
Resolving SINR Queries in a Dynamic Setting

Boris Aronov1

Department of Computer Science and Engineering, Tandon School of Engineering, New York
University, Brooklyn, NY 11201, USA
boris.aronov@nyu.edu

Gali Bar-On2

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
galibar@post.bgu.ac.il

Matthew J. Katz3

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
matya@cs.bgu.ac.il

Abstract
We consider a set of transmitters broadcasting simultaneously on the same frequency under the
SINR model. Transmission power may vary from one transmitter to another, and a signal’s
strength decreases (path loss or path attenuation) by some constant power α of the distance
traveled. Roughly, a receiver at a given location can hear a specific transmitter only if the
transmitter’s signal is stronger than the signal of all other transmitters, combined. An SINR
query is to determine whether a receiver at a given location can hear any transmitter, and if yes,
which one.

An approximate answer to an SINR query is such that one gets a definite yes or definite no,
when the ratio between the strongest signal and all other signals combined is well above or well
below the reception threshold, while the answer in the intermediate range is allowed to be either
yes or no.

We describe several compact data structures that support approximate SINR queries in the
plane in a dynamic context, i.e., where both queries and updates (insertion or deletion of a
transmitter) can be performed efficiently.
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145:2 Resolving SINR Queries in a Dynamic Setting

Table 1 Approximate SINR queries in a static setting – previous results. ϕ is an upper bound
on the fatness parameters of the reception regions and ϕ′ ≥ ϕ2.

Preprocessing Space Query

Uniform Power [5] O(n2/ε) (O(nε−2.5 log4 n log log n) [3]) O(n/ε) O(log n)

Non-Uniform Power [10] O(ϕ′

ε2 n2) O(ϕ′

ε2 n) O(ϕ

ε
log n)

1 Introduction

The Signal to Interference plus Noise Ratio (SINR) model attempts to predict whether a
wireless transmission is received successfully, in a setting consisting of multiple simultaneous
transmitters in the presence of background noise. Let S = {s1, . . . , sn} be a set of n
transmitters (points in the plane), and let pi denote the transmission power of si, for
i = 1, . . . , n. Let q be a receiver (a point in the plane). According to the SINR model, q
receives si if and only if

sinr (q, si) =
pi
|qsi|α∑

j 6=i
pj
|qsj |α +N

≥ β ,

where α ≥ 1 and β > 1 are constants, N is a constant representing the background noise,
and |ab| is the Euclidean distance between points a and b.

Observe that, since β > 1, q may receive at most one transmitter – the one “closest” to it,
namely, the one for which the value pi

|qsi|α is maximum, or, equivalently, 1
p

1/α
i

|qsi| is minimum.
Thus, one can partition the plane into n not necessarily connected reception regions Ri, one
per transmitter in S, plus an additional region R∅ consisting of all points where none of the
transmitters is received. This partition is called the SINR diagram of S [5].

In their seminal paper, Avin et al. [5] studied properties of SINR diagrams, focusing on
the uniform power version where p1 = p2 = · · · = pn. Their main result is that in this version
the reception regions Ri are convex and fat. In the non-uniform power version, on the other
hand, the reception regions are not necessarily connected, and their connected components
are not necessarily convex or fat. In fact, they may contain holes [10].

An SINR query is: Given a receiver q, find the sole transmitter s that may be received
by q and determine whether it is indeed received by q, i.e., whether or not sinr (q, s) ≥ β.
A natural question is how quickly can one answer an SINR query, following a preprocessing
stage in which data structures of total size nearly linear in n are constructed. However,
it seems unlikely that the answer is significantly sub-linear (as the degree of the polynomials
describing region boundaries is high), so the research has focused on preprocessing to facilitate
efficient approximate SINR queries.

The approach of such research has been to construct a data structure which approximates
the underlying SINR diagram, and use it for answering approximate SINR queries, by
performing point-location queries in this structure. That is, given a query point q, first find
the sole candidate si that may be received at q (by searching in the appropriate Voronoi
diagram), and then perform a point-location query to approximately determine whether
q is in Ri or not. Two different notions of approximation have been used. In the first [5],
it is guaranteed that the uncertain answer is only given infrequently, namely, the area of
the uncertain region associated with Ri is at most ε · area(Ri), for a prespecified parameter
ε > 0. In the second [10], it is guaranteed that for every point in the uncertain region the
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SIN ratio is within an ε-neighborhood of β. See Table 1 for a summary of previous results;
see also [11] for related work. In addition, Aronov and Katz [3] obtained several results for
batched approximate SINR queries, using the latter notion of approximation; for example,
one can perform n simultaneous approximate queries in a network with n transmitters at
polylogarithmic amortized cost per query.

Given ε > 0,4 an approximate SINR query is: Given a receiver q, find the sole transmitter s
that may be received by q and return a value sĩnr (q, s), such that (1 − ε)sinr (q, s) ≤
sĩnr (q, s) ≤ (1 + ε)sinr (q, s). Thus, unless (1 − ε)β ≤ sĩnr (q, s) < (1 + ε)β, the value
sĩnr (q, s) enables us to determine definitely whether or not s is received by q.

In this paper, we devise efficient algorithms for handling approximate SINR queries in a
dynamic setting. That is, given S, α, β, and N , as above, and ε > 0, we describe algorithms
for answering approximate SINR queries after some initial preprocessing, in a setting where
transmitters may be added to or deleted from S. We analyze our algorithms by the usual
measures, namely, preprocessing time, data structure size, query time, and update time.

To the best of our knowledge, these are the first data structures to support dynamic
approximate SINR queries. In contrast with previous work on approximate SINR queries,
our algorithms do not compute an approximation of the underlying SINR diagram. We
distinguish between two main variants of the problem – the uniform power version and the
non-uniform power one. The preprocessing time in both cases is O(n polylogn), while the
update and query time is O(polylogn) for the uniform version, and O(

√
n polylogn) for

the non-uniform version. Thus, our solution for the dynamic uniform version is comparable
to the best known solutions for the static uniform version. For the non-uniform version,
however, our solution is the first solution with bounds that depend only on n and ε and not
on other parameters of the input, both in the static and dynamic settings.

In addition to the obvious motivation for devising algorithms for approximate SINR
queries in a dynamic setting, we mention another important application of our results.
Successive Interference Cancellation (SIC) is a technique that enables (in some circumstances)
a receiver q to receive a specific transmitter t, even if t cannot be received at q in SINR sense.
Informally, our results support SIC; if t’s signal is the kth strongest at q, then, through a
sequence of O(k) queries and updates, we can determine whether q can decode t’s signal from
the combined signal; see the discussion in Section 4. In contrast, Avin et al. [4] construct
a uniform-power static data structure of size O(ε−1n10) which enables one to determine
in O(logn) time whether t can be received by q using SIC. Their result is not directly
comparable to ours, however: They guarantee logarithmic query regardless of the number of
transmitters that need to be canceled before t can be heard, and their approximation model
is quite different from ours.

The missing proofs and some extensions can be found in the complete version of this
paper [2].

2 Uniform power

Let q be a receiver and let s be the closest transmitter to q. Set intrf (q) =
∑
s′∈S\{s}

1
|qs′|α ,

then sinr (q, s) =
1
|qs|α

intrf (q)
.5 When s is the transmitter closest to q, we will simply write

4 For simplicity of presentation, we will assume hereafter that n > 1/ε.
5 For clarity of presentation, we assume hereafter that there is no noise, i.e., N = 0. Our algorithms
extend to the situation where noise is present in a straightforward manner.
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Figure 1 Partitioning Aq(|qs1|, r) into annuli.

sinr (q) instead of sinr (q, s). Fix ε > 0. We wish to compute a value sĩnr (q) such that
(1 − ε)sinr (q) ≤ sĩnr (q) ≤ sinr (q). We show below how to compute a value iñtrf (q) such
that intrf (q) ≤ iñtrf (q) ≤ (1 + ε)intrf (q) and then simply set sĩnr (q) =

1
|qs|α

iñtrf (q)
.

I Claim 1. Under the above assumption, (1− ε)sinr (q) < sĩnr (q) ≤ sinr (q).

We start with a slower but easier to describe solution and then refine it.

2.1 Annuli
Let ε > 0. Let q be a receiver and let s ∈ S be the closest transmitter to q. Let s1, . . . , sn−1
be the transmitters in S \ {s}, and assume without loss of generality that s1 is the second
closest transmitter to q, among all the transmitters in S. Recall that intrf (q) =

∑n−1
i=1

1
|qsi|α

and that we wish to compute a value iñtrf (q) such that intrf (q) ≤ iñtrf (q) ≤ (1 + ε)intrf (q).
We will need the following simple observation.

I Observation 2. intrf (q) is the sum of n− 1 positive terms of which 1
|qs1|α is the largest,

so we have 1
|qs1|α ≤ intrf (q) ≤ n−1

|qs1|α .

2.1.1 Query algorithm
Let q be a query point. First, we find s and s1, the closest and the second closest transmitters
to q, respectively. Next, we divide the transmitters in S \ {s} into two subsets, Sc and Sf ,
where Sc consists of all transmitters that are ‘close’ to q and Sf consists of all transmitters
that are ‘far’ from q. More precisely, set r = ( 2n

ε )1/α · |qs1|, then Sc consists of all the
transmitters in S \ {s} whose distance from q is less than r, and Sf consists of all the
remaining transmitters. We now approximate the contribution of each of these subsets to
intrf (q).

The contribution of a transmitter si in Sf to the sum intrf (q) is

1
|qsi|α

≤ 1
rα

= ε

2n|qs1|α
,

and the combined contribution of the transmitters in Sf is at most |Sf | · ε
2n|qs1|α ≤

ε
2|qs1|α .

We denote the annulus centered at q with inner radius r1 and outer radius r2 by Aq(r1, r2).
In order to approximate the overall contribution of the transmitters in Sc, we partition the
annulus Aq(|qs1|, r) into k semi-open annuli, A1, . . . , Ak, such that the ratio of the outer
to the inner radius of Aj is (1 + ε

2 ) 1
α (except for Ak whose ratio is at most (1 + ε

2 ) 1
α ); see
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Figure 1. By semi-open we mean that the inner circle of Aj is contained in Aj , but the
outer circle is not. Now, for each Aj , we approximate the contribution of each transmitter
si ∈ Sc∩Aj by 1

dα , where d is the inner radius of Aj , that is, we approximate the contribution
of si by moving it to the inner circle of Aj . We prove below (Corollary 4) that this yields a
(1 + ε

2 )-approximation of the overall contribution of the transmitters in Sc to intrf (q).

I Lemma 3. Let si ∈ Sc and let A = Aq(d, d′) be the annulus to which si belongs. Then, by
moving si to the inner circle of A, one obtains a (1 + ε

2 )-approximation of the contribution
of si to intrf (q).

Proof. Since si ∈ A, d ≤ si < d′. Moreover, by construction, d′/d ≤ (1 + ε
2 ) 1

α . So, the ratio
of our approximation to the real contribution of si is

1/dα

1/|qsi|α
= |qsi|

α

dα
< (d

′

d
)α ≤ 1 + ε

2 . J

I Corollary 4. By doing this for each transmitter in Sc, one obtains a (1 + ε
2 )-approximation

of the overall contribution of the transmitters in Sc to intrf (q).

It remains to show that iñtrf (q), which is the sum of the approximations for Sf and
for Sc, satisfies the requirements, i.e., that intrf (q) ≤ iñtrf (q) ≤ (1 + ε)intrf (q). From
the description above it is clear that iñtrf (q) ≥ intrf (q), so we only need to show that
iñtrf (q) ≤ (1 + ε)intrf (q). Indeed,

iñtrf (q) ≤ ε

2|qs1|α
+ (1 + ε

2)
∑
si∈SC

1
|qsi|α

≤ ε

2 intrf (q) + (1 + ε

2)intrf (q) = (1 + ε)intrf (q) ,

where the second inequality is based on Observation 2.

2.1.2 Implementation
We first show that k, the number of annuli into which the annulus Aq(|qs1|, r) is partitioned,
is small; for the proof, see the complete version [2].

I Lemma 5. k = O( 1
ε logn).

In the preprocessing stage we compute the following data structures for the set of
transmitters S.

Dynamic nearest neighbor: A data structure due to Kaplan et al. [12] can be used for
dynamic 2D nearest-neighbor queries. A set of points in the plane can be maintained
dynamically in a linear-size data structure, so as to support insertions, deletions, and nearest-
neighbor queries. Each insertion takes O(log3 n) amortized deterministic time, each deletion
takes O(log5 n) amortized deterministic time, and each query takes O(log2 n) worst-case
deterministic time, where n is the size of the set of points at the time the operation is
performed; see [12] and also the randomized data structure of Chan [6] with slightly worse
(expected) performance.

Dynamic disk range counting: We start with the construction of Matoušek [13]: In linear
space and O(n logn) time one can preprocess a set of n points in Rd to support semi-group
halfspace range queries in O(n1−1/d polylogn) time. A point can be deleted in O(logn)
amortized time and inserted in O(log2 n) amortized time. Lifting circles to points in R3 in

ICALP 2018
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the standard manner, we obtain a linear-space, O(n logn) time, O(n2/3 polylogn) disk range
counting query, O(logn) amortized delete, O(log2 n) amortized insert data structure. We
have not attempted to optimize this ingredient, as we replace this infrastructure with a more
efficient one in the following section.

Given a query point q, we find s and s1 (the closest and second closest transmitters) using
the data structure for dynamic nearest neighbor; s1 is found by deleting and reinserting s.
Next, we compute the distance r and partition the annulus Aq(|qs1|, r) into k annuli, as
described above. Now, we calculate iñtrf (q) as follows. We first compute the size of the
set Sf by performing a disk counting query with the circle of radius r centered at q and
subtracting the answer from n− 1; we initialize iñtrf (q) to |Sf | · ε

2n|qs1|α . Next, for each of
the k annuli, we compute the number x of points of S lying in it, as the difference in the
numbers of points in the two disks defined by its bounding circles, obtained by counting
queries. We then increment iñtrf (q) by x

dα , where d is the radius of the inner circle of the
current annulus.

An update is performed by updating the two underlying data structures.
We omit the detailed performance analysis of this version, as a better data structure is

described next.

2.2 Polygonal rings
We now present a more efficient solution similar to the previous one, except that we replace
the circular annuli by polygonal rings. Set x = (1 + ε

2 ) 1
α , and consider any three circles

C0, C1, C2 centered at q, such that r1/r0 = r2/r1 =
√
x, where ri is the radius of Ci. Set

l =
⌈

π√
2− 2√

x

⌉
, and let Bi be the regular l-gon inscribed in Ci, so that one its vertices lies

on the upward vertical ray through q, for i = 1, 2. We now show that Ci−1 is contained
in Bi, for i = 1, 2, and therefore, the polygonal ring defined by B1 and B2 is contained in
the annulus Aq(r0, r2). The elementary proofs of the following claims can be found in the
complete version [2].

I Claim 6. l = O(1/
√
ε).

I Claim 7. Ci−1 is contained in Bi, for i = 1, 2.

I Corollary 8. The polygonal ring defined by B1 and B2 is contained in an annulus centered
at q with radii ratio x = (1 + ε

2 ) 1
α .

2.2.1 Query algorithm
We highlight the differences with the query algorithm from Section 2.1.1. Recall that we
divided the transmitters into two subsets according to whether they were closer or farther
than r from the query point q. We adjust the definitions slightly by setting r′ = |qs1|xm/2,
where m is the smallest integer for which |qs1|xm/2 ≥

√
xr, and considering a transmitter

close to q whenever it lies in the interior of the regular l-gon inscribed in the circle of radius
r′ centered at q, see Figure 2. The set of such transmitters is the new Sc; the remaining
transmitters constitute Sf . The contribution of si ∈ Sf to the sum intrf (q) is, by Claim 7,

1
|qsi|α

≤ 1
rα

= ε

2n|qs1|α
.

Thus the overall contribution of the transmitters in Sf is again at most ε
2|qs|α .
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r′ =
√
xr

r

Cm

Cm+1

C1

C2

C3

q

PA1

PA2

PAm

.

Figure 2 The polygonal rings PA 1, . . . , PAm. The ring PA j lies between the circles Cj−1 and
Cj+1, for j > 1.

∆1

∆2

∆l

∆3

q

PAj

.

Figure 3 PA j is the union of l trapezoids.

We now partition Aq(|qs1|, r′) into m annuli, each with outer-to-inner radius ratio
√
x.

For each of the m + 1 circles defining these annuli, draw the regular l-gon inscribed in
it. Let PA 1, . . . ,PAm be the resulting sequence of polygonal rings, numbered from the
innermost outwards, see Figure 2; each ring is semi-open: it includes its inner, but not its
outer boundary. By Claim 7, each PA j , j > 1, is contained in the union of two consecutive
annuli, which in turn is an annulus of ratio x; Sc∩PA 1 is contained in the innermost annulus.
Also notice that m = O(k), where k is the number of annuli in the circular annulus version,
so, by Lemma 5, m = O( 1

ε logn).
For each ring PA j , we bound from above the contribution of each si ∈ Sc ∩PA j by 1/dα,

where d is the inner radius of the annulus of ratio x containing PA j . By Lemma 3 and the
subsequent corollary, we obtain a (1 + ε

2 )-approximation of the overall contribution of the
transmitters in Sc to intrf (q); iñtrf (q) is obtained by combining the two estimates, one from
Sc and one from Sf .

2.2.2 Implementation

Each polygonal ring PA j is the union of l isosceles trapezoids; moreover the ith trapezoids of
all rings are homothets of each other (refer to Figure 3) and therefore are delimited by lines
of exactly three different orientations. In the preprocessing stage we compute the following
data structures for the set of transmitters S.

Dynamic nearest neighbor: The data structure of Kaplan et al. [12] (see Section 2.1.2).

ICALP 2018
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Dynamic trapezoid range counting: We use l instances of the data structure, one for each
family of trapezoids. For the ith family we build a three-level orthogonal range counting
structure, one for each of the three edge orientations of the trapezoids in the family. The
answer to a trapezoid range counting query is the number of points of S lying in the trapezoid.

A standard three-level orthogonal range counting structure requires O(n log2 n) space,
is constructed in O(n log2 n) time, and supports O(log3 n)-time range queries [8]. It can
be modified to support insertions and deletions in O(log3 n) amortized time using the
standard partial-rebuilding technique [1, 14]. (One can use any of several different optimized
variants of these structures [7, 15]. For example, He and Munro [9] describe one with linear
space and O((logn/ log logn)2) worst-case query and amortized update time; we stay with
comparison-based algorithms and do not attempt to optimize the polylogarithmic factors.)

Now given a query point q, we find its closest and second closest transmitter using the
data structure for dynamic nearest neighbor in O(log5 n) time, compute the distance r′, and
construct the (polygonal) rings PA 1, . . . ,PAm, where m = O( 1

ε logn). For each ring PA j we
proceed as follows. For each of the l trapezoids ∆i forming PA j , we perform an orthogonal
range counting query in the ith data structure. Let nj be the sum of the l results. Unless j = 1,
we add to the value being computed the term nj

1
rα
j−1

, where rj−1 is the radius of Cj−1 (the
inner circle of the annulus containing PA j). If j = 1, we simply add the term n1

1
rα1

. Finally,
we add to the value being computed the term |Sf | · ε

2n|qs1|α = (n− 1−
∑m
j=1 nj) ·

ε
2n|qs1|α .

In summary, to implement an SINR query, we need to perform one search for the nearest
and second-nearest neighbor, followed by O( lε logn) = O( 1

ε3/2 logn) range searches.
An update is applied to all the underlying data structures. The following theorem

summarizes the main result of this section, while extensions can be found in the complete
version [2].

I Theorem 9. Given the locations of n uniform-power transmitters, one can preprocess them
in O((n/

√
ε) log2 n) time and space into a data structure that can answer approximate SINR

queries in O(log5 n+ (1/ε3/2) log4 n) time. Transmitters can be inserted in O((1/
√
ε) log3 n)

and deleted in O(log5 n+ (1/
√
ε) log3 n) amortized time.

3 Non-uniform power

Let q be a receiver. For a transmitter s ∈ S, the strength of its signal at q is nrg (s, q) = p(s)
|qs|α

and the (multiplicatively-weighted) distance between q and s is dist (q, s) = nrg (s, q)−1/α =
1

p(s)1/α · |qs|. Let s be the closest transmitter to q according to dist . Set intrf (q) =∑
s′∈S\{s} nrg (s′, q), then sinr (q, s) = nrg (s,q)

intrf (q)
, where we once again assume for clarity of

presentation that there is no background noise, i.e., N = 0. When s is the closest transmitter
to q, we will write sinr (q) instead of sinr (q, s).

Fix ε > 0. Again, we wish to approximate sinr (q) by computing iñtrf (q) such that
intrf (q) ≤ iñtrf (q) ≤ (1 + ε)intrf (q) and setting sĩnr (q) = nrg (s,q)

iñtrf (q)
. As in the uniform case,

we start with a more straightforward but less efficient solution and then improve it.

3.1 Conical shells
Let q be a receiver and let s ∈ S be the closest transmitter to q according to dist , i.e., the
one whose signal strength at q is the highest. Let s1, . . . , sn−1 be the transmitters in S \ {s},
and assume without loss of generality that s1 is the second closest transmitter to q among
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Cq(e
1/α
k )

Cq(e
1/α
k−1)

Cq(e
1/α
k−2)

q .

Figure 4 Partitioning Dq(e1/α
0 , e

1/α
k ) into sub-shells.

the transmitters in S. Recall that intrf (q) =
∑n−1
i=1 nrg (si, q) and that we wish to compute

a value iñtrf (q) such that intrf (q) ≤ iñtrf (q) ≤ (1 + ε)intrf (q). We will need the following
simple observation.

I Observation 10. intrf (q) is the sum of n − 1 positive terms of which nrg (s1, q) is the
largest, so we have nrg (s1, q) ≤ intrf (q) ≤ (n− 1)nrg (s1, q) ≤ n · nrg (s1, q).

Query algorithm. Let q be a query point. First, we find s and s1, as defined above. Next,
we set e0 = ε

2nnrg (s1, q), and divide the transmitters in S \ {s} into two subsets, Sc and Sf ,
where Sc consists of the transmitters with signal strength at q greater than e0, and Sf of the
remaining ones. We now approximate the overall contribution to intrf of the transmitters in
Sf and in Sc separately and let iñtrf be the sum of the two approximations.

The contribution of a single transmitter si ∈ Sf to the sum intrf (q) is nrg (si, q) ≤ e0 =
ε

2nnrg (s1, q), for a total of at most |Sf | · ε2nnrg (s1, q) ≤ ε
2nrg (s1, q) over all of Sf .

We identify the plane containing the transmitters and receivers with the xy-plane in
R3. Let Cq(ρ) denote (the surface of) the vertical cone with apex q whose z-coordinate at
t = (tx, ty) is ρ|qt|, where ρ > 0 is a constant. Let Dq(ρ1, ρ2), ρ2 > ρ1 > 0, be the set of all
points in 3-space lying above (i.e., in the interior of) the cone Cq(ρ1) and below or on (i.e.,
not in the interior of) the cone Cq(ρ2). Informally, Dq(ρ1, ρ2) is the region between Cq(ρ1)
and Cq(ρ2); we call it a (conical) shell.

Recall that e0 = ε
2nnrg (s1, q). Let ei = (1 + ε

2 )ei−1, for i = 1, . . . , k − 1, where k − 1 is
the largest integer for which ei < nrg (s1, q), and set ek = nrg (s1, q). We partition the range
I = (e0, ek] of signal strengths at q into k sub-ranges, I1 = (e0, e1], I2 = (e1, e2], . . . , Ik =
(ek−1, ek], and count, for each sub-range Ij , the number of transmitters whose signal strength
at q lies in Ij .

Consider a sub-range Ij = (ej−1, ej ]; we want to count the number transmitters whose
signal strength at q lies in Ij . This occurs whenever e1/α

j−1|qsi| < p
1/α
i ≤ e1/α

j |qsi|, or whenever
the point (si, p1/α

i ) in R3 lies in the shell Dq(e1/α
j−1, e

1/α
j ). Thus, we have reduced the problem

to the difference of two conical range-counting queries.
We raise each of the transmitters si ∈ S \ {s} to height p1/α

i , and preprocess the
resulting set of points for conical range counting queries. If the number of points in the shell
corresponding to Ij is xj , then we add the term ejxj to our approximation of intrf (q), that
is, we approximate the contribution of each transmitter si whose corresponding point lies in
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the shell by ej . (This corresponds to vertically projecting the point (si, p1/α
i ) onto the cone

Cq(e1/α
j ).) We prove in the complete version [2] that this yields a (1 + ε

2 )-approximation of
the overall contribution of the transmitters in Sc to intrf (q).

It remains to show that iñtrf (q), which is the sum of the approximations for Sf and
for Sc, satisfies the requirements, i.e., that intrf (q) ≤ iñtrf (q) ≤ (1 + ε)intrf (q). From the
description above it is clear that iñtrf (q) ≥ intrf (q), so we only need to establish the upper
bound. Indeed, using Observation 10, we conclude that

iñtrf (q) ≤ ε

2|qs1|α
+(1+ ε

2)
∑
si∈SC

nrg (si, q) ≤
ε

2 intrf (q)+(1+ ε

2)intrf (q) = (1+ε)intrf (q) .

Implementation. A straightforward calculation shows (analogously to Lemma 5) that k,
the number of shells into which Dq(e1/α

0 , e
1/α
k ) is partitioned, is O( 1

ε logn).
We preprocess the set of raised transmitters for cone range reporting/counting queries.

Then, given a query point q, we find s and s1 as follows. Pick a random sample T of
√
n logn

transmitters and let t1 ∈ T be the transmitter whose signal strength at q is the strongest.
With high probability, the number of transmitters in S that are closer to q than t1 in terms
of signal strength at q is O(

√
n), and we perform a range reporting query with the cone C1

corresponding to t1 in order to find them. The closest and second-closest points among the
reported points are clearly s and s1.

As for shell range counting queries, for each such query we issue two cone range counting
queries – with the outer cone and the inner cone – and return the difference of the answers.

We omit the analysis of this version, since we describe below a more efficient variant, in
which cones are replaced by pyramids.

3.2 Pyramidal shells
We now replace the conical shells by pyramidal ones to obtain an improved solution. Set
x = (1 + ε

2 ) 1
α , and consider any three cones Cq(ρ0), Cq(ρ1) and Cq(ρ2) with apex at q, such

that ρ0/ρ1 = ρ1/ρ2 =
√
x. Let Pq(ρi) be a regular l-pyramid inscribed in Cq(ρi), where

l =
⌈

π√
2− 2√

x

⌉
. That is, Pq(ρi)’s apex is at q, its edges emanating from q are contained in (the

surface of) Cq(ρi), and the cross section of Pq(ρi) and Cq(ρi), using any horizontal cutting
plane above q, is a regular l-gon and its circumcircle, respectively. The pyramidal shell
defined by Pq(ρ2) and Pq(ρ1) and denoted PS q(ρ2, ρ1) is the semi-open region consisting of
all points in the interior of Pq(ρ2) but not in the interior of Pq(ρ1). From Claim 7 and the
observation above, it follows that Cq(ρi−1) is contained in Pq(ρi), for i = 1, 2, and therefore,
PS q(ρ2, ρ1) is contained in Dq(ρ2, ρ0).

Query algorithm. We highlight the differences with the conical-shell based approach. First,
we find s and s1, the closest and the second-closest transmitters to q, respectively, as
described in detail below. Previously, the transmitters were divided into two subsets lying
close to q and lying far from it, with the threshold e0 = ε

2n · nrg (s1, q). Here, we set
e′0 = nrg (s1,q)

xm/2 , where m is the smallest integer for which nrg (s1,q)
xm/2 ≤ e0√

x
, and consider a

transmitter close to q whenever it lies in the interior of the pyramid Pq(e′
1
α
0 ), i.e., the pyramid

inscribed in Cq(e′
1
α
0 ). The contribution of a single transmitter si ∈ Sf to the sum intrf (q) is

nrg (si, q) ≤ e0 = ε
2n · nrg (s1, q), for a total of at most ε

2|qs|α , as before.

Consider the conical shell Dq(e′
1
α
0 ,nrg (s1, q)

1
α ) and partition it into m conical shells, such

that the ratio between the parameters of the inner and outer cone of a shell is
√
x. For each
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of the m+ 1 cones defining these conical shells, draw its inscribed regular l-pyramid. Let
Pq(ρ1), ..., Pq(ρm+1) be the resulting sequence of pyramids, where Pq(ρ1) is the innermost one,
and consider the corresponding sequence of m nested pyramidal shells. Notice that m = O(k),
where k is the number of cones in the conical shells version, so once again m = O( 1

ε logn).
Moreover, each of the pyramidal shells, except for PS q(ρ2, ρ1), is contained in the union of
two consecutive conical shells, which is a conical shell of ratio x. For PS q(ρ2, ρ1), we observe
that Sc ∩ PS q(ρ2, ρ1) is contained in the innermost conical shell.

We assign a transmitter si to a shell PS q(ρj+1, ρj) if si lands in the shell after being raised
to height p1/α

i . Now, for each shell PS q(ρj+1, ρj) and each si ∈ Sc assigned to it, we estimate
the contribution of si from above by 1/ραj−1, i.e., by projecting si onto the inner cone of the
conical shell Dq(ρj+1, ρj−1) containing PS q(ρj+1, ρj). We obtain a (1 + ε

2 )-approximation of
the overall contribution of the transmitters in Sc to intrf (q), where the missing details can
be found in the complete version [2]. Adding our previous estimate for those in Sf yields the
promised iñtrf (q).

Implementation. Observe that each regular l-pyramid Pq(ρj) is the union of l 3-sided
wedges, where the ith wedge is defined by two planes of fixed orientation (perpendicular to
the xy-plane) and a third plane containing the ith face of the pyramid.

In the preprocessing stage we construct l data structures over the set S, one for each
family of wedges, supporting dynamic 3-dimensional 3-sided wedge range counting queries (a
restricted form of simplex range counting in three dimensions). Each data structure handles
wedges of the same “type”; the orientations of the two vertical bounding planes are fixed,
while the orientation of the third plane varies (but remains perpendicular to the vertical
plane bisecting the first two). The data structure for the ith family is a three-level search
structure, where the first two levels allow us to represent the points of S that lie in the
2-sided wedge formed by the two vertical planes delimiting our 3-sided wedge, as a small
collection of canonical subsets. For each canonical subset of the second level of the structure,
we raise each of its points si to height p1/α

i and then project it onto a vertical plane which is
parallel to the bisector of the two vertical wedge boundaries. Finally, we construct for the
resulting set of points a data structure for two-dimensional halfplane range counting queries.
We will also need the corresponding reporting structure, see below.

Using standard tools for dynamic multilevel structures and, for example, Matoušek’s
data structure for halfplane range counting at the bottom level, we obtain a structure of
O(npolylogn) size that supports wedge counting (and reporting) queries in O(n1/2 polylogn)
time and updates in O(polylogn) amortized time.

Now, given a pyramidal shell PS q(ρj+1, ρj), we can count the number of raised points
that lie in it as follows. We first perform l queries for the pyramid Pq(ρj+1), one in each
of the l data structures, to obtain the total number of points that lie in it. We repeat the
process for the pyramid Pq(ρj) and finally subtract the latter number from the former one.

Below we describe how to find s and s1, the closest and second-closest points to q, in
randomized O(

√
n logn) time w.h.p. plus l wedge reporting queries. Once again, an update

is performed by modifying the underlying data structures. We summarize the main result of
this section.

I Theorem 11. One can preprocess n arbitrary-power transmitters, in O( n√
ε

polylogn) time
and space, into a data structure that can answer approximate SINR queries in randomized
O(
√
n√
ε

polylogn) time w.h.p. and perform updates in O( 1√
ε

polylogn) amortized time.
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Finding the closest and second-closest transmitters to q. We have assumed that given a
query point q, we can find the closest s and second-closest s1 transmitters to q, efficiently.
This section deals with this initial stage.

We begin by observing that we do not really need to find s1, provided that we can
obtain a sufficiently good approximation of nrg 1 = nrg (s1, q). Let ñrg 1 ∈ R such that
ñrg 1 ≤ nrg 1 ≤ (1 + δ)ñrg 1, where δ > 0 is a sufficiently small constant. Then, it is
easy to modify our query algorithm so that it uses ñrg 1 instead of nrg 1. For simplicity of
presentation, we refer in this paragraph to the algorithm using conical shells. Set ẽ0 = ε

2n ñrg 1.
A transmitter will be considered close to q if and only if its signal strength at q is greater
than ẽ0. If si ∈ S is far from q, then nrg (si, q) ≤ ẽ0 ≤ ε

2nnrg 1 = ε
2nnrg (s1, q), so the

overall contribution of the transmitters in Sf is bounded by ε
2nrg (s1, q), as before. Next, we

partition the range I = (ẽ0, (1 + δ)ñrg 1] into k = O( 1
ε logn) sub-ranges, such that the ratio

between the extreme values of a sub-range is at most 1 + ε/2 and proceed exactly as before.
We now describe how to find s. Our algorithm may or may not find s1. However, if it does

not find s1, it returns a transmitter t1 ∈ S such that nrg (t1, q) ≤ nrg (s1, q) ≤ (1+δ)nrg (t1, q),
where δ > 0 is a sufficiently small constant, so we can set ñrg 1 = nrg (t1, q) and apply the
above modified query algorithm.

Pick a random sample T of
√
n logn transmitters and let t1 ∈ T be the transmitter whose

signal strength at q is the strongest. This can be done in O(
√
n logn) time. With high

probability the number of transmitters in S that are closer to q than t1, in terms of signal
strength at q, is O(

√
n).

We first lift each transmitter s = (sx, sy) ∈ S to the point ŝ = (sx, sy, p(s)1/α).
Draw the cone C1 corresponding to t1, i.e., the cone whose z-coordinate above point s
is nrg (t1, q)1/α|qs| = (p(t1)1/α/|qt1|)|qs|. Let l be as above and consider the l-pyramid P1
inscribed in C1. Let C0 be the cone inscribed in P1, so that P1 lies between C0 and C1.
Notice that C0 is the cone whose z-coordinate above point s is (1 + δ)nrg (t1, q)1/α|qs| (where
we set δ = (1 + ε

2 ) 1
2α − 1).

Perform a range reporting query with P1 (i.e., find all lifted points that lie in the interior
of P1 or on P1). Since P1 is inside C1, with high probability the number of points in P1 is
O(
√
n). If the resulting set is non-empty, then in randomized O(

√
n) time w.h.p. we can

find s and also s1 (provided the number of returned points is greater than 1).
Otherwise, if P1 is empty, we claim that the answer to the SINR query must be no, i.e.,

q cannot receive any transmitter. Indeed, in the best scenario ŝ lies on C0, where s ∈ S is
the closest transmitter to q, and the rest of the O(

√
n) transmitters, lifted to 3-space, lie

on the cone C1. But this will imply that sinr(s) < 1. Indeed nrg (s, q) = (1 + δ)αnrg (t1, q)
and, for any other of the

√
n transmitters s′, nrg (s′, q) = nrg (t1, q), implying sinr(s) <

(1 + δ)α/
√
n� 1.

If only one point lies in P1, then we use t1 as an approximation of s1 as described above.

4 Successive interference cancellation (SIC)

Fix a receiver location q. SIC is a technique that enables q to receive a specific transmitter t,
even when sinr (q, t) < β. More specifically, order the transmitters s1, . . . , sn in S by
increasing signal strength at q, assume t = sk, and let sinr i(q) denote the SIN ratio for
the signal of si at q, while ignoring transmitters s1, . . . , si−1. If sinr 1(q) = sinr (q, s1) ≥ β,
q can subtract s1’s signal from the combined signal. If, in addition, sinr 2(q) ≥ β, q can
also subtract s2 from the combined signal of the transmitters s2, . . . , sn, and so on. If
sinr i(q) ≥ β, for i = 1, . . . , k, we say that SIC succeeds for sk at q, in k rounds. We can
simulate this process using our data structures for approximate SINR queries via a sequence
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of k queries and k− 1 deletions, and determine (approximately) whether SIC succeeds for sk
at q. Observe that we need t only to terminate the query, while Avin et al. [4] need t to
identify the part of the data structure in which to initiate the search; in particular, we can
generate all the transmitters accessible via SIC given a location q in polylogarithmic time
per transmitter, while they need to consult each of the n parts of the data structure. We
obtain the following theorem.

I Theorem 12. Assuming t = sk, the simulation above can be performed in
O((1/ε3/2)k polylogn) time in the uniform-power version, and in O((1/

√
ε)k
√
npolylogn)

time in the non-uniform version.
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