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Abstract
Gathering a group of mobile agents is a fundamental task in the field of distributed and mobile
systems. This can be made drastically more difficult to achieve when some agents are subject
to faults, especially the Byzantine ones that are known as being the worst faults to handle. In
this paper we study, from a deterministic point of view, the task of Byzantine gathering in a
network modeled as a graph. In other words, despite the presence of Byzantine agents, all the
other (good) agents, starting from possibly different nodes and applying the same deterministic
algorithm, have to meet at the same node in finite time and stop moving. An adversary chooses
the initial nodes of the agents (the number of agents may be larger than the number of nodes)
and assigns a different positive integer (called label) to each of them. Initially, each agent knows
its label. The agents move in synchronous rounds and can communicate with each other only
when located at the same node. Within the team, f of the agents are Byzantine. A Byzantine
agent acts in an unpredictable and arbitrary way. For example, it can choose an arbitrary port
when it moves, can convey arbitrary information to other agents and can change its label in every
round, in particular by forging the label of another agent or by creating a completely new one.

Besides its label, which corresponds to a local knowledge, an agent is assigned some global
knowledge denoted by GK that is common to all agents. In literature, the Byzantine gathering
problem has been analyzed in arbitrary n-node graphs by considering the scenario when GK =
(n, f) and the scenario when GK = f . In the first (resp. second) scenario, it has been shown that
the minimum number of good agents guaranteeing deterministic gathering of all of them is f + 1
(resp. f+2). However, for both these scenarios, all the existing deterministic algorithms, whether
or not they are optimal in terms of required number of good agents, have the major disadvantage
of having a time complexity that is exponential in n and L, where L is the value of the largest
label belonging to a good agent. In this paper, we seek to design a deterministic solution for
Byzantine gathering that makes a concession on the proportion of Byzantine agents within the
team, but that offers a significantly lower complexity. We also seek to use a global knowledge
whose the length of the binary representation (that we also call size) is small. In this respect,
assuming that the agents are in a strong team i.e., a team in which the number of good agents is
at least some prescribed value that is quadratic in f , we give positive and negative results. On
the positive side, we show an algorithm that solves Byzantine gathering with all strong teams in
all graphs of size at most n, for any integers n and f , in a time polynomial in n and the length
|lmin| of the binary representation of the smallest label of a good agent. The algorithm works
using a global knowledge of size O(log log logn), which is of optimal order of magnitude in our
context to reach a time complexity that is polynomial in n and |lmin|. Indeed, on the negative
side, we show that there is no deterministic algorithm solving Byzantine gathering with all strong
teams, in all graphs of size at most n, in a time polynomial in n and |lmin| and using a global
knowledge of size o(log log logn).
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1 Introduction

1.1 Context
Gathering a group of mobile agents is a basic problem that has been widely studied in
literature dedicated to mobile and distributed systems. One of the main reasons for this
popularity stems from the fact that this task turns out to be an essential prerequisite to
achieve more complex cooperative works. In other words, getting fundamental results on the
problem of gathering implies de facto getting fundamental results on a large set of problems
whose resolution needs to use gathering as a building block.

The scale-up when considering numerous agents is inevitably tied to the occurrence of
faults among them, the most emblematic of which is the Byzantine one. Byzantine faults are
very interesting under multiple aspects, especially because the Byzantine case is the most
general one, as it subsumes all the others kind of faults. In fact, in the field of fault tolerance
they are considered as the worst faults that can occur.

In this paper, we consider the problem of gathering in a deterministic way in a network
modeled as a graph, wherein some agents are Byzantine. A Byzantine agent acts in an
unpredictable and arbitrary manner. For instance it may choose to never stop or to never
move. It may also convey arbitrary information to the other agents, impersonate the identity
of another agent, and so on. In such a context, gathering is very challenging, and so far
the power of such Byzantine agents has been offset by a huge complexity when solving this
problem. In what follows, we seek a solution allowing to withstand Byzantine agents while
keeping a “reasonable” complexity.

1.2 Model and problem
A team of mobile agents are initially placed by an adversary at arbitrary nodes of a network
modeled as a finite, connected, undirected graph G = (V,E). We assume that |V | ≤ n.
Several agents may initially share the same node and the size of the team may be larger than
n. Two assumptions are made about the labelling of the two main components of the graph
that are nodes and edges. The first assumption is that nodes are anonymous i.e., they do
not have any kind of labels or identifiers allowing them to be distinguished from one another.
The second assumption is that edges incident to a node v are locally ordered with a fixed port
numbering ranging from 0 to deg(v)− 1 where deg(v) is the degree of v. Therefore, each edge
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has exactly two port numbers, one for each of both nodes it links. The port numbering is not
supposed to be consistent: a given edge (u, v) ∈ E may be the i-th edge of u but the j-th
edge of v, where i 6= j. These two assumptions are not fortuitous. The primary motivation
of the first one is that if each node could be identified by a label, gathering would become
quite easy to solve as it would be tantamount to explore the graph (via e.g. a breadth-first
search) and then meet in the node having the smallest label. While the first assumption is
made so as to avoid making the problem trivial, the second assumption is made in order
to avoid making the problem impossible to solve. Indeed, in the absence of a way allowing
an agent to distinguish locally the edges incident to a node, gathering could be proven as
impossible to solve deterministically in view of the fact that some agents could be precluded
from traversing some edges and visit some parts of the graph.

Time is discretized into an infinite sequence of rounds. In each round, every agent, which
has been previously woken up (this notion is detailed in the next paragraph), is allowed to
stay in place at its current node or to traverse an edge according to a deterministic algorithm.
The algorithm is the same for all agents: only the input, whose nature is specified further in
the subsection, varies among agents.

Before being woken up, an agent is said to be dormant. A dormant agent may be woken
up only in two different ways: either by the adversary that wakes some of the agents at
possibly different rounds, or as soon as a non-dormant agent is at the starting node of the
dormant agent. We assume that the adversary wakes up at least one agent. Note that, when
the adversary chooses to wake up in round r a dormant agent located at a node v, all the
dormant agents that are at node v wake up in round r.

When an agent is woken up in a round r, it is told the degree of its starting node. As
mentioned above, in each round r′ ≥ r, the executed algorithm can ask the agent to stay idle
or to traverse an edge. In the latter case, this takes the following form: the algorithm asks the
agent, located at node u, to traverse the edge having port number i, where 0 ≤ i ≤ deg(u)−1.
Let us denote by (u, v) ∈ E this traversed edge. In round r′ + 1, the agent enters node v: it
then learns the degree deg(v) as well as the local port number j of (u, v) at node v (recall
that in general i 6= j). An agent cannot leave any kind of tokens or markers at the nodes it
visits or the edges it traverses.

In the beginning, the adversary also assigns a different positive integer (called label)
to each agent. Each agent knows its label but does not know a priori the labels of the
other agents (except if some or all of them are inserted in the global knowledge GK that is
introduced below). When several agents are at the same node v in the same round t, they
see, for each agent x at node v, the label of agent x and all information it wants to share
with the others in round t. This transmission of information is done in a “shouting” mode
in one round: all the transmitted information by all agents at node v in round t becomes
common knowledge for agents that are currently at node v in round t. On the other hand
when two agents are not at the same node in the same round they cannot see or talk to each
other: in particular, two agents traversing simultaneously the same edge but in opposite
directions, and thus crossing each other on the same edge, do not notice this fact. In every
round, the input of the algorithm executed by an agent a is made up of the label of agent a,
the up-to-date memory of what agent a has seen and learnt since its waking up and some
global knowledge denoted by GK. Parameter GK is a piece of information that is initially
given to all agents and common to all of them (i.e., GK is the same for all agents): its nature
is precised at the end of this subsection. Note that in the absence of a way of distinguishing
the agents, the gathering problem would have no deterministic solution in some graphs,
regardless of the nature of GK. This is especially the case in a ring in which at each node the
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edge going clockwise has port number 0 and the edge going anti-clockwise has port 1: if all
agents are woken up in the same round and start from different nodes, they will always have
the same input and will always follow the same deterministic rules leading to a situation
where the agents will always be at distinct nodes no matter what they do.

Within the team, it is assumed that f of the agents are Byzantine. A Byzantine agent
has a high capacity of nuisance: it can choose an arbitrary port when it moves, can convey
arbitrary information to other agents and can change its label in every round, in particular
by forging the label of another agent or by creating a completely new one. All the agents
that are not Byzantine are called good. We consider the task of f -Byzantine gathering which
is stated as follows. The adversary wakes up at least one good agent and all good agents
must eventually be in the same node in the same round, simultaneously declare termination
and stop, despite the fact there are f Byzantine agents. Regarding this task, it is worth
mentioning that we cannot require the Byzantine agents to cooperate as they may always
refuse to be with some agents. Thus, gathering all good agents with termination is the
strongest requirement we can make in such a context. The time complexity of an algorithm
solving f -Byzantine gathering is the number of rounds counted from the start of the earliest
good agent until the task is accomplished.

We end this subsection by explaining what we mean by global knowledge, that can be
viewed as a kind of advice given to all agents. Following the paradigm of algorithms with
advice [1, 25, 38, 9, 20, 19, 33], GK is actually a piece of information that is initially provided
to the agents at the start, by an oracle knowing the initial instance of the problem. By
instance, we precisely mean: the entire graph with its port numbering, the initial positions of
the agents with their labels, the f agents that are Byzantine, and for each agent the round,
if any, when the adversary wakes it up in case it has not been woken up before by another
agent. So, for example, GK might correspond to the size of the network, the number of
Byzantine agents, or a complete map of the network, etc. As mentionned earlier, we assume
that GK is the same for all agents. The size of GK is the length of its binary representation.

1.3 Related works
When reviewing the chronology of the works that are related to the gathering problem, it
can be seen that this problem has been first studied in the particular case in which the team
is made of exactly two agents. Under such a limitation, gathering is generally referred to as
rendezvous. From the first mention of the rendezvous problem in [36], this problem and its
generalization, gathering, have been extensively studied in a great variety of ways. Indeed,
there is a lot of alternatives for the combinations we can make when addressing the problem,
e.g., by playing on the environment in which the agents are supposed to evolve, the way of
applying the sequences of instructions (i.e., deterministic or randomized) or the ability to
leave some traces in the visited locations, etc. In this paper, we are naturally closer to the
research works that are related to deterministic gathering in networks modeled as graphs.
Hence, we will mostly dwell on this scenario in the rest of this subsection. However, for the
curious reader wishing to consider the matter in greater depth, we invite him to consult
[8, 2, 24] that address the problem in the plane via various scenarios, especially in a system
affected by the occurrence of faults or inaccuracies for the last two references. Regarding
randomized rendezvous, a good starting point is to go through [3, 4, 28].

Now, let us focus on the area that concerns the present paper most directly, namely
deterministic rendezvous and/or gathering in graphs. In most papers on rendezvous in
networks, a synchronous scenario was assumed, in which agents navigate in the network in
synchronous rounds. Under this context, a lot of effort has been dedicated to the study of
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the feasibility and to the time (i.e., number of rounds) required to achieve the task, when
feasible. For instance, in [16] the authors show a rendezvous algorithm polynomial in the size
of the graph, in the length of the shorter label and in the delay between the starting time of
the agents. In [26] and [37] solutions are given for rendezvous, which are polynomial in the
first two of these parameters and independent of the delay. While these algorithms ensure
rendezvous in polynomial time (i.e., a polynomial number of rounds), they also ensure it at
polynomial cost where the cost corresponds here to the total number of edge traversals made
by both agents until meeting. Indeed, since each agent can make at most one edge traversal
per round, a polynomial time always implies a polynomial cost. However, the reciprocal
may be not true, for instance when using an algorithm relying on a technique similar to
“coding by silence” in the time-slice algorithm for leader election [29]: “most of the time”
both agents stay idle, in order to guarantee that agents rarely move simultaneously. Thus
these parameters of cost and time are not always linked to each other. This was recently
highlighted in [32] where the authors studied the tradeoffs between cost and time for the
deterministic rendezvous problem. Some other efforts have been also dedicated to analyse
the impact on time complexity of rendezvous when in every round the agents are brought
with some pieces of information by making a query to some device or some oracle, see, e.g.,
[14, 31]. Along with the works aiming at optimizing the parameters of time and/or cost
of rendezvous, some other works have examined the amount of memory that is required to
achieve deterministic rendezvous e.g., in [21, 22] for tree networks and in [12] for general
networks.

Apart from the synchronous scenario, the academic literature also contains several studies
focusing on a scenario in which the agents move at constant speed, which are different from
each other, or even move asynchronously: in this latter case the speed of agents may then
vary and is controlled by the adversary. For more details about rendezvous under such a
context, the reader is referred to [30, 13, 23, 18, 27] for rendezvous in finite graphs and [5, 10]
for rendezvous in infinite grids.

As stated in the previous subsection, our paper is also related to the field of fault tolerance
since some agents may be prone to Byzantine faults. First introduced in [34], a Byzantine
fault is an arbitrary fault occurring in an unpredictable way during the execution of a
protocol. Due to its arbitrary nature, such a fault is considered as the worst fault that can
occur. Byzantine faults have been extensively studied for “classical” networks i.e., in which
the entities are fixed nodes of the graph (cf., e.g., the book [29] or the survey [6]). To a lesser
extend, the occurrence of Byzantine faults has been also studied in the context of mobile
entities evolving on a one-dimensional or two-dimensional space, cf. [2, 15, 11].

Gathering in arbitrary graphs in presence of many Byzantine agents was considered in
[17, 7]. Actually, our model is borrowed from both these papers, and thus they are naturally
the closest works to ours. In [17], the problem is introduced via the following question:
what is the minimum numberM of good agents that guarantees f-Byzantine gathering in all
graphs of size n? In [17], the authors provided several answers to this problem by firstly
considering a relaxed variant, in which the Byzantine agents cannot lie about their labels, and
then by considering a harsher form (the same as in our present paper) in which Byzantine
agents can lie about their identities. For the relaxed variant, it has been proven that the
minimum numberM of good agents that guarantees f -Byzantine gathering is precisely 1
when GK = (n, f) and f + 2 when GK is reduced to f only. The proof that both these
values are enough, relies on polynomial algorithms using a mechanism of blacklists that are,
informally speaking, lists of labels corresponding to agents having exhibited an “inconsistent”
behavior. Of course, such blacklists cannot be used when the Byzantine agents can change
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their labels and in particular steal the identities of good agents. Still in [17], the authors
give for the harsher form of f -byzantine gathering a lower bound of f + 1 (resp. f + 2) on
M and a deterministic gathering algorithm requiring at least 2f + 1 (resp. 4f + 2) good
agents, when GK = (n, f) (resp. GK = f). Both these algorithms have a huge complexity
as they are exponential in n and L, where L is the largest label of a good agent evolving
in the graph. Some advances are made in [7], via the design of an algorithm for the case
GK = (n, f) (resp. GK = f) that works with a number of good agents that perfectly matches
the lower bound of f + 1 (resp. f + 2) shown in [17]. However, these algorithms also suffer
from a complexity that is exponential in n and L.

1.4 Our results
As mentioned just above, the existing deterministic algorithms dedicated to f -Byzantine
gathering all have the major disadvantage of having a time complexity that is exponential
in n and L, when Byzantine agents are allowed to change their labels. Actually, these
solutions are all based on a common strategy that consists in enumerating the possible initial
configurations, and successively testing them one by one. Once the testing reaches the correct
initial configuration, the gathering can be achieved. However, in order to get a significantly
more efficient algorithm, such a costly strategy must be abandoned in favor of a completely
new one.

In this paper, we seek to design a deterministic solution for Byzantine gathering that
makes a concession on the proportion of Byzantine agents within the team, but that offers a
significantly lower complexity. We also seek to use a global knowledge whose the length of
the binary representation (that we also call size) is small. In this respect, assuming that the
agents are in a strong team i.e., a team in which the number of good agents is at least the
quadratic value 5f2 + 6f + 2, we give positive and negative results. On the positive side, we
show an algorithm that solves f -Byzantine gathering with all strong teams in all graphs of
size at most n, for any integers n and f , in a time polynomial in n and |lmin|. The algorithm
works using a global knowledge of size O(log log logn), which is of optimal order of magnitude
in our context to reach a time complexity that is polynomial in n and |lmin|. Indeed, on the
negative side, we show that there is no deterministic algorithm solving f -Byzantine gathering
with all strong teams, in all graphs of size at most n, in a time polynomial in n and |lmin|
and using a global knowledge of size o(log log logn).

1.5 Roadmap
The next section is dedicated to the presentation of some definitions and routines that we
need in the rest of this paper. In Section 3, we give a description of our main algorithm
corresponding to our positive result. In Section 4, we prove our negative result. Finally we
make some concluding remarks in Section 5. Note that due to the lack of space, several
details and proofs are omitted but will appear in the journal version of the paper.

2 Preliminaries

Throughout the paper, log denotes the binary logarithm. The length of the binary represent-
ation of the smallest label of a good agent in a given team will be denoted by |lmin|.

In this paper, we will use a procedure whose aim is graph exploration, i.e., visiting all
nodes of the graph. This procedure, based on universal exploration sequences (UXS), is a
corollary of the result of Reingold [35]. Given any positive integer n, this procedure, called
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EXPLO(n), allows the executing agent to traverse all nodes of any graph of size at most n,
starting from any node of this graph, using a number of edge traversals that is polynomial in
n. We denote by Xn the execution time of procedure EXPLO with parameter n.

Besides this exploration procedure, we will use a label transformation derived from [16].
Let `B be the label of an agent B and b1 . . . bc its binary representation with c its length.
The binary representation of the corresponding transformed label `∗B is
10b1b1 . . . bcbc0110b1b1 . . . bcbc01. This transformation is made to ensure the following property
on which the algorithm of Section 3 partly relies.

I Proposition 1. Let `B and `X be two labels such that `B < `X . Let b∗1b∗2 . . . b∗4c+8 and
x∗1x

∗
2 . . . x

∗
4y+8 be the respective binary representations of `∗B and `∗X , with c and y the lengths

of the binary representations of `B and `X respectively. There exist two positive integers
i ≤ 2c+ 4 and 2c+ 4 < j ≤ 4c+ 8 such that b∗i 6= x∗i and b∗j 6= x∗j .

To establish our main result that is presented in Section 3, we needed to design two
building blocks, namely procedures GROUP and MERGE. These procedures are not trivial, but
due to space restrictions we only give here the two associated theorems.

The first building block called GROUP takes as input three integers T , n and bin such
that bin ∈ {0; 1}. Let x be an integer that is at least f + 2. Roughly speaking, sub-
routine GROUP(T , n, bin) ensures that (x − f) good agents finish the execution of the sub-
routine at the same round and in the same node in a graph of size at most n provided some
conditions given in the next theorem are satisfied.

I Theorem 1. Consider a team made of at least (x− 1)(f + 1) + 1 good agents in a graph of
size at most n, where x ≥ f + 2. Let ∆ be the first round when a good agent starts executing
GROUP(T , n, bin). If all good agents start executing GROUP(T , n, bin) by round ∆ +T − 1, and
parameter bin is 0 (resp. 1) for at least one good agent, then we have the following property.
After at most a time polynomial in n and T from ∆, at least (x− f) good agents finish the
execution of GROUP at the same round and in the same node.

The second building block called MERGE takes as input two integers n and T . Sub-
routine MERGE(T , n) allows all the good agents to finish their executions of the subroutine in
the same node and at the same round, provided some conditions given in the next theorem
are satisfied.

I Theorem 2. Consider a team of agents in a graph of size at most n. Let ∆ be the first
round when a good agent starts executing MERGE(T , n). If every good agent starts executing
MERGE(T , n) by round ∆+T −1 and among them at least 4f+2 start the execution in the same
node and at the same round, then all good agents finish their executions of procedure MERGE
in the same node and at the same round r < ∆ + 4T + 6Xn − 1.

3 The positive result

In this section we present an algorithm, called GATHER, that solves f -Byzantine gathering
with strong teams in all graphs of size at most n, assuming that GK = dlog logne: note that
such a global knowledge can be coded using O(log log logn) bits. The algorithm works in a
time polynomial in n and |lmin|, and it makes use of the building blocks introduced in the
section Preliminaries.
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In the sequel, we denote by Gn the maximal time complexity of procedure GROUP(Xn, n, ρ)
with ρ ∈ {0; 1} in all graphs of size at most n. We also denote by Mn the maximal time
complexity of procedure MERGE(Xn + Gn, n) in all graphs of size at most n. Note that
according to Theorems 1 and 2, Gn and Mn exist and are polynomials in n.

In order to better describe the high level idea of our solution, let us first consider a
situation that would be ideal to solve Byzantine gathering with a strong team and that would
be as follows. Instead of assigning distinct labels to all agents, the adversary assigns to each
of them just one bit ρ ∈ {0; 1}, so that there are at least one good agent for which ρ = 0
and at least one good agent for which ρ = 1. Such a situation would clearly constitute an
infringement of our model, but would allow the simple protocol described in Algorithm 1 to
solve the problem in a time that is polynomial in n when GK = dlog logne. Let us briefly
explain why.

Algorithm 1 Algorithm executed by every good agent in the ideal situation.
1: Let ρ be the bit assigned to me by the adversary
2: Execute A(ρ)
3: Declare that gathering is achieved

Algorithm 2 A(ρ) executed by a good agent.

1: N ← 2(2GK)

2: Execute EXPLO(N)
3: Execute GROUP(XN , N, ρ)
4: Execute MERGE(XN +GN , N)

Algorithm 1 consists mainly of a call to A(ρ) that is given by Algorithm 2. Since
GK = dlog logne, we know that at line 1 of Algorithm 2, N is a polynomial upperbound on
n, and the execution of EXPLO(N) in a call to A(ρ) by the first woken-up good agent permits
to visit every node of the graph and to wake up all dormant agents. As a result, the delay
between the starting times of GROUP(XN , N, ρ) by any two good agents of the strong team is
at most XN . According to the properties of procedure GROUP (cf. Theorem 1) and the fact
that the number of good agents is at least 5f2 + 6f + 2 = ((5f + 2) − 1)(f + 1) + 1, this
guarantees in turn that the delay between the starting times of MERGE(XN +GN , N) by any
two good agents is at most XN +GN , and at least 4f + 2 good agents start this procedure
at the same time in the same node. Hence, in view of the properties of procedure MERGE (cf.
Theorem 2), all good agents declare gathering is achieved at the same time in the same node
after a polynomial number of rounds (w.r.t n) since the wake-up time of the earliest good
agent.

Unfortunately, we are not in such an ideal situation. At first glance, one might argue
that it is not really a problem because all agents are assigned distinct labels that are, after
all, distinct binary strings. Thus, by ensuring that each good agent applies on its label the
transformation given in Section 2, and then processes one by one each bit bi of its transformed
label by executing A(bi), we can guarantee (with some minor technical adjustments) that
the gathering of all good agents is done in time polynomial in n and |lmin|. Indeed, in view
of Proposition 1 the conditions of the ideal situation are recreated when the agents process
their j-th bits for some j ≤ 2|lmin|+ 4. Unfortunately it is not enough for our purpose. In
fact, in the ideal situation, there is just one bit to process: thus, de facto every good agent
knows that every good agent knows that gathering will be done at the end of this single
process. However, it is no longer the case when the agents have to deal with sequences of bit
processes: the good agents have a priori no mean to detect collectively and simultaneously
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when they are gathered. It should be noted that if the agents knew f , we could use an
existing algorithmic component (cf. [17]) allowing to solve f -Byzantine gathering if at some
point some good agents detect the presence of a group of at least 2f +1 agents in the network.
Such a group is necessarily constructed during the sequence of bit processes given above, but
again, it cannot be a priori detected as the agents do not know f or an upperbound on it.
Hence, in our goal to optimize the amount of global knowledge, we need to implement a new
strategy to allow the good agents to declare gathering achieved jointly and simultaneously.
It is the purpose of the rest of this subsection.

To get all good agents declare simultaneously the gathering achieved, we want to reach a
round in which every good agent knows that every good agent knows that gathering is done.
So, let us return to our sequence of bit processes. As mentioned above, when a good agent
has finished to read the first half of its transformed label – call such an agent experienced
– it has the guarantee that the gathering of all good agents has been done at least once.
Hence, when an experienced agent starts to process the second half of its transformed label,
it actually knows an approximation of the number of good agents with a margin of error of
f at the most. For the sake of convenience, let us consider that an experienced agent knows
the exact number µ of good agents: the general case adds a slight level of complexity that
is unnecessary to understand the intuition. So, each time an experienced agent completes
the process of a bit in the second half of its transformed label, it is in a node containing
less than µ agents or at least µ agents. In the first case, the experienced agent is sure that
the gathering is not achieved. In the second case, the experienced agent is in doubt. In our
solution, we build on this doubt. How do we do that? So far, each bit process was just made
of one call to procedure A: now at the end of each bit process, we add a waiting period of
some prescribed length, followed by an extra step that consists in applying A again, but
this time according to the following rule. If during the waiting period it has just done, an
agent X was in a node containing, for a sufficiently long period, an agent pretending to be
experienced and in doubt (this agent may be X itself), then agent X is said to be optimistic
and the second step corresponds to the execution of A(0). Otherwise, agent X is said to be
pessimistic and the second step corresponds to the execution of A(1).

If at least one good agent is optimistic within a given second step, then the gathering of
all good agents is done at the end of this step. Indeed, through similar arguments of partition
to those used for the ideal situation, we can show it is the case when at least another agent is
pessimistic. However, it is also, more curiously, the case when there is no pessimistic agents
at all. This is due in part to the fact that two good experienced agents cannot have been
in doubt in two distinct nodes during the previous waiting period (otherwise, we would get
a contradiction with the definition of µ). Thus, all good agents start A(0) from at most
f + 1 distinct nodes (as the Byzantine agents can mislead the good agents in at most f
distinct nodes during the waiting period), which implies by the pigeonhole principle that at
least 4f + 2 good agents start it from the same node. Combined with some other technical
arguments, we can show that the conditions of Theorem 2 are fulfilled when the agents
execute MERGE at the end of A(0), thereby guaranteeing again gathering of all good agents.

As a result, the addition of an extra step to each bit process gives us the following
interesting property: when a good agent is optimistic at the beginning of a second step, at
its end the gathering is done and, more importantly, the optimistic agent knows it because
its existence ensures it. Note that, it is a great progress, but unfortunately it is not yet
sufficient, particularly because the pessimistic agents do not have the same kind of guarantee.
The way of remedying this is to repeat once more the same kind of algorithmic ingredient
as above. More precisely, at the end of each second step, we add again a waiting period of
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some prescribed length, followed by a third step that consists in applying A in the following
manner. If during the waiting period it has just done, an agent X was in a node containing,
for a sufficiently long period, an agent pretending to be optimistic, then the third step
of agent X corresponds to the execution of A(0) and it becomes optimistic if it was not.
Otherwise, the third step of agent X corresponds to the execution of A(1) and the agent
stays pessimistic.

By doing so, we made a significant move forward. To understand why, we want to invite
the reader to reconsider the case when there is at least one good agent that is optimistic at
the beginning of a second step. As we have seen earlier, at the end of this second step, all
good agents are necessarily gathered and every optimistic agent knows it. In view of the
last changes made to our solution, when starting the third step, every good agent is then
optimistic. As explained above the absence of pessimistic good agent is very helpful, and
using here the same arguments, we are sure that when finishing the third step, all good agents
are gathered and every good agent knows it because all of them are optimistic. Actually, it
is even a little more subtle: the optimistic agents of the first generation (i.e., those that were
already optimistic when starting the second step) know that the gathering is done and know
that every good agent knows it. Concerning the optimistic agents of the second generation
(i.e., those that became optimistic only when starting the third step), they just know that
the gathering is done, but do not know whether the other agents know it or not. Recall that
to get all good agents declare simultaneously the gathering achieved, we want to reach a
round in which every good agent knows that every good agent knows that gathering is done.
We are very close to such a consensus. To reach it, at the end of a third step, the optimistic
agents of the first generation make themselves known to all agents. Note that if there were at
least f + 1 agents declaring to be optimistic agents of the first generation and if f was part
of GK, the consensus would be reached. Indeed, among the agents declaring to be optimistic
of the first generation, at least one is necessarily good and every agent can notice it: at this
point we can show that every good agent knows that every good agent knows that gathering
is done.

However, the agents do not know f . That being said, at the end of a third step, note
that an optimistic agent knowing that the gathering is done can compute an approximation
f̃ of the number of Byzantine agents. More precisely, if the number of agents gathered in its
node is p, the optimistic agent knows than the number of Byzantine agents cannot exceed
f̃ = max{y|(5y + 1)(y + 1) + 1 ≤ p} according to the definition of a strong team. Based on
this fact, we are saved. Indeed, our algorithm is designed in such a way that all good agents
correctly declare the gathering is achieved in the same round after having computed the same
approximation f̃ and noticed at least f̃ + 1 agents that claim being optimistic of the first
generation during a third step. We show that such an event necessarily occurs before any
agent finishes the (4|lmin|+8)-th bit process of its transformed label, which permits to obtain
the promised polynomial complexity. This is where our feat of strength is: obtaining such
a complexity with a small amount of global knowledge, while ensuring that the Byzantine
agents cannot confuse the good agents in any way. Actually, our algorithm is judiciously
orchestrated so that the only thing Byzantine agents can really do is just to accelerate the
resolution of the problem.

I Theorem 3. Assuming that GK = dlog logne, Algorithm GATHER solves f-Byzantine
gathering with every strong team in all graph of size at most n, and has a time complexity
that is polynomial in n and |lmin|.



S. Bouchard, Y. Dieudonné, and A. Lamani 147:11

4 The negative result

Algorithm GATHER introduced in the previous section uses the value dlog logne as global
knowledge, which can be coded with a binary string of size O(log log logn). In this section,
we show that, to solve Byzantine gathering with all strong teams, in all graph of size at most
n, in a time polynomial in n and |lmin|, the order of magnitude of the size of knowledge used
by our algorithm GATHER is optimal. More precisely, we have the following theorem.

I Theorem 4. There is no algorithm solving f-Byzantine gathering with all strong teams
for all f and in all graphs of size at most n, which is polynomial in n and |lmin| and which
uses a global knowledge of size o(log log logn).

Proof. Suppose by contradiction that the theorem is false. Hence, there exists an algorithm
Alg that solves f -Byzantine gathering with all strong teams for all f in all graphs of size
at most n, which is polynomial in n and |lmin| and which uses a global knowledge of size
o(log log logn). The proof relies on the construction of a family Fn (for any n ≥ 4) of initial
instances with strong teams such that for each of them the graph size is at most n. Our
goal is to prove that there is an instance from Fn for which algorithm Alg needs a global
knowledge whose size does not belong to o(log log logn), which would be a contradiction
with the definition of Alg. Let us first present the construction of an infinite sequence of
instances I = I0, I1, I2, . . . , Ii, . . . by induction on i. Instance I0 consists of an oriented ring
of 4 nodes (i.e., a ring in which at each node the edge going clockwise has port number 0
and the edge going anti-clockwise has port 1). In this ring, there is no Byzantine agent but
there are two good agents labeled 0 and 1 that are placed in diametrically opposed nodes.
All the agents in I0 wake up at the same time.

Now let us describe the construction of instance Ii with i ≥ 1 using some features of
instance Ii−1. Let c be the smallest constant integer such that the time complexity of
algorithm Alg is at most nc from every instance made of a graph of size at most n with
a strong team in which |lmin| = 1. Let µi−1 and ni−1 be respectively the total number of
agents in Ii−1 and the number of nodes in the graph of Ii−1. Instance Ii consists of an
oriented ring of (ni−1)4c nodes. In this ring an agent labeled 0 is placed on a node denoted by
v0. In each of both nodes that are adjacent to v0, (ni−1)c · µi−1 Byzantine agents are placed
(which gives a total of 2(ni−1)c · µi−1 Byzantine agents). On the node that is diametrically
opposed to v0, enough good agents are placed in order to have a strong team. The way of
assigning labels to all agents that are not at v0 is arbitrary but respects the condition that
initially no two agents share the same label. Finally, all the agents in Ii wake up at the same
time. This closes the description of the construction of I, for which we have the following
claim.

Claim 1. For any two instances Ij and Ij′ of I, algorithm Alg requires a distinct global
knowledge.

Proof of Claim 1. Assume by contradiction that the claim does not hold for two instances
Ij and Ij′ such that j < j′. Consider any execution EXj of algorithm Alg from Ij . According
to the construction of I, we know that every agent is woken up at the first round of EXj .
We denote by r1, r2, . . . , rk the sequence of consecutive rounds from the first round of EXj

to the round when all good agents declare that gathering is done. We also denote by Gi

the group of agents (possibly empty) that are with the good agent labeled 0 at round ri of
EXj . Now, using execution EXj , let us describe a possible execution EXj′ of algorithm Alg
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from Ij′ : this execution is designed in such a way that it will fool the good agent labeled
0 and will induce it into premature termination. According to the construction of I, all
the agents of Ij′ are woken up in the first round of Ij′ and all the good ones are executing
algorithm Alg. In the first round of EXj′ the agent labeled 0 is alone (as in the first round
of EXj). Then, for each i ∈ 2, . . . , k, the good agent labeled 0 in EXj′ meets a group of
|Gi| Byzantine agents whose the multiset of labels is exactly the same as the multiset of
labels belonging to the agents of Gi in the ith round of EXj . This is always possible in
view of the fact that for each i ∈ 1, . . . , k, |Gi| ≤ µj and the Byzantine agents of Ij′ can
choose to move by ensuring that in the ith round of EXj′ it remains at least (k − i) · µj

Byzantine agents in the node adjacent to the one occupied by the agent labeled 0 in the
clockwise direction (resp. anti-clockwise direction): indeed according to the construction of
Ij′ , in each of both nodes adjacent to the starting node of the good agent labeled 0, there
are initially (nj′−1)c · µj′−1 ≥ k · µj′−1 Byzantine agents, as k ≤ (nj)c ≤ (nj′−1)c. Finally,
if algorithm Alg prescribes some message exchange between agents during their meetings,
then the Byzantine agents in execution EXj′ give exactly the same information to 0, as the
agents with respective labels in execution EXj . Hence, from the point of view of agent 0,
the first k rounds of EXj look exactly identical to the first k rounds of EXj′ . This is due to
the actions of Byzantine agents, the fact that all nodes in Ij and Ij′ look identical, and also
because k ≤ (nj)c which implies that, regardless of the algorithm Alg, the agent labeled 0
cannot meet any good agent in the first k rounds of EXj′ as the distance between agent 0
and any other good agent is initially at least (nj′−1)4c

2 ≥ (nj)4c

2 . Therefore, in the kth round
of execution EXj′ , the good agent labeled 0 declares having met all good agents and stops,
which is incorrect, since it has not met any good agent. This contradicts the definition of
algorithm Alg and closes the proof of this claim.

Now, consider the largest x such that in each of the x+ 1 first instances I0, I1, . . . , Ix of
I, the graph size is at most n: these x+ 1 instances constitute family Fn. In view of the
construction of sequence I and the definition of x, we have 4((4c)x) ≤ n < 4((4c)x+1). Hence,
x belongs to Ω(log logn). However, according to Claim 1, the global knowledge given to
distinct instances in this family must be different. Hence, there is at least one instance of Fn

for which algorithm Alg uses a global knowledge of size Ω(log x): since x ∈ Ω(log logn), we
have Ω(log x) ∈ Ω(log log logn). This contradicts the fact that Alg uses a global knowledge
of size o(log log logn) and proves the theorem. J

5 Conclusion

In this paper, we designed the first polynomial algorithm w.r.t n and |lmin| allowing to gather
all good agents in presence of Byzantine ones that can act in an unpredictable way and lie
about their labels. Our algorithm works under the assumption that the team evolving in the
network is strong i.e., the number of good agents is roughly at least quadratic in the number
f of Byzantine agents. The required global knowledge GK is of size O(log log logn), which is
of optimal order of magnitude to get a time complexity that is polynomial in n and |lmin|
even with strong teams.

A natural open question that immediately comes to mind is to ask if we can do the same
by reducing the ratio between the good agents and the Byzantine agents. For example, could
it be still possible to solve the problem in polynomial time with a global knowledge of size
O(log log logn) if the number of good agents is at most o(f2)? Note that the answer to
this question may be negative but then may become positive with a little bit more global
knowledge. Actually, we can even easily show that the answer is true if the agents are initially
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given a complete map of the graph with all port numbers, and in which each node v is
associated to the list of all labels of the good agents initially occupying node v. However, the
size of GK is then huge as it belongs to Ω(n2). In fact, in this case what is really interesting
is to find the optimal size for GK. This observation allows us to conclude with the following
open problem that is more general and appealing.

What are the trade-offs among the ratio good/Byzantine agents, the time complexity and
the amount of global knowledge to solve f -Byzantine gathering?

Bringing an exhaustive and complete answer to this question appears to be really
challenging but would turn out to be a major step in our understanding of the problem.
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