
Brief Announcement: Give Me Some Slack:
Efficient Network Measurements

Ran Ben Basat
Technion, Haifa, Israel
sran@cs.technion.ac.il

Gil Einziger
Nokia Bell Labs, Kfar Saba, Israel
gil.einziger@nokia.com

Roy Friedman
Technion, Haifa, Israel
roy@cs.technion.ac.il

Abstract
Many networking applications require timely access to recent network measurements, which can
be captured using a sliding window model. Maintaining such measurements is a challenging task
due to the fast line speed and scarcity of fast memory in routers. In this work, we study the impact
of allowing slack in the window size on the asymptotic requirements of sliding window problems.
That is, the algorithm can dynamically adjust the window size betweenW andW (1+τ) where τ is
a small positive parameter. We demonstrate this model’s attractiveness by showing that it enables
efficient algorithms to problems such as Maximum and General-Summing that require Ω(W)
bits even for constant factor approximations in the exact sliding window model. Additionally, for
problems that admit sub-linear approximation algorithms such as Basic-Summing and Count-
Distinct, the slack model enables a further asymptotic improvement.

The main focus of our paper [4] is on the widely studied Basic-Summing problem of com-
puting the sum of the last W integers from {0, 1 . . . , R} in a stream. While it is known that
Ω(W logR) bits are needed in the exact window model, we show that approximate windows
allow an exponential space reduction for constant τ .

Specifically, for τ = Θ(1), we present a space lower bound of Ω(log(RW)) bits. Additionally,
we show an Ω(log (W/ε)) lower bound for RWε additive approximations and a Ω(log (W/ε) +
log logR) bits lower bound for (1 + ε) multiplicative approximations. Our work is the first
to study this problem in the exact and additive approximation settings. For all settings, we
provide memory optimal algorithms that operate in worst case constant time. This strictly
improves on the work of [12] for (1 + ε)-multiplicative approximation that requires
O(ε−1 log (RW) log log (RW)) space and performs updates in O(log (RW)) worst case time. Fi-
nally, we show asymptotic improvements for the Count-Distinct, General-Summing and
Maximum problems.

2012 ACM Subject Classification Networks → Network measurement

Keywords and phrases Streaming, Algorithms, Sliding window, Lower bounds

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.163

Related Version A full version of the paper is available at [4], https://arxiv.org/abs/1703.
01166.

EA
T

C
S

© Ran Ben Basat, Gil Einziger, and Roy Friedman;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 163; pp. 163:1–163:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sran@cs.technion.ac.il
mailto:gil.einziger@nokia.com
mailto:roy@cs.technion.ac.il
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.163
https://arxiv.org/abs/1703.01166
https://arxiv.org/abs/1703.01166
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

163:2 Give Me Some Slack: Efficient Network Measurements

Figure 1 We need to answer each query with respect to a τ -slack window that must include the
last W items, but may or may not consider a suffix of the previous Wτ elements.

1 Introduction

Network algorithms in diverse areas such as traffic engineering, load balancing and quality
of service [1, 8, 17, 20, 27] rely on timely link measurements. In such applications recent
data is often more relevant than older data, motivating the notions of aging and sliding
window [5, 10, 13, 21, 23]. For example, a sudden decrease in the average packet size on a
link may indicate a SYN attack [22]. Additionally, a load balancer may benefit from knowing
the current utilization of a link to avoid congestion [1].

While conceptually simple, conveying the necessary information to network algorithms
is a difficult challenge due to current memory technology limitations. Specifically, DRAM
memory is abundant but too slow to cope with the line rate while SRAM memory is fast
enough but has a limited capacity [9, 11, 25]. Online decisions are therefore realized through
space efficient data structures [6, 7, 14, 15, 3, 19, 24, 26] that store measurement statistics
in a concise manner. For example, [14, 24] utilize probabilistic counters that only require
O(log logN) bits to approximately represent numbers up to N . Others conserve space using
variable sized counter encoding [15, 19] and monitoring only the frequent elements [5].

Basic-Summing is one of the most basic textbook examples of such approximated sliding
window stream processing problems [12]. In this problem, one is required to keep track of
the sum of the last W elements, when all elements are non-negative integers in the range
{0, 1, . . . , R}. The work in [12] provides a (1+ε)-multiplicative approximation of this problem
using O

(1
ε ·

(
log2 W + logR · (logW + log logR)

))
bits. The amortized time complexity is

O(logR
logW) and the worst case is O(logW + logR). In contrast, we previously showed an

RWε-additive approximation with Θ
(1
ε + logWε

)
bits [2].

Sliding window counters (approximated or accurate) require asymptotically more space
than plain stream counters. Such window counters are prohibitively large for networking
devices which already optimize the space consumption of plain counters.

This paper explores the concept of slack, or approximated sliding window, bridging this
gap. Figure 1 illustrates a “window” in this model. Here, each query may select a τ -slack
window whose size is between W (the green elements) and W (1 + τ) (the green plus yellow
elements). The goal is to compute the sum with respect to this chosen window.

Slack windows were also considered in previous works [12, 23] and we call the problem of
maintaining the sum over a slack window Slack Summing. Datar et al. [12] showed that con-
stant slack reduces the required memory from O(1

ε ·
(
log2 W + logR · (logW + log logR)

)
)

to O(ε−1 log(RW) log log(RW)). For τ -slack windows they provide a (1 + ε)-multiplicative
approximation using O(ε−1 log(RW)(log log(RW) + log τ−1)) bits.

Our Contributions

Our paper [4] studies the space and time complexity reductions that can be attained by
allowing slack – an error in the window size. Our results demonstrate exponentially smaller
and asymptotically faster data structures compared to various problems over exact windows.

R.B. Basat, G. Einzinger, and R. Friedman 163:3

Table 1 Comparison of Basic-Summing algorithms. Our contributions are in bold. All algorithms
process elements in constant time except for the rightmost column where both update in O(log (RW))
time. We present matching lower bounds to all our algorithms.

Exact Sum Additive Error Multiplicative Error
τ = Θ(1) Θ(log (RW)) Θ(log(W/ε)) Θ(log (W/ε) + loglogR) O(ε−1 log(RW) log log(RW)) [12]

Exact Window Θ(W logR) Θ(ε−1 + logW) [2] O(ε−1 log2(RW)) [18] O(ε−1 logRW log (W logR)) [12]

We start with deriving lower bounds for three variants of the Basic-Summing problem –
when computing an exact sum over a slack window, or when combined with an additive and a
multiplicative error in the sum. We present algorithms that are based on dividing the stream
into Wτ -sized blocks. Our algorithms sum the elements within each block and represent each
block’s sum in a cyclic array of size τ−1. We use multiple compression techniques during
different stages to drive down the space complexity. The resulting algorithms are space
optimal, substantially simpler than previous work, and reduce update time to O(1).

For exact Slack Summing, we present a lower bound of Ω(τ−1 log(RWτ)) bits. For (1+ε)
multiplicative approximations we prove an Ω

(
log(W/ε) + τ−1 (log (τ/ε) + log log (RW))

)
bits bound when τ = Ω

(
1

logRW

)
. We show that Ω(τ−1 log b1 + τ/εc+ log (W/ε)) bits are

required for RWε additive approximations.
Next, we introduce algorithms for the Slack Summing problem, which asymptotically

reduce the required memory compared to the sliding window model. For the exact and
additive error versions of the problem, we provide memory optimal algorithms. In the
multiplicative error setting, we provide an O

(
τ−1 (

log ε−1 + log log (RWτ)
)

+ log(RW)
)

space algorithm. This is asymptotically optimal when τ = Ω(log−1 W) and R = poly(W).
It also asymptotically improves [12] when τ−1 = o(ε−1 log (RW)). We further provide an
asymptotically optimal solution for constant τ , even when R = Wω(1). All our algorithms
are deterministic and operate in worst case constant time. In contrast, the algorithm of [12]
works in O(logRW) worst case time.

To exemplify our results, consider monitoring the average bandwidth (in bytes per second)
passed through a router in a 24 hours window, i.e., W , 86400 seconds. Assuming we use a
100GbE fiber transceiver, our stream values are bounded by R ≈ 234 bytes. If we are willing
to withstand an error of ε = 2−20 (i.e., about 16KBps), the work of [2] provides an additive
approximation over the sliding window and requires about 120KB. In contrast, using a 10
minutes slack (τ , 1

144), our algorithm for exact Slack Summing requires only 800 bytes,
99% less than approximate summing over exact sliding window. For the same slack size, the
algorithm of [12] requires more space than our exact algorithm even for a large 3% error.
Further, if we also allow the same additive error (ε = 2−20), we provide an algorithm that
requires only 240 bytes - a reduction of more than 99.8% !

Table 1 compares our results for the important case of constant slack with [12]. As
depicted, our exact algorithm is faster and more space efficient than the multiplicative
approximation of [12]. Comparing our multiplicative approximation algorithm to that of [12],
we present exponential space reductions in the dependencies on ε−1 and R, with an asymptotic
reduction in W as well. We also improve the update time from O(log (RW)) to O(1).

Finally, we apply the slack window approach to multiple streaming problems, including
Maximum, General-Summing, Count-Distinct and Standard-Deviation. We show
that, while some of these problems cannot be approximated on an exact window in sub-linear
space (e.g. Maximum and General-Summing), we can easily do so for slack windows. In
the count distinct problem, a constant slack yields an asymptotic space reduction over [10, 16].
The full version of our paper appears in [4].

ICALP 2018

163:4 Give Me Some Slack: Efficient Network Measurements

References
1 Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan, Kevin

Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong Pan, Navindra Yadav, and
George Varghese. Conga: Distributed congestion-aware load balancing for datacenters. In
ACM SIGCOMM 2014 Conference, SIGCOMM’14, Chicago, IL, USA, August 17-22, 2014,
ACM SIGCOMM 2014, 2014. doi:10.1145/2619239.2626316.

2 Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Efficient Summing over
Sliding Windows. In SWAT, 2016.

3 Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo Caggiani Luizelli, and Erez Waisbard.
Constant time updates in hierarchical heavy hitters. In ACM SIGCOMM, 2017.

4 R. Ben Basat, G. Einziger, and R. Friedman. Give Me Some Slack: Efficient Network
Measurements. ArXiv e-prints, 2017. arXiv:1703.01166.

5 Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Heavy hitters in streams
and sliding windows. In IEEE INFOCOM, 2016.

6 Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Optimal elephant flow
detection. In IEEE INFOCOM, 2017.

7 Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Randomized admission
policy for efficient top-k and frequency estimation. In IEEE INFOCOM, 2017.

8 Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Microte: Fine grained
traffic engineering for data centers. In ACM CoNEXT, 2011.

9 Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and George Varghese.
An improved construction for counting bloom filters. In ESA, 2006.

10 Y. Chabchoub and G. Hebrail. Sliding hyperloglog: Estimating cardinality in a data stream
over a sliding window. In 2010 IEEE ICDM Workshops, 2010.

11 Min Chen and Shigang Chen. Counter tree: A scalable counter architecture for per-flow
traffic measurement. In IEEE ICNP, 2015.

12 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM Journal of Computing, 2002.

13 G. Einziger and R. Friedman. TinyLFU: A highly efficient cache admission policy. In PDP
2014. IEEE Computer Society, 2014. doi:10.1109/PDP.2014.34.

14 Gil Einziger, Benny Fellman, and Yaron Kassner. Independent counter estimation buckets.
In IEEE INFOCOM, 2015.

15 Gil Einziger and Roy Friedman. Counting with TinyTable: Every Bit Counts! In ICDCN
2016. ACM, 2016. doi:10.1145/2833312.2833449.

16 Éric Fusy and Frécéric Giroire. Estimating the number of active flows in a data stream
over a sliding window. In ANALCO, 2007.

17 Pedro Garcia-Teodoro, Jesús E. Díaz-Verdejo, Gabriel Maciá-Fernández, and E. Vázquez.
Anomaly-based network intrusion detection: Techniques, systems and challenges. Com-
puters and Security, 2009.

18 Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algorithms for sliding
windows. In SPAA, 2002. doi:10.1145/564870.564880.

19 Nan Hua, Bill Lin, Jun (Jim) Xu, and Haiquan (Chuck) Zhao. Brick: A novel exact active
statistics counter architecture. In ACM/IEEE ANCS, 2008.

20 Abdul Kabbani, Mohammad Alizadeh, Masato Yasuda, Rong Pan, and Balaji Prabhakar.
Af-qcn: Approximate fairness with quantized congestion notification for multi-tenanted
data centers. In IEEE HOTI, 2010.

21 Yang Liu, Wenji Chen, and Yong Guan. Near-optimal approximate membership query over
time-decaying windows. In IEEE INFOCOM, 2013.

22 B. Mukherjee, L.T. Heberlein, and K.N. Levitt. Network intrusion detection. Network,
IEEE, 1994.

http://dx.doi.org/10.1145/2619239.2626316
http://arxiv.org/abs/1703.01166
http://dx.doi.org/10.1109/PDP.2014.34
http://dx.doi.org/10.1145/2833312.2833449
http://dx.doi.org/10.1145/564870.564880

R.B. Basat, G. Einzinger, and R. Friedman 163:5

23 Moni Naor and Eylon Yogev. Sliding bloom filters. In ISAAC. Springer, 2013. doi:
10.1007/978-3-642-45030-3_48.

24 Erez Tsidon, Iddo Hanniel, and Isaac Keslassy. Estimators also need shared values to grow
together. In IEEE INFOCOM, 2012.

25 Hao Wang, H. Zhao, Bill Lin, and Jun Xu. Dram-based statistics counter array architecture
with performance guarantee. IEEE/ACM Transactions on Networking, 2012.

26 Li Yang, Wu Hao, Pan Tian, Dai Huichen, Lu Jianyuan, and Liu Bin. Case: Cache-assisted
stretchable estimator for high speed per-flow measurement. In IEEE INFOCOM, 2016.

27 L. Ying, R. Srikant, and X. Kang. The power of slightly more than one sample in random-
ized load balancing. In IEEE INFOCOM, 2015.

ICALP 2018

http://dx.doi.org/10.1007/978-3-642-45030-3_48
http://dx.doi.org/10.1007/978-3-642-45030-3_48

	Introduction

