
On the Complexity of Sampling Vertices
Uniformly from a Graph

Flavio Chierichetti1

Dipartimento di Informatica, Sapienza University, Rome, Italy
flavio@di.uniroma1.it
https://orcid.org/0000-0001-8261-9058

Shahrzad Haddadan2

Dipartimento di Informatica, Sapienza University, Rome, Italy
shahrzad.haddadan@uniroma1.it
https://orcid.org/0000-0002-7702-8250

Abstract
We study a number of graph exploration problems in the following natural scenario: an algorithm
starts exploring an undirected graph from some seed vertex; the algorithm, for an arbitrary vertex
v that it is aware of, can ask an oracle to return the set of the neighbors of v. (In the case of social
networks, a call to this oracle corresponds to downloading the profile page of user v.) The goal of
the algorithm is to either learn something (e.g., average degree) about the graph, or to return some
random function of the graph (e.g., a uniform-at-random vertex), while accessing/downloading
as few vertices of the graph as possible.

Motivated by practical applications, we study the complexities of a variety of problems in
terms of the graph’s mixing time tmix and average degree davg – two measures that are believed
to be quite small in real-world social networks, and that have often been used in the applied
literature to bound the performance of online exploration algorithms.

Our main result is that the algorithm has to access Ω
(
tmix davg ε

−2 ln δ−1) vertices to obtain,
with probability at least 1− δ, an ε additive approximation of the average of a bounded function
on the vertices of a graph – this lower bound matches the performance of an algorithm that was
proposed in the literature.

We also give tight bounds for the problem of returning a close-to-uniform-at-random vertex
from the graph. Finally, we give lower bounds for the problems of estimating the average degree
of the graph, and the number of vertices of the graph.
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1 Introduction

Hundreds of millions of people share messages, videos and pictures on Google+ and Facebook
each day – these media have an increasingly high political, economical, and social importance
in today’s world. Data miners have consequently devoted significant amounts of attention to
the study of large social networks.

In data mining, one often seeks algorithms that can return (approximate) properties of
online social networks, so to study and analyze them, but without having to download the
millions, or billions, of vertices that they are made up of. The properties of interest range from
the order of the graph [18, 17], to its average degree (or its degree distribution) [10, 13, 16], to
the average clustering coefficient [22, 23] or triangle counting [2], to non-topological properties
such as the average score that the social network’s users assign to a movie or a song, or to
the fraction of people that like a specific article or page. All these problems have trivial
solutions when the graph (with its non-topological attributes) is stored in main memory, or
in the disk: choosing a few independent and uniform at random vertices from the graph, and
computing their contribution to the (additive) property of interest, is sufficient to estimate
the (unknown) value of the graph property – the empirical average of the contributions of
the randomly chosen vertices will be close to the right value with high probability, by the
central limit theorem.

In applications, though, it is often impossible to have random access to the (vertices
of the) graph. Consider, for instance, an online undirected social graph, such as the
Facebook friendship graph. An algorithm can download a webpage of a given (known) user
alice from this social graph (e.g., http://sn.com/user.php?id=alice), parse the HTML,
and get the URLs of the pages of her friends (e.g., http://sn.com/user.php?id=bob,
http://sn.com/user.php?id=charles, etc.) and that user’s non-topological attributes
(e.g., the set of movies she likes) – an algorithm, though, cannot download the webpage of a
vertex without knowing its URL: thus, to download a generic vertex zoe from the graph, the
algorithm first needs to download all the vertices in (at least) one path from the seed vertex
(e.g., alice) to zoe.

Clearly, given enough many resources, the algorithm could crawl the whole social network
(that is, download each of the social network’s vertices), and then reduce the problem of
computing the online graph property to the centralized one – unfortunately, it is practically
infeasible to download millions, or billions, of vertices from a social network (the APIs that
can be used to access the network usually enforce strict limits on how many vertices can be
downloaded per day). Several techniques have been proposed in the literature for studying
properties of online graphs – almost all of them assume to have access to a random oracle
that returns a random vertex of the graph according to a certain distribution (usually, either
uniform, or proportional to the degree), e.g., [5, 12, 18, 10, 16].

When running algorithms on online social networks, it is often hard or impossible to
implement a uniform-at-random random oracle, and to get samples out of it – the complexity
of this oracle is one of the main problems that we tackle in this paper.

In practice, an algorithm is given (the URL of) a seed vertex (or, some seed vertices)
of the social network; the algorithm has to download that seed vertex, get the URLs of its
neighbors, and then decide which of them to download next; after having downloaded the
second node, the algorithm (might) learn of the existence of some other URLs/vertices, and
can then decide which of the known (but unexplored) URLs to download – and so on, and so
forth, until the algorithm can return a good approximation of the property to be estimated.
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The natural cost function in this setting is the (random) number of vertices that the
algorithm has to download, or query, before making its guess – the cost function is usually
bounded in terms of properties of the graph (e.g., its order, its average degree, etc.), and in
terms of the quality of the algorithm’s guess.

Many problems of this form can be found in the literature. In this paper, we consider
two natural problems, that are at the heart of many others, and whose complexity (as far as
we know) was open before this work:

the “average score problem”: assuming that each vertex holds some score in [0, 1], compute
an approximation of the average of the scores;
the “uniform at random sample”: return a random vertex from the graph whose distribu-
tion is approximately uniform.

In a sense, the latter problem is technically more interesting than the former (a solution to
the latter provides a solution to the former). In practice, though, the average score problem
is much more significant (and ubiquitous), given its many applications [11, 1, 14, 21] (e.g.,
computing the favorability rating of a candidate, or the average star-rating of a movie).
These problems are similar in flavor to some graph property testing problems [15]. Observe
that our setting is similar, but different, than various graph property testing settings – many
of the existing graph property testing algorithms require, as a primitive, the ability to sample
a uniform at random vertex. Our work can be seen as a way of implementing that primitive
using the oracles mentioned above. (See also, [4]).

A number of algorithms have been proposed for the uniform-at-random sample problem
[7, 18] – the best known algorithms require roughly Õ (tmix · davg) vertex queries/downloads
to return a vertex whose distribution is (close to) uniform at random , where tmix is the
mixing time of the lazy random walk on the graph, and davg is its average degree [7]3. These
algorithms do not use any knowledge of the average degree of the graph davg, but need to
know a constant approximation of its mixing time tmix. To our knowledge, the best lower
bound for the uniform-at-random sample problem before this work, was Ω(tmix + davg) [7] –
one of the main results of this paper is (i) an almost tight lower bound of Ω(tmix · davg) for
this problem, for wide (in fact, polynomial) ranges of the two parameters.4 The lower bound
holds even for algorithms that know constant approximations of davg.

Our lower bound construction for the uniform-at-random sample problem also provides
(ii) a tight lower bound of Ω (davg tmix) for the average score problem – in fact, we resolve
the complexity of the average score problem by showing that our lower bound coincides with
the complexity of some previously proposed algorithms, whose analysis we improve.

The same lower bound construction further resolves (iii) the complexity of the average-
degree estimation problem, and (iv) entails a non-tight, but significant, lower bound for the
problem of guessing the graph order (that is, the number of vertices in the graph).

It is interesting to note that all the algorithms that were proposed require O(logn) space,
while our lower bounds hold for general algorithms with no space restriction. Thus, the
problems we consider can be solved optimally using only tiny amounts of space.

3 Real-world social networks are known to have a small average degree davg; their mixing time tmix has
been observed [20] to be quite small, as well.

4 Observe that the two parameters have to obey some bound for such a lower bound to hold – in general,
any problem can be solved by downloading all the n vertices of the graph: thus, if tmix ·davg > ω(n),
one can solve the uniform-at-random sample problem with less than o(tmix ·davg) vertex queries.

ICALP 2018
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2 Preliminaries

Consider a connected and undirected graph G = 〈VG , EG〉 with no self-loops (e.g., the
Facebook friendship graph), and a function on its vertices F : VG → [0, 1].5 We aim to
estimate the average value of this function, i.e., favg =

∑
v∈VG F(v)/n where n = |VG |.

Motivated by applications, we assume that accessing the graph is a costly operation, and
that there is little or no information about its global parameters such as the average degree,
the number of vertices or the maximum degree. However, we can access a “friendship" oracle:
that is, an oracle which, given a vertex v ∈ VG , outputs references (their ids, or their URLs)
to its neighbors Nv = {u ∈ VG |(v, u) ∈ EG}. In such a setting, it is natural to approximate
favg by taking samples from a Markov chain based on the graph structure (see, e.g., [9, 8]).
A simple random walk on the graph, though, will not serve our purposes since it samples
vertices with probability proportional to their degree, while our goal is to take a uniform
average of the values of F .

On a graph G = 〈VG , EG〉, a lazy simple random walk is a Markov chain which being
at vertex v ∈ VG , stays on v with probability 1/2 and moves to u ∈ Nv with probability
1/(2 deg(v)). Given that G is connected, the lazy random walk will converge to its unique
stationary distribution which we denote by Π1 and which is equal to Π1(v) = deg(v)/2|EG |,
∀v ∈ VG .

By tmix(G) we refer to the mixing time of the lazy random walk on G, which is the
minimum integer satisfying: for any τ ≥ tmix(G),

∣∣Xτ −Π1
∣∣
1 ≤ 1/4, where Xτ is the

distribution of the lazy walk at time τ , and |·|` is the `-norm of a vector. Note that by the
theory of Markov chains, by taking τ ≥ tmix(G) log(1/ε) we have

∣∣Xτ −Π1
∣∣
1 ≤ ε. We denote

the uniform distribution on vertices of G by Π0, i.e., Π0(v) = 1/|VG |,∀v ∈ G. In general, we
denote a distribution on VG weighing each vertex v ∈ VG proportional to deg(v)ζ by Πζ . We
may drop all the subscripts when doing so does not cause ambiguity.

Following the framework of [7], we consider two measures of time complexity. First the
number of downloaded vertices, and second the number of steps the algorithm takes to
produce the output. Note that accessing an already downloaded vertex has a negligible cost,
and hence, the most relevant cost of the algorithm is the number of downloaded vertices.
As mentioned in the introduction, the algorithms considered in [7] and in this paper, only
require space to store constantly many vertices, while our lower bound results hold regardless
of the space complexity of the algorithms.

Our Contribution. We begin by discussing the problem of producing an approximately-
uniform sample vertex from an unknown graph (Problem 1); showing that some algorithm
presented in the literature are optimal (Theorem 1). Then, we proceed to the problem of
estimating favg for a function F : VG → [0, 1] (Problem 2). We extend the positive results of
[7]; we particularly study one algorithm, the “Maximum Degree algorithm”, which we show
to be suboptimal in the number of downloaded vertices. This algorithm requires knowledge
of some constant approximation of the graph’s mixing time, and and upper bound on its
maximum degree. We also show new lower bounds for constant approximations of the order
and the average degree of a graph. A summary of our contribution is presented in Table 1.
We remark that, in practice, only an upper bound on the mixing time is available. In the
equations of Table 1, tmix can be substituted with any upper bound on the mixing time of
the graph.

5 Note that from any bounded function we can get a function with range [0, 1], through a simple affine
transform. Therefore, our results can be trivially extended to functions with any bounded range.
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Table 1 Upper bounds and lower bounds on number of queried vertices for algorithms which
explore the graph using a neighborhood oracle and a seed vertex. As mentioned before, tmix is the
mixing time of the lazy random walk on the graph, davg is its average degree, D is an upper bound
on its maximum degree, Π1 is its stationary distribution, and ε and δ are the precision parameters.
The lower bounds for estimating the number of vertices and the average degree hold for any constant
approximation.

Upper Bound Lower Bound

Average of a O(tmix davg log(δ−1)ε−2) Ω(tmix davg log(δ−1)ε−2)
Bounded Function (Theorem 2, with an Algorithm of [7]) (Theorem 3)
Uniform Sample O(tmix davg log(ε−1)) Ω(tmix davg)

([7] ) (Theorem 1)
Number of Vertices O(tmix max{davg, |Π1|−1/2

2 } log(δ−1) log(ε−1)ε−2) Ω(tmix davg)
([18] ) (Theorem 4)

Average Degree O(D2tmix davg log(δ−1)ε−2) Ω(tmix davg)
(Application of Theorem 2) (Theorem 4)

In Section 3, we prove our lower bound results on the number of oracle calls for the
following problems: sampling a vertex, learning the order, and the average degree of the graph.
Estimations of these parameters in a graph are intertwined meaning that a knowledge about
one of them the complexity of estimating the other one changes. For instance, Goldreich and
Ron [16] show that, if a uniform sample generator is accessible at zero cost (alternatively, if
the order of graph is precisely known), then the average degree is computable in

√
|VG |/davg

steps. Our lower bounds for the aforementioned problems hold if the algorithm has no
ε−approximation of the order, and of the average degree of the graph. On the other hand,
the lower bound we obtain for an ε−approximation of a bounded function’s average holds
even if the graph’s structure is precisely known.

Number of downloads to produce a close-to-uniform sample. We prove a lower bound of
Ω(tmix davg), thus, showing that the rejection algorithm and the maximum degree algorithm
suggested in the literature [7] can be optimal (Theorem 1). We observe that the two
algorithms require some knowledge of tmix. In most scenarios, only an upper bound on tmix
is available. Thus, it is more accurate to claim that the two algorithms are optimal when
some constant approximation of the mixing time is available.

Number of downloads to estimate the number of vertices. The problem of estimating the
order of a graph is widely studied [9, 18]. Katzir et al. [18] (2011) propose an algorithm that,
having access to an oracle that produces random vertices from the graph’s stationary distribu-
tion, requires max{ 1

|Π1|2 , davg}( 1
ε2δ ) samples to obtain an ε approximation with probability at

least 1− δ. It has been shown the number of samples in Katzir’s algorithm is necessary ([17]).
The Katzir et al. algorithm implies an upper bound of tmix max{ 1

|Π1|2 , davg}( log(ε−1)
ε2δ ) vertex

queries to obtain an ε approximation with probability at least 1− δ in our friendship-oracle
model. In Theorem 4 we present a lower bound on the number of accesses to the vertices, to
get a constant approximation of the graph’s order in our friendship-oracle model. Our lower
bound is tight for the graphs that satisfy 1

|Π1|2
< davg – that is, the graphs whose variance

ICALP 2018
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of the degree distribution is greater than n.6 This class include, say, all the graphs having a
power-law degree distribution with exponent smaller than 3/2 (e.g., social networks [19]).

We remark that this lower bound problem is still open for graphs with 1
|Π1|2

> davg,
for example regular sparse graphs. Recently, Ben-Hamou et al. studied the problem of
estimating the size of a regular graph when having access to an oracle analogous to ours,
and presented an constant approximation algorithm querying (tunif)3/4√n vertices, where
tunif is the minimum integer satisfying: τ ≥ tunif(G), maxv∈V |Xτ (v)/Π1(v)− 1| ≤ 1/4 [3].

Number of downloads to estimate the average degree. There are quite a few results on
estimating the average degree of a graph. The first one by Feige et al. [13] introduced
a sublinear algorithm of complexity

√
|VG | for a 2-approximation. Goldreich et al. [16]

extends Feige et al.’s result and presents an (1± ε) approximation algorithm with running
time O(1/ε)

√
|VG/davg | – they also prove a lower bound on the number of samples of√

|VG|/ davg – both of [13] and [16] assume to have access to an oracle capable of producing
a uniform at random vertex. Recently, Dasgupta et al. [10] showed that by sampling
O(log(D) log log(D)) vertices of a graph from some weighted distribution7 one can obtain a
(1±ε) approximation of its average degree, where D is an upper bound on the maximum degree.
By factoring in the the cost of sampling, the complexity becomes O(tmix log(D) log log(D)).
Taking D = n and adding the cost of estimating the graph size, takes the upper bound to:
O
(

tmix

(
(log(n) log log(n)) + davg + 1

|Π1|2

))
.

In Theorem 4 of this paper we show that by downloading o(tmix davg) vertices, it is
impossible for an algorithm to have any constant approximation of the average degree davg
with probability more than some constant.

Finally, our main result is the following lower bound – unlike the above three lower
bounds, this one holds even if we know exactly the graph’s structure.

Number of downloads to find an ε, δ approximation for the average of a bounded func-
tion. In Theorem 3, we show that an algorithm requires Ω

(
tmix davg(1/ε2) log(1/δ)

)
vertex

downloads to produce an ε−additive approximation of favg, with probability at least 1− δ.
This lower bound, together with Theorem 2, allows us to conclude that the “maximum
degree algorithm” is an optimal algorithm for this problem. Note that this algorithm has to
have some upper bound D on the maximum degree of the graph. In many situations, one
can assume that this information is available – for instance D ≤ n and, in many cases, one
can assume to have a constant approximation to the order of the graph (for instance, in
Facebook, one could claim that D is no larger than the world’s population.) Observe that
the maximum degree algorithm suffers no loss in getting a large D, as opposed to a tighter
one, since D does not impact the upper bound on the number of downloaded vertices.

2.1 Statement of Problems and Results
I Problem 1. Input: A seed vertex s ∈ V in graph G = 〈VG , EG〉. Output: A random vertex
v ∈ VG whose distribution is at total variation distance at most ε from the uniform one
on VG.

6 Let prk be the fraction of vertices with degree k. We have
∣∣Π1
∣∣

2
= n

∑n

i=1 prk
k2

4|E|2 =
1

n davg
2

∑n

i=1 prkk
2. Thus, to have 1/

√
|Π1|2 ≤ davg, it is necessary and sufficient to have

∑n

i=1 k
2prk >

n.
7 Dasgupta et al. use an oracle samples each v ∈ VG proportional to deg(v) + c for some constant c. Note

that for c = 0 this distribution will be the same as the stationarity.
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Several algorithms have been proposed for Problem 1 [7, 18] – we will specifically consider
the “maximum degree sampling” algorithm, the “rejection sampling” algorithm, and the
“Metropolis Hasting” algorithm.

The efficiency of the three algorithms has been studied in terms of the number of their
running time (or the number of steps they make on the Markov chain they are based on) and,
more importantly, on the number of queries8 (or downloaded vertices) that the algorithm
performs. The rejection sampling and maximum degree algorithms produce a close-to-uniform
random vertex by querying9 Õ (tmix davg) distinct vertices from the graph, where tmix is the
mixing time of a simple random walk on G, and davg is the average degree of G. In terms of
space complexity, each of these algorithms is based on a simple random walk on G and thus
only require space to save constant number of vertices.

One of the main results of this paper is Theorem 1, which shows the optimality of the
maximum degree, and of the rejection sampling, algorithms for Problem 1 – their running
time. We observe that our lower bound holds regardless of the amount of space available to
the algorithm.

I Theorem 1. For any large enough constant c, and for any arbitrary n, d = ω(logn), and
t = o( nd2 ) there exists a distribution over graphs G = 〈V,E〉, each having mixing time Θ(t),
E(|V |) = Θ(n), davg = Ev∈V (degv) = Θ(d), such that any algorithm A that queries less than
davg tmix /c vertices of G, and that returns some random vertex of G with distribution ΠA, is
such that10 E

[∣∣ΠA −Π0
∣∣
1

]
≥ 24

100 −
202
c−1 .

The same lower bounds also hold if one aims to obtain the generic Πζ distribution 11

: if ζ > 1, and d and t satisfy d = o(t
ζ−1
ζ ), then any algorithm A that queries less than

davg tmix /c vertices of G, and that returns some random vertex of G with distribution ΠA, is
such that: E

[∣∣ΠA −Πζ
∣∣
1

]
≥ 24

100 −
202
c−1 .

The above theorem, and the other lower bound results that we mention in this section,
will be proved in Section 3.

Then, we consider the problem of finding the average of a function F defined on vertices
of a graph and ranging in [0, 1].

I Problem 2. Input: A seed vertex s ∈ V in graph G = 〈V,E〉 – each vertex v holds a value
0 ≤ F(v) ≤ 1 which we learn upon visiting it. Output: f̄ such that P

(
|f̄ − favg| ≤ ε

)
≥ 1− δ.

Note that having a uniform sampler (the maximum degree or rejection sampling algorithm
of [7]), we can have an ε approximation of favg with probability 1−δ by taking O(ε−2 log(δ−1))
independent samples which are ε close to uniformity. In total, the number of queries will
be O(tmix davg log(δ−1)ε−2 log (ε−1)). Here we propose a slight variation of the “maximum
degree” algorithm to obtain a tight upper bound. We improve the analysis of the “maximum
degree algorithm” in Theorem 2 – its performance beats the other natural three algorithms,
and the main result of this paper is that this performance is optimal (Theorem 3).

The proof of the following Theorem is omitted from this extended abstract.

8 A vertex is “queried”, when the set of its neighbors is obtained from the oracle for the first time –
equivalently, when it is downloaded.

9 To get ε close to the uniform distribution we need O
(
tmix davg log(ε−1)

)
downloads.

10Observe that the expected `1 distance between the distributions is over the random variable ΠA.
11The Πζ distribution is the distribution in which the probability of a vertex v ∈ V is proportional to
deg(v)ζ .

ICALP 2018
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Algorithm 1 The Maximum Degree Algorithm.
Input: Seed vertex s ∈ VG , t′mix a constant approximation of tmix, and an upper bound D

on dmax
Output: An ε additive approximation of favg with probability at least 1− δ
1: Consider the maximum degree Markov chain: at vertex v ∈ V go to the generic u ∈ Nv

with probability 1/D, otherwise stay at v.
2: T ← t′mixD/dmin
3: Starting from s, run the chain for T ·

(
1 + ε−2 ln δ−1) steps – let v0 = s, v1, v2, . . . be the

states that are visited by the walk
4: S ← 0, t← 0, i← 0
5: while t < davg

dmin
(t′mix/ε

2) log(1/δ) do
6: i← i+ 1
7: if vi 6= vi−1 then
8: t← t+ 1
9: S = S + F(vi)
10: return S/i

I Theorem 2. Consider a graph G = 〈V,E〉, and a function F : V → [0, 1]. Let tmix be the
mixing time of the simple lazy random walk on G. Let f̄ be the value returned by Algorithm 1.
We assume the algorithm knows a constant approximation to tmix. i.e. t′mix = Θ(tmix). Then,

P
(
|f̄ − favg| ≥ ε

)
≤ δ (1)

This algorithm queries Θ(tmix davg ε
−2 log(δ−1)) vertices from the graph, and requires

space for saving a constant number of them. The number of computational steps it performs
is Θ(Dtmixε

−2 log(δ−1)).

The main result of this paper is the following lower bound which complements the upper
bound given in the previous theorem:

I Theorem 3. For any arbitrary n, d = ω(logn), and t = o( nd2 ) there exists a distribution
over graphs G = 〈V,E〉 with mixing time Θ(t), E(|V |) = 4n, davg = Ev∈V (degv) = Θ(d),
and a function F : V → {0, 1} such that, any algorithm A as described above which aims
to return the average of F , with ε precision for arbitrary 0 < ε, δ < 1, and queries less than
Ω(tmix davg ε

−2 log(δ−1)) vertices of G fails with probability greater than δ.

Finally, we consider the problems of obtaining an approximation of the average degree,
and the number of vertices, of a graph:

I Problem 3. Input: A seed vertex s ∈ V in graph G = 〈V,E〉. Output: an integer n̄ such
that P (|n̄− |V || ≤ ε) ≥ 1− δ.

By a result of Katzir [18], we know by taking max{davg, 1/
√
|Π2|2}ε−2δ−1 samples from

the stationary distribution we are capable to obtain an ε approximation with probability
at least 1 − δ. To implement a sampling oracle using our neighborhood oracle, we
can run a Markov chain for tmix log(ε−1) steps. Thus, the runtime will be
tmix max{davg, 1/

√
|Π1|2} log(ε−1)ε−2δ−1, which for constant ε and δ is

tmix max{davg, 1/
√
|Π1|2}. Theorem 4 provides a lower bound for a constant approxim-

ation which is as mentioned before tight when the variance of the degree distribution is
greater than n.
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I Problem 4. Input: A seed vertex s ∈ V in graph G = 〈V,E〉. Output: an integer d̄ such
that P

(
|d̄− davg | ≤ ε

)
≥ 1− δ.

Normalize the function deg : VG → R by dividing its value to D. By Theorem 2, Al-
gorithm 1 provides an ε approximation with probability at least 1 − δ after downloading
O(D2 tmix davg ε

−2 log(δ−1)) many vertices – that is, O(D2 tmix davg) many vertices for con-
stant ε and δ. With Theorem 4, we provide a lower bound for a constant approximation.

I Theorem 4. For any arbitrary n, d = ω(logn), and t = o( nd2 ) there exists a distribution
of graphs G = 〈V,E〉 with mixing time Θ(t), E(|V |) = Θ(n), davg = Ev∈V (degv) = Θ(d)
such that, for arbitrary constants c′ > 1 and large enough c, any algorithm that queries
at most davg tmix /c vertices of the graph, and that outputs an estimation n̄ of n = |V |
(resp., an estimation d̄ of davg = 2|E|/n), has to satisfy max{n̄/n, n/n̄} > c′ (resp.,
max{d̄/davg,davg /d̄} > c′), with probability at least 99

100 −
202
c−1 .

3 Proof Strategy of the Main Theorems

The proof of our Lower Bounds will be based on the following high-level strategy. Nature
will first randomly sample a graph H according to some distribution; with probability 1/2,
H will be the unknown graph traversed by the algorithm; with the remaining probability, the
algorithm will traverse a graph G which is obtained from H by means of a transformation
that we call the decoration construction. We will prove that, for the right choice of the
distribution over H, an algorithm that performs too few queries to the unknown graph will
be unable to tell with probability more than 1/2 + o(1), whether the unknown graph it is
traversing is distributed like H, or like G.

The decoration construction will guarantee that the properties (e.g., number of nodes,
average degree, or even the values assigned by the bounded function to the vertices) will
be quite far from each other in H and G. This will make it impossible for the algorithm to
get good approximation of any of those properties – we will also show it impossible for the
algorithm to return a close to uniform-at-random vertex (essentially because the decoration
construction will add a linear number of nodes to H, and the algorithm will be unable to
visit any of them with the given budget of queries.)

We present a roadmap of our proof strategy here, and omit the detailed proofs in this
extended abstract. We start by describing the decoration construction which, given any graph
H, produces a graph G with similar mixing time and average degree, but with a linear number
of “hidden” new vertices. After presenting the definition for the decoration construction,
in Definition 6 we introduce a class of graphs to which we apply this construction. These
graphs’ mixing time and average degree can be set arbitrarily. Later, in Lemma 7 we prove
that if an algorithm, equipped only with the neighborhood oracle traverses a graph of this
type and queries few vertices of it, it will not be capable of finding any of its hidden vertices.
This is our main lemma from which Theorems 1, 3, and 4 can be concluded. We now proceed
to the formal definitions:

I Definition 5 (The Decoration Construction). Let H = 〈V,E〉 be an arbitrary graph. We
construct G from H in the following way:

Take t := tmix(H), and mark any vertex v ∈ V with probability 1/t. For any marked
vertex v ∈ V , add a vertex v∗ and connect it to v via an edge. For a constant c1, attach
c1t− 1 new degree one vertices to v∗ – this makes the degree of v∗ equal to c1t. Let this new
graph be G. We denote the set of marked vertices by marked and the set G \H by starred.
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By saying a vertex v is starred (marked) we mean v ∈ starred (v ∈ marked), and to
indicate their numbers we use a preceding #. We call the starred vertices with degree c1t
the starred centers. Note that to any starred vertex we can associate a unique marked
vertex.

We now introduce the random graph to which we will apply the decoration construction,
and which will be at the heart of our lower bounds.

I Definition 6. We define the graph Hn,d,ψ as follows: given arbitrary parameters n, d, and
0 < ψ < 1, take two Erdös-Rényi graphs H1 = 〈VH1 , E〉 and H2 = 〈VH2 , E〉 with parameters
〈n, d/n〉. Choose ψn vertices uniformly at random from VH1 namely v1, v2, . . . vψn, and then
ψn vertices uniformly at random from VH2 namely u1, u2, . . . nψn. Select a uniformly random
permutation σ of ψn numbers and put an edge between the vertices vi and uσ(i) for each
1 ≤ i ≤ ψn.

The decoration construction does not change the mixing time of H drastically, in fact,
tmix(H) ≤ tmix(G) ≤ c tmix(H) for some constant c. The Hn,d,ψs are useful in our proofs,
for the reason that, by changing the parameters n, d, and ψ in certain ranges these graphs
acquire arbitrary tmix and davg, yet their behaviour remains similar to Erdös-Rényi random
graphs.

We now present the following lemma (proof ommited), which states if few queries are
performed by an algorithm, then the probability of finding the starred vertices is tiny.
Then, we conclude our main theorems; Theorem 1, 3, and 4:

I Lemma 7. Consider arbitrary n, d > ω(logn), Ω(logn) < t < o(n/d2), so that t/d = Ω(1),
take G to be the graph obtained from the decoration construction applied to Hn,d,d/t12. We
have, tmix(G) = Θ(t) and davg = Θ(d).

If, instead, t = O(logn/ log d), and d = Θ(logd n), take G to be the decorated version of
an Erdös-Rényi graph with parameters 〈n, d/n〉.

Then,
if an algorithm traverses the edges of G and queries at most td/c vertices of G; c being a
constant, then with probability at least 99/100− 202/(c− 1) there is no starred vertex
among its queried vertices.
If an algorithm traverses the edges of G and queries q ≤ n

cd vertices of G; c being a
constant, then with probability 1− o(1) the expected number of starred centers which
have been queried is less than 8c

c−1
(
q
dt

)
.

We can finally prove our three main Theorems:
* Proof of Theorem 1. Consider the two graphs G1 and G2, G1 being the graph of Lemma

7 with c1 = 1 and G2 the same graph without the starred vertices (the graph before
the decoration construction). Any algorithm which queries less than tmix davg /c vertices
of G1 or G2 will fail to distinguish between them with probability at least 1

100 + 202
c−1 . Let

Π0
Gi be the uniform distribution on vertices of Gi; i = 1, 2. In G1 with high probability we

have at least 2|VG1 | starred vertices.
Part 1. Note that |Π0

G1
,Π0
G2
|1 ≥ 1/4. Thus, if the natures selects G1, any algorithm

A which aims to outputs Π0
G1

will return a distribution ΠA satisfying |Π0
G1
,ΠA|1 ≥

1/4− 1
100 −

202
c−1 .

12 If c > d/t ≥ 1, for constant c, let ψ = d/tc.
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Part 2. For ζ > 1, let Πζ
Gi be the probability distribution on vertices of Gi; i = 1, 2

weighing each vertex v proportional to deg(v)ζ . If we take a sample from distribution
Πζ
G1

it will be starred vertex with probability (tζ−1 + 1)/2(tζ−1 + dζ + 1). Thus, for
tζ−1 ≥ dζ we have, |Πζ

G1
,Πζ
A|1 ≥ 1/4. Thus, |Π0

G1
,ΠA|1 ≥ 24/100− 202/c. �

* Proof of Theorem 4. Take the two graphs G1 and G2, G1 being the graph of Lemma 7,
and G2 the same graph without the starred vertices (the graph before the decoration
construction). We have: E(|VG2 |) = n, E(|VG1 |) = (1 + c1)n, and E(davg(G2)|) = d,
E(| davg(G1)|) = d+c1

1+c1
. �

* Proof of Theorem 3. Take c1 = 1, and let G = 〈VG , EG〉 be the graph constructed as in
Lemma 7. Consider two functions F1 : VG → [0, 1] and F2 : VG → [0, 1]. Let the function
∀v ∈ VG \ starred,F1(v) = F2(v) = 0. For any v ∈ starred we set F1(v) = 1 with
probability 1/2 + ε and F2(v) = 1 with probability 1/2− ε.
Note that |F1 − F2|1 ≥ ε, and by employing the following classical result [6], with
probability 1− o(1) we will not be able to distinguish between F1 and F2.
I Lemma 8 ([6]). Consider a

( 1
2 − ε,

1
2 + ε

)
-biased coin (that is, a coin whose most likely

outcome has probability 1
2 + ε. To determine with probability at least 1− δ what is the

most likely outcome of the coin, one needs at least Ω(1/ε2 log(1/δ)) coin flips.
By Lemma 7 with probability 1− o(1), the expected number of starred centers will be

8q
dt(1−o(1)) . Let queried be the set of queried vertices by the algorithm. If q = ω(dt)

P (# queried ∩ starred center ≥ 48q/dt) ≤ e−16q/dt ≤ o(1).

Therefore, since in order to distinguish between F1 and F2 with probability at least
1 − δ, we need at to see at least Ω

(
log(1/δ)(1/ε2)

)
starred centers, or equivalently

Ω
(
dt log(1/δ)(1/ε2)

)
queries. �

4 Conclusion

In this paper we have studied the complexity of computing a number of functions of online
graphs, such as online social networks, in terms of their average degree and their mixing time.
We have obtained a tight bound for the problem of computing the average of a bounded
function on the vertices of the graph (e.g., the average star rating of a movie), and a near-tight
bound for the problem of sampling a close-to uniform-at-random vertex (many algorithms in
the literature assume to have access to such an oracle), and lower bounds for the problems
of estimating the order, and the average degree of the graphs.

It will be interesting to pursue the study of these online graphs problems in order to bridge
the gap between theoretical algorithms, and applied ones. Besides the obvious questions
(what are the optimal bounds for estimating the order and the average degree of a graph?),
an interesting open problem is to understand which structural properties of online social
networks could be used by algorithms to improve the complexity of the various problems
that practitioners have been considering.
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