
Uniformization Problems for Synchronizations of
Automatic Relations on Words
Sarah Winter
RWTH Aachen University, Germany
winter@cs.rwth-aachen.de

Abstract
A uniformization of a binary relation is a function that is contained in the relation and has the
same domain as the relation. The synthesis problem asks for effective uniformization for classes
of relations and functions that can be implemented in a specific way.

We consider the synthesis problem for automatic relations over finite words (also called regular
or synchronized rational relations) by functions implemented by specific classes of sequential
transducers.

It is known that the problem “Given an automatic relation, does it have a uniformization
by a subsequential transducer?” is decidable in the two variants where the uniformization can
either be implemented by an arbitrary subsequential transducer or it has to be implemented by
a synchronous transducer. We introduce a new variant of this problem in which the allowed
input/output behavior of the subsequential transducer is specified by a set of synchronizations
and prove decidability for a specific class of synchronizations.

2012 ACM Subject Classification Theory of computation → Formal languages and automata
theory

Keywords and phrases automatic relation, uniformization, synchronization, transducer

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.142

Related Version A full version of the paper is available at http://arxiv.org/abs/1805.02444.

Funding Supported by the project (LO 1174/3-1) of the German Research Foundation (DFG).

Acknowledgements The author would like to thank her supervisor Christof Löding for suggesting
this topic and his helpful comments and thank the anonymous reviewers of this and an earlier
version of the paper for their feedback which greatly improved the presentation.

1 Introduction

A uniformization of a binary relation is a function that selects for each element in the domain
of the relation a unique image that is in relation with this element. Of interest to us in
this paper are uniformization problems in the setting where the relations and functions on
words are defined by finite automata. Relations on words defined by finite automata extend
languages defined by finite automata. Unlike for words, different finite automaton models for
relations lead to different classes of relations.

Relations defined by asynchronous finite automata are referred to as rational relations.
An asynchronous finite automaton is a nondeterministic finite automaton with two tapes
whose reading heads can move at different speeds. An equivalent computation model are
asynchronous finite transducers (see, e.g., [1]), that is, nondeterministic finite automata
whose transitions are labeled by pairs of words.

EA
T

C
S

© Sarah Winter;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 142; pp. 142:1–142:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309770?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:winter@cs.rwth-aachen.de
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.142
http://arxiv.org/abs/1805.02444
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


142:2 Uniformization Problems for Synchronizations of Automatic Relations on Words

A well known subclass of rational relations are synchronized rational relations (see [8]),
which are defined by synchronous finite automata, that is, finite automata with two tapes
whose reading heads move at the same speed. Equivalently, we speak of definability by
synchronous finite transducers. The class of synchronized rational relations is also called
automatic or regular, here, we use the term automatic.

One uniformization problem asks for proving that each relation in a given class has a
certain kind of uniformization. For example, each rational relation can be uniformized by
an unambiguous rational function (see [13]). Here, we are interested in the decision version
of the problem: Given a relation from some class, does it have a uniformization in some
other class? For the class of uniformizations we consider sequential transducers. A sequential
transducer reads the input word in a deterministic manner and produces a unique output
word for each input word.

The sequential uniformization problem relates to the synthesis problem, which asks,
given a specification that relates possible inputs to allowed outputs, whether there is a
program implementing the specification, and if so, construct one. This setting originates from
Church’s synthesis problem [4], where logical specifications over infinite words are considered.
Büchi and Landweber [2] showed that for specifications in monadic second order logic, that
is, specifications that can be translated into synchronous finite automata, it is decidable
whether it can be realized by a synchronous sequential transducer (see, e.g., [14] for a modern
presentation of this result). Later, decidability has been extended to asynchronous sequential
transducers [10, 9].

Going from the setting of infinite words to finite words uniformization by subsequential
1 transducers is considered. The problem whether a relation given by a synchronous finite
automaton can be realized by a synchronous subsequential transducer is decidable; this
result can be obtained by adapting the proof from the infinite setting. Decidability has been
extended to subsequential transducers [3]. Furthermore, for classes of asynchronous finite
automata decidability results for synthesis of subsequential transducers have been obtained
in [7].

A semi-algorithm in this spirit was introduced by [11], the algorithm is tasked to synthesize
a subsequential transducer that selects the length lexicographical minimal output word for
each input word from a given rational relation.

The decision problems that have been studied so far either ask for uniformization by
a synchronous subsequential or by an arbitrary subsequential transducer. Our aim is to
study the decision problem: Given a rational relation, does it have a uniformization by a
subsequential transducer in which the allowed input/output behavior is specified by a given
language of synchronizations? The idea is to represent a pair of words by a single word where
each position is annotated over {1, 2} indicating whether it came from the input or output
component. The annotated string provides a synchronization of the pair. It is known that
the class of rational relations is synchronized by regular languages [12]. More recently, main
subclasses of rational relations have been characterized by their synchronizations [6].

We show decidability for a given automatic relation and a given set of synchronizations
that synchronizes an automatic relation. Thus our decidability result generalizes the previ-
ously known decidability result for synthesis of synchronous subsequential transducers from
automatic relations.

1 A subsequential transducer can make a final output depending on the last state reached in a run whereas
a sequential transducer can only produce output on its transitions.



S. Winter 142:3

The paper is structured as follows. First, in Sec. 2, we fix our notations and recap
characterizations of synchronization languages established in [6]. In Sec. 3, we introduce
uniformization problems with respect to synchronization languages and compare our setting
with known results. In Sec. 4, we prove decidability of the question whether an automatic
relation has a uniformization by a subsequential transducer in which the input/output
behavior is specified by a set of synchronizations that synchronizes an automatic relation.

A full version of this paper can be found online.

2 Synchronizations of relations

Let N denote the set of all non-negative integers {0, 1, . . . }, and for every k ∈ N, let k denote
the set {1, . . . , k}. Given a finite set A, let |A| denote its cardinality and 2A its powerset.

Languages and relations of finite words. An alphabet Σ is a finite set of letters, a finite
word is a finite sequence over Σ. The set of all finite words is denoted by Σ∗ and the empty
word by ε. The length of a word w ∈ Σ∗ is denoted by |w|, the number of occurrences of a
letter a ∈ Σ in w by #a(w). Given w ∈ Σ∗, w[i] stands for the ith letter of w, and w[i, j] for
the subword w[i] . . . w[j].

A language L over Σ is a subset of Σ∗, and Pref (L) is the set {u ∈ Σ∗ | ∃v : uv ∈ L} of
its prefixes. The prefix relation is denoted by v. A relation R over Σ is a subset of Σ∗ × Σ∗.
The domain of a relation R is the set dom(R) = {u | (u, v) ∈ R}, the image of a relation
R is the set img(R) = {v | (u, v) ∈ R}. For u ∈ Σ∗, let R(u) = {v | (u, v) ∈ R} and write
R(u) = v, if R(u) is a singleton.

A regular expression r over Σ has the form ∅, ε, σ ∈ Σ, r1 · r2, r1 + r2, or r∗1 for regular
expressions r1, r2. The term r+ is short for r · r∗. The concatenation operator · is often
omitted. The language associated to r is defined as usual, denoted L(r), or conveniently, r.

I Definition 1 (synchronization, L-controlled [6]). For c ∈ {i, o}, referring to input and
output, respectively, we define two morphisms πc : (2 × Σ) → Σ ∪ {ε} by πi((i, a)) = a if
i = 1, otherwise πi((i, a)) = ε, and likewise for πo with i = 2. These morphisms are lifted to
words over (2× Σ).

A word w ∈ (2×Σ)∗ is a synchronization of a uniquely determined pair (w1, w2) of words
over Σ, where w1 = πi(w) and w2 = πo(w). We write JwK to denote (w1, w2). Naturally, a
set S ⊆ (2× Σ)∗ of synchronizations defines the relation JSK = {JwK | w ∈ S}.

A word w = (i1, a1) . . . (in, an) ∈ (2 × Σ)∗ is the convolution u ⊗ v of two words
u = i1 . . . in ∈ 2∗ and v = a1 . . . an ∈ Σ∗. Given a language L ⊆ 2∗, we say w is L-controlled
if u ∈ L. A language S ⊆ (2× Σ)∗ is L-controlled if all its words are.

A language L ⊆ 2∗ is called a synchronization language. For a regular language L ⊆ 2∗,
Rel(L) = {JSK | S is a regular L-controlled language} is the set of relations that can be
given by L-controlled synchronizations. Let C be a class of relations, we say L synchronizes
C if Rel(L) ⊆ C.

I Definition 2 (lag, shift, shiftlag [6]). Given a word w ∈ 2∗, a position i ≤ |w|, and γ ∈ N.
We say i is γ-lagged if |#1(w[1, i])−#2(w[1, i])| = γ, and likewise, we define >γ-lagged and
<γ-lagged. A shift of w is a position i ∈ {1, . . . , |w| − 1} such that w[i] 6= w[i+ 1]. Two shifts
i < j are consecutive if there is no shift l such that i < l < j. Let shift(w) be the number
of shifts in w, let lag(w) be the maximum lag of a position in w, and let shiftlag(w) be the
maximum n ∈ N such that w contains n consecutive shifts which are >n-lagged.

We lift these notions to languages by taking the supremum in N ∪ {∞}, e.g., shift(L) =
sup{shift(w) | w ∈ L}, and likewise for lag(L) and shiftlag(L).

ICALP 2018



142:4 Uniformization Problems for Synchronizations of Automatic Relations on Words

The following characterizations for well known subclasses of rational relations were shown
in [6]. Recall, rational relations are definable by asynchronous finite automata, automatic
relations by synchronous finite automata, and recognizable relations are definable as finite
unions of products of regular languages. We omit a formal definition of these models since it
is not relevant to this paper.

I Theorem 3 ([6]). Let L ⊆ 2∗ be a regular language. Then:
1. L synchronizes recognizable relations iff shift(L) <∞,
2. L synchronizes automatic relations iff shiftlag(L) <∞,
3. L synchronizes rational relations.

For ease of presentation, let Σio, Σi, and Σo be short for 2× Σ, {1} × Σ, and {2} × Σ,
respectively. If convenient, we use distinct symbols for input and output, instead of symbols
annotated with 1 or 2.

For the results shown in this paper, it is useful to lift some notions introduced in [6] from
words and languages over 2 to words and languages over Σio.

I Definition 4. We lift the notions of lag, shift, and shiftlag from words and languages over
2 to words and languages over Σio in the natural way.

Furthermore, given a language T ⊆ Σ∗
io
, we say a word w ∈ Σ∗

io
is T -controlled if w ∈ T .

A language S ⊆ Σ∗
io

is T -controlled if all its words are, namely, if S ⊆ T .

Automata on finite words. We fix our notations concerning finite automata on finite words.
A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, q0,∆, F ), where Q is a
finite set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, ∆ ⊆ Q× Σ×Q is the
transition relation, and F ⊆ Q is the set of final states. A run ρ of A on w = a1 . . . an ∈ Σ∗
is a sequence of states p0p1 . . . pn such that (pi, ai+1, pi+1) ∈ ∆ for all i ∈ {0, . . . , n − 1}.
Shorthand, we write A : p0

w−→ pn. A run is accepting if it starts in q0 and ends in a state
from F . The language recognized by A, written L(A), is the set of words w ∈ Σ∗ that admit
an accepting run of A on w. For q ∈ Q, let Aq denote the NFA obtained from A by setting its
initial state to q. The class of languages recognized by NFAs is the class of regular languages.
An NFA is deterministic (a DFA) if for each state q ∈ Q and a ∈ Σ there is at most one
outgoing transition. In this case, it is more convenient to express ∆ as a (partial) function
δ : Q× Σ→ Q. Furthermore, let δ∗ denote the usual extension of δ from letters to words.

We introduce some notions only applicable if an NFA recognizes a set of synchronizations.
Given a regular S ⊆ Σ∗

io
, let A = (Q,Σio, q0,∆, F ) be an NFA that recognizes S. We

define Qi = {p ∈ Q | ∃a ∈ Σ, q ∈ Q : (p, (1, a), q) ∈ ∆} and Qo = {p ∈ Q | ∃a ∈
Σ, q ∈ Q : (p, (2, a), q) ∈ ∆} as the sets of states that have outgoing transitions from
which input and output can be consumed, respectively. If (Qi,Qo) is a partition of Q, we
write Q = Qi ∪· Qo. We call A sequential if A is deterministic, and Q = Qi ∪· Qo, and
each q ∈ Qo has at most one outgoing transition. For short, we refer to a sequential
DFA as sDFA. Finally, we define the input automaton AD of A as (Q,Σ, q0,∆′, F ), where
∆′ = {(p, a, q) | A : p w−→ q and πi(w) = a ∈ Σ}. A comparison to standard transducer
models is given in the next section.

3 Uniformization problems

A uniformization of a relation R ⊆ Σ∗ × Σ∗ is a complete function fR : dom(R)→ Σ∗ with
(u, fR(u)) ∈ R for all u ∈ dom(R). If such a function is given as a relation Rf , we write
Rf ⊆u R to indicate that Rf is a uniformization of R.



S. Winter 142:5

A

d

e

a

b

a

c

a

d, e

d, e

U

a b

c

d

e

a

d

Figure 1 Cf. Ex.6; S = L(A) and U = L(U), we have JUK ⊆u JSK.

I Definition 5 (Resynchronized uniformization problem). The resynchronized uniformization
problem asks, given a regular source language S ⊆ Σ∗

io
and a regular target language T ⊆ Σ∗

io
,

whether there exists a regular language U ⊆ T recognized by a sequential DFA such that
JUK ⊆u JSK.

I Example 6. Let Σi = {a, b, c} and Σo = {d, e}, let S ⊆ Σ∗
io

be given by A depicted in
Fig. 1. The recognized relation is JSK = {(aibaj , d(d+ e)k) | i, j, k ≥ 0} ∪ {(aicaj , e(d+ e)k) |
i, j, k ≥ 0}. Furthermore, let T = Σ∗

i
(ΣiΣo)+. A T -controlled uniformization U is given by

the sequential DFA U depicted in Fig. 1. The recognized relation is JUK = {(aibaj , ddj) |
i, j, k ≥ 0} ∪ {(aicaj , edj) | i, j ≥ 0}.

Comparing our definition of sequential DFAs with standard transducer models we notice
that sequential transducers directly correspond to sequential DFAs. See, e.g., [1] for an
introduction to transducers. Our model can be modified to correspond to subsequential
transducers (which can make a final output after the word has ended) by slightly modifying
the representation of the relation by adding a dedicated endmarker in the usual way.

In the remainder it is implicitly assumed that every given source and target language
is represented with endmarkers, thus our stated results correspond to uniformization by
subsequential transducers.

Our main result is the decidability of the resynchronized uniformization problem for a
given automatic relation and a given set of synchronizations controlled by a language that
synchronizes automatic relations. In Sec. 4 we see that our decidability result is obtained by
a reduction to the following simpler uniformization problem.

I Definition 7 (Subset uniformization problem). The subset uniformization problem asks,
given a regular language S ⊆ Σ∗

io
, whether there exists a regular language U ⊆ S recognized

by a sequential DFA such that JUK ⊆u JSK.

The notion of subset uniformization directly corresponds to the notion of sequential I-
uniformization introduced in [7]. It was shown that deciding the sequential I-uniformization
problem reduces to deciding which player has a winning strategy in a safety game between
In and Out. Hence, we directly obtain the following result.

I Theorem 8 ([7]). The subset uniformization problem is decidable.

Now that we have formulated our uniformization problems, we link these to known
uniformization problems. Asking whether a relation has a Σ∗

io
-controlled subsequential

uniformization is equivalent to asking whether it has a uniformization by an arbitrary
subsequential transducer. Asking whether a relation has a (ΣiΣo)∗(Σ∗i + Σ∗

o
)- resp. Σ∗

i
Σ∗
o
-

controlled subsequential uniformization is equivalent to asking whether it has a uniformization
by a synchronous subsequential transducer resp. by a transducer that reads the complete
input before producing output.

ICALP 2018



142:6 Uniformization Problems for Synchronizations of Automatic Relations on Words

Table 1 Overview over decidability results. The columns list the type of relation to be uniformized.
The rows list the type of synchronization used as uniformization parameter; the upper three rows list
fixed languages of synchronizations, the lower three rows list parameter classes, where ‘rational’ means
the given set of allowed synchronizations is controlled by an arbitrary synchronization language,
‘automatic’ (resp. ‘recognizable’) means the given set of allowed synchronizations is controlled by a
synchronization language that synchronizes automatic (resp. recognizable) relations.

sync.
relation rational deterministic

rational
finite-valued automatic recog-

nizable
Σ∗
io

undec. [3] dec. [7] dec. [7] dec. [3] dec.
(ΣiΣo)∗(Σ∗i + Σ∗

o
) undec. [3] ? ? dec. [2] dec.

Σ∗
i
Σ∗
o

? ? ? dec. [3] dec.
rational undec. ? ? ? dec.
automatic undec. ? ? dec. dec.
recognizable ? ? ? dec. dec.

Table 1 provides an overview over known and new decidability results of the resynchronized
uniformization problem for different types of relations and synchronization parameters. Our
main result is the decidability for a given automatic relation and a given set of allowed
synchronizations that is controlled by a synchronization language that synchronizes automatic
relations. The decidability results in the rightmost column can be shown by a simple reduction
to the subset uniformization problem which is presented in the full version of the paper. The
other entries in the lower three rows are simple consequences of the results presented in the
upper three rows resp. our main result.

Regarding the table entry where the relation is automatic and a desired uniformizer is
(ΣiΣo)∗(Σ∗i + Σ∗

o
)-controlled, there is an alternative formulation of the decision problem in

the case that the given relation is (ΣiΣo)∗(Σ∗i + Σ∗
o
)-controlled (the usual presentation for

automatic relations, e.g., by a synchronous transducer). In this case the problem can also be
stated as the question whether the relation has a subset uniformization.

We now generalize this to Parikh-injective synchronization languages. Given some L ⊆ 2∗,
let ΠL : L→ N

2 be the function that maps a word w ∈ L to its Parikh image, that is to the
vector (#1(w),#2(w)). We say L is Parikh-injective if ΠL is injective.

I Proposition 9. Let L ⊆ 2∗ be a regular Parikh-injective language, let S ⊆ Σ∗
io

be an
L-controlled regular language and let T = {w ∈ Σ∗ | w is L-controlled}. Every T -controlled
uniformization of S is a subset uniformization of S.

Given L, S and T as in Proposition 9, it directly follows that the resynchronized
uniformization problem is equivalent to the subset uniformization problem, which is decidable
by Theorem 8.

4 Automatic uniformizations of automatic relations

Here we present our main result stating that it is decidable whether a given automatic relation
has a uniformization by a subsequential transducer whose induced set of synchronizations is
controlled by a given regular language that synchronizes automatic relations.

I Theorem 10. Given a regular source language with finite shiftlag and a regular target
language with finite shiftlag. Then, the resynchronized uniformization problem is decidable.



S. Winter 142:7

In [6], it is shown that (12)∗(1∗ + 2∗) is an effective canonical representative of the class
RLFSL of regular languages with finite shiftlag. Meaning that for every L ∈ RLFSL and every
R ∈ Rel(L), there is an effectively constructible (12)∗(1∗ + 2∗)-controlled regular language
S so that JSK = R.

In the remainder of this section, let S ⊆ Σ∗
io

be a regular source language with finite
shiftlag. Also, let Scan be the equivalent (12)∗(1∗+2∗)-controlled language with JScanK = JSK.
Furthermore, let T ⊆ Σ∗

io
be a regular target language with finite shiftlag.

I Assumption 11. We assume that Scan is recognized by a DFA A = (QA,Σio, q
A
0 ,∆A, FA),

T is recognized by a DFA B = (QB,Σio, q
B
0 ,∆B, FB) and shiftlag(T ) < n.

For notational convenience, given x ∈ Σ∗
i
and y ∈ Σ∗

o
, we write δ∗A(q, (x, y)) to mean

δ∗A(q, w), where w ∈ Σio is the canonical synchronization of x and y, i.e., w is the (12)∗(1∗+2∗)-
controlled synchronization of the pair (x, y).

The remainder of this section is devoted to the proof of Theorem 10. The proof is split in
two main parts; the goal of the first part is to show that if S has a T -controlled uniformization
by an sDFA, then S has a Tk-controlled uniformization by an sDFA for a regular Tk ⊆ T

that is less complex than T , cf. Lemma 23. The goal of the second part is to show that the
set Tk(S) defined by {w | w ∈ Tk and JwK ∈ JSK} is regular and computable (due to the form
of Tk), cf. Lemma 24. Then, to conclude the proof, we show that the question whether S
has a T -controlled uniformization by an sDFA can be reduced to the question whether Tk(S)
has a subset uniformization by an sDFA, which is decidable by Theorem 8.

Towards giving an exact description of Tk, consider the following auxiliary lemma
characterizing the form of regular synchronization languages with finite shiftlag. Given
ν ∈ N, we denote by L≤ν the regular set of words over 2 with ≤ν-lagged positions, i.e.,
L≤ν = {u ∈ 2∗ | lag(u) ≤ ν}; we denote by T≤ν the regular set of words over Σio with
≤ν-lagged positions, i.e., T≤ν = {w ∈ Σ∗

io
| lag(w) ≤ ν}.

I Lemma 12 ([6]). Given a regular language L ⊆ 2∗ with shiftlag(L) < m. It holds that
L ⊆ L≤ν · (1∗ + 2∗)m with ν chosen as 2 (m(|Q|+ 1) + 1), where Q is the state set of an
NFA recognizing L.

Clearly, this lemma can be lifted to regular languages over Σio. Based on Asm. 11 and
Lemma 12, we can make the following assumption.

I Assumption 13. Assume that T ⊆ T≤γ · (Σ∗i + Σ∗
o
)n with γ = 2 (n(|QB|+ 1) + 1).

Now, we can be more specific about Tk ⊆ T .

I Definition 14. For i ≥ 0, let Ti be the set T ∩
(
T≤γ · (Σ∗i + Σ≤i

o
)n
)
, that is, the set of

w ∈ T such that after a position in w is more than γ-lagged, the number of output symbols
per block is at most i.

Our aim is to show that there is a bound k such that S has either a Tk-controlled
uniformization by an sDFA or no T -controlled uniformization by an sDFA. From now on, we
call an sDFA implementing a uniformization simply a uniformizer.

The main difficulty in solving the resynchronized uniformization problem is that in
general a uniformizer can have unbounded lag, because the waiting time between shifts can
be arbitrarily long. The key insight for the proof is that if such a long waiting time for a
shift from input to output is necessary, then, in order to determine the next output block,
it is not necessary to store the complete input that is ahead. We show that it suffices to
consider an abstraction of the input that is ahead. Therefore we will introduce input profiles
based on state transformation trees we define below.

ICALP 2018



142:8 Uniformization Problems for Synchronizations of Automatic Relations on Words

Similarly, to deal with the situation where there is a long waiting time for a shift from
output to input, we introduce output profiles as an abstraction of output that is ahead.

The bound on the length of output blocks will be chosen based on the profiles. Before
defining profiles, we introduce some necessary definitions and notions.

Trees. A finite unordered unranked tree over an alphabet, a tree for short, is a finite
non-empty directed graph with a distinguished root node, such that for any node, there
exists exactly one path from the root to this node. Additionally, a mapping from the nodes
of the graph to the alphabet is given. More formally, a tree t over Σ is given by a tuple
(Vt, Et, vt, valt), where Vt is a non-empty set of nodes, Et ⊆ Vt × Vt is a set of edges, vt is
the root of t, also denoted root(t), and valt is a mapping Vt → Σ. Furthermore, it is satisfied
that any node is reached by a unique path from the root. Let TΣ denote the set of all trees
over Σ. We only distinguish trees up to isomorphism.

Given a tree t and a node v of t, let t|v denote the subtree of t rooted at v.
An a ∈ Σ can also be seen as a tree a ∈ TΣ defined by ({v}, ∅, v, vala), where vala(v) = a.
For two trees t1 and t2 with valt1(root(t1)) = valt2(root(t2)), i.e., with the same root label,

we define t1 ◦ t2 as the tree t given by (Vt, Et, root(t1), valt), where Vt = Vt1 ∪Vt2 \ {root(t2)},
Et = Et1 ∪ {(root(t), v) | (root(t2), v) ∈ Et2} ∪ (Et2 \ {(root(t2), v) ∈ Et2}) and valt as
valt1 ∪ valt2 over nodes in Vt (assuming Vt1 ∩ Vt2 = ∅).

Given a ∈ Σ and trees t1, . . . , tn, we define a(t1 . . . tn) to be the tree (Vt, Et, r, valt), where
Vt =

⋃n
i=1 Vti ∪ {r} with a new node r, Et =

⋃n
i=1Eti ∪ {(r, root(ti)) | 1 ≤ i ≤ n} and valt is

defined as valt(r) = a and
⋃n
i=1 valti (assuming Vti ∩ Vtj = ∅ for all i 6= j).

State transformation trees. Now that we have fixed our notations, we explain what kind
of information we want to represent using state transformation trees. Basically, for an input
segment that is ahead and causes lag, we are interested in how the input segment can be
combined with output segments of same or smaller length and how this output can be
obtained.

In the following we give an intuitive example.

I Example 15. Let Σi = {a} and Σo = {b, c}. Consider the language S1 ⊆ Σ∗
io

given by the
DFA A1 depicted in Fig. 2a, and the language T1 ⊆ Σ∗

io
given by the DFA B1 depicted in

Fig. 2a. As we can see, S1 is (12)∗(1∗ + 2∗)-controlled, thus, already in its canonical form,
and T1 is 1∗2∗1∗2∗-controlled. Both languages have finite shiftlag.

Generally, a T1-controlled uniformizer of S1 can have arbitrary large lag. We take a look
at the runs starting from q0 in A1 and starting from p0 in B1 that the computation of such
a uniformizer can induce. However, A1 can only be simulated on the part where the lag
is recovered, but arbitrarily large lag can occur, thus our goal is to find an abstraction of
the part that causes lag. E.g., assume that such a uniformizer reads aa without producing
output. Towards defining an abstraction of aa, we are interested in how aa could be combined
with outputs of same or smaller length and how these outputs could be produced by some
T1-controlled uniformizer. Such a uniformizer could read some more as and eventually must
produce output. Reading as leads from p0 to p1 in B1. There are a few possibilities how
output of length at most two can be produced such that it is valid from p1 and the simulation
from q0 can be continued. It is possible to output b (δ∗B1

(p1, b) = p2, δ∗A1
(q0, aba) =

q1), bb (δ∗B1
(p1, bb) = p2, δ∗A1

(q0, abab) = q0) or bc (δ∗B1
(p1, bc) = p2, δ∗A1

(q0, abac) = q2).
Alternatively, it is possible to output b (δ∗B1

(p1, b) = p2, δ∗A1
(q0, ab) = q0) read another a

(δ∗B1
(p2, a) = p3) and then produce b (δ∗B1

(p3, b) = p3, δ∗A1
(q0, ab) = q0) or c (δ∗B1

(p3, c) = p3,
δ∗A1

(q0, ac) = q2). We see that the outputs bb and bc can each be obtained in two different
ways. Namely, as one single output block, or as two output blocks with an input block in



S. Winter 142:9

q0A1 q1 q2
a

b

c

a

p0B1 p1 p2 p3
a b

a

a

b,c b,c

(a) Σi = {a}, Σo = {b, c}. A1 recognizes S1, B1 recognizes T1. S1 is (12)∗(1∗ + 2∗)-controlled and T1 is
1∗2∗1∗2∗-controlled, thus both have finite shiftlag. S1 is already in the canonical form.

a a a a a a

b c

q0 q0 q2 q2

A1 :

a a a a a b a c

p0 p1 p2 p3 p3

B1 :

(b) Runs of A1 and B1 on synchronizations of
(aaaaaa, bc). A1 runs on the canonical synchro-
nization, i.e., on abacaaaa. To illustrate this, input
and output are drawn one above the other.

(p1, q0)

(p2, q1) (p2, q0) (p2, q2) (p2, q0)

(p3, q0)

(p3, q0) (p3, q2)

b bb bc b

a

b c

v0

v1 v2 v3 v4

v5

v6 v7

(c) STT1(aa, p1, q0). The combination of both runs
shown in Fig. 2b is reflected by the rightmost path
in the state transformation tree.

Figure 2 A source language S1 and a target language T1 are given in Fig. 2a. A pair and two
different synchronizations of said pair as well as runs are given in Fig. 2b. The state transformation
tree STT1(aa, p1, q0) is given in Fig. 2c, its edges are labeled with the respective associated words
and its vertices are named for easier reference in Ex. 15. For a formal definition of STTs see Def. 16,
for an explanation for this specific tree see Ex. 15.

between (w.r.t. B1, we do not care about the number of blocks w.r.t. A1). The maximal
number of considered output blocks (w.r.t. the target synchronization) is parameterized in
the formal definition.

We take a look at the tree in Fig. 2c, this tree contains all the state transformations
that can be induced by the described possibilities. The possibilities to produce output
in one single block is reflected by the edges (v0, v1), (v0, v2) and (v0, v3) representing the
state transformation induced by the respective output block. The possibilities to produce
output in two blocks is reflected by the edges (v0, v4) representing the state transformation
induced by the first output block, (v4, v5) representing the state transformation induced
by the intermediate input block, (v5, v6) and (v5, v7) representing the state transformation
induced by the respective second output block.

Now that we have given some intuition, we formally introduce input state transformation
trees, a graphical representation of the construction of input state transformation trees
is given in Fig. 3. As seen in the example, each edge of such a tree represents the state
transformation induced by an output resp. input block, alternatively.

I Definition 16 (Input state transformation tree). For i ≥ 0, p ∈ QB, q ∈ QA and x ∈ Σ∗
i
,

the state transformation tree STTi(x, p, q) is a tree over QB ×QA defined inductively.
For i = 0, the tree STT0(x, p, q) is built up as follows.
Let Reach0 ⊆ QB ×QA be the smallest set such that (p′, q′) ∈ Reach0 if there is some
y ∈ Σ∗

o
with |y| ≤ |x| such that δ∗A(q, (x, y)) = q′ and δ∗B(p, y) = p′.

(This set represents state transformations induced by output blocks that fully consume x.)
Then the tree STT0(x, p, q) is defined as (p, q)(r1 . . . rn) for Reach0 = {r1, . . . , rn}, mean-
ing it contains a child for every state transformation that can be induced w.r.t. A and
B starting from q and p, respectively, by the input segment x together with an output
segment that consumes x (w.r.t. A) consisting of a single output block (w.r.t. B).

ICALP 2018



142:10 Uniformization Problems for Synchronizations of Automatic Relations on Words

(p, q)

STTi−1(x′′, p′′, q′)

(p′, q′)

(p′′, q′)

Reach0

Reach1

Reach(x′′,p′,q′)

v0

v1

v2

Figure 3 Schema of the input state transformation tree STTi(x, p, q) for some i > 0. Cf. Def. 16.
Let x′x′′ be a factorization of x with x′, x′′ ∈ Σ+

i
, and let y ∈ Σ+

o be such that |x′| = |y| and
δ∗A(q, (x′, y)) = q′ and δ∗B(p, y) = p′, and let δ∗B(p′, w) = p′′ for some w ∈ Σ+

i
, then STTi(x, p, q)

contains a path v0v1v2 labeled (p, q)(p′, q′)(p′′, q′) such that v0 is the root, v1 is the root of ti−1
(x′′,p′,q′),

and v2 is the root of STTi−1(x′′, p′′, q′).

For i > 0, the tree STTi(x, p, q) is built up as follows.
Let Reach1 ⊆ Σ∗

i
×QB ×QA be the smallest set such that (x′′, p′, q′) ∈ Reach1 if

x = x′x′′ with x′′ ∈ Σ+
i

for an x′∈ Σ+
i

such that there is a y ∈ Σ+
o

with |y| = |x′|, and
δ∗A(q, (x′, y)) = q′ and δ∗B(p, y) = p′.
(This set represents state transformations induced by output blocks that partially consume x.)

For (x′′, p′, q′) ∈ Reach1, let Reach(x′′,p′,q′) ⊆ Σ∗
i
× QB × QA be the smallest set such

that (x′′, p′′, q′) ∈ Reach(x′′,p′,q′) if δ∗B(p′, w) = p′′ for some w ∈ Σ+
i
.

(These sets represents state transformations induced by intermediate input blocks.)
Furthermore, let the tree ti−1

(x′′,p′,q′) be defined as (p′, q′)(STTi−1r1 . . . STTi−1rn) for
Reach(x′′,p′,q′) = {r1, . . . , rn}.
Then the tree STTi(x, p, q) is defined as

STT0(x, p, q) ◦ (p, q)(ti−1
s1

. . . ti−1
sn

)

for Reach1 = {s1, . . . , sn}, meaning it contains a path for every sequence of state trans-
formations that can be induced w.r.t. A and B starting from q and p, respectively, by the
input segment x together with an output segment that consumes x (w.r.t. A) consisting
of at most i+ 1 output blocks (w.r.t. B). Additionally, for output segments that have a
common prefix of output blocks the state transformations induced by the common prefix
of blocks are represented by the same nodes in the tree.

Intuitively, edges in such a tree are associated with the words that induced the state
transformation, e.g., as shown in Fig 2c.

Given a tree as in Def. 16, the maximal degree of such a tree depends on the input word
used as parameter. Our goal is to have state transformation trees where the maximum degree
is independent of this parameter. Therefore, we introduce reduced trees. The idea is that if
for some input word different outputs induce the same state transformations then only one
representation is kept in the input state transformation tree.

I Definition 17 (Reduced tree). A tree t ∈ TΣ over some alphabet Σ is called reduced if for
each node v there exist no two children u, u′ of v such that the subtrees rooted at u and u′
are isomorphic.



S. Winter 142:11

For a tree t ∈ TΣ, let red(t) ∈ TΣ denote its reduced variant. The reduced variant of
a tree can easily be obtained by a bottom-up computation where for each node duplicate
subtrees rooted at its children are removed.

Note that for each i, the set of reduced input state transformation trees with parameter i
is a finite set.

Hitherto, we have discussed how to capture state transformations induced by an input
word together with output words of same or smaller length. Additionally, we need to capture
state transformations induced by an output word together with input words of same or
smaller length. Therefore, we introduce a notion similar to input state transformation trees,
namely, output state transformation trees. A formal definition can be found in the full version.

Furthermore, we need a notion that captures state transformations that can be induced
by an input resp. output word alone, see Def. 18 below. Then, we are ready to define profiles.

I Definition 18 (State transformation function). For each w ∈ Σ∗
i
∪Σ∗

o
, we define the function

τw : QB → QB with τw(p) = q if δ∗B(p, w) = q called state transformation function w.r.t. w.

Profiles. Recall, T ⊆ T≤γ · (Σ∗i + Σ∗
o
)n, and our goal is to show that there is a bound k such

that it suffices to focus on constructing Tk-controlled uniformizers instead of T -controlled
uniformizers, meaning that we can focus on uniformizers in which the length of output blocks
is bounded by k after the lag has exceeded γ at some point.

The core of the proof is to show that if the lag between input and output becomes very
large (� γ), it is not necessary to consider the complete input that is ahead to determine
the next output block, but an abstraction (in the form of profiles) suffices. Note that if the
lag has exceeded γ at some point the number of remaining output blocks is at most dn/2e.

As a result, given an input word x ∈ Σ∗
i
, we are interested in the state transformation

that is induced by (x, πo(w)) in A (recognizing Scan) and by w in B (recognizing T ) for each
word w ∈ Σ∗

io
such that |πo(w)| ≤ |x| and shift(w) ≤ dn/2e. In words, we are interested in

the state transformations that can be induced by x together with outputs of same or smaller
length that are composed of at most dn/2e different output blocks.

For x ∈ Σ∗
i
, this kind of information is accurately represented by the set of all reduced

input state transformation trees with parameters x and dn/2e.
The same considerations with switched input and output roles apply for an output word

y ∈ Σ∗
o
.

I Definition 19 (Input profile). For x ∈ Σ∗
i
, we define its profile Px as (τx,STTdn/2ex ), where

STTdn/2ex =
⋃

(p,q)∈QB×QA

{red
(
STTdn/2e(x, p, q)

)
}.

Similarly, we define output profiles, a formal definition can be found in the full version.
A note on the number of different profiles. Profiles are based on reduced STTs with

parameter dn/2e, where n bounds shiftlag(T ). The size of the set of these STTs is non-
elementary in n, hence also the number of profiles. This implies a non-elementary complexity
of our decision procedure.

Furthermore, let Pi be the set
⋃
x∈Σ∗

i

{Px} of all input profiles and Po be the set⋃
y∈Σ∗

o

{Py} of all output profiles. For a P ∈ Pi ∪ Po, let z be a representative of P if
z is a shortest word such that P = Pz.

We show that from the profiles of two words x1 and x2 one can compute the profile of
the word x1x2. Hence, the set of profiles can be equipped with a concatenation operation,
i.e., for words x1 and x2 we let Px1Px2 = Px1x2 . We obtain the following.

ICALP 2018



142:12 Uniformization Problems for Synchronizations of Automatic Relations on Words

I Lemma 20. The set of input profiles is a monoid with concatenation; the set of output
profiles is a monoid with concatenation.

A word x ∈ Σ∗
i
and its profile Px are called idempotent if Px = Pxx. As a consequence of

Ramsey’s Theorem (see e.g., [5]) we obtain the following lemma.

I Lemma 21 (Consequence of Ramsey). There is a computable r ∈ N such that each word
x ∈ Σ∗

i
with |x| ≥ r contains a non-empty idempotent factor for the concatenation of profiles.

Now, we have the right tools to prove that the existence of a T -controlled uniformizer
implies that there also exists a Tk-controlled uniformizer for a computable k. For the
remainder, we fix two bounds.

I Assumption 22. Assume r1 is chosen as in Lemma 21 and r2 is chosen as the smallest
bound on the length of representatives of output profiles. Wlog, assume r1, r2 > γ.

Finally, we are ready to prove the key lemma, that is, Lemma 23, which shows that it is
sufficient to consider uniformizers in which the length of output blocks is bounded.

Recall, a uniformizer works asynchronously, which leads to large lag. First, we show that
if the output is lagged more than r1 symbols, meaning, the input that is ahead contains
an idempotent factor, it suffices to consider output blocks whose length depends on the
idempotent factor. Secondly, we show that it suffices to consider uniformizers in which the
output is ahead at most r2 symbols. The combination of both results yields Lemma 23.

Recall, by Asm. 13, T ⊆ T≤γ · (Σ∗i + Σ∗
o
)n and by Def. 14, Ti = T ∩

(
T≤γ · (Σ∗i + Σ≤i

o
)n
)

for i ≥ 0.

I Lemma 23. If S has a T -controlled uniformizer, then S has a Tk-controlled uniformizer
for a computable k ≥ 0.

The proof of the above lemma yields that k can be chosen as r1 + r2. This concludes
the first part of the proof of Theorem 10. For the second part, we prove that the problem
whether S has a Ti-controlled uniformizer for an i reduces to the question whether Ti(S) has
a subset uniformizer for a suitable Ti(S) as defined below in Lemma 24.

Reduction. The next lemma shows that from S a regular Ti(S) can be obtained such that
Ti(S) consists of all Ti-controlled synchronizations w with JwK ∈ JSK.

I Lemma 24. For i ≥ 0, the language Ti(S) = {w ∈ Σ∗
io
| w ∈ Ti and JwK ∈ JSK} is a

Ti-controlled effectively constructible regular language.

We are ready to prove the main theorem of this paper.

Proof sketch of Theorem 10. By Lemma 23 we know that if S has a T -controlled uni-
formizer, then S has a Tk-controlled uniformizer for a computable k ≥ 0. Let Tk(S) be
defined as in Lemma 24.

We can show that S has a T -controlled uniformizer iff dom(JSK) = dom(JTk(S)K) and
Tk(S) has a subset uniformizer which is decidable by Theorem 8. J

5 Conclusion

In this paper we considered uniformization by subsequential transducers in which the
allowed input/output behavior is specified by a regular set of synchronizations, the so-called
resynchronized uniformization problem. An overview over our results can be found in Table 1.



S. Winter 142:13

For future work we want to study other problems of this kind, e.g., study whether the
resynchronized uniformization problem is decidable for a given rational relation as source
language and a given ‘recognizable’ target language in the sense that the target language is
controlled by a synchronization language that synchronizes recognizable relations.

References
1 Jean Berstel. Transductions and context-free languages http://www-igm.univ-mlv.fr/

~berstel/, 2009. URL: http://www-igm.univ-mlv.fr/~berstel/.
2 J. Richard Büchi and Lawrence H. Landweber. Solving sequential conditions by finite-

state strategies. Transactions of the American Mathematical Society, 138:295–311, 1969.
doi:10.1090/S0002-9947-1969-0280205-0.

3 Arnaud Carayol and Christof Löding. Uniformization in Automata Theory. In Proceedings
of the 14th Congress of Logic, Methodology and Philosophy of Science Nancy, July 19-26,
2011, pages 153–178. London: College Publications, 2014.

4 Alonzo Church. Logic, arithmetic and automata. In Proceedings of the International
Congress of Mathematicians, pages 23–35, 1962.

5 R. Diestel. Graph Theory, 2nd Edition, volume 173 of Graduate Texts in Mathematics.
Springer, 2000.

6 Diego Figueira and Leonid Libkin. Synchronizing relations on words. Theory Comput.
Syst., 57(2):287–318, 2015.

7 Emmanuel Filiot, Ismaël Jecker, Christof Löding, and Sarah Winter. On equivalence and
uniformisation problems for finite transducers. In Proceedings of the 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, pages 125:1–125:14, 2016. doi:10.4230/LIPIcs.ICALP.2016.125.

8 Christiane Frougny and Jacques Sakarovitch. Synchronized rational relations of finite and
infinite words. Theor. Comput. Sci., 108(1):45–82, 1993. doi:10.1016/0304-3975(93)
90230-Q.

9 Michael Holtmann, Łukasz Kaiser, and Wolfgang Thomas. Degrees of lookahead in regular
infinite games. In Foundations of Software Science and Computational Structures, volume
6014 of Lecture Notes in Computer Science, pages 252–266. Springer, 2010. doi:/10.1007/
978-3-642-12032-9_18.

10 Frederick A. Hosch and Lawrence H. Landweber. Finite delay solutions for sequential
conditions. In ICALP, pages 45–60, 1972.

11 J. Howard Johnson. Uniformizing rational relations for natural language applications using
weighted determinization. In Proceedings of the 15th International Conference on Imple-
mentation and Application of Automata, CIAA’10, pages 173–180, Berlin, Heidelberg, 2011.
Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=1964285.1964304.

12 M. Nivat. Transductions des langages de Chomsky. Ann. de l’Inst. Fourier, 18:339–456,
1968. in french.

13 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
14 Wolfgang Thomas. Church’s problem and a tour through automata theory. In Pillars of

Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His
85th Birthday, volume 4800 of Lecture Notes in Computer Science, pages 635–655. Springer,
2008.

ICALP 2018

http://www-igm.univ-mlv.fr/~berstel/
http://www-igm.univ-mlv.fr/~berstel/
http://www-igm.univ-mlv.fr/~berstel/
http://dx.doi.org/10.1090/S0002-9947-1969-0280205-0
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.125
http://dx.doi.org/10.1016/0304-3975(93)90230-Q
http://dx.doi.org/10.1016/0304-3975(93)90230-Q
http://dx.doi.org//10.1007/978-3-642-12032-9_18
http://dx.doi.org//10.1007/978-3-642-12032-9_18
http://dl.acm.org/citation.cfm?id=1964285.1964304

	Introduction
	Synchronizations of relations
	Uniformization problems
	Automatic uniformizations of automatic relations
	Conclusion

