
Separating Without Any Ambiguity
Thomas Place
LaBRI, University of Bordeaux and IUF, France

Marc Zeitoun
LaBRI, University of Bordeaux, France

Abstract
We investigate a standard operator on classes of languages: unambiguous polynomial closure.
We show that if C is a class of regular languages having some mild properties, the membership
problem for its unambiguous polynomial closure UPol(C) reduces to the same problem for C. We
give a new, self-contained and elementary proof of this result. We also show that unambiguous
polynomial closure coincides with alternating left and right deterministic closure. Finally, if addi-
tionally C is finite, we show that the separation and covering problems are decidable for UPol(C).

2012 ACM Subject Classification Theory of computation → Regular languages

Keywords and phrases Regular languages, separation problem, decidable characterizations

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.137

Related Version A full version of the paper is available at https://hal.archives-ouvertes.
fr/hal-01798847.

Funding Both authors acknowledge support from the DeLTA project (ANR-16-CE40-0007).

1 Introduction

Most of the interesting classes of regular languages are built using a restricted set of operators.
From a class C, one may consider its Boolean closure Bool(C), its polynomial closure Pol(C),
and deterministic variants thereof, which yield usually a more elaborate class than C. It is
therefore desirable to investigate the operators themselves rather than individual classes.

The polynomial closure Pol(C) of a class C is its closure under union and marked concate-
nation (a marked concatenation of K and L is a language of the form KaL for a letter a).
Together with the Boolean closure, it is used to define concatenation hierarchies: starting
from a given class (level 0 in the hierarchy), level n+ 1

2 is the polynomial closure of level n,
and level n+1 is the Boolean closure of level n+ 1

2 . The importance of these hierarchies stems
from the fact that they are the combinatorial counterpart of quantifier alternation hierarchies
in logic, which count the number of ∀/∃ alternations needed to define a language [29, 23].

The main question when investigating a class of languages is the membership problem:
can we decide whether an input language belongs to the class? Despite decades of research
on concatenation hierarchies, one knows little about it. The state of the art is that when
level 0 is finite and has some mild properties, membership is decidable for levels 1

2 , 1,
3
2 ,

and 5
2 [21, 19, 16, 17, 23]. These results encompass those that were obtained previously [3,

2, 26, 14, 15] and even go beyond by investigating the separation problem, a generalization
of membership. This problem for a class C takes two arbitrary regular languages as input
(unlike membership, which takes a single one). It asks whether there exists a third language
from C, containing the first and disjoint from the second. Membership is the special case
of separation when the input consists of a language and its complement. Although more
difficult than membership, separation is also more rewarding. This is witnessed by a transfer

EA
T

C
S

© Thomas Place and Marc Zeitoun;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 137; pp. 137:1–137:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.137
https://hal.archives-ouvertes.fr/hal-01798847
https://hal.archives-ouvertes.fr/hal-01798847
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

137:2 Separating Without Any Ambiguity

theorem [19, 23]: membership for Pol(C) reduces to separation for C. The above results on
membership come from this theorem and the fact that separation is decidable for Pol(C),
BPol(C) def= Bool(Pol(C)) and Pol(BPol(C)) when C is finite with some mild properties.
See [12, 23] for detailed surveys on concatenation hierarchies.

Unambiguous closure. Deterministic variants of the polynomial closure are also important.
The most classical example is the unambiguous closure, where marked concatenations are
required to be unambiguous. A marked concatenation KaL is unambiguous if every word w
of KaL has a unique factorization w = w′aw′′ with w′ ∈ K and w′′ ∈ L. The unambiguous
closure UPol(C) of C is the closure of C under disjoint union and unambiguous concatenation.
Note that it is not clear on the definition whether UPol(C) is a Boolean algebra, even when C is.

A prominent example of a class built using unambiguous concatenation is that of unambigu-
ous languages [25]. It is the unambiguous polynomial closure of the Boolean algebra generated
by languages of the form A∗aA∗, where A is the working alphabet. Its robustness makes it one
of the most investigated classes: it enjoys a number of equivalent definitions [27, 5, 7, 6, 28].

State of the art. The class UPol(C) was described in algebraic terms in [13], following
earlier work on deterministic products by Pin [9]. Note however that [9] starts from an
alternate definition that assumes closure under Boolean operations already. Both papers
use elaborate mathematical tools (categories, bilateral kernel, relational morphisms) as well
as black boxes (results by Schützenberger [25] in [9] and a result of Rhodes [24] in [13]).
Unambiguous polynomial closure also appears in concatenation hierarchies as intermediate
levels: Pin and Weil [14, 15] have proved that UPol(C) = Pol(C)∩ co-Pol(C), where co-Pol(C)
is the class consisting of all complements of languages in Pol(C). Finally, a reduction from
UPol(C)-membership to C-membership was obtained in [1]. This proof is indirect: it is based
on the nontrivial equality UPol(C) = Pol(C)∩co-Pol(C), which itself depends on the algebraic
characterizations of UPol(C) and Pol(C) obtained in [13, 14, 15, 4].

Contributions. Unambiguous polynomial closure was not yet investigated with respect to
separation, aside from the particular case of unambiguous languages [18]. This is the starting
point of this paper: we look for a generic separation result applying to UPol(C), similar to
the ones obtained for Pol(C) and BPol(C) in [21]. This paper presents such a result: our
main theorem states that when C is finite and satisfies some mild hypotheses, separation for
UPol(C) is decidable. However, as it is usual with separation, we also obtain several extra
results as a byproduct of our work, improving our understanding of the UPol operator:

We had to rethink the way membership is classically handled for UPol(C) in order to lift
the techniques to separation. This yields a completely new, self-contained and elementary
proof that under some natural hypothesis on C, membership for UPol(C) reduces to
membership for C. This proof also precisely pinpoints why this result holds for UPol(C)
but not Pol(C). More precisely, we show that the languages from C needed to construct
an UPol(C) expression for a language L are all recognized by any recognizer of L.
We obtain a new proof that UPol(C) is a quotienting Boolean algebra when C is one.
We obtain a new proof that UPol(C) = Pol(C)∩co-Pol(C) using our results on Pol(C) [23].
We obtain a previously unknown characterization of UPol(C) in terms of alternating
left and right deterministic concatenations, which are restricted forms of unambiguous
concatenation. A marked concatenation KaL is left (resp. right) deterministic when
KaA∗ ∩K = ∅ (resp. A∗aL ∩ L = ∅). We prove that UPol(C) coincides with ADet(C),
the closure of C under disjoint union and left and right deterministic concatenation.

T. Place and M. Zeitoun 137:3

Organization of the paper. Section 2 sets up the notation and the terminology. Section 3
presents a solution of the membership problem for UPol(C) when C has mild closure properties.
This result also yields the above byproducts. Finally, in Section 4, we present an algorithm
for solving separation for UPol(C) when C is additionally finite.

2 Preliminaries

Words and languages. For the whole paper, we fix an arbitrary finite alphabet A. We
denote by A∗ the set of all finite words over A, and by ε ∈ A∗ the empty word. Given two
words u, v ∈ A∗, we write uv for their concatenation. A language (over A) is a subset of A∗.
Abusing terminology, we denote by u the singleton language {u}. It is standard to extend
concatenation to languages: given K,L ⊆ A∗, we write KL = {uv | u ∈ K and v ∈ L}.
Moreover, we also consider marked concatenation, which is less standard. Given K,L ⊆ A∗,
a marked concatenation of K with L is a language of the form KaL, for some a ∈ A.

A class of languages C is a set of languages. We say that C is a lattice when ∅ ∈ C, A∗ ∈ C
and C is closed under finite union and finite intersection: for any K,L ∈ C, we have K∪L ∈ C
and K ∩ L ∈ C. Moreover, a Boolean algebra is a lattice C which is additionally closed under
complement: for any L ∈ C, we have A∗ \L ∈ C. Finally, a class C is quotienting if it is closed
under quotients. That is, for any L ∈ C and any word u ∈ A∗, the following properties hold:

u−1L
def= {w ∈ A∗ | uw ∈ L} and Lu−1 def= {w ∈ A∗ | wu ∈ L} both belong to C.

All classes that we consider are quotienting Boolean algebras of regular languages.

Regular languages. These are the languages that can be equivalently defined by nondeter-
ministic finite automata, finite monoids or monadic second-order logic. In the paper, we
work with the definition by monoids, which we recall now.

A monoid is a setM endowed with an associative multiplication (s, t) 7→ s ·t (also denoted
by st) having a neutral element 1M , i.e., such that 1M · s = s · 1M = s for every s ∈M . An
idempotent of a monoid M is an element e ∈M such that ee = e. It is folklore that for any
finite monoid M , there exists a natural number ω(M) (denoted by ω when M is understood)
such that for any s ∈M , the element sω is an idempotent.

Our proofs make use of the Green relations [8], which are defined on monoids (we use
them as induction parameters). We briefly recall them. Given a monoid M and s, t ∈M ,

s 6J t when there exist x, y ∈M such that s = xty,

s 6L t when there exists x ∈M such that s = xt,

s 6R t when there exists y ∈M such that s = ty.

Clearly, 6J, 6L and 6R are preorders (i.e., they are reflexive and transitive). We write <J,
<L and <R for their strict variants (for example, s <J t when s 6J t but t 66J s). Finally,
we write J, L and R for the corresponding equivalence relations (for example, s J t when
s 6J t and t 6J s). There are many technical results about Green relations. We shall only
need the following simple lemma which applies to finite monoids (see [11]).

I Lemma 1. Consider a finite monoid M and s, t ∈ M such that s J t. Then, s 6R t

implies s R t. Symmetrically, s 6L t implies s L t.

Observe that A∗ is a monoid whose multiplication is concatenation (the neutral element
is ε). Thus, we may consider monoid morphisms α : A∗ → M where M is an arbitrary
monoid. Given such a morphism and some language L ⊆ A∗, we say that L is recognized
by α when there exists a set F ⊆M such that L = α−1(F).

ICALP 2018

137:4 Separating Without Any Ambiguity

Given any language L, there exists a canonical morphism which recognizes it. Let us
briefly recall its definition. One may associate to L an equivalence ≡L over A∗: the syntactic
congruence of L. Given u, v ∈ A∗, u ≡L v if and only if xuy ∈ L ⇔ xvy ∈ L for any
x, y ∈ A∗. It is known and simple to verify that “≡L” is a congruence on A∗. Thus, the set
of equivalence classes ML = A∗/≡L is a monoid and the map αL : A∗ → ML sending any
word to its equivalence class is a morphism recognizing L, called the syntactic morphism of L.
Finally, it is known that L is regular if and only if ML is finite (i.e., ≡L has finite index):
this is Myhill-Nerode theorem. In that case, one may compute the syntactic morphism
αL : A∗ →ML from any representation of L (such as a finite automaton).

Decision problems. The two problems that we consider in the paper are both parametrized
by an arbitrary class of languages C: they serve as mathematical tools for analyzing C. The
C-membership problem is the simplest one. It takes as input a single regular language L and
asks whether L ∈ C. The second one, C-separation, is more general: it takes two regular
languages L1, L2 as input and asks whether L1 is C-separable from L2, that is, whether there
exists K ∈ C such that L1 ⊆ K and L2 ∩K = ∅. The language K is called a separator of
L1 and L2. Note that C-membership is easily reduced to C-separation: given any regular
language L, we have L ∈ C if and only if L is C-separable from A∗ \L (which is also regular).

3 Unambiguous polynomial closure

In this section, we define the unambiguous polynomial closure operation, which is the main
focus of the paper. Furthermore, we investigate the associated membership problem.

3.1 Definition
Given two languages H,L ⊆ A∗, we say that their concatenation HL is unambiguous when
any word w ∈ HL admits a unique decomposition witnessing this membership: for any
u, u′ ∈ H and v, v′ ∈ L, if w = uv = u′v′, then u = u′ and v = v′. More generally, we
say that a product of n languages L1 · · ·Ln is unambiguous when any word w ∈ L1 · · ·Ln
admits a unique decomposition witnessing this membership. Note that unambiguous marked
concatenations are well-defined: HaL is a product of three languages, namely H, {a} and L.

I Remark. Clearly, not all products are unambiguous. For example, A∗aA∗ is ambiguous:
aa ∈ A∗aA∗ admits two decompositions witnessing this membership (εaa and aaε).

I Remark. Being unambiguous is a semantic property: whether HL is unambiguous may
not be apparent on the definitions of H and L. Moreover, this depends on the product HL
and not only on the resulting language K = HL. It may happen that two products represent
the same language but one is unambiguous while the other is not. For example, A∗aA∗ is
ambiguous while (A \ {a})∗aA∗ (which represents the same language) is unambiguous.

In the paper, we shall only need two special kinds of unambiguous products, which we
now present. Let K,L ⊆ A∗ and a ∈ A. We say that the marked concatenation KaL,

is left deterministic when K ∩KaA∗ = ∅,
is right deterministic when L ∩A∗aL = ∅.

I Fact 2. Any left or right deterministic marked concatenation is unambiguous.

We use these definitions to introduce three standard operations on classes of languages.
Consider an arbitrary class C.

T. Place and M. Zeitoun 137:5

The polynomial closure of C, denoted by Pol(C), is the smallest class containing C and
closed under marked concatenation and union: for any H,L ∈ Pol(C) and a ∈ A, we
have HaL ∈ Pol(C) and H ∪ L ∈ Pol(C). Furthermore, we denote by co-Pol(C) the class
containing all complements of languages in Pol(C): L ∈ co-Pol(C) when A∗ \ L ∈ Pol(C).
The unambiguous polynomial closure of C, denoted by UPol(C), is the smallest class
containing C and closed under unambiguous marked concatenation and disjoint union.
That is, for any H,L ∈ UPol(C) and a ∈ A, if HaL is unambiguous, then HaL ∈ UPol(C)
and if H ∩L = ∅, then H]L ∈ UPol(C). Here, we denote union by “]” to underline the
fact that H and L are disjoint (we use this convention in the whole paper).
The alternating deterministic closure of C, denoted by ADet(C), is the smallest class
containing C and closed under deterministic marked concatenation and disjoint union.
That is, for any H,L ∈ ADet(C) and a ∈ A, if HaL is either left or right deterministic,
then HaL ∈ ADet(C) and if H ∩ L = ∅, then H] L ∈ ADet(C).

It is immediate by definition and Fact 2 that we have C ⊆ ADet(C) ⊆ UPol(C) ⊆ Pol(C). In
general the inclusion UPol(C) ⊆ Pol(C) is strict. On the other hand, we shall prove that
when C is a quotienting Boolean algebra, ADet(C) = UPol(C).

It is not immediate that Pol(C), UPol(C) and ADet(C) have robust closure properties
beyond those explicitly stated in the definitions. However, it turns out that when C satisfies
robust properties itself, this is the case for these three classes as well. It was shown by
Arfi [3] that when C is a quotienting Boolean algebra of regular languages, then Pol(C) is a
quotienting lattice. Pin [10] extended the result for the case when C is a quotienting lattice.
Here, we are mostly interested in UPol(C). We prove the following theorem which combines
and extends several results by Pin, Straubing, Thérien and Weil [13, 15].

I Theorem 3. Let C be a quotienting Boolean algebra of regular languages. Then, UPol(C) is
a quotienting Boolean algebra as well. Moreover, UPol(C) = ADet(C) = Pol(C) ∩ co-Pol(C).

That UPol(C) is a quotienting Boolean algebra of regular languages is due to Pin,
Straubing and Thérien [13]. The correspondence between UPol(C) and Pol(C) ∩ co-Pol(C)
is due to Pin and Weil [15]. The correspondence between UPol(C) and ADet(C) is a new
result, to the best of our knowledge. Let us point out that the original proofs of these results
require a stronger hypothesis on C, which needs additionally to be closed under inverse
morphic image. Moreover, these proofs require to introduce and manipulate a lot of algebraic
machinery. This is because they are based on a generic algebraic characterization of UPol(C).

While we use a similar approach (i.e., we prove a generic algebraic characterization of
UPol(C)), our argument is much more elementary. The only algebraic notion that we need is
the syntactic morphism of a regular language.

3.2 Algebraic characterization
We now present a generic algebraic characterization of UPol(C). It holds provided that C
is a quotienting Boolean algebra of regular languages. It implies Theorem 3, but also that
UPol(C)-membership reduces to C-membership.

The characterization is parameterized by two relations that we define now. Let C be
some class of languages. Consider a finite monoid M and a surjective morphism α : A∗ →M

(such as the syntactic morphism of some language). Given a pair (s, t) ∈M ×M ,
(s, t) is a C-pair (for α) when no language of C can separate α−1(s) from α−1(t).
(s, t) is a weak C-pair (for α) when no language of C recognized by α can separate
α−1(s) from α−1(t).

ICALP 2018

137:6 Separating Without Any Ambiguity

Note that any C-pair is also a weak C-pair (the converse is not true in general). By definition,
we are able to compute all C-pairs as soon as we have an algorithm for C-separation. On the
other hand, computing all weak C-pairs boils down to deciding C-membership, as it suffices
to check which languages recognized by α (the potential separators) belong to C.
I Remark. An equivalent definition of the weak C-pairs is to introduce them as the transitive
closure of the C-pairs. We prove this in the full version. In fact, when C is a quotienting
Boolean algebra, the weak C-pair relation is a congruence whose equivalence classes correspond
exactly to the languages recognized by α and belonging to C.

We may now state the following characterization of UPol(C).

I Theorem 4. Let C be a quotienting Boolean algebra of regular languages. Consider a regular
language L and let α : A∗ →M be its syntactic morphism. The following are equivalent:
1. L ∈ UPol(C).
2. L ∈ ADet(C).
3. L ∈ Pol(C) ∩ co-Pol(C).
4. For all C-pairs (s, t) ∈M2, we have sω+1 = sωtsω.
5. For all weak C-pairs (s, t) ∈M2, we have sω+1 = sωtsω.

Theorem 3 is a simple corollary of Theorem 4 (it is standard that any class satisfying
a property such as Item (4) in the theorem is a quotienting Boolean algebra). Another
consequence is that if C is a quotienting Boolean algebra of regular languages, UPol(C)-
membership reduces to the same problem for C. Indeed, given as input a regular language L,
one may compute its syntactic morphism α. By Theorem 4, deciding whether L ∈ UPol(C)
amounts to checking whether α satisfies Item (5). This is possible provided that we have all
weak C-pairs for α in hand. In turn, an algorithm for C-membership immediately yields an
algorithm for computing them all. Altogether, we obtain the following corollary.

I Corollary 5. Let C be a quotienting Boolean algebra of regular languages and assume that
C-membership is decidable. Then UPol(C)-membership is decidable as well.

We now focus on proving Theorem 4. A first point is that we do not show the equivalence
(3)⇔ (4): it is a simple corollary of the generic characterization of Pol(C) which is not our
main focus in the paper (a full proof is available in [23]). Here, we concentrate on proving the
implications (1)⇒ (4)⇒ (5)⇒ (2)⇒ (1). The implication (2)⇒ (1) (ADet(C) ⊆ UPol(C))
is immediate. Even though the presentation is different, the equivalence (4)⇔ (5) is a result
of [1] (which investigates Pol(C) ∩ co-Pol(C)) and is based on algebraic manipulations. We
prove this equivalence as well as the implication (1)⇒ (4) in the full version, to focus on
(5)⇒ (2), which is the most interesting implication: when a language satisfies (5), we show
that it belongs to ADet(C).

We fix a quotienting Boolean algebra of regular languages C for the proof. Consider an
arbitrary surjective morphism α : A∗ →M satisfying Item (5) in Theorem 4. We show that
any language recognized by α belongs to ADet(C). We start with a preliminary lemma.

I Lemma 6. There exists a finite monoid N and a surjective morphism β : M → N which
satisfies the following properties:

For any s, t ∈M , (s, t) is a weak C-pair if and only if β(s) = β(t).
Any language recognized by the composition γ = β ◦ α : A∗ → N belongs to C.

Lemma 6 is obtained by proving that the weak C-pair relation is a congruence on M and
that for any equivalence class F ⊆M , we have α−1(F) ∈ C. It then suffices to define N as
the quotient of M by this congruence. The proof is presented in the full version of the paper.

T. Place and M. Zeitoun 137:7

Let us come back to the main proof. Let β : M → N and the composition γ = β ◦ α be
defined as in Lemma 6. Given any r1, r2, s ∈M and any x ∈ N , we define:

Lxs [r1, r2] = {w ∈ γ−1(x) | r1α(w)r2 = s}.

The purpose of introducing Lxs [r1, r2] is that it provides induction parameters s, r1, r2 and it
coincides with α−1(s) when x = β(s), r1 = r2 = 1M . Our goal is to show that it is in ADet(C).

I Proposition 7. Let r1, r2, s ∈M and x ∈ N . Then, Lxs [r1, r2] ∈ ADet(C).

Before proving this proposition, let us use it to finish the main proof. By definition, a
language recognized by α is a disjoint union of sets α−1(s) for s ∈M . Therefore, it suffices to
prove that α−1(s) ∈ ADet(C) for any s ∈M . Let x = β(s). Clearly, Lβ(s)

s [1M , 1M] = α−1(s).
Thus, Proposition 7 yields that α−1(s) ∈ ADet(C), finishing the proof.

It remains to prove Proposition 7. We let r1, r2, s ∈M and x ∈ N . Our objective is to
show that Lxs [r1, r2] ∈ ADet(C). Observe that we may assume without loss of generality
that β(s) = β(r1)xβ(r2). Otherwise, Lxs [r1, r2] = ∅ ∈ ADet(C) by definition and the result is
immediate. The proof is an induction on the three following parameters listed by order of
importance (the three of them depend on Green’s relations in both M and N):
1. The rank of β(s) which is the number of elements y ∈ N such that β(s) 6J y.
2. The right index of r1 which is the number of elements t ∈M such that t 6R r1.
3. The left index of r2 which is the number of elements t ∈M such that t 6L r2.
We consider three cases depending on the following properties of s, r1, r2 and x.

We say that x is smooth when x J β(s).
We say that r1 is right stable when there exists t ∈M such that β(t) R x and r1t R r1.
We say that r2 is left stable when there exists t ∈M such that β(t) L x and tr2 L r2.

In the base case, we assume that all three properties hold. Otherwise, we consider two
inductive cases. First, we assume that x is not smooth. Then, we assume that either r1 is
not right stable or r2 is not left stable.

Base case. Assume that x is smooth and that r1, r2 are respectively right and left stable.
We use this hypothesis to prove the following lemma.

I Lemma 8. For any u, v ∈ γ−1(x), we have r1α(u)r2 = r1α(v)r2.

Observe that Lemma 8 concludes the proof. Indeed, by definition of Lxs [r1, r2], it implies
that either Lxs [r1, r2] = γ−1(x) (when r1α(w)r2 = s for all w ∈ γ−1(x)) or Lxs [r1, r2] = ∅
(when r1α(w)r2 6= s for all w ∈ γ−1(x)). Since both of these languages belong to C ⊆ ADet(C)
by Lemma 6, Proposition 7 follows. It remains to prove Lemma 8 to conclude the base case.
The argument relies on the following fact (this is where we use our hypothesis on r1 and r2).

I Fact 9. When Item (5) in Theorem 4 holds, the two following properties hold as well:
For all t ∈M such that β(t) R x, we have r1t R r1.
For all t ∈M such that β(t) L x, we have tr2 L r2.

Let us first use the fact to prove Lemma 8 and finish the base case. Consider u, v ∈ γ−1(x),
i.e., β(α(u)) = β(α(v)) = x. We show that r1α(u)r2 = r1α(v)r2.

By hypothesis, we have β(s) = β(r1)xβ(r2). Moreover, β(s) J x since x is smooth by
hypothesis. Thus, xβ(r2) J x and β(r1)x J x. Hence, since xβ(r2) 6R x and β(r1)x 6L x,
Lemma 1 implies xβ(r2) R x and β(r1)x L x. Since β(α(u)) = x, this yields β(α(u)r2) R x and
β(r1α(u)) L x. Applying Fact 9 with t = α(u)r2, one gets r1α(u)r2 R r1 and r1α(u)r2 L r2.

ICALP 2018

137:8 Separating Without Any Ambiguity

We get p, q ∈M such that r1 = r1α(u)r2p and r2 = qr1α(u)r2. Let t = qr1α(u)r2p = r2p =
qr1. We combine our two equalities for r1 and r2 to obtain,

r1 = r1α(u)t = r1(α(u)t)ω and r2 = tα(u)r2 = (tα(u))ω+1r2. (1)

Since β(α(u)) = β(α(v)), we know that β(α(u)t) = β(α(v)t). Therefore, (α(u)t, α(v)t) is
a weak C-pair by Lemma 6, and Item (5) yields (α(u)t)ω+1 = (α(u)t)ωα(v)t(α(u)t)ω. We
may now multiply by r1 on the left and by α(u)r2 on the right to get,

r1(α(u)t)ωα(u)(tα(u))ω+1r2 = r1(α(u)t)ωα(v)(tα(u))ω+1r2.

Since we already know from (1) that r1 = r1(α(u)t)ω and r2 = (tα(u))ω+1r2, we get as
desired that r1α(u)r2 = r1α(v)r2, finishing the proof of Lemma 8. It remains to prove Fact 9.

Proof of Fact 9. By symmetry, we focus on the first property and leave the second to the
reader. Let t ∈ M such that β(t) R x. We show that r1t R r1. By hypothesis, r1 is right
stable which yields t′ ∈M such that β(t′) R x R β(t) and r1t

′ R r1. Since β(t′) R β(t), we
have y ∈ N such that β(t′) = β(t)y. Let p ∈M such that β(p) = y: we have β(t′) = β(tp).
Since r1t

′ R r1, we have q ∈M such that r1 = r1t
′q which yields r1 = r1(t′q)ω = r1(t′q)ω+1.

We have β(t′q) = β(tpq) which means that (t′q, tpq) is a weak C-pair by Lemma 6. Therefore,
Equation (5) yields that (t′q)ω+1 = (t′q)ωtpq(t′q)ω. Finally, we obtain,

r1 = r1(t′q)ω+1 = r1(t′q)ωtpq(t′q)ω = r1tpq(t′q)ω.

This implies that r1 6R r1t. Since it is immediate that r1t 6R r1, we get r1t R r1. J

First inductive case. We now assume that x is not smooth: x and β(s) are not J-equivalent.
We use induction on our first parameter (the rank of β(s)). Recall that we assumed
β(s) = β(r1)xβ(r2), which yields β(s) 6J x. Thus, we have β(s) <J x by hypothesis.

By definition, Lxs [r1, r2] is the disjoint union of all languages α−1(t) where t ∈M satisfies
β(t) = x and r1tr2 = s. Therefore, it suffices to show that for any t ∈M such that β(t) = x,
we have α−1(t) ∈ ADet(C). This is immediate by induction. Indeed, since β(t) = x, we have
α−1(t) = Lxt [1M , 1M]. Moreover, since β(s) <J x, we have β(s) <J β(t). It follows that the
rank of β(t) is strictly smaller than the one of β(s). Hence, we may apply induction on our
first and most important parameter to get Lxt [1M , 1M] ∈ ADet(C).

Second inductive case. We assume that either r1 is not right stable or r2 is not left stable.
By symmetry, we treat the case when r1 is not right stable and leave the other to the reader.

I Remark. We only apply induction on our two first parameters. Moreover, we show that
Lxs [r1, r2] is built from languages in ADet(C) (obtained from induction) using only disjoint
union and left deterministic marked concatenations. Induction on our third parameter and
right deterministic marked concatenations are used in the case when r2 is not left stable.

Observe that we have x <J 1N (x is not maximal for 6J). Indeed, otherwise, we would
have x R 1N by Lemma 1 and r1 would be left stable: 1M ∈M would satisfy β(1M) = 1N R x

and r11M = r1 R r1. Therefore, there are elements y ∈ N such that x <J y.
We use this observation to define T as the set of all triples (y, a, z) ∈ N × A×N such

that x = yγ(a)z, x <J y and x J yγ(a). Using the definition of T and the fact that x <J 1N ,
one may decompose Lxs [r1, r2] as follows (this lemma is proved in the full version).

T. Place and M. Zeitoun 137:9

I Lemma 10. The language Lxs [r1, r2] is equal to the following disjoint union,

Lxs [r1, r2] =
⊎

(y,a,z)∈T

 ⊎
t∈β−1(y)

α−1(t) · a · Lzs [r1tα(a), r2]

 .

We now use Lemma 10 to show as desired that Lxs [r1, r2] ∈ ADet(C). Since ADet(C) is
closed under disjoint union by definition, it suffices to show that for any (y, a, z) ∈ T and
any t ∈ β−1(y), we have,

α−1(t) · a · Lzs[r1tα(a), r2] ∈ ADet(C).

We prove that this is a left deterministic marked concatenation of two languages in ADet(C)
which concludes the proof.

We start with α−1(t) ∈ ADet(C). Since y = β(t), we have α−1(t) = Lyt [1M , 1M].
Moreover, since β(s) = β(r1)xβ(r2), we have β(s) 6J x. Finally, by definition of T we have
x <J y = β(t). Altogether, we get β(s) <J β(t): the rank of β(t) is strictly smaller than the
one of β(s) and induction on our first parameter yields α−1(t) = Lyt [1M , 1M] ∈ ADet(C).

We turn to Lzs[r1tα(a), r2] ∈ ADet(C). By definition of T , we have x J yγ(a) and
x = yγ(a)z which yields that x R yγ(a) by Lemma 1. Moreover, since y = β(t), it follows
that x R β(tα(a)). Therefore, since we know that r1 is not right stable (this is our hypothesis),
it follows that r1 and r1tα(a) are not R-equivalent. Since it is clear that r1tα(a) 6R r1, it
follows that r1tα(a) <R r1: the right index of r1tα(a) is strictly smaller than the one of r1.
By induction on our second parameter, we then get that Lzs[r1tα(a), r2] ∈ ADet(C).

It remains to show that α−1(t) · a · Lzs[r1tα(a), r2] is a left deterministic marked con-
catenation, i.e., that α−1(t) ∩ α−1(t)aA∗ = ∅. Since β(t) = y, we have α−1(t) ⊆ γ−1(y)
and it suffices to show that γ−1(y) ∩ γ−1(y)aA∗ = ∅. Let w ∈ γ−1(y) and w′ ∈ γ−1(y)aA∗,
we show that w 6= w′. Since (x, a, z) ∈ T , we have x <J y and x J yγ(a). It follows that
yγ(a) <J y. Finally, we have γ(w) = y and γ(w′) = yγ(a)y′ for some y′ ∈ N . This implies
that γ(w′) 6J yγ(a) <J y = γ(w). Therefore γ(w) 6= γ(w′) which implies that w 6= w′.

4 Separation

We now turn to separation for UPol(C) and show that the problem is decidable for any finite
quotienting Boolean algebra C. For the sake of avoiding clutter, we fix C for the section.
I Remark. This result may seem weak: our solution for UPol(C)-separation requires C to
be finite while UPol(C)-membership reduces to C-membership. This intuition is wrong: the
result on separation is the strongest. The proof of Theorem 4 shows that when L ∈ UPol(C),
the basic languages in C needed to build L are all recognized by the syntactic morphism of L.
Hence, L ∈ UPol(C) if and only if L ∈ UPol(D) where D ⊆ C is a finite class obtained from
the syntactic morphism of L. We lose this when moving to separation: the languages in C
needed to build a potential separator in UPol(C) may not be encoded in our two inputs.

Our algorithm is based on a general framework designed to handle separation problems
and to present solutions in an elegant way. It was introduced in [20, 22]. We first summarize
what we need in this framework to present our solution for UPol(C)-separation.
I Remark. The framework of [20, 22] is actually designed to handle a more general decision
problem: covering, which generalizes separation to arbitrarily many input languages. Thus,
our solution actually yields an algorithm for UPol(C)-covering as well. While we do not
detail this point due to lack of space, this follows from the definitions of [20, 22].

ICALP 2018

137:10 Separating Without Any Ambiguity

4.1 Methodology
We briefly recall the framework of [20, 22]. We refer the reader to [22] for details. The
approach is based on “rating maps”, a notion designed to measure how well a language
separates others.

The definition of rating maps relies on semirings. A semiring is a set R equipped with two
binary operations + and ·, called addition and multiplication, satisfying the following axioms:

(R,+) is a commutative monoid whose neutral element is denoted by 0R.
(R, ·) is a monoid whose neutral element is denoted by 1R.
The multiplication distributes over addition: r · (s+ t) = rs+ rt and (s+ t) · r = sr + tr.
The element 0R is a zero for multiplication: for any r ∈ R, 0R · r = r · 0R = 0R.

Moreover, we say that a semiring R is idempotent when any element r ∈ R is idempotent for
addition: r + r = r. Any idempotent semiring R can be equipped with a canonical order
“≤”: given s, r ∈ R, we have s ≤ r when s+ r = r. It can be verified that this is indeed an
order which is compatible with addition and multiplication (R being idempotent is required).

I Example 11. The set 2A∗ of all languages over A is an idempotent semiring: the addition
is union and the multiplication is language concatenation. In this case, the canonical order
is inclusion (H ⊆ L if and only if H ∪ L = L). Another important example is the powerset
2M of any monoid M . Again the addition is union (therefore, the order is inclusion). The
multiplication is obtained from the one ofM : given S, T ∈ 2M , S ·T = {st | s ∈ S and t ∈ T}.

Rating maps. A rating map1 is a semiring morphism, ρ : 2A∗ → R where R is a finite
idempotent semiring. It can be verified that any rating map is compatible with the canonical
order (K ⊆ L⇒ ρ(K) ≤ ρ(L)). For the sake of improved readability, when applying a rating
map ρ to a singleton language {w}, we shall simply write ρ(w) for ρ({w}). The connection
with separation only requires to consider special rating maps called “nice”. A rating map
ρ : 2A∗ → R is nice if for any language K ⊆ A∗, we have ρ(K) =

∑
w∈K ρ(w) (note that this

sum boils down to a finite one, as R is a finite idempotent commutative monoid for addition).

I Remark. Any nice rating map ρ : 2A∗ → R is finitely representable: it is determined by the
images ρ(a) of letters a ∈ A. We may speak of algorithms whose inputs are nice rating maps.

SolvingUPol(C)-separation requires to consider a special class of rating maps: the C-
compatible ones (our algorithm is restricted to them). The definition is based on a canonical
equivalence ∼C on A∗ associated to C. Given u, v ∈ A∗, we write u ∼C v if and only if
u ∈ L ⇔ v ∈ L for all L ∈ C. Clearly, ∼C is an equivalence relation. For any word w ∈ A∗,
we write [w]C ⊆ A∗ for the ∼C-class of w. Moreover, since C is a finite quotienting Boolean
algebra, we have the following classical properties.

I Lemma 12. The equivalence ∼C is a congruence of finite index for word concatenation.
Moreover, for any language L ⊆ A∗, we have L ∈ C if and only if L is a union of ∼C-classes.

Lemma 12 implies that the set A∗/∼C of ∼C-classes is a finite monoid and the map
w 7→ [w]C is a morphism. For the sake of avoiding confusion with language concatenation,
we shall write “•” for the monoid multiplication of A∗/∼C. In general, if C,D ⊆ A∗ are
∼C-classes, then C •D 6= CD (indeed, CD is not even a ∼C-class in general).

1 What we call rating map here is called multiplicative rating map in [22] (the “true” rating maps are
weaker and do not require a multiplication). We abuse terminology for the sake of improved readability.

T. Place and M. Zeitoun 137:11

We may now define C-compatibility. We say that a rating map ρ : 2A∗ → R is C-compatible
when there exists a map r 7→ JrKC from R to 2A∗/∼C such that (1) for every K ⊆ A∗, we have
Jρ(K)KC = {[w]C | w ∈ K} and (2) for all r, r′ ∈ R, such that r ≤ r′, we have JrKC ⊆ Jr′KC .
I Remark. Intuitively, Condition (1) in the definition of C-compatibility states that the image
ρ(K) of any language K records the ∼C-classes of words of K. The purpose of Condition (2)
is to constrain the definition of the map J KC on elements that have no preimage under ρ.

Optimal covers. We use rating maps to define objects called “optimal universal D-covers”,
which encode separation-related information. We fix an arbitrary Boolean algebra D for
which one wants a D-separation algorithm (we are interested in the case D = UPol(C)).

A cover of some language L is a finite set of languages K such that L ⊆
⋃
K∈K K. When

L = A∗, we speak of universal cover. Moreover, we say that K is a D-cover when all K ∈ K
belong to D. A fixed rating map ρ : 2A∗ → R is used to define a “quality measure” for
D-covers which yields a notion of “best” universal D-cover. Given a finite set of languages K
(such as a universal D-cover), the ρ-imprint I[ρ](K) of K is the following subset of R:

I[ρ](K) = {r ∈ R | r ≤ ρ(K) for some K ∈ K}.

We now define the optimal universal D-covers as those with the smallest possible ρ-imprint
(with respect to inclusion). A universal D-cover K is optimal for ρ when I[ρ](K) ⊆ I[ρ](K′)
for any universal D-cover K′. In general, there can be infinitely many optimal universal
D-covers for a given rating map ρ. The crucial point is that there always exists a least one.
This is simple and proved in [22]. The key idea is that there are finitely many possible
ρ-imprints (since R is finite) and given two universal D-covers, one may always build a third
one which has a smaller ρ-imprint than the first two, by simple use of language intersections.

Finally, a key observation is that by definition, all optimal universal D-covers for ρ share
the same ρ-imprint. This unique ρ-imprint is a canonical object for D and ρ called the
D-optimal universal ρ-imprint and we denote it by ID[ρ]. That is, ID[ρ] = I[ρ](K) for any
optimal universal D-cover K for ρ.

The connection with separation. We may now explain how these notions are used to
handle separation. This is summarized by the following lemma.

I Lemma 13. Let D be a Boolean algebra. If there exists an algorithm that takes as input a
nice C-compatible rating map ρ : 2A∗ → R and outputs ID[ρ], then D-separation is decidable.

Let us sketch how to go from computing D-optimal ρ-imprints to D-separation (see [20, 22]
for a full proof of Lemma 13). Consider two regular languages L1 and L2: we wish to know
whether L1 is D-separable from L2. Since C is finite, one can build a monoid morphism
α : A∗ → M , with M finite, recognizing both L1 and L2 as well as all languages in C.
Furthermore, one may lift α as a map ρ : 2A∗ → 2M by defining ρ(K) = {α(w) | w ∈ K} for
any language K ⊆ A∗. It is simple to verify that this map ρ is a nice C-compatible rating
map. Moreover, the two following properties (which we prove in the full version) hold:

L1 is D-separable from L2 iff for any s1 ∈ α(L1) and s2 ∈ α(L2), we have {s1, s2} 6∈ ID[ρ].
When the first item holds, one may build a separator in D from any optimal universal
D-cover K for ρ: this separator is the union of all languages intersecting L1 in K.

By the first item, having an algorithm that computes ID[ρ] ⊆ 2M suffices to decide whether L1
is D-separable from L2. Moreover, by the second item, having an algorithm that computes
an optimal universal D-cover K for ρ is enough to build a separator (when it exists).
I Remark. Here, we only use the sets of size two in ID[ρ] ⊆ 2M . However, ID[ρ] contains more
information corresponding to the more general D-covering problem considered in [20, 22].

ICALP 2018

137:12 Separating Without Any Ambiguity

4.2 Computing UPol(C)-optimal universal imprints
We use the framework defined above to present an algorithm for UPol(C)-separation. We
give a characterization UPol(C)-optimal imprints. It yields a procedure for computing them.

Consider a rating map ρ : 2A∗ → R. For any subset S ⊆ R, we say that S is UPol(C)-
saturated (for ρ) if it contains the set Itriv[ρ] = {r ∈ R | r ≤ ρ(w) for some w ∈ A∗} and is
closed under the following operations:
1. Downset: for any s ∈ S, if r ∈ R satisfies r ≤ s, then we have r ∈ S.
2. Multiplication: For any s, t ∈ S, we have st ∈ S.
3. UPol(C)-closure: Given two ∼C-classes C,D and s, t ∈ S such that JsKC = {C •D} and

JtKC = {D • C}, we have sω · ρ(C) · tω ∈ S.

We are ready to state the main theorem of this section: when ρ is C-compatible, UPol(C)-
saturation characterizes the UPol(C)-optimal universal ρ-imprint.

I Theorem 14. Let ρ : 2A∗ → R be a C-compatible rating map. Then, IUPol(C)[ρ] is the
smallest UPol(C)-saturated subset of R (with respect to inclusion).

Clearly, given a nice C-compatible rating map ρ : 2A∗ → R as input, one may compute
the smallest UPol(C)-saturated subset of R with a least fixpoint algorithm. One starts from
Itriv[ρ] (which is clearly computable) and saturates this set with the three above operations.
Thus, we get a procedure for computing IUPol(C)[ρ] from any input nice C-compatible rating
map. By Lemma 13, this yields the desired corollary: UPol(C)-separation is decidable.

I Corollary 15. For any finite quotienting Boolean algebra C, UPol(C)-separation is decidable.

The proof of Theorem 14 is a difficult generalization of the argument we used to show the
algebraic characterization of UPol(C) (i.e., Theorem 4). We postpone it to the full version.
An interesting byproduct of this proof is an algorithm which computes optimal universal
UPol(C)-covers (and therefore UPol(C)-separators when they exist, as we explained above).

5 Conclusion

We presented a new, self-contained proof that for any quotienting Boolean algebra regular
languages C, membership for UPol(C) reduces to membership for C. An interesting byproduct
of this proof is that UPol(C) corresponds exactly to the class ADet(C), which is obtained
by restricting the unambiguous marked concatenations to left or right deterministic ones.
Moreover, we showed that when C is a finite quotienting Boolean algebra, UPol(C)-separation
is decidable. This completes similar results of [21] for Pol(C) and Bool(Pol(C)) and of [16, 17]
for Pol(Bool(Pol(C))). These results raise several natural questions.

Historically, UPol(C) was investigated together with two weaker operations: left and
right deterministic closures. The left (resp. right) deterministic closure of C, is the smallest
class containing C closed under disjoint union and left (resp. right) deterministic marked
concatenation. Our results can be adapted to these two weaker operations. In both cases,
membership reduces to C-membership when C is a quotienting Boolean algebra of regular
languages and separation is decidable when C is a finite quotienting Boolean algebra. In fact,
these operations are simpler to handle than UPol(C). We leave this for further work.

Another question is whether our results can be pushed to classes built by combining
unambiguous polynomial closure with other operations. A natural example is as follows. It
is known [17] that Pol(Bool(Pol(C)))-separation is decidable when C is a finite quotienting
Boolean algebra. Is this true as well for UPol(Bool(Pol(C)))? This seems difficult: the proof
of [17] crucially exploits the fact that Pol(Bool(Pol(C))) is closed under concatenation (which
is not the case for UPol(Bool(Pol(C)))) to handle the first polynomial closure.

T. Place and M. Zeitoun 137:13

References
1 Jorge Almeida, Jana Bartonová, Ondrej Klíma, and Michal Kunc. On decidability of

intermediate levels of concatenation hierarchies. In Proceedings of the 19th International
Conference on Developments in Language Theory, DLT’15, volume 9168 of Lecture Notes
in Computer Science, pages 58–70. Springer, 2015.

2 Mustapha Arfi. Polynomial operations on rational languages. In Proceedings of the 4th
Annual Symposium on Theoretical Aspects of Computer Science, STACS’87, volume 247 of
Lecture Notes in Computer Science, pages 198–206. Springer, 1987.

3 Mustapha Arfi. Opérations polynomiales et hiérarchies de concaténation. Theoretical Com-
puter Science, 91(1):71–84, 1991.

4 Mário Branco and Jean-Éric Pin. Equations defining the polynomial closure of a lattice of
regular languages. In Proceedings of the 36th International Colloquium on Automata, Lan-
guages, and Programming, ICALP’09, volume 5556 of Lecture Notes in Computer Science,
pages 115–126. Springer, 2009.

5 Volker Diekert, Paul Gastin, and Manfred Kufleitner. A survey on small fragments of first-
order logic over finite words. International Journal of Foundations of Computer Science,
19(3):513–548, 2008.

6 Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two variables
and unary temporal logic. In Proceedings of the 12th Annual IEEE Symposium on Logic in
Computer Science, LICS’97, pages 228–235. IEEE Computer Society, 1997.

7 Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two variables
and unary temporal logic. Information and Computation, 179(2):279–295, 2002.

8 James Alexander Green. On the structure of semigroups. Annals of Mathematics, 54(1):163–
172, 1951.

9 Jean-Éric Pin. Propriétés syntactiques du produit non ambigu. In Proceedings of the 7th In-
ternational Colloquium on Automata, Languages and Programming, ICALP’80, volume 85
of Lecture Notes in Computer Science, pages 483–499. Springer, 1980.

10 Jean-Éric Pin. An explicit formula for the intersection of two polynomials of regular lan-
guages. In Proceedings of the 17th International Conference on Developments in Language
Theory, DLT’13, volume 7907 of Lecture Notes in Computer Science, pages 31–45. Springer,
2013.

11 Jean-Éric Pin. Mathematical foundations of automata theory. In preparation, 2016. URL:
http://www.irif.fr/~jep/MPRI/MPRI.html.

12 Jean-Éric Pin. The dot-depth hierarchy, 45 years later, chapter 8, pages 177–202. World
Scientific, 2017.

13 Jean-Éric Pin, Howard Straubing, and Denis Thérien. Locally trivial categories and unam-
biguous concatenation. Journal of Pure and Applied Algebra, 52(3):297–311, 1988.

14 Jean-Éric Pin and Pascal Weil. Polynomial closure and unambiguous product. In Pro-
ceedings of the 22nd International Colloquium on Automata, Languages and Programming,
ICALP’95, volume 944 of Lecture Notes in Computer Science, pages 348–359. Springer,
1995.

15 Jean-Éric Pin and Pascal Weil. Polynomial closure and unambiguous product. Theory of
Computing Systems, 30(4):383–422, 1997.

16 Thomas Place. Separating regular languages with two quantifiers alternations. In Proceed-
ings of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’15,
pages 202–213. IEEE Computer Society, 2015.

17 Thomas Place. Separating regular languages with two quantifiers alternations. Unpublished,
a preliminary version can be found at https://arxiv.org/abs/1707.03295, 2018.

18 Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by
piecewise testable and unambiguous languages. In Proceedings of the 38th International

ICALP 2018

http://www.irif.fr/~jep/MPRI/MPRI.html
https://arxiv.org/abs/1707.03295

137:14 Separating Without Any Ambiguity

Symposium on Mathematical Foundations of Computer Science, MFCS’13, volume 8087 of
Lecture Notes in Computer Science, pages 729–740. Springer, 2013.

19 Thomas Place and Marc Zeitoun. Going higher in the first-order quantifier alternation
hierarchy on words. In Proceedings of the 41st International Colloquium on Automata,
Languages, and Programming, ICALP’14, volume 8573 of Lecture Notes in Computer Sci-
ence, pages 342–353. Springer, 2014.

20 Thomas Place and Marc Zeitoun. The covering problem: A unified approach for investi-
gating the expressive power of logics. In Proceedings of the 41st International Symposium
on Mathematical Foundations of Computer Science, MFCS’16, volume 58 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 77:1–77:15. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2016.

21 Thomas Place and Marc Zeitoun. Separation for dot-depth two. In Proceedings of the 32th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’17, pages 202–213.
IEEE Computer Society, 2017.

22 Thomas Place and Marc Zeitoun. The covering problem. Unpublished, a preliminary
version can be found at https://arxiv.org/abs/1707.03370, 2018.

23 Thomas Place and Marc Zeitoun. Generic results for concatenation hierarchies. Theory of
Computing Systems, 2018. Selected papers from CSR’17.

24 John L. Rhodes. A homomorphism theorem for finite semigroups. Mathematical Systems
Theory, 1:289–304, 1967.

25 Marcel-Paul Schützenberger. Sur le produit de concaténation non ambigu. Semigroup
Forum, 13:47–75, 1976.

26 Imre Simon. Piecewise testable events. In Proceedings of the 2nd GI Conference on Au-
tomata Theory and Formal Languages, volume 33 of Lecture Notes in Computer Science,
pages 214–222. Springer, 1975.

27 Pascal Tesson and Denis Thérien. Diamonds are forever: The variety DA. In Semigroups,
Algorithms, Automata and Languages, pages 475–500. World Scientific, 2002.

28 Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as one
quantifier alternation. In Proceedings of the 30th Annual ACM Symposium on Theory
of Computing, STOC’98, pages 234–240. ACM, 1998.

29 Wolfgang Thomas. Classifying regular events in symbolic logic. Journal of Computer and
System Sciences, 25(3):360–376, 1982.

https://arxiv.org/abs/1707.03370

	Introduction
	Preliminaries
	Unambiguous polynomial closure
	Definition
	Algebraic characterization

	Separation
	Methodology
	Computing UPol(C)-optimal universal imprints

	Conclusion

