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Abstract
We prove that if a group generated by a bireversible Mealy automaton contains an element of
infinite order, then it must have exponential growth. As a direct consequence, no infinite virtually
nilpotent group can be generated by a bireversible Mealy automaton.
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The study on how (semi)groups grow has been highlighted since Milnor’s question on the
existence of groups of intermediate growth (faster than any polynomial and slower than any
exponential) in 1968 [13], and since the very first example of such a group was given by
Grigorchuk [5]. Uncountably many examples have followed this first one, see for instance [6].
Bartholdi and Erschler have even obtained results on precise computations of growth, in
particular they proved that if a function satisfies some frame property, then there exists a
finitely generated group with growth equivalent to it [1]. Besides, until Nekrashevych’s very
recent work [14], all the known examples of intermediate growth groups were automaton
groups or based on automaton groups.

There exists no sufficient or necessary criterion to test whether a Mealy automaton
generates a group of intermediate growth and it is not even known if this property is
decidable. However, there is no known example in the literature of a bireversible Mealy
automaton generating an intermediate growth group and it is legitimate to wonder whether it
is possible. This is the scope of the present article, which can be seen as an extension of earlier
results on the two-state case [8, 9]. We prove that if a group generated by a bireversible Mealy
automaton has an element of infinite order, then it must have exponential growth. It has been
conjectured, and proved in some cases [4], that an infinite group generated by a bireversible
Mealy automaton always has an element of infinite order, which suggests that, indeed, a
group generated by a bireversible Mealy automaton either is finite, or has exponential growth.
Note that a similar result has been proved for a very different family of Mealy automata,
namely reset automata [15]: since a Mealy automaton which is simultaneously reset and
bireversible has a unique state, these families are somehow orthogonal; moreover the proof
we present here is completely different from the proof in [15], in particular it is not based on
the potential existence of a free subsemigroup of rank 2.
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Finally, let us mention the work by Brough and Cain to obtain some necessary criteria
to decide whether a semigroup is an automaton semigroup [2]. Our work can be seen as
partially answering a similar question: can a given group be generated by a bireversible
Mealy automaton? A consequence of our result is that no infinite virtually nilpotent group
(and in particular no abelian group) can be.

This article is organized as follows. In Section 1, we define automaton groups and the
growth of a group, and give some properties of the connected components of the powers
of a Mealy automaton. In Section 2, we study the behavior of certain equivalence classes
of words on the state set of a Mealy automaton. Finally, the main result and some of its
consequences appear in Section 3.

1 Basic notions

Throughout the paper, the cardinality of a finite set E is denoted by |E|. A finite word
of length n on E is a finite sequence of n elements of E and is denoted classically as the
concatenation of its elements. The set of finite words over E is denoted by E∗, the set of
non-empty finite words by E+, and the set of words of length n by En. In general the
elements of E are written in plain letters, e.g. q, while the words on E are written in bold
letters, e.g. u. The length of u is denoted by |u|, its letters are numbered from 0 to |u| − 1
and, if i is an integer, its (i mod |u|)-th letter is denoted by u i¡; for example its first
letter is u 0¡, while its last letter is u −1¡. If L is a set of words on E, L i¡ denotes the set
{u i¡ | u ∈ L}.

1.1 Semigroups and groups generated by Mealy automata
We first recall the formal definition of an automaton. A (finite, deterministic, and complete)
automaton is a triple

(
Q,Σ, δ = (δi : Q→ Q)i∈Σ

)
, where the state set Q and the alphabet Σ

are non-empty finite sets, and the δi are functions.
A Mealy automaton is a quadruple A = (Q,Σ, δ, ρ), such that (Q,Σ, δ) and (Σ, Q, ρ) are

both automata. In other terms, a Mealy automaton is a complete, deterministic, letter-to-
letter transducer with the same input and output alphabet. Its size is the cardinality of its
state set and is denoted by #A.

The graphical representation of a Mealy automaton is standard, see Figure 1. But, for
practical reasons, we use sometimes other graphical representations for the transitions. For
example the transition from x to z with input letter 0 and output letter 1 in the automaton
of Figure 1 can be represented

either by x
0|1−−→ z , or by

0
x z

1
.

Let A = (Q,Σ, δ, ρ) be a Mealy automaton. Each state q ∈ Q defines a mapping from Σ∗
into itself, recursively by:

∀i ∈ Σ, ∀s ∈ Σ∗, ρq(is) = ρq(i)ρδi(q)(s) .

The image of the empty word is itself. For each q ∈ Q, the mapping ρq is length-
preserving and prefix-preserving. We say that ρq : Σ∗ → Σ∗ is the action induced by q.
For u = q1 · · · qn ∈ Qn with n > 0, set ρu : Σ∗ → Σ∗, ρu = ρqn

◦ · · · ◦ ρq1 .
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Figure 1 The Aleshin automaton.

The semigroup of mappings from Σ∗ to Σ∗ generated by {ρq, q ∈ Q} is called the semigroup
generated by A and is denoted by 〈A〉+.

We extend to δ the former notation on ρ, in a natural way. Hence δi : Q∗ → Q∗, i ∈ Σ,
are the functions extended to Q∗, and for s = i1 · · · in ∈ Σn with n > 0, we set δs : Q∗ →
Q∗, δs = δin ◦ · · · ◦ δi1 .

A Mealy automaton A = (Q,Σ, δ, ρ) is invertible if the functions ρq are permutations of
the alphabet Σ. In this case, the actions induced by the states are permutations on words of
the same length and thus we may consider the group of mappings from Σ∗ to Σ∗ generated
by {ρq, q ∈ Q}: it is called the group generated by A and is denoted by 〈A〉.

When A is invertible, define its inverse A−1 as the Mealy automaton with state set Q−1,
a disjoint copy of Q, and alphabet Σ, where the transition p−1 j|i−→ q−1 belongs to A−1 if
and only if the transition p i|j−→ q belongs to A. Clearly the action induced by the state p−1

of A−1 is the reciprocal of the action induced by the corresponding state p in A.
A Mealy automaton (Q,Σ, δ, ρ) is reversible if the functions δi induced on Q by the

input letters of the transitions are permutations. The connected components of a reversible
automaton are strongly connected. In a reversible automaton of state set Q and alphabet Σ,
for any word s ∈ Σ∗ and any state q, there exists exactly one path in the automaton with
label s and final state q, hence we can consider the backtrack action induced by q: it associates
to s the output label t ∈ Σ|s| of this single path.

A Mealy automaton is coreversible if the functions induced on Q by the letters as output
letters of the transitions are permutations.

A Mealy automaton is bireversible if it is both reversible and coreversible. It is quite
simple to see that the actions and the backtrack actions induced by the states of a bireversible
automaton are both permutations.

Two Mealy automata are said to be isomorphic if they are identical up to the labels of
their states.

1.2 Growth of a semigroup or a group
Let H be a semigroup generated by a finite set S. The length of an element g of the semigroup,
denoted by |g|, is the length of its shortest decomposition as a product of generators:

|g| = min{n | ∃s1, . . . , sn ∈ S, g = s1 · · · sn} .

The growth function γSH of the semigroup H with respect to the generating set S
enumerates the elements of H with respect to their length:

γSH(n) = |{g ∈ H ; |g| ≤ n}| .

The growth functions of a group are defined similarly by taking symmetrical generating sets.

ICALP 2018
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The growth functions corresponding to two generating sets are equivalent [12], so we may
define the growth of a group or a semigroup as the equivalence class of its growth functions.
Hence, for example, a finite (semi)group has bounded growth, while an infinite abelian
(semi)group has polynomial growth, and a non-abelian free (semi)group has exponential
growth.

It is quite easy to obtain groups of polynomial or exponential growth. Answering a
question of Milnor [13], Grigorchuk gave an example of an automaton group of intermediate
growth [5]: faster than any polynomial, slower than any exponential, opening thus a new
classification criterion for groups, that has been deeply studied since this seminal article
(see [7] and references therein). Besides, let us mention that until Nekrashevych’s very recent
work [14], all the known examples of intermediate growth groups were automaton groups or
based on automaton groups.

Note an important point for our purpose: let G be a finitely generated group and let
(In)n>0 a sequence of subsets of G, compatible with the length function, i.e. the sets In are
pairwise distinct and the elements of In have all length less than or equal to n. The growth
function of (In)n>0 is given by (

∑
k≤n |Ik|)n>0; if it grows exponentially, then so does G. In

the same spirit, a group which admits a subgroup of exponential growth grows exponentially.

1.3 The powers of a Mealy automaton and their connected
components

The powers of a Mealy automaton have been shown to play an important role in the finiteness
and the order problems for an automaton (semi)group, as highlighted in [9, 11, 4]. The n-th
power of the automaton A = (Q,Σ, δ, ρ) is the Mealy automaton

An =
(
Qn,Σ, (δi : Qn → Qn)i∈Σ, (ρu : Σ→ Σ)u∈Qn

)
.

Note that the powers of a reversible (resp. bireversible) Mealy automaton are reversible
(resp. bireversible). It is straightforward to see that the action induced by a word u of states
of A is in fact the action induced by u seen as a state of A|u|. The backtrack action induced
by u can be defined in the same spirit.

The (semi)group generated by a connected component of some power of A is a
sub(semi)group of the (semi)group generated by A.

Let u and v be elements of Q+ and C be a connected component of some power of A: v
can follow u in C if uv is the prefix of some state of C. We denote by {u? # C} the set of
states that can follow u in C:

{u? # C} = {q ∈ Q | uq is the prefix of some state of C} .

We define similarly the fact that v can precede u in C if vu is the suffix of some state of
C, and we introduce the set

{?u # C} = {q ∈ Q | qu is the suffix of some state of C} .

The aim of this section is to give some intuition on the links between the connected
components of consecutive powers of A. Since a word can be extended with a prefix or a
suffix, most of the results exposed here are expressed in both cases, but only the first result
is proved in both cases, to show how bireversibility allows to consider similarly the actions
and the backtrack actions.
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I Lemma 1. Let A be a bireversible Mealy automaton with state set Q and C a connected
component of one of its powers. If u ∈ Q+ is a proper prefix of some state of C, then the
cardinality of the set {u? # C} depends only on the length of u.

Proof. Suppose that u′ is such that uu′ is a state of C, and let v be a prefix of some state vv′
of C with the same length as u. Since C is a connected component in a reversible Mealy
automaton, it is strongly connected, so there exists a word s ∈ Σ∗ such that δs(uu′) = vv′.
Now, consider the action induced by s on up, for p ∈ {u? # C}:

s
u v

s′

p p′

Since the automaton A is reversible, the action induced by s′ is a permutation of Q, and we
have

|{u? # C}| ≤ |{v? # C}| .

The reciprocal inequality is obtained symmetrically. J

I Lemma 2. Let A be a bireversible Mealy automaton with state set Q and C a connected
component of one of its powers. If u ∈ Q+ is a proper suffix of some state of C, then the
cardinality of the set {?u # C} depends only on the length of u.

Proof. Suppose that u′ is such that u′u is a state of C, and let v be a suffix of some state v′v
of C with the same length as u. Since C is a connected component in a reversible Mealy
automaton, it is strongly connected, so there exist words s, t ∈ Σ∗ such that δs(u′u) = v′v
and ρu′u(s) = t:

s
u′ v′

s′

u v
t

Now, consider the backtrack action induced by t on pu, for p ∈ {?u # C}:

p p′

s′

u v
t

Since the automaton A is bireversible, the backtrack action induced by s′ is a permutation
of Q, and we have

|{?u # C}| ≤ |{?v # C}| .

The reciprocal inequality is obtained symmetrically. J

ICALP 2018
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Consider a state q of A. For any integer n > 0, we denote by cc(qn) the connected
component of qn in An. The sequence of such components has some properties which we
give here. These properties can be seen as properties of the branch represented by qω in the
Schreier trie of A (also known as the orbit tree of the dual of A) which has been introduced
in [11, 4] (to keep this article self-contained, we give here only the properties of this branch,
but for a more global intuition on the constructions, the reader can consult these references).

The first point is given by Lemma 1: for any n > 0, the component cc(qn+1) can be seen
as several full copies of the component cc(qn); indeed, if u and v are states of cc(qn), then
in cc(qn+1) there are as many states with prefix u as states with prefix v, i.e.

∀u ∈ cc(qn),∀v ∈ cc(qn), |{u? # cc(qn+1)}| = |{v? # cc(qn+1)}| .

Hence the ratio between the size of cc(qn+1) and the size of cc(qn) is necessarily an integer:
it is the cardinality of the set {u? # cc(qn+1)} for any state u of cc(qn), and in particular
for u = qn.

We define by(
# cc(qn+1)
# cc(qn)

)
n>0

=
(
|{qn? # cc(qn+1)}|

)
n>0

the sequence of ratios associated to the state q.

I Lemma 3. Let A be a bireversible Mealy automaton with state set Q, q ∈ Q a state of A,
and u and v be two elements of Q+. If uv is a state of cc(q|uv|), then v is a state of cc(q|v|)
and

{uv? # cc(q|uv|+1)} ⊆ {v? # cc(q|v|+1)} .

Proof. Take A = (Q,Σ, δ, ρ) and let p ∈ {uv? # cc(q|uv|+1)}.
Since A is reversible, there exists a word s ∈ Σ∗ such that δs(uvp) = q|uv|+1:

s
u q|u|

s′

v q|v|

s′′

p q

Hence δs′(v) = q|v| and so v ∈ cc(q|v|), and δs′(vp) = q|v|+1, which means that p ∈ {v? #
cc(q|v|+1)}. J

I Lemma 4. Let A be a bireversible Mealy automaton with state set Q, q ∈ Q a state of A,
and u and v be two elements of Q+. If uv is a state of cc(q|uv|), then u is a state of cc(q|u|)
and

{?uv # cc(q|uv|+1)} ⊆ {?u # cc(q|u|+1)} .

As {qn+1? # cc(qn+2)} ⊆ {qn? # cc(qn+1)} by Lemma 3, it is straightforward to see
that the sequence of ratios associated to q decreases:

∀n > 0, # cc(qn+2)
# cc(qn+1) ≤

# cc(qn+1)
# cc(qn) ,
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and hence is ultimately constant. We say that q has a constant ratio if this sequence is in
fact constant, and then the unique value of the sequence of ratios associated to q is called
the ratio of q.

It has been proven in [11, Prop. 6] that q induces an action of infinite order if and only
if the sizes of the components (cc(qn))n>0 are unbounded, i.e. the limit of the sequence of
ratios associated to q is greater than 1.

We study now some properties of followers and predecessors in the components cc(qn),
when q has a constant ratio.

The next lemma is an improvement of Lemma 3.

I Lemma 5. Let A be a bireversible Mealy automaton, and q be a state of A of constant
ratio. Let u and v be two elements of Q+ such that uv is a state of cc(q|uv|). We have:

{uv? # cc(q|uv|+1)} = {v? # cc(q|v|+1)} .

Proof. The left part is a subset of the right one by Lemma 3 and both sets have the same
cardinality, which is the ratio of q, by hypothesis. J

In particular, by taking the word v of length 1 in the previous lemma, we can see that
the set of followers of a word w in cc(qn) only depends on its last letter w −1¡.

We obtain the symmetrical result by considering the mirror Mealy automaton obtained
by inverting the direction of the transitions.

I Lemma 6. Let A be a bireversible Mealy automaton of state set Q, q be a state of A of
constant ratio, and n > 1 be an integer. If u ∈ Q+ is a suffix of some state of cc(qn), then
the set {?u # cc(qn)} only depends on u 0¡, the first letter of u.

The next lemma links up the sets of followers and of predecessors in cc(qn) when q has a
constant ratio.

I Lemma 7. Let A be a bireversible Mealy automaton of state set Q, q be a state of A of
constant ratio, and n > 1 be an integer. The sets of followers and of predecessors in cc(qn)
have the same cardinality which is the ratio of q.

Proof. By Lemmas 5 and 6, we only have to prove that

|{q? # cc(qn)}| = |{?q # cc(qn)}| .

Even simpler: notice that if u is a prefix of some state of cc(qn), then it is also a prefix of
some state in cc(qn+k) for any k > 0, and it has the same set of followers in both. Of course,
an equivalent property holds for the sets of predecessors.

So it is sufficient to prove that

|{q? # cc(q2)}| = |{?q # cc(q2)}| ,

which is true because

| cc(q2)| = | cc(q)| × |{q? # cc(q2)}| = |{?q # cc(q2)}| × | cc(q)| . J

ICALP 2018
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2 Several equivalences on words

2.1 Minimization and Nerode classes

Let A = (Q,Σ, δ, ρ) be a Mealy automaton.
The Nerode equivalence ≡ on Q is the limit of the sequence of increasingly finer equival-

ences (≡k) recursively defined by:

∀p, q ∈ Q, p ≡0 q ⇐⇒ ρp|Σ = ρq|Σ ,

∀k > 0, p ≡k+1 q ⇐⇒
(
p ≡k q ∧ ∀i ∈ Σ, δi(p) ≡k δi(q)

)
.

Since the set Q is finite, this sequence is ultimately constant. For every element q in Q,
we denote by [q] the class of q w.r.t. the Nerode equivalence, called the Nerode class of q.
Extending to the n-th power of A, we denote by [u] the Nerode class in Qn of u ∈ Qn.

Two states of a Mealy automaton belong to the same Nerode class if and only if they
represent the same element in the generated (semi)group, i.e. if and only if they induce the
same action on Σ∗. Two words on Q of the same length n are equivalent if they belong to the
same Nerode class in Qn. By extension, any two words on Q are equivalent if they induce
the same action.

The minimization of A is the Mealy automaton m(A) = (Q/≡,Σ, δ̃, ρ̃), where for every
(q, i) in Q× Σ, δ̃i([q]) = [δi(q)] and ρ̃[q] = ρq. This definition is consistent with the standard
minimization of “deterministic finite automata” where instead of considering the mappings
(ρq : Σ → Σ)q, the computation is initiated by the separation between terminal and non-
terminal states.

A Mealy automaton is minimal if it has the same size as its minimization.
Two states of two different connected reversible minimal Mealy automata with the same

alphabet induce the same action if and only if the automata are isomorphic and both states
are in correspondence by this isomorphism (which can be formally defined by considering the
union of the involved Mealy automata). As a direct consequence, if two connected reversible
minimal Mealy automata have different sizes, then any two states of each of them cannot be
equivalent.

As we have seen in Section 1.3, a state q of an invertible-reversible Mealy automaton
induces an action of infinite order if and only if the sizes of the (cc(qn))n>0 are unbounded.
The proof of [11, Prop. 6] can be easily adapted to see that q induces an action of infinite
order if and only if the sizes of the (m(cc(qn)))n>0 are unbounded, but you can see it by
a direct argument: if the sizes are bounded, there is an infinite set I ⊆ N such that all
the element (m(cc(qn)))n∈I are isomorphic, and in this sequence there exist at least two
different integer i 6= j such that qi and qj are represented by the same state in the minimal
automata, and so they induce the same action; if the sizes are unbounded, the sequence
(#m(cc(qn)))n>0 has infinitely many values, and there are infinitely many powers of the
action induced by q that are pairwise different.

Note that the Nerode classes of a connected reversible Mealy automaton have the same
cardinality. The size of the minimization of an automaton in this case is the ratio between
the size of the former automaton and the cardinality of the Nerode classes.

I Lemma 8. Let A be a connected bireversible Mealy automaton, N a Nerode class of a
connected component of one of its powers, and p and q two elements of N  −1¡. There are as
many elements of N with last letter p as with last letter q.
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Proof. The proof of this lemma is quite similar to the proof of Lemma 5 considering not
words of length 1 as predecessors, but words of length n− 1, where n is the length of the
states in N . J

2.2 Restricted Nerode classes
When the considered automaton is not connected, it can be interesting to consider the
restriction of the Nerode class of an element to its connected component: we denote it by JqK
and call it the restricted Nerode class of q. The restricted Nerode class of a state coincide
with its Nerode class in the case of a connected Mealy automaton.

I Lemma 9. The restricted Nerode classes of two elements in the same connected component
of a reversible Mealy automaton have the same cardinality.

Let A = (Q,Σ, δ, ρ) be a bireversible automaton and q a state of A. As it will be discussed
in Section 3, the result of this article is somehow a generalization of a much simpler but
similar result proved in [10]: in the case where all the powers of A are connected, the group
generated by A has exponential growth. The strategy used in [10] is based on the fact that
JqnKq ⊆ Jqn+1K when all the powers of A are connected. However in the more general case
we study here, this fact is false: a priori there is no inclusion link between JqnK and Jqn+1K,
because if u is a state of JqnK, then nothing ensures that uq belongs to cc(qn+1); hence we
have to find a different strategy. For this purpose, we introduce the q-restricted Nerode class
of qn, i.e. the set of states of JqnK which admit q as a suffix: J qn K• = JqnK ∩Q∗q.

The aim of this section is to study the sequence (J qn K•)n>0, in particular in the case
where q has a constant ratio.

I Lemma 10. The sequence of q-restricted Nerode classes satisfies the following inclusion
property:

∀n > 0, J qn K• q ⊆ J qn+1 K• .

Proof. Let u be an element of J qn K•: u is a state of cc(qn), and {u? # cc(qn+1)} depends
only on u −1¡ = q by Lemma 5. In particular q can follow u since q ∈ {q? # cc(qn+1)}.
Since u and qn induce the same action, so do uq and qn+1. J

The next results give more information on the growth of the q-restricted Nerode classes
of qn with respect to n.

I Proposition 11. Let A be a bireversible Mealy automaton, and q be a state of A of constant
ratio k. The ratio between the sizes of J qn+1 K• and J qn K• is an integer and:

∀n > 0, | J q
n+1 K• |
| J qn K• |

= |J qn+1 K• −2¡| .

In particular this ratio cannot be greater than k.

Proof. Let p ∈ J qn+1 K• −2¡. By this choice, p can precede the final q in Jqn+1K. Now, take
u ∈ Qn−1p: we have uq ∈ J qn+1 K• if and only if u ∈ JqnK (the direct sense is obtained by
Lemma 5 and the reciprocal sense by Lemma 10). Hence by Lemma 8, |JqnK∩Q∗p| = | J qn K• |
(which means somehow that we can pinpoint the Nerode class by p instead of q, without
changing the cardinality).

Consequently, the sets J qn+1 K•∩Q∗pq and J qn+1 K•∩Q∗qq have the same cardinality.
Since p ∈ J qn+1 K• −2¡ can precede q in cc(qn+1), we obtain the bound k = {?q # cc(q2)}

by Lemmas 6 and 7. J

ICALP 2018
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I Proposition 12. Let A be a bireversible Mealy automaton, and q be a state of A of constant
ratio k. The sequence(

| J qn+1 K• |
| J qn K• |

)
n>0

is ultimately increasing to a limit less than or equal to k.

Proof. Consider the sequence (J qn K•)n>0 and particularly the sequence (J qn K• 0¡)n>0: by
Lemma 10, this last sequence is increasing (for inclusion). Denote by Q1 its limit: Q1 =
J qn K• 0¡ for n large enough, say n ≥ N ; in particular this set contains q.

Now, suppose n > N and take p ∈ J qn+1 K• −2¡: clearly (J qn+1 K•∩Q∗pq) 0¡ is a subset of
Q1 = J qn+1 K• 0¡ = J qn K• 0¡; since it has the same cardinality as the set (J qn+1 K•∩Q∗qq) 0¡ =
J qn K• 0¡ by Lemma 8, it is in fact equal to Q1. But q belongs to Q1, so it means that the
set J qn+1 K•∩qQ∗pq is not empty, take u one of its elements. By Lemma 6, q can precede u
in cc(qn+2) and qu ∈ J qn+2 K•. Hence any penultimate letter in J qn+1 K• is also a penultimate
letter in J qn+2 K•:

J qn+1 K• −2¡ ⊆ J qn+2 K• −2¡ .

The result is now a direct consequence of Proposition 11 J

3 Main result

Because all the elements of a semigroup generated by an invertible-reversible Mealy automaton,
all whose powers are connected, have infinite order [11, Prop. 6], the main result of this
article, Theorem 14, is somehow a generalization of this previous result obtained in [10]:

I Theorem 13. A semigroup generated by an invertible-reversible Mealy automaton, all of
whose powers are connected, has exponential growth.

To prove this generalization, we need to reinforce the hypothesis on the structure of the
automaton which is supposed here to be bireversible and not only invertible-reversible, but
we do not use anymore the really strong hypothesis on the connected powers. Since it is
(easily) decidable if a Mealy automaton is bireversible, while the condition on the powers
is not known to be decidable, except in very restricted cases, the result here is much more
interesting and powerful, but it is also trickier to establish. The question of the existence of
elements of infinite order in a semigroup generated by a bireversible automaton has been
under study for several years now and has been solved in quite a few cases [9, 11, 4].

Here is the generalized version of the former theorem we prove in this section:

I Theorem 14. A group generated by a bireversible Mealy automaton which contains an
element of infinite order has exponential growth.

Note that the result still holds for the generated semigroup and the proof is easily
adaptable.

Proof. Let A = (Q,Σ, δ, ρ) be a bireversible Mealy automaton and u ∈ (Q tQ−1)∗ which
induces an action of infinite order. The Mealy automaton (A ∪ A−1)|u| is bireversible, u
is one of its states, and this automaton generates a subgroup of 〈A〉. So without loss of
generality, we can suppose that u is in fact a state of A. To be consistent with the rest of
the article, let us call it q.
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For any integer i > 0, denote ri = # cc(qi+1)
# cc(qi) . The sequence of ratios associated to q is

of the form (r1, r2, . . . , rj , rj+1 = rj , . . .), where ri ≥ ri+1 for any i ≥ 1 and ri = rj for any
i ≥ j. Now, consider the component cc(qj) as a Mealy automaton and q = qj as its state:
the state q induces an action of infinite order and the sequence of ratios associated to q is
of the form (rjj , r

j
j , . . .): q has constant ratio. Moreover, cc(q) generates a subgroup of the

group 〈A〉, so if we prove that 〈cc(q)〉 has exponential growth, so has 〈A〉. So, without loss
of generality we can suppose that q has a constant ratio, say k.

Note that the following inequalities hold:

∀n > 0, | cc(qn)|
|Q| × | J qn K• |

≤ | cc(qn)|
|JqnK|

≤ | cc(qn)|
| J qn K• |

. (1)

Indeed, the second inequality is a consequence of the fact that J qn K• ⊆ JqnK, and the first
inequality follows from Lemma 8 and the fact that JqnK = ∪p∈Q(JqnK ∩Q∗p).

The central part in (1) is in fact the size of the minimization of cc(qn), and the cardinality
of cc(qn) is equal to |Q| × kn−1 since q has constant ratio k, so (1) can be re-written as:

∀n > 0, kn−1

| J qn K• |
≤ #m(cc(qn)) ≤ |Q| × k

n−1

| J qn K• |
. (2)

Let us prove that for n large enough, | J qn+1 K• | < k × | J qn K• |. From Proposition 11 we
know that the corresponding non strict inequality is satisfied. Now, from Propositions 11
and 12 we know that for N large enough, if the equality holds at rank N , it also holds at
every rank greater than N : for any n ≥ N , | J qn+1 K• | = k × | J qn K• |. This means that for
n large enough: | J qn K• | = bkn−1, where b does not depend on n. Hence by the right part
of Equation (2), the minimizations of the connected powers of q have bounded size, which
implies that q has finite order as seen in Section 2.1, in contradiction with the hypotheses.
So the equality does not hold for any N .

Denote by ` the limit of the sequence(
| J qn+1 K• |
| J qn K• |

)
n>0

(it exists from Proposition 12): ` < k from the above paragraph, so for n large enough, there
exists a constant c such that | J qn K• | = `n

kc .
So Equation (2) becomes:

∀n > N, c

(
k

`

)n
≤ #m(cc(qn)) ≤ c|Q|

(
k

`

)n
. (3)

Since ` < k, there exists α such that
(
k
l

)α
> |Q|. Let us denote u = qα and K =

(
k
`

)α,
we have that for n large enough:

c ·Kn ≤ #m(cc(un)) ≤ c · |Q| ·Kn < c ·Kn+1 ≤ #m(cc(un+1)) ≤ c · |Q| ·Kn+1 . (4)

Consequently, the minimizations of the components cc(un) are pairwise not isomorphic,
for n large enough, because they do not have the same size. So their states induce different
elements of the group 〈A〉. Hence the sets

In = {ρv | v is a state of m(cc(un))}

are pairwise disjoint. By Equation (4), the growth of the sequence (In)n>0 is exponential,
and so is the growth of A. J
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By combining Theorem 14 with the fact that connected bireversible Mealy automata of
prime size cannot generate infinite Burnside groups [4], we have:

I Corollary 15. Any infinite group generated by a bireversible connected Mealy automaton
of prime size has exponential growth.

Another consequence of Theorem 14 concerns virtually nilpotent groups. This class is
important in the classification of groups and contains in particular all the abelian groups. It
is known that any infinite virtually nilpotent group contains an element of infinite order [3,
Proposition 10.48] and has polynomial growth [16]. This leads to

I Corollary 16. No infinite virtually nilpotent group can be generated by a bireversible Mealy
automaton.

References
1 L. Bartholdi and A. Erschler. Groups of given intermediate word growth. Ann. Inst. Fourier,

64(5):2003–2036, 2014.
2 T. Brough and A.J. Cain. Automaton semigroups: New constructions results and examples

of non-automaton semigroups. Theoretical Computer Science, 674:1–15, 2017.
3 C. Drutu and M. Kapovich. Lectures on geometric group theory. URL: https://www.math.

ucdavis.edu/~kapovich/EPR/ggt.pdf.
4 Th. Godin and I. Klimann. On bireversible Mealy automata and the Burnside problem.

Theoretical Computer Science, 707:24–35, 2018.
5 R. Grigorchuk. Degrees of growth of finitely generated groups and the theory of invariant

means. Izv. Akad. Nauk SSSR Ser. Mat., 48-5:939–985, 1984.
6 R. Grigorchuk. Degrees of growth of finitely generated groups, and the theory of invariant

means. Mathematics of the USSR-Izvestiya, 25(2):259, 1985.
7 R. Grigorchuk and I. Pak. Groups of intermediate growth: an introduction. L’Enseignement

Mathématique, 54(3-4):251–272, 2008.
8 R.I. Grigorchuk. On periodic groups generated by finite automata. In 18-th USSR Algebraic

Conference, Kishinev, 1985.
9 I. Klimann. Automaton semigroups: The two-state case. Theor. Comput. Syst. (special

issue STACS’13), pages 1–17, 2014.
10 I. Klimann. On level-transitivity and exponential growth. Semigroup Forum, 95(3):441–447,

2016.
11 I. Klimann, M. Picantin, and D. Savchuk. A connected 3-state reversible Mealy automaton

cannot generate an infinite Burnside group. In DLT’ 15, volume 9168 of LNCS, pages
313–325, 2015.

12 A. Mann. How groups grow, volume 395 of Lecture Note Series. The London Mathematical
Society, 2012.

13 J. Milnor. Advanced problem 5603. MAA Monthly, 75:685–686, 1968.
14 V. Nekrashevich. Palindromic subshifts and simple periodic groups of intermediate growth.

Annals of Mathematics, 187(3):667–719, 2018.
15 F. Olukoya. The growth rates of automaton groups generated by reset automata.

arXiv:1708.07209, 2017.
16 J.A. Wolf. Growth of finitely generated solvable groups and curvature of riemanniann

manifolds. J. Differential Geom., 2(4):421–446, 1968.

https://www.math.ucdavis.edu/~kapovich/EPR/ggt.pdf
https://www.math.ucdavis.edu/~kapovich/EPR/ggt.pdf

	Basic notions
	Semigroups and groups generated by Mealy automata
	Growth of a semigroup or a group
	The powers of a Mealy automaton and their connected components

	Several equivalences on words
	Minimization and Nerode classes
	Restricted Nerode classes

	Main result

