
On Computing the Total Variation Distance of
Hidden Markov Models
Stefan Kiefer
University of Oxford, United Kingdom

Abstract
We prove results on the decidability and complexity of computing the total variation distance
(equivalently, the L1-distance) of hidden Markov models (equivalently, labelled Markov chains).
This distance measures the difference between the distributions on words that two hidden Markov
models induce. The main results are: (1) it is undecidable whether the distance is greater than
a given threshold; (2) approximation is #P-hard and in PSPACE.

2012 ACM Subject Classification Theory of computation→ Probabilistic computation, Theory
of computation → Random walks and Markov chains

Keywords and phrases Labelled Markov Chains, Hidden Markov Models, Distance, Decidability,
Complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.130

Related Version [15], https://arxiv.org/abs/1804.06170

Funding The author is supported by a Royal Society University Research Fellowship.

Acknowledgements The author thanks anonymous referees for their helpful comments.

1 Introduction

A (discrete-time, finite-state, finite-word) labelled Markov chain (LMC) (often called hidden
Markov model) has a finite set Q of states and for each state a probability distribution over
its outgoing transitions. Each outgoing transition is labelled with a letter from an alphabet Σ
and leads to a target state, or is labelled with an end-of-word symbol $. Here are two LMCs:

q1

1
2a

1
4b

1
4$

q2 q3

1
3a

1
3b

1
3a

1
2a

1
2$

The LMC starts in a given initial state (or in a random state according to a given initial
distribution), picks a random transition according to the state’s distribution over the outgoing
transitions, outputs the transition label, moves to the target state, and repeats until the end-
of-word label $ is emitted. This induces a probability distribution over finite words (excluding
the end-of-word label $). In the example above, if q1 and q2 are the initial states then the
LMCs induce distributions π1, π2 with π1(aa) = 1

2 ·
1
2 ·

1
4 and π2(aa) = 1

3 ·
1
3 ·

1
2 + 1

3 ·
1
2 ·

1
2 .

LMCs are widely employed in fields such as speech recognition (see [23] for a tutorial),
gesture recognition [4], signal processing [8], and climate modeling [1]. LMCs are heavily
used in computational biology [12], more specifically in DNA modeling [6] and biological

EA
T

C
S

© Stefan Kiefer;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 130; pp. 130:1–130:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.130
https://arxiv.org/abs/1804.06170
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

130:2 On Computing the Total Variation Distance of Hidden Markov Models

sequence analysis [11], including protein structure prediction [17] and gene finding [2]. In
computer-aided verification, LMCs are the most fundamental model for probabilistic systems;
model-checking tools such as Prism [18] or Storm [9] are based on analyzing LMCs efficiently.

A fundamental yet non-trivial question about LMCs is whether two LMCs generate the
same distribution on words. This problem itself has applications in verification [16] and can
be solved in polynomial time using algorithms that are based on linear algebra [24, 22, 7].
If two such distributions are not equal, one may ask how different they are. There exist
various distances between discrete distributions, see, e.g., [7, Section 3]. One of them is
the total variation distance (in the following just called distance), which can be defined by
d(π1, π2) = maxW⊆Σ∗ |π1(W)− π2(W)| in the case of LMCs. That is, d(π1, π2) is the largest
possible difference between probabilities that π1 and π2 assign to the same set of words.
This distance is, up to a factor 2, equal to the L1-norm of the difference between π1 and π2,
i.e., 2d(π1, π2) =

∑
w∈Σ∗ |π1(w)− π2(w)|. Clearly, π1 and π2 are equal if and only if their

distance is 0.
It is immediate from the definition of the distance that if L is a family of LMCs whose

pairwise distances are bounded by b ≥ 0 then for any event W ⊆ Σ∗ and any two LMCs
M1,M2 ∈ L we have |π1(W)− π2(W)| ≤ b. From a verification point of view, this means
that one needs to model check only one LMC in the family to obtain an approximation
within b for the probabilities that the LMCs satisfy a given propertyW . Therefore, computing
or approximating the distance can make model checking more efficient. It is shown in [3]
that the bisimilarity pseudometric defined in [10] is an upper bound on the total variation
distance and can be computed in polynomial time. The bisimilarity pseudometric has more
direct bearings on branching-time system properties, which, in addition to emitted labels,
take LMC states into account (not considered in this paper).

The problem of computing the distance was first studied in [20]: they show that computing
the distance is NP-hard. In [7] it was shown that even approximating the distance within an
ε > 0 given in binary is NP-hard. In this paper we improve these results. We show that it is
undecidable whether the distance is greater than a given threshold. Further we show that
approximating the distance is #P-hard and in PSPACE. The #P-hardness construction is
relatively simple, perhaps simpler than the construction underlying the NP-hardness result
in [7]. In contrast, our PSPACE algorithm requires a combination of special techniques:
rounding-error analysis in floating-point arithmetic and Ladner’s result [19] on counting in
polynomial space.

2 Preliminaries

Let Q be a finite set. We view elements of RQ as vectors, more specifically as row vectors.
We write 1 for the all-1 vector, i.e., the element of {1}Q. For a vector µ ∈ RQ, we denote
by µ> its transpose, a column vector. A vector µ ∈ [0, 1]Q is a distribution over Q if µ1> = 1.
For q ∈ Q we write δq for the (Dirac) distribution over Q with δq(q) = 1 and δq(r) = 0 for
r ∈ Q \ {q}. We view elements of RQ×Q as matrices. A matrix M ∈ [0, 1]Q×Q is called
stochastic if each row sums up to one, i.e., M1> = 1>.

I Definition 1. A labelled (discrete-time, finite-state, finite-word) Markov chain (LMC)
is a quadruple M = (Q,Σ,M, η) where Q is a finite set of states, Σ is a finite alphabet
of labels, the mapping M : Σ → [0, 1]Q×Q specifies the transitions, and η ∈ [0, 1]Q, with
η> +

∑
a∈ΣM(a)1> = 1>, specifies the end-of-word probability of each state.

Intuitively, if the LMC is in state q, then with probability M(a)(q, q′) it emits a and moves
to state q′, and with probability η(q) it stops emitting labels. For the complexity results

S. Kiefer 130:3

in this paper, we assume that all numbers in η and in the matrices M(a) for a ∈ Σ are
rationals given as fractions of integers represented in binary. We extend M to the mapping
M : Σ∗ → [0, 1]Q×Q with M(a1 · · · ak) = M(a1) · · ·M(ak) for a1, . . . , ak ∈ Σ. Intuitively, if
the LMC is in state q then with probability M(w)(q, q′) it emits the word w ∈ Σ∗ and moves
(in |w| steps) to state q′. We require that each state of an LMC have a positive-probability
path to some state q with η(q) > 0.

Fix an LMCM = (Q,Σ,M, η) for the rest of this section. To an (initial) distribution π
over Q we associate the discrete probability space (Σ∗, 2Σ∗ ,Prπ) with Prπ(w) := Prπ({w}) :=
πM(w)η>. To avoid clutter and when confusion is unlikely, we may identify the distribu-
tion π ∈ [0, 1]Q with its induced probability measure Prπ; i.e., for a word or set of words W
we may write π(W) instead of Prπ(W).

Given two initial distributions π1, π2, the (total variation) distance between π1 and π2 is
defined as follows:1

d(π1, π2) := sup
W⊆Σ∗

|π1(W)− π2(W)| .

As π1(W)−π2(W) = π2(Σ∗\W)−π1(Σ∗\W), we have d(π1, π2) = supW⊆Σ∗(π1(W)−π2(W)).
The following proposition follows from basic principles, see, e.g., [21, Lemma 11.1]. In
particular, it says that the supremum is attained and the total variation distance is closely
related to the L1-distance:

I Proposition 2. LetM be an LMC. For any two initial distributions π1, π2 we have:

d(π1, π2) = max
W⊆Σ∗

(π1(W)− π2(W)) = 1
2
∑
w∈Σ∗

|π1(w)− π2(w)|

The maximum is attained by W = {w ∈ Σ∗ : π1(w) ≥ π2(w)}.

In view of this proposition, all complexity results on the (total variation) distance hold
equally for the L1-distance.

An LMCM is called acyclic if its transition graph is acyclic. Equivalently,M is acyclic
if for all q ∈ Q we have that Prδq

has finite support, i.e., {w ∈ Σ∗ : Prδq
(w) > 0} is finite.

3 The Threshold-Distance Problem

In [20, Section 6] (see also [7, Theorem 7]), a reduction is given from the clique decision problem
to show that computing the distance in LMCs is NP-hard. In that reduction the distance is
rational and its bit size polynomial in the input. It was shown in [5, Proposition 12] that the
distance d can be irrational. Define the non-strict (resp. strict) threshold-distance problem
as follows: Given an LMC, two initial distributions π1, π2, and a threshold τ ∈ [0, 1] ∩ Q,
decide whether d(π1, π2) ≥ τ (resp. d(π1, π2) > τ). In [5, Proposition 14] it was shown that
the non-strict threshold-distance problem is NP-hard with respect to Turing reductions.

In the following two subsections we consider the threshold-distance problem for general
and acyclic LMCs, respectively.

1 One could analogously define the total variation distance between two LMCs M1 = (Q1,Σ,M1, η1) and
M2 = (Q2,Σ,M2, η2) with initial distributions π1 and π2 over Q1 and Q2, respectively. Our definition
is without loss of generality, as one can take the LMC M = (Q,Σ,M, η) where Q is the disjoint union
of Q1 and Q2, and M,η are defined using M1,M2, η1, η2 in the straightforward manner.

ICALP 2018

130:4 On Computing the Total Variation Distance of Hidden Markov Models

3.1 General LMCs

We show:

I Theorem 3. The strict threshold-distance problem is undecidable.

Proof. We reduce from the emptiness problem for probabilistic automata. A probabilistic
automaton is a tuple A = (Q,Σ,M, α, F) where Q is a finite set of states, Σ is a finite
alphabet of labels, the mapping M : Σ→ [0, 1]Q×Q, where M(a) is a stochastic matrix for
each a ∈ Σ, specifies the transitions, α ∈ [0, 1]Q is an initial distribution, and F ⊆ Q is a
set of accepting states. Extend M to M : Σ∗ → [0, 1]Q×Q as in the case of LMCs. In the
case of a probabilistic automaton, M(w) is a stochastic matrix for each w ∈ Σ∗. For each
w ∈ Σ∗ define PrA(w) := αM(w)η> where η ∈ {0, 1}Q denotes the characteristic vector of F .
The probability PrA(w) can be interpreted as the probability that A accepts w, i.e., the
probability that after inputting w the automaton A is in an accepting state. The emptiness
problem asks, given a probabilistic automaton A, whether there is a word w ∈ Σ∗ such that
PrA(w) > 1

2 . This problem is known to be undecidable [22, p. 190, Theorem 6.17].
In the following we assume Σ = {a1, . . . , ak}. Given a probabilistic automaton A as

above, construct an LMCM = (Q∪{q1, q$},Σ∪{b, f+, f−},M, δq$) such that q1, q$ are fresh
states, and b, f+, f− are fresh labels. The transitions originating in the fresh states q1, q$ are
as follows:

q1 q$

1
2ka1
...

1
2kak

1
4b

1
4f+

1$

Here and in the subsequent pictures we use a convention that there be a state q$ with
η(q$) = 1 and that η(q) = 0 hold for all other states.

Define π1 := δq1 . Then for all w ∈ Σ∗ we have:

π1(wb) = π1(wf+) =
(

1
2k

)|w|
· 1

4 (1)

The transitions originating in the states in Q are defined so that all q ∈ Q emit each a ∈ Σ
with probability 1

2k (like q1). For all q ∈ F there is a transition to q$ labelled with 1
2 and f+;

for all q ∈ Q \ F there is a transition to q$ labelled with 1
2 and f−:

q$

1
2ka1
...

1
2kak

1
2f+

1$
q$

1
2ka1
...

1
2kak

1
2f−

1$

S. Kiefer 130:5

Formally, for q, r ∈ Q and a ∈ Σ set M(a)(q, r) := 1
2kM(a)(q, r). For q ∈ F set

M(f+)(q, q$) := 1
2 , and for q ∈ Q \ F set M(f−)(q, q$) := 1

2 . Define π2 := α (in the
natural way, i.e., with π2(q1) = π2(q$) = 0). Then for all w ∈ Σ∗ we have:

π2(wf+) =
(

1
2k

)|w|
· PrA(w) · 1

2 and

π2(wf−) =
(

1
2k

)|w|
· (1− PrA(w)) · 1

2

(2)

Consider L := Σ∗{b, f+}. We have π1(L) = 1. One can compute π2(L) in polynomial time by
computing the probability of reaching a transition labelled by f+ (the label b is not reachable).
We claim that there is w ∈ Σ∗ with PrA(w) > 1

2 if and only if d(π1, π2) > π1(L)− π2(L). It
remains to prove this claim.

Suppose there is no w ∈ Σ∗ with PrA(w) > 1
2 . Then, by (1) and (2), for all w ∈ Σ∗ we

have π1(wf+) ≥ π2(wf+). Hence:

{w ∈ (Σ ∪ {b, f+, f−})∗ : π1(w) > 0, π1(w) ≥ π2(w)} = L

By Proposition 2 it follows d(π1, π2) = π1(L)− π2(L).
Conversely, suppose there is w ∈ Σ∗ with PrA(w) > 1

2 . Consider L
′ := L \ {wf+}. We

have:

d(π1, π2) ≥ π1(L′)− π2(L′) Proposition 2
= π1(L)− π1(wf+)− π2(L) + π2(wf+) definition of L′

= π1(L)− π2(L) +
(

1
2k

)|w|
·
(

1
2 PrA(w)− 1

4

)
by (1) and (2)

> π1(L)− π2(L) PrA(w) > 1
2 J

Cortes, Mohri, and Rastogi [7] conjectured “that the problem of computing the [. . .] distance
[. . .] is in fact undecidable”, see the discussion after the proof of [7, Theorem 7]. Theorem 3
proves one interpretation of that conjecture. But the distance can be approximated with
arbitrary precision, cf. Section 4, so the distance is “computable” in this sense.

In [5, Theorem 15] it was shown that there is a polynomial-time many-one reduction
from the square-root-sum problem to the non-strict threshold-distance problem for LMCs.
Decidability of the non-strict threshold-distance problem remains open.

3.2 Acyclic LMCs
It was shown in [20, Section 6] and [5, Proposition 14] that the non-strict threshold-distance
problem is NP-hard with respect to Turing reductions, even for acyclic LMCs. We improve
this result to PP-hardness:

I Proposition 4. The non-strict and strict threshold-distance problems are PP-hard, even
for acyclic LMCs and even with respect to many-one reductions.

The proof uses the connection between PP and #P. Consider the problem #NFA, which
is defined as follows: given a nondeterministic finite automaton (NFA) A over alphabet Σ,
and a number n ∈ N in unary, compute |L(A) ∩ Σn|, i.e., the number of accepted words of
length n. The problem #NFA is #P-complete [14]. The following lemma forms the core of
the proof of Proposition 4:

ICALP 2018

130:6 On Computing the Total Variation Distance of Hidden Markov Models

I Lemma 5. Given an NFA A = (Q,Σ, δ, q(1), F) and a number n ∈ N in unary, one can
compute in polynomial time an acyclic LMCM and initial distributions π1, π2 and a rational
number y such that

d(π1, π2) = y + |Σ
n \ L(A)|
|Σ|n|Q|n .

Proof. In the following we assume Q = {q(1), . . . , q(s)} and Σ = {a1, . . . , ak}. Construct the
acyclic LMCM = (Q′,Σ ∪ {b, f+, f−},M) such that

Q′ = {p0, p1, . . . , pn, q$} ∪ {q
(j)
i : 0 ≤ i ≤ n, 1 ≤ j ≤ s} ∪ {ri : 0 ≤ i ≤ n}

and b, f+, f− are fresh labels. The transitions and end-of-word probabilities originating in
the states p0, . . . , pn, q$ are as follows:

p0 p1 . . . pn q$

1
sn b

(1− 1
sn)f−

1$

1
ka1
...

1
kak

1
ka1
...

1
kak

1
ka1
...

1
kak

Define π1 := δp0 . Then for all w ∈ Σn we have:

π1(wb) = 1
kn
· 1
sn

(3)

π1(wf−) = 1
kn
·
(

1− 1
sn

)
(4)

The transitions originating in the states q(j)
i , ri are as follows. For each a ∈ Σ and each

i ∈ {0, . . . , n− 1} set:

M(a)
(
q

(j)
i , q

(j′)
i+1
)

:= 1
k
· 1
s

∀ j ∈ {1, . . . , s} ∀ q(j′) ∈ δ(q(j), a)

M(a)
(
q

(j)
i , ri+1

)
:= 1

k
·
(

1− |δ(q
(j), a)|
s

)
∀ j ∈ {1, . . . , s}

M(a)
(
ri, ri+1

)
:= 1

k

Observe that if i ∈ {0, . . . , n− 1} then ri and all q(j)
i emit each a ∈ Σ with probability 1/k.

For each q(j) ∈ F set M(f+)(q(j)
n , q$) := 1. For each q(j) 6∈ F set M(f−)(q(j)

n , q$) := 1.
Finally, set M(f−)(rn, q$) := 1.

I Example 6. We illustrate this construction with the following NFA A over Σ = {a1, a2}:

q(1)

q(2)

a1, a2

a2

a2

S. Kiefer 130:7

For n = 3 we obtain the following transitions:

q
(1)
0

q
(2)
0

r0

q
(1)
1

q
(2)
1

r1

q
(1)
2

q
(2)
2

r2

q
(1)
3

q
(2)
3

r3

q$
1$

1
4a1,

1
4a2

1
4a2

1
4a1

1
4a2

1
4 a2 , 1

2 a1

1
2a1,

1
2a2

1
4a1,

1
4a2

1
4a2

1
4a1

1
4a2

1
4 a2 , 1

2 a1

1
2a1,

1
2a2

1
4a1,

1
4a2

1
4a2

1
4a1

1
4a2

1
4 a2 , 1

2 a1
1
2a1,

1
2a2

1f−

1f−

1f+

Define π2 := δ
q

(1)
0
. For all w ∈ Σ∗ write #acc(w) for the number of accepting w-labelled

runs of the automaton A, i.e., the number of w-labelled paths from q(1) to a state in F . For
all w ∈ Σn we have:

π2(wf+) = 1
kn
· #acc(w)

sn
(5)

π2(wf−) = 1
kn
·
(

1− #acc(w)
sn

)
(6)

Define B := Σn{b, f−}. By (3), (4) we have π1(B) = 1. One can compute π2(B) in
polynomial time by computing the probability of reaching a transition labelled by f− (the
label b is not reachable). Set y := π1(B)− π2(B).

It follows from Proposition 2 that d(π1, π2) = π1(L)− π2(L) holds for

L := {w ∈ (Σ ∪ {b, f+, f−})∗ : 0 < π1(w) ≥ π2(w)} .

Observe that L(A) = {w ∈ Σn : #acc(w) ≥ 1}. Hence it follows with (3), (4), (6):

L = Σn{b} ∪ (Σn ∩ L(A)){f−}

Defining L(A) := Σn \ L(A) we can write:

L = B \
(
L(A){f−}

)
Thus we have:

d(π1, π2) = π1

(
B \

(
L(A){f−}

))
− π2

(
B \

(
L(A){f−}

))
as argued above

= y + π2
(
L(A){f−}

)
− π1

(
L(A){f−}

)
definition of y

Observe that L(A) = {w ∈ Σn : #acc(w) = 0}. Hence we can continue:

= y +
∣∣L(A)

∣∣
kn

−
∣∣L(A)

∣∣
kn

·
(

1− 1
sn

)
by (6), (4)

= y +
∣∣L(A)

∣∣
knsn

= y + |Σ
n \ L(A)|
|Σ|n|Q|n definitions J

ICALP 2018

130:8 On Computing the Total Variation Distance of Hidden Markov Models

The PP lower bound from Proposition 4 is tight for acyclic LMCs:

I Theorem 7. The non-strict and strict threshold-distance problems are PP-complete for
acyclic LMCs.

I Remark 8. The works [20, 7] also consider the Lk-distances for integers k:

dk(π1, π2) :=
∑
w∈Σ∗

|π1(w)− π2(w)|k

For any fixed even k one can compute dk in polynomial time, see, e.g., [7, Theorem 6]. In
contrast, it is NP-hard to compute or even approximate dk for any odd k [7, Theorems 7
and 10]. Our PP- and #P-hardness results (Proposition 4 and Theorem 9) hold for d1 (due
to Proposition 2) but the reductions do not apply in an obvious way to dk for any k ≥ 2.
However, the argument in the proof of Theorem 7 for the PP upper bound does generalize
to all dk, see [15].

4 Approximation

As the strict threshold-distance problem is undecidable (Theorem 3), one may ask whether
the distance can be approximated. It is not hard to see that the answer is yes. In fact, it was
shown in [5, Corollary 8] that the distance can be approximated within an arbitrary additive
error even for infinite-word LMCs, but no complexity bounds were given. In this section we
provide bounds on the complexity of approximating the distance for (finite-word) LMCs.

4.1 Hardness
Lemma 5 implies hardness of approximating the distance:

I Theorem 9. Given an LMC and initial distributions π1, π2 and an error bound ε > 0 in
binary, it is #P-hard to compute a number x with |d(π1, π2)− x| ≤ ε, even for acyclic LMCs.

Proof. Recall that the problem #NFA is #P-complete [14]. Let A be the given NFA and
n ∈ N. LetM, π1, π2, y be as in Lemma 5. Approximate d(π1, π2) within 1/(3|Σ|n|Q|n) and
call the approximation d̃. It follows from Lemma 5 that |L(A) ∩ Σn| is the unique integer u
with∣∣∣∣y + |Σ|

n − u
|Σ|n|Q|n − d̃

∣∣∣∣ ≤ 1
3|Σ|n|Q|n .

Such u can be computed in polynomial time. J

Theorem 9 improves the NP-hardness result of [5, Proposition 9]. In fact, PP and #P are
substantially harder than NP: By Toda’s theorem [25], the polynomial-time hierarchy (PH)
is contained in PPP = P#P. Therefore, any problem in PH can be decided in determin-
istic polynomial time with the help of an oracle for the threshold-distance problem or for
approximating the distance.

4.2 Acyclic LMCs
Towards approximation algorithms, define W2 := {w ∈ Σ∗ : π1(w) ≥ π2(w)} and W1 :=
{w ∈ Σ∗ : π1(w) < π2(w)}. By Proposition 2 we have:

d(π1, π2) = π1(W2)− π2(W2) = 1− π1(W1)− π2(W2) (7)

S. Kiefer 130:9

Therefore, to approximate d(π1, π2) it suffices to approximate πi(Wi). A simple sampling
scheme leads to the following theorem:

I Theorem 10. There is a randomized algorithm, R, that, given an acyclic LMC M and
initial distributions π1, π2 and an error bound ε > 0 and an error probability δ ∈ (0, 1), does
the following:

R computes, with probability at least 1− δ, a number x with |d(π1, π2)− x| ≤ ε;
R runs in time polynomial in log δ

ε and in the encoding size ofM and π1, π2.
Note that 1

ε is not polynomial in the bit size of ε, so combining Theorems 9 and 10 does not
imply breakthroughs in computational complexity.

Proof. Let i ∈ {1, 2}. The length of a longest word w with πi(w) > 0 is polynomial in the
encoding of the (acyclic) LMCM. Thus, one can sample, in time polynomial in the encoding
of M, π1, π2, a word w according to Prπi ; i.e., any w is sampled with probability πi(w).
Similarly, one can check in polynomial time whether w ∈ Wi. If m samples are taken,
the proportion, say p̂i, of samples w such that w ∈ Wi is an estimation of πi(Wi). By
Hoeffding’s inequality, we have |p̂i − πi(Wi)| ≥ ε/2 with probability at most 2e−mε2/2.
Choose m ≥ − 2

ε2 ln δ
4 . It follows that |p̂i − πi(Wi)| > ε/2 with probability at most δ/2.

Therefore, by (7), the algorithm that returns 1− p̂1 − p̂2 has the required properties. J

4.3 General LMCs
Finally we aim at an algorithm that approximates the distance within ε, for ε given in binary.
By Theorem 9 such an algorithm cannot run in polynomial time unless P = PP. For LMCs
that are not necessarily acyclic, words of polynomial length may have only small probability,
so sampling approaches need to sample words of exponential length. Thus, a naive extension
of the algorithm from Theorem 10 leads to a randomized exponential-time algorithm. We
will develop a non-randomized PSPACE algorithm, resulting in the following theorem:

I Theorem 11. Given an LMC, and initial distributions π1, π2, and an error bound ε > 0
in binary, one can compute in PSPACE a number x with |d(π1, π2)− x| ≤ ε.

The approximation algorithm combines special techniques. The starting point is again the
expression for the distance in (7). The following lemma allows the algorithm to neglect words
that are longer than exponential:

I Lemma 12. Given an LMC, and initial distributions π1, π2, and a rational number λ > 0
in binary, one can compute in polynomial time a number n ∈ N in binary such that

πi(Σ>n) ≤ λ for both i ∈ {1, 2} .

For n as in Lemma 12 and both i ∈ {1, 2}, define W ′i := Wi ∩ Σ≤n. By Lemma 12 it would
suffice to approximate πi(W ′i) for both i, as we have by (7):

π1(W ′1) + π2(W ′2) ≤ 1− d(π1, π2) ≤ π1(W ′1) + π2(W ′2) + 2λ (8)

However, it not obvious if πi(W ′i) can be approximated efficiently, as for exponentially long
words w it is hard to check if w ∈W ′i holds. Indeed, πi(w) may be very small and may have
exponential bit size. The main trick of our algorithm will be to approximate πi(w) using
floating-point arithmetic with small relative error, say π̃i(w) ∈ [πi(w)(1− θ), πi(w)(1 + θ)]
for small θ > 0. This allows us to approximate π1(W ′1) + π2(W ′2) (crucially, not the two
summands individually). Indeed, define approximations for W ′1 and W ′2 by

W̃1 := {w ∈ Σ≤n : π̃1(w) < π̃2(w)} and W̃2 := {w ∈ Σ≤n : π̃1(w) ≥ π̃2(w)} .

ICALP 2018

130:10 On Computing the Total Variation Distance of Hidden Markov Models

Then we have:

π2(w) ≤ π1(w) < π2(w) + θπ1(w) + θπ2(w) for w ∈ W̃1 ∩W ′2
π1(w) < π2(w) ≤ π1(w) + θπ1(w) + θπ2(w) for w ∈ W̃2 ∩W ′1

It follows:

π2(W̃1 ∩W ′2) ≤ π1(W̃1 ∩W ′2) ≤ π2(W̃1 ∩W ′2) + 2θ

π1(W̃2 ∩W ′1) ≤ π2(W̃2 ∩W ′1) ≤ π1(W̃2 ∩W ′1) + 2θ
(9)

Hence we have:

π1(W ′1) + π2(W ′2) = π1(W̃1 ∩W ′1) + π2(W̃1 ∩W ′2) + π2(W̃2 ∩W ′2) + π1(W̃2 ∩W ′1)
(9)
≤ π1(W̃1) + π2(W̃2)
(9)
≤ π1(W ′1) + π2(W ′2) + 4θ

By combining this with (8) we obtain:

π1(W̃1) + π2(W̃2)− 4θ ≤ 1− d(π1, π2) ≤ π1(W̃1) + π2(W̃2) + 2λ (10)

It remains to tie two loose ends:
1. develop a PSPACE method to approximate πi(w) within relative error θ for any θ > 0 in

binary, where w is an at most exponentially long word (given on a special input tape);
2. based on this method, approximate πi(W̃i) in PSPACE.
For item 1 we use floating-point arithmetic, for item 2 we use Ladner’s result [19] on counting
in polynomial space.

For k ∈ N, define Fk := {m · 2z : z ∈ Z, 0 ≤ m ≤ 2k − 1}, the set of k-bit floating-point
numbers. For our purposes, nonnegative floating-point numbers suffice, and there is no need
to bound the exponent z, as all occurring exponents will have polynomial bit size. We define
rounding as usual: for x ≥ 0 write 〈x〉k for the number in Fk that is nearest to x (break
ties in an arbitrary but deterministic way). Then there is δ with 〈x〉k = x · (1 + δ) and
|δ| < 2−k, see [13, Theorem 2.2]. A standard analysis of rounding errors in finite-precision
arithmetic [13, Chapter 3] yields the following lemma:

I Lemma 13. Let π be an initial distribution and 0 < θ < 1. Let k ∈ N be such that
2k ≥ 2(n+ 1)|Q|/θ. Let w = a1a2 · · · am ∈ Σ∗ with m ≤ n. Compute π̃(w) as

((· · · ((π ·M(a1)) ·M(a2)) · · ·) ·M(am)) · η> ,

where rounding 〈·〉k is applied after each individual (scalar) multiplication and addition. Then
π̃(w) ∈ [π(w)(1− θ), π(w)(1 + θ)].

Proof. For all i ∈ N write γi := i · 2−k/(1 − i · 2−k). By [13, Equation (3.11)] there are
matrices ∆1, . . . ,∆m and a vector η̃ such that

π̃(w) = π · (M(a1) + ∆1) · (M(a2) + ∆2) · · · (M(am) + ∆m) · (η + η̃)>

and |∆i| ≤ γ|Q|M(ai) and |η̃| ≤ γ|Q|η, where by |∆i| and |η̃| we mean the matrix and vector
obtained by taking the absolute value componentwise. (In words, the result π̃(w) of the

S. Kiefer 130:11

floating-point computation is the result of applying an exact computation with slightly
perturbed data—a “backward error” result.) It follows:

|π̃(w)− π(w)| ≤
(
− 1 +

m+1∏
j=1

(
1 + γ|Q|

))
π(w) by [13, Lemma 3.8]

≤ γ(m+1)·|Q|π(w) by [13, Lemma 3.3]
≤ 2(n+ 1)|Q| · 2−kπ(w) as (n+ 1)|Q| · 2−k ≤ 1/2
≤ θπ(w) J

The development so far suggests the following approximation approach: Let ε > 0 be the
error bound from the input. Let n ∈ N be the number from Lemma 12, where λ is such that
2λ = ε/2. Let k ∈ N be the smallest number such that 2k ≥ 2(n+ 1)|Q|/θ, where θ is such
that 4θ = ε/2. Observe that k (the bit size of 2k) is polynomial in the input. Define, for
each word w and both i, the approximation π̃i(w) as in Lemma 13. This defines also W̃1, W̃2.
By (10) we have:

π1(W̃1) + π2(W̃2)− ε

2 ≤ 1− d(π1, π2) ≤ π1(W̃1) + π2(W̃2) + ε

2

Thus we can complete the proof of Theorem 11 by proving the following lemma:

I Lemma 14. For both i, one can approximate πi(W̃i) within ε/4 in PSPACE.

Proof. We discuss only the approximation of π1(W̃1); the case of π2(W̃2) is similar.
Construct a “probabilistic PSPACE Turing machine” T that samples a random word w

according to Prπ1 . For that, T uses probabilistic branching according to the transition
probabilities in M . While producing w in this way, but without storing w as a whole,
T computes also the values π̃1(w), π̃2(w) according to Lemma 13. If and when w gets longer
than n then T rejects. If π̃1(w) < π̃2(w) then T accepts; otherwise T rejects. The probability
that T accepts equals π1(W̃1). This probability can be computed in PSPACE by Ladner’s
result [19] on counting in polynomial space. To be precise, note that this probability is a
fraction p/q of two natural numbers p, q of at most exponential bit size. By Ladner’s result
one can compute arbitrary bits of p, q in PSPACE. Hence an approximation within ε/4 can
also be computed in PSPACE. Technical details about how we apply Ladner’s result are
provided in [15]. J

5 Open Problems

In this paper we have considered the total variation distance between the distributions
on finite words that are generated by two LMCs. In a more general version of LMCs,
the end-of-word probabilities are zero, so that the LMC generates infinite words. The
production of finite words w ∈ Σ∗ can be simulated by producing w$$$ · · · where $ is an
end-of-word symbol. It follows that the undecidability and hardness results of this paper
apply equally to infinite-word LMCs. In fact, all these results strengthen those from [5],
where the total variation distance between infinite-word LMCs is studied. The PSPACE
approximation algorithm in this paper (Theorem 11) applies only to finite words, and the
author does not know if it can be generalized to infinite-word LMCs. Whether the non-strict
threshold-distance problem is decidable is open, both for finite- and for infinite-word LMCs.

Another direction concerns LMCs that are not hidden, i.e., where each emitted label
identifies the next state; or, slightly more general, deterministic LMCs, i.e., where each state

ICALP 2018

130:12 On Computing the Total Variation Distance of Hidden Markov Models

and each emitted label identify the next state. The reduction that shows square-root-sum
hardness in [5, Theorem 15] also applies to the threshold-distance problem for deterministic
finite-word LMCs, but the author does not know a hardness result for approximating the
distance between deterministic LMCs.

References
1 P. Ailliot, C. Thompson, and P. Thomson. Space-time modelling of precipitation by using a

hidden Markov model and censored Gaussian distributions. Journal of the Royal Statistical
Society, 58(3):405–426, 2009.

2 M. Alexandersson, S. Cawley, and L. Pachter. SLAM: Cross-species gene finding and
alignment with a generalized pair hidden Markov model. Genome Research, 13:469–502,
2003.

3 D. Chen, F. van Breugel, and J. Worrell. On the complexity of computing probabilistic
bisimilarity. In Proceedings of FoSSaCS, volume 7213 of LNCS, pages 437–451. Springer,
2012.

4 F.-S. Chen, C.-M. Fu, and C.-L. Huang. Hand gesture recognition using a real-time tracking
method and hidden Markov models. Image and Vision Computing, 21(8):745–758, 2003.

5 T. Chen and S. Kiefer. On the total variation distance of labelled Markov chains. In
Proceedings of CSL-LICS, pages 33:1–33:10, 2014.

6 G.A. Churchill. Stochastic models for heterogeneous DNA sequences. Bulletin of Mathem-
atical Biology, 51(1):79–94, 1989.

7 C. Cortes, M. Mohri, and A. Rastogi. Lp distance and equivalence of probabilistic automata.
International Journal of Foundations of Computer Science, 18(04):761–779, 2007.

8 M.S. Crouse, R.D. Nowak, and R.G. Baraniuk. Wavelet-based statistical signal processing
using hidden Markov models. IEEE Transactions on Signal Processing, 46(4):886–902,
April 1998.

9 C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk. A Storm is coming: A modern probabil-
istic model checker. In Proceedings of Computer Aided Verification (CAV), pages 592–600.
Springer, 2017.

10 J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled Markov
processes. Theoretical Computer Science, 318(3):323–354, 2004.

11 R. Durbin. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic
Acids. Cambridge University Press, 1998.

12 S.R. Eddy. What is a hidden Markov model? Nature Biotechnology, 22(10):1315–1316,
October 2004.

13 N. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, second edition, 2002.
14 S. Kannan, Z. Sweedyk, and S. Mahaney. Counting and random generation of strings in

regular languages. In Proceedings of SODA, pages 551–557, 1995.
15 S. Kiefer. On computing the total variation distance of hidden Markov models. Technical

report, arxiv.org, 2018. Available at https://arxiv.org/abs/1804.06170.
16 S. Kiefer, A.S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell. Language equivalence

for probabilistic automata. In Proceedings of Computer Aided Verification (CAV), volume
6806 of LNCS, pages 526–540. Springer, 2011.

17 A. Krogh, B. Larsson, G. von Heijne, and E.L.L. Sonnhammer. Predicting transmembrane
protein topology with a hidden Markov model: Application to complete genomes. Journal
of Molecular Biology, 305(3):567–580, 2001.

18 M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic
real-time systems. In Proceedings of Computer Aided Verification (CAV), volume 6806 of
LNCS, pages 585–591. Springer, 2011.

S. Kiefer 130:13

19 R. E. Ladner. Polynomial space counting problems. SIAM Journal on Computing,
18(6):1087–1097, 1989.

20 R.B. Lyngsø and C.N.S. Pedersen. The consensus string problem and the complexity of
comparing hidden Markov models. J. Comput. Syst. Sci., 65(3):545–569, 2002.

21 M. Mitzenmacher and E. Upfal. Probability and Computing. Cambridge University Press,
2005.

22 A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971.
23 L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2):257–286, 1989.
24 M.-P. Schützenberger. On the definition of a family of automata. Inf. and Control, 4:245–

270, 1961.
25 S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal of Computing,

20(5):865–877, 1991.

ICALP 2018

	Introduction
	Preliminaries
	The Threshold-Distance Problem
	General LMCs
	Acyclic LMCs

	Approximation
	Hardness
	Acyclic LMCs
	General LMCs

	Open Problems

