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Abstract
Recently it was shown that the transitive closure of a directed graph can be updated using first-
order formulas after insertions and deletions of single edges in the dynamic descriptive complexity
framework by Dong, Su, and Topor, and Patnaik and Immerman. In other words, Reachability
is in DynFO.

In this article we extend the framework to changes of multiple edges at a time, and study the
Reachability and Distance queries under these changes. We show that the former problem can be
maintained in DynFO(+,×) under changes affecting O( logn

log logn ) nodes, for graphs with n nodes.
If the update formulas may use a majority quantifier then both Reachability and Distance can be
maintained under changes that affect O(logc n) nodes, for fixed c ∈ N. Some preliminary results
towards showing that distances are in DynFO are discussed.
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120:2 Reachability and Distances under Multiple Changes

1 Introduction

In today’s databases, data sets are often large and subject to frequent changes. In use cases
where only a fixed set of queries has to be evaluated on such data, it is not efficient to
re-evaluate queries after each change, and therefore dynamic approaches have been considered.
The idea is that when a database D is modified by changing a set ∆D of tuples then the
result of a query is recomputed by using its result on D, the set ∆D, and possibly other
previously computed auxiliary data.

One such dynamic approach is the dynamic descriptive complexity approach, formulated
independently by Dong, Su, and Topor [8], as well as Patnaik and Immerman [19]. In their
framework the query result and the auxiliary data are represented by relations, and updates
of the auxiliary relations are performed by evaluating first-order formulas. The class of
queries that can be maintained in this fashion constitutes the class DynFO. The motivation
to use first-order logic as the vehicle for updates is that its evaluation is highly parallelizable
and, in addition, that it corresponds to the relational algebra which is the core of SQL.
Hence, if a query result can be maintained using a first-order update program, this program
can be translated into equivalent SQL queries.

While it is desirable to understand how to update query results under complex changes ∆D,
the focus of dynamic descriptive complexity so far has been on single tuple changes. The
reason is that for many queries our techniques did not even suffice to tackle this case.

In recent years, however, we have seen several new techniques for maintaining queries. The
Reachability query – one of the main objects of study in dynamic descriptive complexity – has
been shown to be in DynFO using a linear algebraic method and a simulation technique [4].
The latter has been advanced into a very powerful tool: for showing that a query can be
maintained in DynFO, it essentially suffices to show that it can be maintained for logn many
change steps after initializing the auxiliary data by an AC1 pre-computation1 [5], where n is
the size of the database’s (active) domain. This tool has been successfully applied to show
that all queries expressible in monadic second order logic can be maintained in DynFO on
structures of bounded treewidth.

Those new techniques motivate a new attack on more complex changes ∆D. But what are
reasonable changes to look at? Updating a query after a change ∆D that replaces the whole
database by a new database is essentially equivalent to the static evaluation problem with
built-in relations: the stored auxiliary data has to be helpful for every possible new database,
and therefore plays the role of built-in relations. Thus changes should be restricted in some
way. Three approaches come to mind immediately: to only allow changes of restricted size;
to restrict changes structurally; or to define changes in a declarative way.

In this article we focus on the first approach. Before discussing our results we shortly
outline the other two approaches.

There is a wide variety of structural restrictions. For example, the change set ∆D could
only change the database locally or in such a way that the changes affect auxiliary relations
only locally, e.g., if edges are inserted into distinct connected components it should be easier
to maintain reachability. Another option is to restrict ∆D to be of a certain shape, examples
studied in the literature are cartesian-closed changes [8] and deletions of anti-chains [7].

A declarative mechanism for changing a database is to provide a set of parameterised
rules that state which tuples should be changed depending on a parameter provided by a
user. For example, a rule ρ(x, y; z) could state that all edges (x, y) shall be inserted into a

1 Readers not familiar with the circuit class AC1 may safely think of LOGSPACE pre-computations.
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graph such that x and y are connected to the parameter z. First-order logic as a declarative
mean to change databases has been studied in [20], where it was shown that undirected
reachability can be maintained under insertions defined by first-order formulas, and single
tuple deletions.

In this article we study changes of small size with a focus on the Reachability and Distance
queries. As can be seen from the discussion above, the former query has been well-studied in
diverse settings of dynamic descriptive complexity, and therefore results on its maintainability
under small changes serve as an important reference point.

There is another reason to study Reachability under non-constant size changes. Recall
that Reachability is complete for the static complexity class NL. The result that Reachability
is in DynFO does not imply NL ⊆ DynFO, as DynFO is only known to be closed under
very weak reductions, called bounded first-order reductions, under which Reachability is not
NL-complete [19]. In short, these reductions demand that whenever a bit of an instance
is changed, then only constantly many bits change in the image of the instance under the
reduction. When a query such as Reachability is maintainable under larger changes, then
this restriction may be relaxed and might yield new maintainability results for other queries
under single edge changes.

In this work we show that Reachability can be maintained under changes of non-constant
size. Since our main interest is the study of changes of non-constant size, we assume
throughout the article that all classes come with built-in arithmetic and denote, e.g., by
DynFO(+,×) the class of queries that can be maintained with first-order updates in the
presence of a built-in linear addition and multiplication relations. How our results can be
adapted to classes without built-in arithmetic is discussed towards the end of Section 3.

I Theorem 1. Reachability can be maintained in DynFO(+,×) under changes that affect
O( logn

log logn ) nodes of a graph, where n is the number of nodes of the graph.

The distance query was shown to be in DynFO+Maj by Hesse [13], where the class
DynFO+Maj allows to specify updates with first-order formulas that may include majority
quantifiers (equivalently, updates can be specified by uniform TC0 computations). We
generalize Hesse’s result to changes of size polylogarithmic in the size of the domain.

I Theorem 2. Reachability and Distance can be maintained in DynFO+Maj(+,×) under
changes that affect O(logc n) nodes of a graph, where c ∈ N is fixed and n is the number of
nodes of the graph.

One of the important open questions of dynamic descriptive complexity is whether
distances can be maintained in DynFO, even under single edge changes. We contribute to
the solution of this question by discussing how distances can be maintained in a subclass of
DynFO+Maj(+,×) that is only slightly stronger than DynFO(+,×).

Organization

After recapitulating notations in Section 2, we adapt the dynamic complexity framework to
bulk changes in Section 3. Our main results, maintainability of reachability and distances
under multiple changes, are proved in Section 4 and Section 5. We conclude with a discussion
in Section 6.

ICALP 2018
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2 Preliminaries

In this section we review basic definitions and results from finite model theory and databases.
We consider finite relational structures over relational signatures τ = {R1, . . . , R`}, where

each Ri is a relational symbol of arity Ar(Ri). A τ -structure D consists of a finite domain D
and relations RDi over D of arity Ar(Ri), for each i ∈ {1, . . . , `}. The active domain adom(D)
of a structure D contains all elements used in some tuple of D. Since the motivation to study
dynamic complexity originates from database theory, we use terminology from this area. In
particular we use the terms “relational structure” and “relational database” synonymously.

We study the queries Reachability and Distance. Reachability asks, given a directed
graph G, for all pairs s, t of nodes such that there is a path from s to t in G. Distance asks
for the length of the shortest path between any pair of reachable nodes.

We assume familiarity with first-order logic FO and refer to [16] for an introduction.
The logic FO+Maj extends FO by allowing majority quantifiers. Such quantifiers can ask
whether more than half of all elements satisfy a given formula. We write FO(+,×) and
FO+Maj(+,×) to denote that formulas have access to built-in relations ≤,+,× which are
interpreted as linear order, addition and multiplication on the domain of the underlying
structure. We note that FO(+,×) and FO+Maj(+,×) are equal to the circuit classes
(DLOGTIME-)uniform AC0 and TC0, respectively [2].

In FO(+,×), each tuple (a1, . . . , ac) encodes a number from [nc − 1]0
def= {0, . . . nc − 1}.

We will henceforth identify tuples over the domain and numbers.
It is well-known that FO(+,×) supports arithmetic on numbers with polylog bits.

Furthermore, iterated addition and multiplication for polylog many numbers with polylog
bits can be expressed in FO(+,×). More precisely:

I Lemma 3 (cf. [14, Theorem 5.1]). Suppose ϕ is a FO(+,×) formula that defines r ∈
O(logc n) polylog bit numbers a1, . . . , ar, then there are formulas ψ+ and ψ× that define the
sum and product of a1, . . . , ar, respectively.

Due to these facts, many calculations can be defined in FO(+,×). In particular, primes
can be identified, and logn

log logn numbers of log logn bits each can be encoded and decoded in
logn bit numbers.

Suppose p1, . . . , pm are primes whose product is N . Then each number A < N can be
uniquely represented as a tuple ā = (a1, . . . , am) where ai = A mod pi. The tuple ā is called
Chinese remainder representation (CRR) of A. The number A can recovered from ā via
A =

∑
i aihiCi−rN , where Ci = N

mi
, hi is the inverse of Ci modulo mi, and r =

∑m
i=1b

xihi

mi
c

[14, p. 702]. Due to Lemma 3, in FO(+,×) one can encode and decode O(logn) bit numbers
into their CRR defined by O(logn) primes with O(log logn) bits.

In this article we use basic notions and results from linear algebra which are introduced
when they are needed. Throughout the article, a matrix with O(nd) rows and columns and
entries in [nc]0 will be represented by a relation R that contains a tuple (r̄, c̄, v̄) if and only
if the value at row r̄ and column c̄ is v̄.

3 Dynamic Framework for Multiple Changes

We briefly repeat the essentials of dynamic complexity, closely following [21], and discuss
generalisations due to changes of non-constant size.

The goal of a dynamic program is to answer a given query on an input database subjected
to changes that insert or delete tuples. The program may use an auxiliary data structure
represented by an auxiliary database over the same domain. Initially, both input and auxiliary
database are empty; and the domain is fixed during each run of the program.
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Changes. In previous work, changes of single tuples have been represented as explicit
parameters for the formulas used to update the auxiliary relations. Non-constant size changes
cannot be represented in this fashion. An alternative is to represent changes implicitly by
giving update formulas access to the old input database as well as to the changed input
database [11]. Here, we opt for this approach.

For a database D over domain D and schema τ , a change ∆D consists of sets R+ and
R− of tuples for each relation symbol R ∈ τ . The result D + ∆D of an application of the
change ∆D to D is the input database where RD is changed to (RD ∪R+) \R−. The size of
∆D is the total number of tuples in relations R+ and R− and the set of affected elements is
the (active) domain of tuples in ∆D.

Dynamic Programs and Maintenance of Queries. A dynamic program consists of a set of
update rules that specify how auxiliary relations are updated after changing the input database.
An update rule for updating an `-ary auxiliary relation T after a change is a first-order
formula ϕ over schema τ ∪ τaux with ` free variables, where τaux is the schema of the auxiliary
database. After a change ∆D, the new version of T is T def= {~a | (D+ ∆D,A) |= ϕ(~a)} where
D is the old input database and A is the current auxiliary database. Note that a dynamic
program can choose to have access to the old input database by storing it in its auxiliary
relations.

For a state S = (D,A) of the dynamic program P with input database D and auxiliary
database A we denote the state of the program after applying a change sequence α and
updating the auxiliary relations accordingly by Pα(S).

The dynamic program maintains a q-ary query Q under changes that affect k elements
(under changes of size k, respectively) if it has a q-ary auxiliary relation Q that at each
point stores the result of Q applied to the current input database. More precisely, for each
non-empty sequence α of changes that affect k elements (changes of size k, respectively), the
relation Q in Pα(S∅) and Q(α(D∅)) coincide, where D∅ is an empty input structure, S∅ is
the auxiliary database with empty auxiliary relations over the domain of D∅, and α(D∅) is
the input database after applying α.

If a dynamic program maintains a query, we say that the query is in DynFO. Similarly
to DynFO one can define the class of queries DynFO(+,×) that allows for three particular
auxiliary relations that are initialised as a linear order and the corresponding addition and
multiplication relations. Other classes are defined accordingly.

For many natural queries Q, in order to show that Q can be maintained, it is enough to
show that the query can be maintained for a bounded number of steps. Intuitively, this is
possible for queries for which isolated elements do not influence the query result, if there
are many such elements. Formally, a query Q is almost domain-independent if there is a
c ∈ N such that Q(A)�(adom(A)∪B) = Q(A�(adom(A)∪B)) for all structures A and sets
B ⊆ A \ adom(A) with |B| ≥ c.

A queryQ is (C, f)-maintainable, for some complexity class C and some function f : N→ R,
if there is a dynamic program P and a C-algorithm A such that for each input database D
over a domain of size n, each linear order ≤ on the domain, and each change sequence α of
length |α| ≤ f(n), the relation Q in Pα(S) and Q(α(D)) coincide, where S = (I,A(I,≤)).

The following theorem is a slight adaption of Theorem 3 from [5] and can be proved
analogously.

I Theorem 4. Every (ACi, logi n)-maintainable, almost domain-independent query is in
DynFO(+,×).

ICALP 2018
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The Role of the Domain and Arithmetic. In order to focus on the study of changes of
non-constant size, we choose a simplified approach and include arithmetic in our setting. We
state our results for DynFO(+,×) and according classes to make it clear that we assume
the presence of a linear order, addition and multiplication relation on the whole domain at
all times.2

We shortly discuss the consequences of not assuming built-in arithmetic on our results.
For single tuple changes, the presence of built-in arithmetic essentially gives no advantage.

I Proposition 5 ([4, Theorem 4], formulation from [5, Proposition 2]). If a query Q ∈
DynFO(+,×) under single-tuple changes is almost domain-independent, then also Q ∈
DynFO.

This result relies on the fact that one can maintain a linear order and arithmetic on the
activated domain in DynFO under single-tuple changes [9], that is, on all elements that
were in the active domain at some point of time. Under larger changes this is a priori not
possible, as then one has to express in FO a linear order and arithmetic on the elements
that enter the active domain.

An alternate approach to assuming the presence of built-in arithmetic is to demand that
changes provide additional information on the changed elements, for example, that they
provide a linear order and arithmetic on the domain of the change. Using this approach, our
results can be stated in terms of DynFO and DynFO+Maj with the sole modification that
sizes of changes are given relative to the size of the activated domain instead of with respect
to the size of the whole domain. In this fashion our results also translate to the setting of
first-order incremental evaluation systems of Dong, Su, and Topor [8], where the domain can
grow and shrink.

4 Reachability under Multiple Changes

In this section we prove that Reachability can be maintained under multiple changes.

I Theorem 1. Reachability can be maintained in DynFO(+,×) under changes that affect
O( logn

log logn ) nodes of a graph, where n is the number of nodes of the graph.

The approach is to use the well-known fact that Reachability can be reduced to the
computation of the inverse of a matrix, and to invoke the Sherman-Morrison-Woodbury
identity (cf. [12]) to update the inverse. This identity essentially reduces the update of
inverses after a change affecting k nodes to the computation of an inverse of a k × k matrix.

The challenge is to define the updates in FO(+,×). The key ingredients here are to
compute inverses with respect to many primes, and throw away primes for which the inverse
does not exist. As, by Theorem 4, it suffices to maintain the inverse for logc n many steps for
some c to be fixed later (see proof of Theorem 6), some primes remain valid if one starts from
sufficiently – but polynomially – many primes. We show that the inverse of k × k matrices
over Zp can be defined in FO(+,×) for k = logn

log logn .
Theorem 1 in particular generalizes the result that Reachability can be maintained under

single edge changes [4]; our proof is an alternative to the proof presented in the latter work.

2 Different assumptions have been made in the literature. In [18], Patnaik and Immerman assume only a
linear order to be present, while full arithmetic is assumed in [19]. Etessami observed that arithmetic
can be built up dynamically, and therefore subsequent work usually assumed initially empty auxiliary
relations, see e.g. [4, 5]. In the setting of first-order incremental evaluation systems usually no arithmetic
is assumed to be present [8].
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In [4], maintenance of Reachability is reduced to the question whether a matrix A has full
rank, and it was shown that the rank can be maintained by storing and updating an invertible
matrix B and a matrix D from which the rank can be easily extracted, such that B ·A = D.

4.1 Reachability and Matrix Inverses
There is a path from s to t in a graph G of size n with adjacency matrix AG if and only
if the s-t-entry of the matrix (nI − AG)−1 is non-zero. This follows from the equation
(nI −AG)−1 = 1

n

∑∞
i=0( 1

nAG)i and the fact that AiG counts the number of paths from s to t
of length i. Notice that A def= nI − AG is invertible as matrix over Q for every adjacency
matrix AG since it is strictly diagonally dominant [15, Theorem 6.1.10].

When applying a change ∆G to G that affects k nodes, the adjacency matrix of G is
updated by adding a suitable change matrix ∆A with at most k non-zero rows and columns
to A. Thus Theorem 1 follows from the following proposition3.

I Theorem 6. When A ∈ Zn×n takes values polynomial in n and is assumed to stay invertible
over Q, then non-zeroness of entries of A−1 ∈ Qn×n can be maintained in DynFO(+,×)
under changes that affect O( logn

log logn ) rows and columns.

Each change affecting O( logn
log logn ) rows and columns can be partitioned into constantly

many changes that affect k def= logn
log logn rows and columns. We therefore concentrate on such

changes in the following.
The change matrix ∆A for a change affecting k rows and columns has at most k non-zero

rows and columns and can therefore be decomposed into a product UBV of suitable matrices
U,B, and V , where U , B, and V have dimensions n× k, k × k, and k × n, respectively.

I Lemma 7. Fix a ring R. Suppose M ∈ Rn×n with non-zero rows ri1 , . . . , rik and columns
cj1 , . . . , cjk

. Then M = UBV with U ∈ Rn×k, B ∈ Rk×k, and V ∈ Rk×n where
1. B is obtained from M by removing all-zero rows and columns.

2. U =

ū1
...
ūn

 where ūi =
{

0̄T if i /∈ {i1, . . . , ik}
ēTm if i = im

3. V =
(
v̄1, . . . , vn

)
where v̄j =

{
0̄ if j /∈ {j1, . . . , jk}
ēm if j = jm

Here, ēm denotes the m-th unit vector.

By the Sherman-Morrison-Woodbury identity (cf. [12]), the updated inverse can therefore
be written as

(A+ ∆A)−1 = (A+ UBV )−1 = A−1 −A−1U(I +BV A−1U)−1BV A−1 (?)

The inverse of a matrix in Zn×n with entries that are polynomial in n is a matrix in Qn×n
with entries a

b that may involve numbers exponential in n. In particular computations cannot
be performed in FO(+,×) directly. For this reason all computations will be done modulo
many primes, and non-zeroness of entries of A−1 is extracted from these values.

3 Due to lack of space some details are hidden here. The described reduction maps the empty graph to
the matrix whose diagonal entries are n. Values of the inverse for this matrix cannot be determined
in FO, and thus one does not immediately get the desired result for Reachability. This issue can be
circumvented by mapping to matrices with only some non-zero entries on the diagonal, and studying
the inverse of the matrices induced by non-zero diagonal entries.

ICALP 2018
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Let us first see how to update (A+ ∆A)−1 modulo a prime p under the assumption that
both A (mod p) and A+ ∆A (mod p) are invertible. Observe that (I +BV A−1U)−1 is a
k × k matrix and therefore an essential prerequisite to compute (A + ∆A)−1 (mod p) is
to be able to define the inverse of such small matrices. That this is possible follows from
the following lemma and the fact that [D−1]ij = (−1)i+j detDji

detD for invertible D ∈ Zk×kp .
Here [C]ij denotes the ij-th entry of a matrix C and Cji denotes the submatrix obtained by
removing the j-th row and the i-th column.

I Theorem 8. Fix a domain of size n and a prime p ∈ O(nc). The value of the determinant
of a matrix A ∈ Zk×kp for k = logn

log logn can be defined in FO(+,×).

The technical proof of this theorem is deferred until the next Subsection 4.2.
That (A + ∆A)−1 (mod p) can defined in FO(+,×) using Equation (?) now is a con-

sequence of a straightforward analysis of the involved matrix operations.

I Proposition 9. Fix a domain of size n and a prime p ∈ O(nc). Given the inverse of a
matrix A ∈ Zn×np and a matrix ∆A ∈ Zn×np with at most k = logn

log logn non-zero rows and
columns, one can determine whether A+ ∆A is invertible in FO(+,×) and, if so, the inverse
can be defined.

Proof. A decomposition of the matrix ∆A into UBV with U ∈ Zn×kp , B ∈ Zk×kp , and
V ∈ Zk×np can be defined in FO(+,×) using the characterization from Lemma 7. A simple
analysis of the right hand side of Equation (?) – taking the dimensions of U, V, and B

into account – yields that V A−1U and therefore (I + BV A−1U)−1B are k × k matrices.
Furthermore, U(I +BV A−1U)−1BV is an n× n matrix that has at most k non-zero rows
and columns.

The only obstacle to invertibility is that the inverse of D def= I + BV A−1U may not
exist in Zp. This is the case if and only if det(D) ≡ 0 (mod p) which can be tested using
Theorem 8. If D is invertible, then its inverse can be defined by invoking Theorem 8 twice
and using [D]ij = (−1)i+j detDji

detD .
Finally, if one knows how to compute (I + BV A−1U)−1, each entry in A−1U(I +

BV A−1U)−1BV can be defined by adding k products of two numbers, and similarly for
(A−1U(I +BV A−1U)−1BV )A−1. This can be done in FO(+,×) due to Lemma 3. J

It remains to show how to maintain non-zeroness of entries of (A + ∆A)−1 ∈ Qn×n.
Essentially a dynamic program can maintain a Chinese remainder representation of (A +
∆A)−1 and extract whether an entry is non-zero from this representation. An obstacle is that
whenever (I +BV A−1U)−1 (mod p) does not exist for a prime p during the update process,
then this prime p becomes invalid for the rest of the computation. The idea to circumvent
this is simple: with each change, only a small number of primes become invalid. However,
since the determinant can be computed in NC2 (cf. [3]), using Theorem 4 we only need to
be able to maintain a correct result for log2 n many steps. Thus starting from sufficiently
many primes will guarantee that enough primes are still valid after log2 n steps.

We make these numbers more precise in the following.

Proof (of Theorem 6). By Theorem 4 and since values of the inverse of a matrix are almost
domain-independent, it suffices to exhibit a dynamic program4 that maintains non-zeroness
of entries of A−1 for log2 n changes of size logn

log logn . The dynamic program maintains A−1

4 Actually we only describe a program that works correctly for sufficiently large n. However, small n can
be easily dealt with separately.
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(mod p) for each of the first 2n3 many primes p, which, by the Prime Number Theorem, can
be found among the first n4 numbers. Denote by P the set of the first 2n3 primes. The NC2

initialization procedure computes A−1 (mod p) for each prime in P . The update procedure
for a change ∆A is simple:
(1) For each prime p ∈ P :

(a) If (A+ ∆A)−1 (mod p) is not invertible then remove p from P .
(b) If (A+ ∆A)−1 (mod p) is invertible then update (A+ ∆A)−1 (mod p).

(2) Declare [(A+ ∆A)−1]st 6= 0 if there is a prime p ∈ P with [(A+ ∆A)−1]st 6≡ 0 (mod p).

The Steps 1a and 1b can be performed in FO(+,×) due to Proposition 9.
It remains to argue that the result from Step 2 is correct. Observe that the values of

entries of A are at most n at all times, and therefore det(A) ≤ n!nn ≤ 2n2 for large enough n.
Thus, since det(A) 6= 0 over Z by assumption, there are at most n2 primes p such that
det(A) ≡ 0 (mod p), for all A reached after a sequence of changes.

In particular, (A + ∆A)−1 (mod p) is not invertible – equivalently, (I + BV A−1U)−1

(mod p) does not exist – for at most n2 primes p. Hence, each time Step 1 is executed, at
most n2 primes are declared invalid and removed from P . All in all this step is executed at
most log2 n times, and therefore not more than n3 primes are removed from P . Thus for the
remaining n3 valid primes, the inverses (A+ ∆A)−1 (mod p) are computed correctly.

Each entry of (A+ ∆A)−1 is, again, bounded by 2n2 , so if [(A+ ∆A)−1]st 6= 0 there are
at most n2 primes p ∈ P with [(A+ ∆A)−1]st ≡ 0 (mod p). So, the result declared in Step 2
is correct. J

4.2 Defining the Determinant of Small Matrices
In this subsection we prove Theorem 8. The symbolic determinant of a k ∈ O( log

log logn ) sized
matrix is a sum of k! ∈ nO(1) monomials and therefore cannot be naïvely defined in FO(+,×).
Here we use the fact that FO(+,×) can easily convert logn bit numbers into their Chinese
remainder presentation and back, and show how the determinant can be computed modulo
log logn bit primes.

It is easy to verify whether the value of a determinant modulo a O(log logn) bit prime
is zero in FO(+,×) by guessing a linear combination witnessing that the rank is less than
full. We aim for a characterization that allows to reduce the verification of determinant
values to such zeroness tests. To this end we use the self-reducibility and multilinearity of
determinants. Assume [A]11 6= 0 and that the determinant of A11 is also non-zero. Then the
determinant can be written as [A]11 · d+ r for some d and r. By finding an a such that the
determinant is zero when [A]11 is replaced by a in A we gain r = −ad. Repeating this step
recursively for d – which is the determinant of a smaller matrix – one obtains a procedure
for determining the value of the determinant that can be parallelized.

The following lemma is a preparation for deriving the characterization. We denote by Ai
the matrix obtained from a matrix A by removing all rows and columns larger than i.

I Lemma 10. Suppose B = (b̄1, . . . , b̄k) ∈ Fk×k is a non-singular matrix over a field F.
Then there is a permutation π : [k]→ [k] such that for A def= (bπ(1), . . . , bπ(k)):

[A]ii 6= 0 and det(Ai) 6= 0 for all i ∈ [k]

The following proposition characterizes the determinant of a matrix. We will see that
this characterization allows for parallel computation of the determinant of small matrices.
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I Proposition 11. Suppose A = (aij)1≤i,j≤k ∈ Fk×k is a matrix over a field F such that
aii 6= 0 and det(Ai) 6= 0 for all i ∈ [k]. Let Abi be the matrix obtained from Ai by replacing
aii by b for some b ∈ F. Then there are unique b2, . . . , bk ∈ F and d1, . . . , dk ∈ F such that
1. d1 = a11,
2. di = (aii − bi)di−1, and
3. det(Abi ) = 0
for 2 ≤ i ≤ k. Furthermore, it holds that di = det(Ai).

Finally we show that the characterization from the previous proposition can be used to
define the determinant of small matrices in FO(+,×).

Proof (of Theorem 8). Suppose A ∈ Zk×kp is a matrix with p ∈ O(nc) and k = logn
log logn . The

idea is to define det(A) (mod p) in Chinese remainder representation for primes q1, . . . , qm.
A simple calculation shows that m ∈ O(logn) primes each of O(log logn) bits suffice. The
Chinese remainder representation can be defined from A and the value det(A) (mod p) can
be recovered from the values det(A) (mod q1), . . . ,det(A) (mod qm) in FO(+,×) due to
Lemma 3. Thus let us show how to define det(A) (mod q) for a prime q of O(log logn) bits.

The idea is to first test whether the determinant is zero. If not, the fact that it is not
zero is used to define the determinant using Proposition 11.

If A (mod q) is singular then there exists a non-trivial linear combination of the columns
that yields the all zero vector. Such a linear combination is determined by specifying one
O(log logn) bit number for each of the k columns. It can thus be encoded in O(logn) bits,
and therefore existentially quantified by a first-order formula. Such a “guess” can be decoded
(i.e., the k numbers of O(log logn) length can be extracted) in FO(+,×), see Section 2.
Checking if a guessed linear combination is zero requires to sum k small numbers and is
hence in FO(+,×) due to Lemma 3.

Now, for defining the determinant det(A) (mod q) when A (mod q) is non-singular, a
formula can guess a permutation π of [k] and verify that it satisfies the conditions from
Lemma 10. Note that such a permutation can be represented as a sequence of k pairs of
numbers of log logn bits each, and hence be stored in O(logn) bits. The verification of the
conditions from Lemma 10 requires the zero-test for determinants explained above. After
fixing π, the values b2, . . . , bk as well as d1, . . . , dk from Proposition 11 can be guessed and
verified. Again, these numbers can be stored in O(logn) bits. For verifying the conditions
from Proposition 11 on the determinants of Abi , the zero-test for determinants is used. J

5 Distances under Multiple Changes

In this section we extend the techniques from the previous section to show how distances
can be maintained under changes that affect polylogarithmically many nodes with first-order
updates that may use majority quantifiers. Afterwards we discuss how the techniques extend
to other dynamic complexity classes.

I Theorem 2. Reachability and Distance can be maintained in DynFO+Maj(+,×) under
changes that affect O(logc n) nodes of a graph, where c ∈ N is fixed and n is the number of
nodes of the graph.

The idea is to use generating functions for counting the number of paths of each length,
following Hesse [13]. Fix a graph G with adjacency matrix AG ∈ Zn×n and a formal
variable x. Then D def=

∑∞
i=0(xAG)i is a matrix of formal power series from Z[[x]] such that

if [D]st =
∑∞
i=0 cix

i then ci is the number of paths from s to t of length i. In particular, the
distance between s and t is the smallest i such that ci is non-zero. Note that if such an i
exists, then i < n.



S. Datta, A. Mukherjee, N. Vortmeier, and T. Zeume 120:11

Similarly to the corresponding matrix from the previous section, the matrix D is invertible
over Z[[x]] and can be written as (I − xAG)−1 (cf. [10, Example 3.6.1]). The maintenance
of distances thus reduces to maintaining for a matrix A ∈ Z[[x]], for each entry (s, t), the
smallest i < n such that the ith coefficient is non-zero.

I Theorem 12. Suppose A ∈ Z[[x]]n×n stays invertible over Z[[x]]. For all s, t ∈ [n] one can
maintain the smallest i < n such that the ith coefficient of the st-entry of A−1 is non-zero in
DynFO+Maj(+,×) under changes that affect O(logc n) nodes, for fixed c ∈ N.

The idea is the same as for Reachability. When updating A to A + ∆A then one can
decompose the change matrix ∆A into UBV for suitable matrices U,B, and V , and apply
the Sherman-Morrison-Woodbury identity (?), this time over the field of fractions Z((x)).

Of course computing with inherently infinite formal power series is not possible in
DynFO+Maj(+,×). However, as stated in Theorem 12, in the end we are only interested
in the first i < n coefficients of power series. We therefore show that it suffices to truncate all
occurring power series at the n-th term and use FO+Maj(+,×)’s ability to define iterated
sums and products of polynomials [14].

Formally, we have to show that no precision for the first i < n coefficients is lost
when computing with truncated power series. This motivates the following definition. A
formal power series g(x) =

∑
i cix

i ∈ Z[[x]] is an m-approximation of a formal power series
h(x) =

∑
i dix

i ∈ Z[[x]], denoted by g(x) ≈m h(x), if ci = di for all i ≤ m. This notion
naturally extends to matrices over Z[[x]]: a matrix A ∈ Z[[x]]`×k is an m-approximation of a
matrix B ∈ Z[[x]]`×k if each entry of A is an m-approximation of the corresponding entry
of B. The notion of m-approximation is preserved under all arithmetic operations that will
be relevant.

I Lemma 13. Fix an m ∈ N.
1. Suppose g(x), g′(x), h(x), h′(x) ∈ Z[[x]] with g(x) ≈m g′(x) and h(x) ≈m h′(x). Then

(i) g(x) + h(x) ≈m g′(x) + h′(x),
(ii) g(x)h(x) ≈m g′(x)h′(x), and
(iii) 1

g(x) ≈m
1

g′(x) whenever g(x) and g′(x) are normalized.
2. Suppose A,A′, B,B′ ∈ Z[[x]]n×n with A ≈m A′ and B ≈m B′. Then

(i) A+B ≈m A′ +B′,
(ii) AB ≈m A′B′,
(iii) If A is invertible over Z[[x]] then so is A′, and A−1 ≈m A′−1.

Here, a formal power series
∑
i cix

i ∈ Z[[x]] is normalized if c0 = 1.
An approximation of the inverse of a matrix A ∈ Z[[x]]n×n can be updated using the

Sherman-Morrison-Woodbury identity.

I Proposition 14. Suppose A ∈ Z[[x]]n×n is invertible over Z[[x]], and C ∈ Z[[x]]n×n is an
m-approximation of A−1. If A+ ∆A is invertible over Z[[x]] and ∆A can be written as UBV
with U ∈ Z[[x]]n×k, B ∈ Z[[x]]k×k, and V ∈ Z[[x]]k×n, then

(A+ ∆A)−1 ≈m C − CU(I +BV CU)−1BV C

Proof. This follows immediately from the Sherman-Morrison-Woodbury identity (A +
UBV )−1 = A−1 −A−1U(I +BV A−1U)−1BV A−1 and Lemma 13. J

As already discussed in Section 4, the Sherman-Morrison-Woodbury identity involves
inverting k × k matrices, which reduces to computing the determinant of such matrices. We
show that this is possible in FO+Maj for k × k matrices of polynomials for k ∈ O(logc n).
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I Lemma 15. Fix a domain of size n and c ∈ N. The determinant of a matrix A ∈ Z[x]k×k,
with entries of degree polynomial in n, can be defined in FO+Maj(+,×) for k ∈ O(logc n).

Proof. We show that the value can be computed in uniform TC0, which is as powerful as
FO+Maj(+,×) [2].

Computing the determinant of an k × k matrix is equivalent to computing the iterated
matrix product of k matrices of dimension at most (k + 1)× (k + 1) [3], and this reduction
is a uniform TC0-reduction as can be seen implicitly in [17, p. 482]. Thus the lemma
statement follows from the fact that iterated products of matrices A1, . . . , Ak ∈ Z[x]k×k with
k ∈ O(logc n) can be computed in uniform TC0, which can be proven like in [1, p. 69]. J

Proof (of Theorem 12). The dynamic program maintains an n-approximation C ∈ Z[x]n×n
of A−1 that truncates A−1 at degree n. When A is updated to A+ ∆A then:
1. ∆A is decomposed into suitable U ∈ Z[x]n×k, B ∈ Z[x]k×k, and V ∈ Z[x]k×n;
2. C is updated via C ′ def= C − CU(I +BV CU)−1BV C;
3. All entries of C ′ are truncated at degree n.

The steps can be defined in FO+Maj(+,×) due to Lemma 7, Lemma 15, and the fact that
iterated addition and multiplication of polynomials can be defined in FO+Maj(+,×), see [14].
The maintained matrix C is indeed an n-approximation of A−1 due to Proposition 14. J

From the proof of Theorem 12 it is clear that the main obstacle towards maintaining
distances for changes that affect a larger set of nodes is to compute determinants of larger
matrices. Since distances can be computed in NL, only classes below NL are interesting
from a dynamic perspective. As an example we state a result for the circuit class NC1.

I Corollary 16. Reachability and Distance can be maintained in DynNC1 under changes
that affect O(2

√
logn/ log∗ n) nodes.

Here log∗ n denotes the smallest number i such that i-fold application of log yields a
number smaller than 1.

6 Conclusion

For us it came as a surprise that Reachability can be maintained under changes of non-
constant size, without any structural restrictions. In contrast, the dynamic program for
Reachability from [4] can only deal with changing logn many outgoing edges of single nodes
(or, symmetrically, logn many incoming edges; a combination is not possible).

It would be interesting to improve our results for DynFO(+,×) to changes of size O(logn).
The obstacle is the computation of determinants of matrices of this size, which we can only
do for O( logn

log logn ) size matrices. Yet in principle our approach can deal with certain changes
that affect more nodes: the matrices U and V in the Sherman-Morrison-Woodbury identity
can be chosen differently, as long as all computations involve only adding O(logn) numbers.

One of the big remaining open questions in dynamic complexity is whether distances are
in DynFO. Our approach sheds some light. It can be adapted so as to maintain information
within DynFO(+,×) from which shortest distances can be extracted in FO+Maj(+,×).

I Theorem 17. Distances can be defined by a FO+Maj(+,×) query from auxiliary relations
that can be maintained in DynFO(+,×) under changes that affect O( logn

log logn ) nodes.
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