n a l g . s p so l v e (A, rhs)#s o l v i n g matrix equat ion

#c a l c u l a t i n g the bulk recombinat ion
R = 0
f o r i in range (0 ,N) :

R += (n [ i +1] − n0 )∗dx /( tau )
p r i n t (”R: ” , R)
#p l o t t i n g e l e c t r o n dens i ty as a func t i on o f p o s i t i o n
#to compare constant vs var i ed d e f e c t dens i ty p r o f i l e s
p l t . f i g u r e (1 , f i g s i z e =(8 , 7 ) , dpi =80)
p l t . p l o t ( x∗10∗∗6 , n∗10∗∗(−6))
p l t . x l a b e l (” x ”)
p l t . y l a b e l (”n”)
p l t . g r i d ( True )

#c a l c u l a t i n g the cur rent dens i ty
Jn = np . z e ro s (N)
f o r i in range (1 , l en ( Jn )−1):

Jn [ i ] = (n [ i +1] − n [ i −1])/(2∗dx )
Jn ∗= q∗Dn
Jn [ 0 ] = q∗Dn∗(n [1]−n [ 0 ] ) / dx #forward d i f f e r e n c e d e r i v a t i v e
Jn ∗=0.1
p r in t (” Jsc ( constant tau ) ” , Jn [ 0 ] )

#p l o t t i n g the short−c i r c u i t cur rent as a func t i on o f p o s i t i o n
#with in the c e l l to compare the constant
#and var i ed d e f e c t d e n s i t i e s a c r o s s the l a y e r
p l t . f i g u r e (2 , f i g s i z e =(8 , 7 ) , dpi =80)
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p l t . p l o t ( x [ 0 :N−1] ∗10∗∗6 , Jn [ 0 :N−1])
p l t . g r i d ( True )
p l t . x l a b e l ( r ”x ( $\mu m$)”)
p l t . y l a b e l ( r ”$J$ ( $\ f r a c {mA}{{cm}ˆ2}$ )” )
p l t . l egend (np . array ( [ ” constant ” , ” var i ed ” ] ) )

#################Inhomogeneous d e f e c t dens i ty####################
Nt = 2.0∗10∗∗ (14) ∗ 10∗∗6 #constant d e f e c t dens i ty

#f i l l i n g d e f e c t dens i ty array
Nts = np . z e ro s (N)
Nts . f i l l (Nt) #constant array

#c a l c u l a t i n g inhomogeneous l i f e t i m e
#based on s p a t i a l l y inhomogeneous d e f e c t dens i ty d i s t r i b u t i o n
x1 = b − b/3 #d e f e c t l a y e r i s 1/3 o f the l ength o f the l a y e r
s2 = i n t ( x1/dx ) + 1
Nts [ s2 : ] = np . l i n s p a c e (Nt ,5∗Nt , num=(N−s2 ) )
tau = 1/( sn∗vnt∗Nts )

rhs = np . z e ro s (N) ; #r i g h t hand s i d e o f matrix equat ions
n1 = np . z e r o s (N+1)
n1 [ 0 ] = n0

#s e t t i n g up spar s e matrix equat ion and boundary c o n d i t i o n s
A = sc ipy . spar s e . l i l m a t r i x ( (N, N) )
f o r i in range (0 ,N−1):

rhs [ i ] = (−bs∗ alpha /Dn)∗math . exp(−x [ i +1]∗ alpha ) − ( n0 /(Dn∗ tau [ i ] ) )
A[ i , [ i − 1 , i , i +1] ] = np . array ( [ 1 / dx∗∗2 , (−2/(dx ∗∗2)) + (−1/(Dn∗ tau [ i ] ) ) ,1/ dx ∗∗2 ] )

rhs [N−1] += −(2∗Sn∗n0 )/ (Dn∗dx )
A[ 0 , N−1] =0
A[N−1, N − 2 ] = 2/( dx∗∗2)
A[N−1,N − 1 ] = (−2/(dx ∗∗2)) − (1/(Dn∗ tau [N−1])) − ( (2∗Sn )/(Dn∗dx ) )
A = A. to c s c ( )

n1 [ 1 : ] = sc ipy . spa r s e . l i n a l g . sp so l v e (A, rhs ) #s o l v i n g matrix equat ion

#c a l c u l a t i n g cur rent dens i ty
Jn1 = np . z e ro s (N)
f o r i in range (1 , l en ( Jn1 )−1):

Jn1 [ i ] = ( n1 [ i +1] − n1 [ i −1])/(2∗dx )
Jn1 ∗= q∗Dn
Jn1 [ 0 ] = q∗Dn∗( n1 [1]−n1 [ 0 ] ) / dx #forward d i f f e r e n c e d e r i v a t i v e
Jn1 ∗=0.1
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pr in t (” Jsc ( var i ed tau ) ” , Jn1 [ 0 ] )

#p l o t t i n g e l e c t r o n dens i ty as a func t i on o f p o s i t i o n
#to compare constant vs var i ed d e f e c t dens i ty p r o f i l e s
p l t . f i g u r e (1 , f i g s i z e =(8 , 7 ) , dpi =80)
p l t . p l o t ( x∗10∗∗6 , n1∗10∗∗(−6))
p l t . x l a b e l ( r ”x ( $\mu m$)”)
p l t . y l a b e l ( r ”n ($cmˆ{−3}$ )” )
p l t . l egend (np . array ( [ ” constant ” , ” var i ed ” ] ) )

#p l o t t i n g the short−c i r c u i t cur rent as a func t i on o f p o s i t i o n
#with in the c e l l to compare the constant
#and var i ed d e f e c t d e n s i t i e s a c r o s s the l a y e r
p l t . f i g u r e (2 )
p l t . p l o t ( x [ 0 :N−1] ∗10∗∗6 , Jn1 [ 0 :N−1])
p l t . l egend (np . array ( [ ” constant ” , ” var i ed ” ] ) )
p l t . g r id ( True )

#c a l c u l a t i n g the bulk recombinat ion
R = 0
f o r i in range (0 ,N) :

R += ( n1 [ i +1] − n0 )∗dx /( tau [ i ] )
p r i n t (”R: ” ,R)
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