
A Superpolynomial Lower Bound for the Size of
Non-Deterministic Complement of an
Unambiguous Automaton
Mikhail Raskin1

LaBRI, University of Bordeaux, 351, cours de la Libération F-33405 Talence cedex, France
raskin@mccme.ru

https://orcid.org/0000-0002-6660-5673

Abstract
Unambiguous non-deterministic finite automata (UFA) are non-deterministic automata (over
finite words) such that there is at most one accepting run over each input. Such automata
are known to be potentially exponentially more succinct than deterministic automata, and non-
deterministic automata can be exponentially more succinct than them.

In this paper we establish a superpolynomial lower bound for the state complexity of the
translation of an UFA to a non-deterministic automaton for the complement language. This
disproves the formerly conjectured polynomial upper bound for this translation. This lower
bound only involves a one letter alphabet, and makes use of the random graph methods.

The same proof also shows that the translation of sweeping automata to non-deterministic
automata is superpolynomial.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases unambiguous automata, language complement, lower bound

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.138

Acknowledgements I would like to thank Gabriele Puppis for numerous useful discussions. I
would like to thank anonymous reviewers, Thomas Colcombet and Bruno Courcelle for their
advice regarding presentation.

1 Introduction

In many areas of computer science, the relationship between deterministic and non-determi-
nistic devices is a subject of significant interest. An intermediate notion between deterministic
and non-deterministic computation devices is the notion of unambiguous device. Such a
device can make non-deterministic choices, but it is guaranteed that for every input there is
at most one accepting execution trace.

For finite automata it is known that non-deterministic automata can be exponentially
more succinct than deterministic automata [10]. It is also known that unambiguous automata
can be exponentially more succinct than deterministic automata and in other situations
they can be exponentially less succinct than non-deterministic automata [8]. The paper
establishing exponential separation also defines several automata classes of limited ambiguity
and provides exponential separation between some of them.

Other notions of unambiguity have been considered. Some of them (for example, structural
unambiguity [9]: for all input words u and all states p, there is at most one run of the

1 This work was supported by the French National Research Agency (ANR project GraphEn / ANR-15-
CE40-0009)

EA
T

C
S

© Mikhail Raskin;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 138; pp. 138:1–138:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:raskin@mccme.ru
https://orcid.org/0000-0002-6660-5673
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.138
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

138:2 A lower bound for the size of a complement of UFA

automaton over u starting in an initial state and ending in p) describe a wider class of
automata than unambiguity. Some are more restrictive than simple unambiguity (for
example, strong unambiguity [14]: there is a set of result states, for every input there is
exactly one way to reach a result state, and the result states can be accepting or rejecting).
We do not consider these notions in the present paper.

We study the problem of representing a complement of a language specified by a finite
automaton. It is easy to see that replacing the set of accepting states with its complement
allows to recognize the complement of a language specified by a deterministic finite automaton
without increasing the number of states. Complementing a language specified by a non-deter-
ministic finite automaton may require an exponential number of states [1].

It has been conjectured (see for instance [3]) that every unambiguous non-deterministic
one-way finite automaton (UFA) recognizing some language L can be converted into an
UFA recognizing the complement of the original language L with polynomial increase in the
number of states. The best known lower bound was quadratic [13], while the upper bounds
were exponential [6]. The quadratic lower bound holds even for the single-letter alphabet.
One of the arguments in favour of the conjecture was the fact that universality and even
containment of the languages recognized by unambiguous finite automata can be decided in
polynomial time [15].

The case of the single-letter alphabet has a better upper bound for the state complexity
of recognizing the complement of the language of a non-deterministic finite automaton. A
one-way non-deterministic finite automaton (NFA) with n states can be converted to a
one-way deterministic finite automaton (DFA) with eΘ(

√
n log n) states accepting the same

language [11]. As a DFA can be converted into a DFA for the complement of the language
without any increase in the number of states, this conversion provides an upper bound on
the state complexity of recognizing the complement of the language recognized by an NFA.
This upper bound is tight [12].

Recognizing the complement of the language of a two-way non-deterministic automaton
(2NFA) with n states over the single-letter alphabet can be done using an 2NFA with at
most O(n8) states [4]. The same paper also shows that recognising the complement of the
language of a 2DFA with n states can be done by a 4n-states 2DFA for arbitrary alphabet.
For the single-letter alphabet the complement of the language of a 2DFA can be recognized
by a 2DFA with 2n+ 3 states [7].

In the present paper we show a superpolynomial lower bound for the state complexity
of recognizing the complement of a language of an unambiguous finite automaton by a
non-deterministic finite automaton.

I Theorem 1. There exists a sequence of unary UFA (Ad)d∈N such that every NFA recognising
the complement of the language of Ad has size at least |Ad|d.

The size of Ad is 222dΘ(1)

.

I Corollary 2. Worst case, complementing an UFA of size z by an NFA may require more
than z(log log log z)Θ(1) states.

In other words, complementing an UFA requires more than polynomial increase in size
regardless of the size of the alphabet, and the bound holds even if we allow the complement
to be represented by NFA.

We also note that the same languages (and their complements) can be recognized by
sweeping deterministic finite automata with a small increase in the state complexity compared
to the case of UFA.

M.Raskin 138:3

The proof revolves around a connection between UFA and tournaments (orientations of
complete graphs), and an observation about existence of tournaments with special properties
described in Section 4.

The rest of the paper is structured as follows. In the next section we give the standard
definitions. Then we present in Section 3 our construction of the unambiguous automata Ad.
It involves the use of tournaments with special properties, and the choice of many relatively
close primes. We prove the existence of the suitable tournaments in Section 4, and explain
how to chose the prime numbers in Section 5. The Section 6 finishes the proof of Theorem 1.
We briefly study the case of sweeping automata in Section 7. In the final section we summarize
the results and outline some possible future directions.

2 Definitions

In this section we will remind the definitions of deterministic, unambiguous and non-
deterministic finite automata, and their normal forms.

I Definition 3. An non-deterministic finite automaton (NFA) is defined by an alphabet Σ,
a set of states Q, a subset of initial states I ⊆ Q, a subset of accepting states F ⊆ Q and the
transition relation T ⊆ Q× Σ×Q. The size of an NFA A is the number of its states, and is
denoted by |A|. A run of an NFA over a word u = a1 . . . an is a sequence of states q0, . . . , qn

such that (qi−1, ai, qi) belongs to T for all i = 1 . . . n and q0 ∈ I. The run is accepting if its
last state is accepting, i.e. qn ∈ F . A language L over alphabet Σ is an subset L ⊆ Σ∗. The
language recognized by an automaton A is the set L(A) of all words w such that there exists
an accepting run of A on w. An automaton over the single-letter alphabet is called unary.

A deterministic finite automaton (DFA) is an NFA such that I is a singleton and for all
states q and all letters a there is at most one transition of the form (q, a, q′) ∈ T .

An unambiguous non-deterministic finite automaton (UFA) is an NFA such that for every
word there is at most one accepting run.

A unary non-deterministic finite automaton is in the Chrobak normal form [2] if it consists
of a path of states followed by a single nondeterministic choice to a set of disjoint cycles.

An automaton is in simple Chrobak normal form if it consists of a disjoint union of cycles,
each of them containing exactly one initial state.

The following theorem shows that every UFA can be transformed into one in Chrobak
normal form without increase in size, and as a consequence we sought the construction that
would have this shape.

I Theorem 4 ([5]). For all regular unary languages, there exists an unambiguous automaton
recognizing the language which is minimal in size and is furthermore in Chrobak normal
form.

3 The construction

We present in this section the construction of the automaton Ad involved in the proof of
Theorem 1. We also establish the unambiguity of Ad in Lemma 5 and compute its size in
Lemma 6.

Parameters

The construction of Ad involves several parts, and the parameters have to be adjusted
carefully for the lower bound. In this section, we use many parameters, to be specified in the
final proof, in Section 6.

ICALP 2018

138:4 A lower bound for the size of a complement of UFA

These parameters are the following:
n ∈ N is the number of cycles of the automaton Ad in simple Chrobak normal form.
R is a tournament of size n: a tournament is an orientation of the edges of the complete
undirected graph, see Section 4 for more details. The tournament R will eventually be
required to have a special property, established in Lemma 7.
b ∈ N is used as a basis for numbering, and we set N = bn.
P = {pi | i = 0 . . . N − 1} is a set of N distinct primes. These will eventually be chosen
sufficiently close one from each other thanks to Lemma 10.

The construction

We now construct the automaton Ad as follows.
It consists of n disjoint cycles C1, . . . , Cn, the cycle Ci having as length mi which is
the product of the primes pj ’s such that the ith digit of j in base b is 0 (the digits are
numbered from 1 to n). We write that pj belongs to mi if pj |mi.
The 0th state of the cycle Ci is initial.
The rth state of a cycle Ci is accepting if it satisfies three conditions:
1. r is non null,
2. r modulo p belongs to {0, i} for all p belonging to mi,
3. if iRj for some j, then there exists a prime p belonging to both mi and mj such that

r mod p = i.
And in this case, we call r an accepting remainder for mi.

Let us look more precisely at the structure of this automaton.
We first note that the empty word is not accepted by this automaton, thanks to Item 1

of the definition. One can also note that each cycle is the product of bn−1 distinct prime
numbers. Furthermore, if one computes the gcd of ` different mi’s, the result is the product
of bn−` prime numbers. Hence there are many primes dividing a cycle, there are many primes
dividing simultaneously two cycles, and so on.

Of course, the subtlety in this construction lies in the choice of the accepting remainders
for each mi. This has to respect several constraints. The remainders are chosen to be
sufficiently complicated for allowing the lower bound proof, and there should be not too
many of them in order to guarantee the unambiguity for Ad. In particular if Condition 3
was omitted, it would be easy find accepting remainders for two distinct mi’s that would
yield ambiguity2. The Condition 3 is used to resolve these conflictual situations, and when
an input would be accepted by two cycles, the tournament is used to “declare the winner”.

Concretely, we prove:

I Lemma 5. The automaton Ad is unambiguous.

Proof. Assume that the automaton Ad would be ambiguous. This would mean that there
exists a word, of length `, such that it is accepted by two distinct cycles. Let us say by
Ci and Cj . This means that r = ` mod mi is an accepting remainder for mi, and r′ = `

2 Indeed, let p being a prime of mi and p′ a prime of mj , consider, by the Chinese remainder theorem an
integer ` that is equal to i modulo p, equal to j modulo p′, and null modulo all other primes. In the
absence of Assumption 3, the word of length ` would be accepted by both Ci and Cj .

M.Raskin 138:5

mod mj is an accepting remainder for mj . Let us assume without loss of generality that iRj.
This implies by Item 3 that there is a prime number p that belongs to both mi and mj such
that r mod p = i. Hence ` mod p = i since p belongs to mi. Hence r′ mod p = i since p
also belongs to mj . However, we know that r′ is an accepting remainder for mj , therefore
Item 2 requires that r′ mod p ∈ {0, j}. A contradiction. J

We conclude this section by computing the size of this automaton.

I Lemma 6. The automaton Ad has between n(minP)nb−1 and n(maxP)nb−1 = n(maxP) N
b

states.

Proof. Indeed, the automaton is a union of n cycles and the length of each cycle is a product
of bn−1 = N

b primes from P . J

The rest of the proof is now devoted to showing that there are no small non-deterministic
automata for the complement of the language accepted by Ad.

4 Tournaments

A tournament graph (or simply a tournament) of size n is an orientation of the complete
graph. In our case, we see it as a relation over {1, . . . , n} such that for all distinct i, j = 1 . . . n,
either iRj and not jRi, or jRi and not iRj. By convention, iRi is assumed to never hold.

As we have seen in the previous section, a tournament is used as a parameter in the
construction of the automaton Ad. For our lower bound proof to go through, we use the fact
that this tournament has a special technical property, that is shown possible according to
the following lemma.

I Lemma 7. For all positive integers k, there exists a tournament R such that the following
property holds: for all E ⊆ R, if for all vertices x there exists a vertex y such that xEy, then
E contains at least k distinct edges that do not share an extremity.

It is possible to chose a tournament with this property of size n = 12k222k.

The rest of this section is devoted to the proof of Lemma 7. Note that this proof involves a
probabilistic argument.

The core notion used in the proof, and therefore the notion at the core of the entire proof
of Theorem 1, is the notion of inbound-covering sets.

I Definition 8. A set S is an inbound-covering set for a tournament R if for all vertices x
outside S, we have xRy for some y ∈ S.

I Lemma 9. For every positive integer h there exist a large enough integer n and a tournament
of size n such that the smallest inbound-covering set has size larger than h.

It is enough to take n = 3h22h.

Proof. Consider a uniformly random tournament of size n, i.e., the vertices are fixed as
1, . . . , n, and for all i < j, one tosses a fair coin in order to chose whether iRj or jRi. Consider
an arbitrary set S ⊂ V (G) of size h. The probability (over the choice of a tournament) that a
given vertex v ∈ V (G) \S has at least one edge from v to S is 1− 2−h. For a given set S and
v1, v2, . . . ∈ V (G) \S, the existence of an outgoing edge from vi towards S is independent for
the different vertices (indeed for all i 6= j, the set of edges from vi to S and the set of edges
from vj to S are disjoint and thus their orientations are chosen independently). Therefore
the probability for a given set S to be inbound-covering is equal to (1 − 2−h)(n−h). Note
that since log(1− 2−h) < (−2−h), this quantity is bounded from above by e−2−h(n−h) (?).

ICALP 2018

138:6 A lower bound for the size of a complement of UFA

Let us provide now an upper bound on the probability α that a tournament has an
inbound covering set of size h. Since there are (less than) nh sets of size n and using (?), we
immediately get that

α 6 nh exp
(
−n− h2h

)
= exp

(
h logn− n− h

2h

)
.

We shall prove now that for h > 8 and n = 3h22h, this quantity α is smaller than one,
which concludes the proof. According to the above inequality, it is sufficient for proving
α < 1 to establish that h logn < n−h

2h , which is equivalent to h2h logn < n− h. We establish
this inequality as follows:

h2h logn = h2h(h log 2 + 2 log h+ log 3)
< h2h × (2h)
= 2h22h

< 3h22h − h
= n− h J

I Remark. Note that, as it is customary with probabilistic constructions, our choice of n is in
fact enough to ensure that most tournaments have no inbound-covering sets of sizes up to h.

Now we can prove Lemma 7.

Proof. By Lemma 9 we can pick a tournament with orientation R that has no inbound-
covering sets of size up to h = 2k. We can choose such a tournament of size n = 3h22h =
12k222k.

Assume we have already constructed 2` distinct vertices x1, y1, . . . , x`, y` forming edges
(x1, y1), . . . , (x`, y`). Since S = {x1, y1, . . . , x`, y`} has cardinality 2` < 2h, it is not an
inbound-covering set. Hence, one can find a vertex x`+1 such that there is an edge from all
vertices of S to it. We know that E must contain some edge (x`+1, y`+1) from x`+1, and
this edge cannot lead to S, so the edge (x`+1, y`+1) doesn’t share an extremity with any
previously chosen edge. Applying this argument by induction on ` for ` = 0 to k, we have
proved Lemma 7. J

5 Choice of primes

I Lemma 10. For all large enough N it is possible to select N primes no larger than
4N2 logN within a factor of 1 + 1

N of each other.

Proof. We will take the interval of length 3N logN between 3N2 logN and 4N2 logN that
contains the most primes. By the Prime number theorem there are

3N2 logN
2 logN + log logN + log 3 + o(N2) = 3

2N
2 + o(N2)

primes no larger than 3N2 logN and

4N2 logN
2 logN + log logN + log 4 + o(N2) = 2N2 + o(N2)

primes no larger than 4N2 logN . Therefore, there are 1
2N

2 + o(1) primes between 3N2 logN
and 4N2 logN . If we divide this interval into subintervals of length 3N logN , the average

M.Raskin 138:7

subinterval will contain
1
2N

2 3N logN
N2 logN (1 + o(1)) = 3

2N + o(N)

primes, which is enough. J

6 The lower bound

In this section we present the main combinatorial argument of the proof, and complete the
proof of Theorem 1.

I Lemma 11. A non-deterministic automaton that accepts the complement of the language
of Ad has to have at least (minP)N(1−exp(− k

b2)) states.

Let us fix ourselves a non-deterministic automaton Cd that accepts the complement of
the language of Ad.

The principle of the proof of Lemma 11 is the following: as we have already noticed, the
word of length

∏
p∈P p, since it is congruent to 0 modulo all the mi’s, is not accepted by Ad

(this follows from Condition 1 in the definition of accepting remainders). Thus it has to be
accepted by Cd. Since this word is very long (the length is much larger than the bound we
want to prove), the run of Cd that accepts it has to visit twice some state and perform a
cycle in the mean time. We shall look at what are the words obtained by pumping this cycle,
that are all accepted by Cd, and obtain from this analysis that this cycle in Cd has to be
rather long.

The core combinatorial result justifying this intuition is the following.

I Lemma 12. Let Ad be constructed from a tournament of size n = 12k222k satisfying the
conclusion of Lemma 7.

Let x and y be integers such that
(a) (

∏
p∈P p) = x+ y, and;

(b) (xs+ y) mod mi is not an accepting remainder modulo mi for all i and all s > 0,
then x has to be divisible by at least N(1− (1− 1

b

2)k) distinct primes from P .

Proof. Consider the set E ⊆ R defined as

E = {(i, j) ∈ R | gcd(mi,mj)|x} .

The proof then goes in two steps. We shall show in step 1 that the assumption for E in
Lemma 7 are fulfilled. Then we will apply Lemma 7 and conclude in step 2.

Step 1: We assume that E does not fulfill the assumptions of Lemma 7, and head toward a
contradiction. This means that we assume that there exists an i = 1 . . . n such that whenever
iRj then gcd(mi,mj) does not divide x.

According to the Chinese remainder theorem and existence of inverse in Z/pZ there
exists s > 0 such that (xs+ y) mod p = i for all primes p ∈ P that do not divide x. Note
that for a prime p that divides x, since furthermore p divides x+ y (assumption (a) of the
lemma), we obtain p|y, and thus (xs+ y) mod p = 0. Overall, for r = xs+ y, we have that
for all primes p ∈ P :

r mod p =
{

0 if p divides x, and
i otherwise.

Let us show that this r is an accepting remainder:

ICALP 2018

138:8 A lower bound for the size of a complement of UFA

1 Let j be such that iRj. By assumption, gcd(mi,mj) - x. Hence, there exists p ∈ P that
divides mi but not x. For this p we know that r mod p = i, therefore r mod mi 6= 0.

2 We have seen above that r mod p ∈ {0, i}.
3 Let j be such that iRj. According to the assumption, gcd(mi,mj) does not divide x.

Hence there exists a prime p that divides both mi and mj but not x. For this prime, we
have seen that r mod p = i.

However, we knew by assumption (b) of the lemma that a number of the form xs+ y such
as r cannot be an accepting remainder. This is contradiction, and thus terminates the proof
of the step 1.

Step 2: Let us now apply Lemma 7. According to the lemma, there are k distinct E-edges
(i1, j1), . . . , (ik, jk) that do not share an extremity. Let us count the number of primes that
divide both mit

and mjt
for some t = 1 . . . k (and thus divide x). By construction of the

mi’s, it contains all the primes pv such that both the itth and the jtth digits (in the base-b
notation) of v are null for some t = 1 . . . k.

We will first count the primes in P not dividing x. These are the primes pv with v having
a nonzero digit in at least one of the two positions it and jt for every t. There are k pairs
of positions and there are b2 − 1 combinations of digits that are not (0, 0). There are also
n − 2k positions with no such constraints. The total number of possible combinations is
(b2 − 1)kbn−2k = (b2(1− 1

b2))kbn−2k = bn(1− 1
b2)k = N(1− 1

b2)k.
The primes in P dividing x are all the other primes, and there are N −N(1 − 1

b2)k =
N(1− (1− 1

b2)k) of them. J

Let us prove Lemma 11.

Proof. Let us fix a tournament of size n according to Lemma 7.
Let use fix a set of primes according to Lemma 10.
An NFA recognizing the complement of the language has to have a cycle, because the

complement is infinite. Consider the word of length
∏

p∈P p. This length is obviously greater
than |Ad|d. If the NFA has an accepting run over the word with no cycles, it has to be very
large. Otherwise, let C be a cycle of length x occurring in this run, and y be the remaining
part of the run length, i.e.

∏
p∈P p = x+ y (a). The product of all the primes

∏
p∈P p has

remainder zero modulo every modulus mi in the construction. By iterating s > 0 times the
cycle C, we obtain that the word of length xs+ y has to be accepted by Cd. Thus it is not
accepted by Ad, and hence (xs + y) mod mi is not an accepting remainder for all s > 0
and i = 1 . . . n (b).

Hence the assumptions (a) and (b) of Lemma 12 are fulfilled. It follows that the cycle C
has a length x divisible by N(1− (1− 1

b

2)k) distinct primes from P .
This ensures that the cycle C has a length at least (minP)N(1−(1− 1

b
2)k). Since furthermore

(1− 1
b2)k < exp(− 1

b2)k = exp− k
b2 , this is at least (minP)N(1−exp(− k

b2)).
The size of the NFA cannot be less than that. J

We can finally conclude the proof of the main theorem of this paper, Theorem 1.

Proof of Theorem 1. Let us fix d. Let b = 2d, k = b2, n = 12k222k, N = bn.
By Lemma 6 the size of the automaton Ad is at most n(maxP) N

b states. This automaton
is unambiguous by Lemma 5.

By Lemma 11 each NFA recognizing the complement of the language of Ad must have
at least (minP)N(1−exp(− k

b2)) states. As k
b2 = 1, the size of the NFA cannot be less than

(minP)0.6N .

M.Raskin 138:9

We now only need to verify that (O(n)(maxP) N
b)d < (minP)0.6N . But indeed, for large

enough d we have minP > N � n� d and

(O(n)(maxP) N
b)d < ((O(n)(1 + 2 1

N
)(minP)) N

2d)d

< O(n) N
2 exp(d

N
)(minP) N

2 < (minP)0.6N

In case of d not large enough, we can replace the automaton with the automaton for the
smallest large enough d.

Let us estimate the size of Ad. We know that b is linear in d, k is quadratic in d, n
is 2Θ(d2), N is bn = b2

Θ(d2) = 2(log b)2Θ(d2) = 22Θ(d2) . The primes in P are all Θ(N2 logN).
Then the size of the automaton Ad is Θ(n(minP) N

b) = (minP)Θ(N
b) = (N2 logN)Θ(N

b) =

22Θ(d2)22Θ(d2) = 222Θ(d2) = 222dΘ(1)

J

7 Sweeping automata

We will now make some additional remarks about the application of the main construction
to two-way and sweeping automata.

First we remind the definitions of two-way and sweeping automata.

I Definition 13. A two-way non-deterministic finite automaton (2NFA) is defined by an
alphabet Σ, a set of states Qt {>,⊥}, a subset of initial states I, and the transition relation
T ⊆ Q× (Σ t {`,a})× (Q t {>,⊥})× {+1,−1}. We call ` and a endpoint markers.

A run of an 2NFA on an input word u1 . . . uk is a list of pairs of positions and states,
(x0 = 1, q0 ∈ I), (x1, q1), . . . , (xn, qn) such that all transitions are allowed and the run ends
with one of the special states >,⊥. The exact conditions are as follows:
1. x0 is 1;
2. q0 is in I;
3. all xi are between 0 and k + 1;
4. (qi−1, wxi−1 , qi, xi − xi−1) ∈ T for all i = 1 . . . n, in which we assume that u0 =` and

uk+1 =a;
5. the last state qn is either > or ⊥;
6. xi 6= xi−1 for all i = 1 . . . n.
A run is accepting if the last state is >.

A two-way non-deterministic finite automaton (2DFA) is a 2NFA such that for every
state q and every letter a there is at most one transition of the form (q, s, q′, j) ∈ T .

A sweeping two-way deterministic finite automaton (swNFA) is a 2NFA with exactly one
initial state such that for each state q all the transitions of the form (q, s, q′, j) where s is in
Σ have the same j.

A swDFA is an swNFA that is also a 2DFA.

I Lemma 14. The languages L(Ad) and L(Ad) constructed in the proof of Theorem 1 can
also be recognized. by a swDFA of size |Ad|.

Proof. A swDFA can go through the word n times calculating the remainder modulo the
next modulus each time. This construction requires the same number of states as the UFA
constructed in the proof of Theorem 1. Such a swDFA can be constructed to recognize either
the language or its complement. J

I Theorem 15. Converting a unary sweeping two-way deterministic automaton to a non-
deterministic finite automaton for the same language may require a superpolynomial size.

ICALP 2018

138:10 A lower bound for the size of a complement of UFA

Proof. Consider the automata constructed in Lemma 14. J

8 Conclusion and further directions

We have constructed a counterexample to the conjecture that the complement of a language
recognized by an UFA can be recognized by an UFA with polynomial increase in the number
of states. Moreover, in our example the language and its complement are easy to recognize
by a swDFA with approximately the same number of states, but the complement requires
superpolynomial number of states in the recognizing NFA even without the requirement of
unambiguity. The example only uses the single-letter alphabet.

The construction provides a relatively weak kind of superpolynomial growth. It would be
interesting to improve the lower bound. It seems likely that the number of primes used in
the construction could be reduced, making the growth faster.

The question about exponential separation in the case of a general alphabet remains
open. We hope that our counterexample to the conjectured polynomial upper bound for
complementing UFA will inspire new results in this area.

References
1 Jean-Camille Birget. Partial orders on words, minimal elements of regular languages

and state complexity. Theor. Comput. Sci., 119(2):267–291, 1993. doi:10.1016/
0304-3975(93)90160-U.

2 Marek Chrobak. Finite automata and unary languages. Theor. Comput. Sci., 47(3):149–
158, 1986. doi:10.1016/0304-3975(86)90142-8.

3 Thomas Colcombet. Unambiguity in automata theory. In Jeffrey Shallit and Alexan-
der Okhotin, editors, Descriptional Complexity of Formal Systems - 17th International
Workshop, DCFS 2015, Waterloo, ON, Canada, June 25-27, 2015. Proceedings, volume
9118 of Lecture Notes in Computer Science, pages 3–18. Springer, 2015. doi:10.1007/
978-3-319-19225-3_1.

4 Viliam Geffert, Carlo Mereghetti, and Giovanni Pighizzini. Complementing two-way finite
automata. Inf. Comput., 205(8):1173–1187, 2007. doi:10.1016/j.ic.2007.01.008.

5 Tao Jiang, Edward McDowell, and Bala Ravikumar. The structure and complexity of
minimal nfa’s over a unary alphabet. Int. J. Found. Comput. Sci., 2(2):163–182, 1991.
doi:10.1142/S012905419100011X.

6 Jozef Jirásek Jr., Galina Jirásková, and Juraj Sebej. Operations on unambiguous finite
automata. In Srecko Brlek and Christophe Reutenauer, editors, Developments in Language
Theory - 20th International Conference, DLT 2016, Montréal, Canada, July 25-28, 2016,
Proceedings, volume 9840 of Lecture Notes in Computer Science, pages 243–255. Springer,
2016. doi:10.1007/978-3-662-53132-7_20.

7 Michal Kunc and Alexander Okhotin. State complexity of operations on two-way finite
automata over a unary alphabet. Theor. Comput. Sci., 449:106–118, 2012. doi:10.1016/
j.tcs.2012.04.010.

8 Hing Leung. Descriptional complexity of nfa of different ambiguity. Int. J. Found. Comput.
Sci., 16(5):975–984, 2005. doi:10.1142/S0129054105003418.

9 Hing Leung. Structurally unambiguous finite automata. In Oscar H. Ibarra and Hsu-Chun
Yen, editors, Implementation and Application of Automata, 11th International Conference,
CIAA 2006, Taipei, Taiwan, August 21-23, 2006, Proceedings, volume 4094 of Lecture Notes
in Computer Science, pages 198–207. Springer, 2006. doi:10.1007/11812128_19.

10 Oleg B Lupanov. A comparison of two types of finite automata. Problemy Kibernetiki,
9:321–326, 1963.

http://dx.doi.org/10.1016/0304-3975(93)90160-U
http://dx.doi.org/10.1016/0304-3975(93)90160-U
http://dx.doi.org/10.1016/0304-3975(86)90142-8
http://dx.doi.org/10.1007/978-3-319-19225-3_1
http://dx.doi.org/10.1007/978-3-319-19225-3_1
http://dx.doi.org/10.1016/j.ic.2007.01.008
http://dx.doi.org/10.1142/S012905419100011X
http://dx.doi.org/10.1007/978-3-662-53132-7_20
http://dx.doi.org/10.1016/j.tcs.2012.04.010
http://dx.doi.org/10.1016/j.tcs.2012.04.010
http://dx.doi.org/10.1142/S0129054105003418
http://dx.doi.org/10.1007/11812128_19

M.Raskin 138:11

11 J.I. Lyubich. Estimates of the number of states that arise in the determinization of a
nondeterministic autonomous automaton. Sov. Math., Dokl., 5:345–348, 1964.

12 Filippo Mera and Giovanni Pighizzini. Complementing unary nondeterministic automata.
Theor. Comput. Sci., 330(2):349–360, 2005. doi:10.1016/j.tcs.2004.04.015.

13 Alexander Okhotin. Unambiguous finite automata over a unary alphabet. Inf. Comput.,
212:15–36, 2012. doi:10.1016/j.ic.2012.01.003.

14 Seppo Sippu and Eljas Soisalon-Soininen. Parsing Theory. Vol. 1: Languages and Parsing.
Springer-Verlag New York, Inc., New York, NY, USA, 1988.

15 Richard Edwin Stearns and Harry B. Hunt III. On the equivalence and containment prob-
lems for unambiguous regular expressions, regular grammars and finite automata. SIAM
J. Comput., 14(3):598–611, 1985. doi:10.1137/0214044.

ICALP 2018

http://dx.doi.org/10.1016/j.tcs.2004.04.015
http://dx.doi.org/10.1016/j.ic.2012.01.003
http://dx.doi.org/10.1137/0214044

	Introduction
	Definitions
	The construction
	Tournaments
	Choice of primes
	The lower bound
	Sweeping automata
	Conclusion and further directions

