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Abstract
We introduce the constrained topological sorting problem (CTS): given a regular language K and
a directed acyclic graph G with labeled vertices, determine if G has a topological sort that forms
a word in K. This natural problem applies to several settings, e.g., scheduling with costs or
verifying concurrent programs. We consider the problem CTS[K] where the target language K
is fixed, and study its complexity depending on K. We show that CTS[K] is tractable when
K falls in several language families, e.g., unions of monomials, which can be used for pattern
matching. However, we show that CTS[K] is NP-hard for K = (ab)∗ and introduce a shuffle
reduction technique to show hardness for more languages. We also study the special case of the
constrained shuffle problem (CSh), where the input graph is a disjoint union of strings, and show
that CSh[K] is additionally tractable when K is a group language or a union of district group
monomials. We conjecture that a dichotomy should hold on the complexity of CTS[K] or CSh[K]
depending on K, and substantiate this by proving a coarser dichotomy under a different problem
phrasing which ensures that tractable languages are closed under common operators.
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1 Introduction

Many scheduling or ordering problems amount to computing a topological sort of a directed
acyclic graph (DAG), i.e., a totally ordered sequence of the vertices that is compatible
with the edge relation: when we enumerate a vertex, all its predecessors must have been
enumerated first. However, in some settings, we need a topological sort satisfying additional
constraints that cannot be expressed as edges. We formalize this problem as follows: the
vertices of the DAG are labeled with some symbols from a finite alphabet A, and we want to
find a topological sort that falls into a specific regular language. We call this the constrained
topological sort problem, or CTS. For instance, if we fix the language K = ab∗c, and consider
the example DAGs of Figure 1, then G1 and G2 have a topological sort that falls in K.

CTS relates to many applications. For instance, many scheduling applications use a
dependency graph [1] of tasks, and it is often useful to express other constraints, e.g., some
tasks must be performed by specific workers and we should not assign more than p successive
tasks to the same worker. We can express this as a CTS-problem: label each task by the
worker which can perform it, and consider the target regular language K containing all words
where the same symbol is not repeated more than p times. In concurrency applications,
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Figure 1 Example labeled DAGs on the alphabet A = {a, b, c}

we may consider a program with multiple threads, and want to verify that there is no
linearization of its instructions that exhibits some unsafe behavior, e.g., executing a read
before a write. To search for such a linearization, we can label each instruction with its type,
and consider CTS with a target language describing the behavior that we wish to detect. CTS
can also be used in uncertain data management tasks, to reason about the possible answers
of aggregate queries on uncertain ordered data [4]. It can also be equivalently phrased in the
language of partial order theory: seeing the labeled DAG as a labeled partial order <, we ask
if some linear extension achieves a word in K.

We thus believe that the CTS-problem is useful, and natural, but we are not aware
of previous work studying it, except for a special case called the shuffle problem. This
problem deals with the interleaving of strings, as studied, e.g., in concurrent programming
languages [18, 21], computational biology [17], and formal languages [10, 8, 26]. Specifically,
we are given a tuple of strings, and we must decide if they have some interleaving that falls
in the target language K. This problem was known to be NP-complete [19, 32, 16] when
the target language K is given as input (in addition to the tuple of strings), even when K
consists of just one target string. To rephrase this shuffle problem in our context, we call
constrained shuffle problem (CSh) the special case of CTS where we require input DAGs to
be a union of directed path graphs (corresponding to the strings).

Our goal in this paper is to study the complexity of CTS and CSh. We assume that
the target regular language K is fixed, and call CTS[K] and CSh[K] the corresponding
problems, whose complexity is only a function of the input DAG (labeled on the alphabet A
of K). Our central question is: for which regular languages K are the problems CTS[K] or
CSh[K] tractable? More precisely, for each of these problems, we conjecture a dichotomy
on K: the problem is either in NL or it is NP-complete. However, the tractability boundary
is challenging to chart out, and we have not been able to prove these conjectures in full
generality. In this paper, we present the results that we have obtained towards this end.

Paper structure. We formally define the CTS and CSh problems in Section 2 and state
the conjecture. We then show the following results:

In Section 3, we present our hardness results. We recall the results of [32] on the
shuffle problem, and present a general shuffle reduction technique to show hardness for
more languages. We use it in particular to show that CSh[(ab)∗], hence CTS[(ab)∗], are
NP-hard, and extend this to several other languages.
In Section 4, we present tractability results. We show that CTS[K], hence CSh[K], is
in non-deterministic logspace (NL) when K is a union of monomial languages, i.e., of
languages of the form A∗1a1 · · ·A∗n−1an−1A

∗
n, with the ai being letters and the Ai being

subalphabets. Such languages can be used for applications such as pattern matching,
e.g., with the language A∗uA∗ for a fixed pattern u ∈ A∗. We also show tractability for
other languages that are not of this form, e.g. (ab)∗+A∗aaA∗ and variants thereof, using
different techniques such as Dilworth’s theorem [9].
In Section 5, we use our hardness and tractability results to show a coarser dichotomy
result. Specifically, we give an alternative phrasing of the CTS and CSh problems using



A. Amarilli and C. Paperman 115:3

semiautomata and DAGs with multi-letter labels: this amounts to closing the tractable
languages under intersection, inverse morphism, complement, and quotients. In this
phrasing, when the semiautomaton is counter-free, we can show that the problems are
either in NL or NP-complete. This dichotomy is effective, i.e., the criterion on the
semiautomaton is decidable, and it turns out to be the same for CTS and CSh.
In Section 6, we focus on the constrained shuffle problem, and lift the counter-free
assumption of the previous section. We show that CSh[K] is tractable when K is a group
language or more generally a union of district group monomials. This tractability result
is the main technical contribution of the paper, with a rather involved proof. It implies,
e.g., that the following problem is in NL for any fixed finite group H: given g ∈ H and
words w1, . . . , wn of elements of H, decide whether there is an interleaving of the wi

which evaluates to g according to the group operation.

2 Problem Statement and Main Results

We give some preliminaries and define the two problems that we study. We fix a finite
alphabet A, and call A∗ the set of all finite words on A. For w ∈ A∗, we write |w| for the
length of w, and write |w|a for the number of occurrences of a ∈ A in w. We denote the empty
word by ε. A labeled DAG on the alphabet A, or A-DAG, is a triple G = (V,E, λ) where
(V,E) is a directed acyclic graph with vertex set V = {1, . . . , n} and edge set E ⊆ V × V ,
and where λ : V → A is a function giving a label in A to each vertex in V . For u 6= v in V ,
we say that u is an ancestor of v if there is a directed path from u to v in G, we say that u
is a descendant of v if v is an ancestor of u, and otherwise we call u and v incomparable. A
topological sort of G is a bijective function σ from {1, . . . , n} to V such that, for all (u, v) ∈ E,
we have σ−1(u) < σ−1(v). The word achieved by σ is λ(σ) := λ(σ(1)) · · ·λ(σ(n)) ∈ A∗.

The constrained topological sort problem CTS[K] for a fixed language K ⊆ A∗ (described,
e.g., by a regular expression) is defined as follows: given an A-DAG G, determine if there is
a topological sort σ of G such that λ(σ) ∈ K (in which case we say that σ achieves K).

We now define the constrained shuffle problem (CSh). Given two words u, v ∈ A∗,
the shuffle [32] of u and v, written u � v, is the set of words that can be obtained by
interleaving them. Formally, a word w ∈ A∗ is in u� v iff there is a partition P t Q of
{1, . . . , |w|} such that wP = u and wQ = v, where wP denotes the sub-word of w where
we keep the letters at positions in P , and likewise for wQ. The shuffle �(U) of a tuple of
words U is defined by induction as follows: we set �() := {ε}, set �(u) := {u}, and set
�(u1, . . . , un, un+1) :=

⋃
v∈�(u1,...,un) v � un+1. The constrained shuffle problem CSh[K]

for a fixed language K ⊆ A∗ is defined as follows: given a tuple of words U , determine if
K∩�(U) is nonempty. Of course, CSh[K] is a special case of CTS[K]: we can code any tuple
of words U as an A-DAG GU by coding each u ∈ U as a directed path graph v1 → · · · → v|u|
with λ(vi) = ui for all 1 ≤ i ≤ |u|. Thus, we will equivalently see inputs to CSh as tuples of
words (called strings in this context) or as A-DAGs that are unions of directed path graphs.

I Example 2.1. The problem CTS[(ab)∗] on an input {a, b}-DAGG asks ifG has a topological
sort starting with an a, ending with a b, and alternating between elements of each label.
The problem CSh[(aa+ b)∗] on a tuple U of strings on {a, b} asks if there is an interleaving
w ∈ �(U) such that all a∗-factors in w are of even length (e.g., bbaabaaaa, but not baaabb).

In this work, we study the complexity of the problems CTS[K] and CSh[K] depending
on the language K. Clearly we can always solve these problems by guessing a topological
sort (or an interleaving), and verifying that it achieves a word in K. Hence, the complexity
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is always in NPK , that is, in non-deterministic PTIME with an oracle for the word problem
of K, which we can call to test if an input word in is K:

I Proposition 2.2. For any language K, the problems CTS[K] and CSh[K] are in NPK .

In particular, the problems are in NP when the language K is regular, because the word
problem for regular languages is in PTIME. We will study regular languages in this work.
We believe that regular languages can be classified depending on the complexity of these
problems, and make the following dichotomy conjecture:

I Conjecture 2.3. For every regular language K, the problem CTS[K] is either in NL or
NP-complete. Likewise, the problem CSh[K] is either in NL or NP-complete.

Towards this conjecture, we determine in this paper the complexity of CTS and CSh for
several languages and classes. We first show in the next section that these problems are hard
for some languages such as (ab)∗, and we then show tractability results in Section 4, and a
coarser dichotomy result in Section 5 under an alternative phrasing of our problems.

3 Hardness Results

Our hardness results are based on the shuffle problem of formal language theory which asks,
given a word w ∈ A∗ and a tuple U of words of A∗, whether w ∈ �(U). This problem
is known to be NP-hard already on the alphabet {a, b} (see [32]). The shuffle problem is
different from CSh, because the target word of the shuffle problem is given as input, whereas
the target regular language of CSh is fixed. However, the hardness of the shuffle problem
directly implies the hardness of CSh, hence of CTS, for a well-chosen target language:

I Proposition 3.1. Let K0 := (a1a2 + b1b2)∗. The problem CSh[K0] is NP-hard.

Proof sketch. We can reduce a shuffle instance (w,U) to the instance I := w1 ∪ U2
for CSh[K0], where w1 is w but adding the subscript 1 to all labels, and U2 is defined analo-
gously. A topological sort of I achieving K0 must then alternate between w1 and U2, and
enumerate letters with the same label (up to the subscript), witnessing that w ∈ �(U). J

In this section, we will refine this approach to show hardness for more languages. We first
recall another initial hardness result from [32]. We then introduce a general shuffle reduction
technique to show the hardness of languages by reducing from other hard languages. Last,
we show that CTS and CSh are hard for the language (ab)∗ and for other languages.

Initial hard family. To bootstrap the hardness results of [32] on the shuffle problem (on
input words) to our CSh-problem (on fixed languages), we generalize the definition of CSh
to a regular language family K, i.e., a (generally infinite) family of regular languages, each of
which is described as a regular expression. The CSh-problem for K, written CSh[K], asks,
given a regular expression K ∈ K and a set of strings U , whether K ∩�(U) is nonempty. In
other words, we no longer fix one single target language but a family K of target languages,
and the input chooses one target language from the family K. The following is then shown
in [32] by reducing from UNARY-3-PARTITION [13]:

I Lemma 3.2. ([32], Lemma 3.2) Let K := {(aibi)∗ | i ∈ N}. Then CSh[K] is NP-hard.
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Global resulting word: abababababababab
Resulting word on G: babab

Figure 2 Example of a shuffle reduction from K := (ba)∗b to K′ := (ab)∗

Shuffle reduction. Our goal in this section is to show the hardness of CTS and CSh for
more languages, but we do not wish to prove hardness for every language from scratch.
Instead, we will introduce a general tool called the shuffle reduction that allows us to leverage
the hardness of a language K to show that another language K ′ is also hard. Specifically,
if a language K shuffle-reduces to a language K ′, this will imply that there is a PTIME
reduction from CTS[K] to CTS[K ′], and from CSh[K] to CSh[K ′].

The intuition for the shuffle reduction is as follows: to reduce from K to K ′, given an
input A-DAG G, we build an A-DAG G′ formed of G plus an additional directed path
labeled by a word w. Thus, any topological sort σ′ of G′ must be the interleaving of w and
of a topological sort σ of G. Now, if we require that σ′ achieves K ′, the presence of w can
impose specific conditions on σ. Intuitively, if w is sufficiently long and “far away” from all
words of K ′, then σ′ must “repair” w to a word of K ′ by inserting symbols from G, so the
insertions performed by σ may need to be in a specific order, i.e., σ may be forced to achieve
a word of K. This means that solving CTS[K ′] on G′ allows us to solve CTS[K] on G. This
intuition is illustrated on Figure 2: to achieve a word of K ′ := (ab)∗ on the DAG G′, a
topological sort must enumerate elements from G to insert them at the appropriate positions
in w, achieving a word of K := (ba)∗b. We call filter sequence a family of words like w that
allow us to reduce any CTS[K]-instance to CTS[K ′]. Formally:

I Definition 3.3 (Filter sequence). Let K and K ′ be languages on an alphabet A. A filter
sequence for K and K ′ is an infinite sequence (fn) of words of A∗ having the following
property: for every n ∈ N, for every word v ∈ A∗ such that |v| = n, we have v ∈ K iff
(v� fn) ∩K ′ 6= ∅.

In Figure 2, we can choose f5 := w when defining a filter sequence for (ba)∗b and (ab)∗:
indeed, if we interleave w with any DAG G of 5 vertices, then a topological sort σ of G
achieves K iff some interleaving σ′ of σ with w achieves K ′. We can now define our reduction:

I Definition 3.4 (Shuffle reduction). We say that a language K shuffle-reduces to a
language K ′ if there is a filter sequence (fn) for K and K ′ such that the function i 7→ fi is
computable in PTIME (where i is given in unary).

We say that a regular language family K shuffle-reduces to K ′ if each K does, and if we
can compute in PTIME the function (K, i) 7→ fK

i , which maps a regular expression K of K
and an integer i in unary to the i-th word in a filter sequence (fK

n ) for K and K ′.

I Theorem 3.5. For any regular language family K and language K ′, if K shuffle-reduces
to K ′ then we can reduce in PTIME from CTS[K] to CTS[K ′], and from CSh[K] to CSh[K ′].

Hardness for (ab)∗. We now use the shuffle reduction and the language family of Lemma 3.2
to show the hardness of (ab)∗. This will be instrumental for our coarser dichotomy in Section 5:

I Theorem 3.6. The problem CSh[(ab)∗] (hence CTS[(ab)∗]) is NP-hard.

ICALP 2018
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Proof sketch. We shuffle-reduce from the language family K of Lemma 3.2: for the language
KB = (aBbB)∗ of K, we define the filter sequence for words of length 2Bn by fB

2Bn :=
(bBaBab)n. This ensures that, when interleaving fB

2Bn with a word v of length 2Bn to achieve
a word of (ab)∗, we must use v to insert in fB

2Bn the letters written in bold: ((ab)B(ab)Bab)n.
This can be done iff v = (aBbB)n, i.e., iff v ∈ KB . We conclude by Theorem 3.5. J

Other hard languages. From the hardness of (ab)∗, we can use the shuffle reduction to show
hardness for many other languages. For instance, we can show hardness for any language u∗,
where u ∈ A∗ is a word with two different letters:

I Proposition 3.7. Let u ∈ A∗ such that |u|a > 0 and |u|b > 0 for a 6= b in A. Then CSh[u∗]
(hence CTS[u∗]) is NP-hard.

Proof sketch. We shuffle-reduce from (ab)∗ with the filter sequence f2n := (uu−auu−bu)n,
where u−a (resp. u−b) is u but removing one occurrence of a (resp. of b). If a word v with
|v| = 2n has an interleaving w with f2n that falls in u∗, then in w we must intuitively insert
one a from v in each u−a and one b from v in each u−b, so that v = (ab)n. To formalize this,
we first rotate u to ensure that its first and last letters are different. We then observe that,
as w is in u∗, any factor w′ of length |u| of w must be such that |w′|a = |u|a and |w′|b = |u|b.
We then consider factors of w of length |u| centered on the u−a and u−b in f2n: we argue
that in w we must have inserted at least one a in or around each u−a, and at least one b in
or around each u−b, otherwise these factors do not have enough a’s and enough b’s. J

We can also use the shuffle reduction to show hardness for other languages, e.g., (aa+bb)∗:

I Proposition 3.8. Let L := (aa+ bb)∗. The problem CSh[L] (hence CTS[L]) is NP-hard.

Proof sketch. We do again a shuffle reduction from (ab)∗, with the filter sequence f2n = (ab)n.
If a word v with |v| = 2n is such that v � f2n intersects (aa + bb)∗ nontrivially, it must
intuitively insert a’s and b’s in f2n alternatively, so it must be (ab)n. Note that a similar
proof would also show hardness for the language (ai + bj)∗ for any choice of i, j ≥ 2. J

We show a last result that does not use the shuffle reduction but an easy consideration
on the number of letter occurrences. This result will be useful in Section 5:

I Proposition 3.9. The problem CSh[(ab+ b)∗] (hence CTS[(ab+ b)∗]) is NP-hard.

Proof. We describe an easy PTIME reduction from CSh[(ab)∗] to CSh[(ab+ b)∗]. Given an
instance I, check if the number of a-labeled and b-labeled vertices is the same, and fail if it
is not. Otherwise, then I achieves a word of (ab+ b)∗ iff it achieves one of (ab)∗, because we
must enumerate one a-labeled vertex with each b-labeled vertex. J

We believe that the shuffle reduction applies to many other languages, though we do not
know how to characterize them. In particular, we believe that the following could be shown
with the shuffle reduction, generalizing all the above hardness results except Proposition 3.8:

I Conjecture 3.10. Let F be a finite language such that, for some letter a ∈ A, the
language F contains no power of a but contains a word which contains a. Then CSh[F ∗] is
NP-hard.

4 Tractability Results

Having shown hardness for several languages, we now present our tractability results. We will
also rely on some of these results to show our coarser dichotomy result in the next section.
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Closure under union. The first observation on tractable languages is that they are closed
under union, as follows (recalling the definition of CTS and CSh for language families):

I Lemma 4.1. For any finite family of languages K, there is a logspace reduction from
CTS[

⋃
K] to CTS[K], and likewise from CSh[

⋃
K] to CSh[K].

Proof. To solve a problem for the language
⋃
K on an input instance I, simply enumerate

the languages K ′ ∈ K, and solve the problem on I for each K ′. Clearly I is a positive instance
of the problem for

⋃
K iff I is a positive instance of the problem for one of the K ′. J

I Corollary 4.2. For any finite family of languages K, if CTS[K ′] is in NL for each K ′ ∈ K,
then so is CTS[

⋃
K]. The same is true of the CSh-problem.

Clearly, tractability is also preserved under the reverse operator, i.e., reversing the order of
words in a language; however tractable languages are not closed under many usual operators,
as we will show in Section 5. Still, closure under union will often be useful in the sequel.

Monomials. We will now show that CTS is tractable for an important family of languages
(and unions of such languages): the monomial languages. Having fixed the alphabet A,
a monomial is a language of the form A∗1a1A

∗
2a2 · · · anA

∗
n+1 with ai ∈ A and Ai ⊆ A for

all i. In particular, we may have Ai = ∅ so that A∗i = ε: hence, for every word u ∈ A∗, the
language A∗uA∗ is a monomial language, which intuitively tests whether a word contains the
pattern u. Several decidable algebraic and logical characterizations of these languages are
known; in particular, unions of monomials are exactly the languages that are definable in the
first-order logic fragment Σ2[<] of formulas with quantifier prefix ∃∗∀∗, and it is decidable to
check if a regular language is in this class [24, 22]. We show:

I Theorem 4.3. For any monomial language K, the problem CTS[K] is in NL.

Proof sketch. Let K be A∗1a1A
∗
2a2 · · ·A∗nanA

∗
n+1. We can first guess in NL the vertices

v1, . . . , vn to which the a1, . . . , an are mapped, so all that remains is to check, for each such
guess, whether we can match the remaining vertices to the Ai. We proceed by induction
on n. The base case of n = 0 (i.e., K = A∗1) is trivial. For the induction step, using the fact
that NL = co-NL (see [15, 28]), we check that the descendants of the last element vn are all
in A∗n+1, and then we compute the set S of vertices that must be enumerated before vn: they
are the ancestors of the vi, and the ancestors of any vertex labeled by a letter in A \An+1.
We then use the induction hypothesis to check in NL whether S has a topological sort that
achieves a word in A∗1a1 . . . A

∗
n−1an−1A

∗
n. J

Tractability based on width. While unions of monomials are a natural class, it turns out
that they do not cover all tractable languages. In particular, we can show:

I Proposition 4.4. Let A := {a, b} and K := (ab)∗ +A∗aaA∗. The problem CTS[K] (hence
CSh[K]) is in NL.

This result is not covered by Theorem 4.3, because we can show that K cannot be
expressed as a union of monomials (see the long version [5]); and the proof technique is
different.

Proof. Let G be an input A-DAG. We first check in NL if G contains two incomparable
vertices v1 6= v2 such that λ(v1) = λ(v2) = a. If yes, we conclude that G is a positive instance,
as we can clearly achieve K by enumerating v1 and v2 contiguously.

ICALP 2018
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If there are no two such vertices, we check in NL if there are two comparable a-labeled
vertices v1 6= v2 that can be enumerated contiguously, i.e., there is an edge v1 → v2 but no
vertex w that is between v1 and v2, i.e., is a descendant of v1 and an ancestor of v2. If there
are two such vertices v1 and v2, we conclude again that G is a positive instance.

Otherwise, our first test implies that G induces a total order on the a-labeled vertices,
and our second test implies that any two consecutive a-labeled vertices in this order must
have at least one b-labeled vertex between them. This ensures that no topological sort
achieves A∗aaA∗, so it suffices to test whether one can achieve (ab)∗. Clearly this is the
case iff all consecutive pairs of a-labeled vertices have exactly one b-labeled vertex between
them, and there is exactly one additional b-labeled vertex that can be enumerated after the
last a-labeled vertex. We can test this in NL, which concludes the proof. J

Intuitively, the language of Proposition 4.4 is tractable because it is easy to solve unless
the input instance has a very restricted structure, namely, all a’s are comparable. We do not
know whether this result generalizes to (ab)∗ + A∗aiA∗ for i > 2. However, following the
intuition of this proof, we can show the tractability of a similar kind of regular languages:

I Proposition 4.5. Let A := {a, b}, let K ′ be a regular language, let i ∈ N, and let
K := K ′ +A∗(ai + bi)A∗. The problem CTS[K] (hence CSh[K]) is in NL.

As in Proposition 4.4, CTS is trivial for the languages in this proposition unless the
input A-DAG G has a restricted shape. Here, the requirement is on the width of G, i.e., the
maximal cardinality of a subset of pairwise incomparable vertices (called an antichain), so
we can show Proposition 4.5 by distinguishing two cases depending on the width of G:

Proof sketch. We test in NL whether the input A-DAG G contains an antichain C of size 2i:
if it does, then at least i vertices in C must have the same label, and we can enumerate
them in succession to achieve A∗aiA∗ or A∗biA∗, so G is a positive instance. Otherwise, G
has width < 2i, and Dilworth’s theorem [9] implies that its elements can be partitioned into
chains, so that CTS can be solved in NL following a dynamic algorithm on them. J

Other tractable case. We close the section with another example of a regular language
which is tractable for the CSh-problem for what appears to be a unrelated reason.

I Proposition 4.6. Let A := {a, b} and K := (aa+ b)∗. The problem CSh[K] is in NL.

This is in contrast to (aa + bb)∗, for which we showed intractability (Proposition 3.8).
We do not know the complexity of the CTS-problem for (aa + b)∗, or the complexity for
either problem of languages of the form (ai + b)∗ for i > 2.

Proof sketch. We show that the existence of a suitable topological sort can be rephrased
to an NL-testable equivalent condition, namely, there is no string in the input instance
whose number of odd “blocks” of a-labeled elements dominates the total number of a-labeled
elements available in the other strings. If the condition fails, then we easily establish that no
suitable topological sort can be constructed: indeed, eliminating each odd block of a’s in
the dominating string requires one a from the other strings. If the condition holds, we can
simplify the input strings and show that a greedy algorithm can find a topological sort by
picking pairs of a’s in the two current heaviest strings. J
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5 A Coarser Dichotomy Theorem

In the two previous sections, we have established some intractability and tractability results
about the constrained topological sort and constrained shuffle problems for various languages.
Remember that our end goal would be to characterize the tractable and intractable languages,
and show a dichotomy (Conjecture 2.3). This is difficult, and one reason is that the class
of tractable languages is not “well-behaved”: while it is closed under the union operator
(Corollary 4.2), it is is not closed under intersection, complement, and other common
operations. This makes it difficult to study tractable languages using algebraic language
theory [23].

I Proposition 5.1. We have the following counterexamples to closure:
Quotient. There exists a word u ∈ A∗ and a regular language K such that CSh[K] is in
NL but CSh

[
u−1K

]
is NP-hard.

Intersection. There exists two regular languages K1 and K2 such that CTS[K1] and
CTS[K2] are both in PTIME but CSh[K1 ∩K2] is NP-hard
Complement. There exists a regular language K such that CTS[K] is in NL, but
CSh[A∗ \K] is NP-hard.
Inverse of morphism. There exists a regular language K and morphism ϕ such that
CTS[K] is in NL but CSh

[
ϕ−1(K)

]
is NP-hard.

The three last results of this proposition also apply to the constrained topological sort
problem, but the first one does not, and in fact CTS-tractable languages are closed under
quotients. This observation implies that there are regular languages K such that CSh[K]
is tractable but CTS[K] is NP-hard; one concrete example is K := b∗A∗ + aaA∗ + (ab)∗
(see long version [5]). We sketch the proof of Proposition 5.1:

Proof sketch. For each operation, we use (ab)∗ as our NP-hard language (by Theorem 3.6).
For quotient, we take K := bA∗ + aaA∗ + (ab)∗, and u := ab. We have u−1K = (ab)∗,

but CSh[K] is in NL because any shuffle instance with more than one string satisfies K.
For intersection, we take K1 := (ab)∗(ε + bA∗) and K2 := (ab)∗(ε + aaA∗). We have

K1∩K2 = (ab)∗, but CSh[K1] and CSh[K2] are in PTIME using an ad-hoc greedy algorithm.
For complement, we take K := bA∗ ∪ A∗a ∪ A∗aaA∗ ∪ A∗bbA∗. As K is a union of

monomials, we know by Theorem 4.3 that CTS[K] is in NL, but we have A∗ \K = (ab)∗.
For inverse of morphism, we take A := {a, b} and K := (ab)∗ +A∗(a3 + b3)A∗. We know

that CTS[K] is in PTIME by Proposition 4.5. Now, defining ϕ : A∗ → A∗ by ϕ(a) := aba

and ϕ(b) := bab, we have ϕ−1(K) = (ab)∗ because no word in the image of ϕ has three
identical consecutive symbols. J

Proposition 5.1 suggests that tractable languages would be easier to study algebraically if
we ensured that they were closed under all these operations, i.e., if they formed a variety [23].
In this section, we enforce this by moving to an alternative phrasing of the CTS and CSh
problems. This allows us to leverage algebraic techniques and show a dichotomy theorem in
this alternative phrasing, under an additional counter-free assumption. We first present the
alternative phrasing, and then present the additional assumption and our dichotomy result.

Alternative phrasing. The first change in our alternative phrasing is that the input DAG G

will now be an A∗-DAG, i.e., a DAG labeled with words of A∗ rather than letters of A. As
before, a topological sort σ of G achieves a word λ(σ) ∈ A∗ obtained by concatenating the
λ-images of the vertices of G in the order of σ: but vertex labels are now “atomic” words
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whose letters cannot be interleaved with anything else. The multi-letter CTS and CSh
problems are the variants defined with A∗-DAGs; intuitively, this ensures that tractable
languages are closed under inverse morphisms.

The second change is that we will not fix one single target language, but a semiau-
tomaton [14], i.e., an automaton where initial and final states are not specified. Formally,
a semiautomaton is a tuple (Q,A, δ) where Q is the set of states, A is the alphabet, and
δ : Q×A→ Q is the transition function; we extend δ to words as usual by setting δ(q, ε) := q

and δ(q, u1 · · ·un+1) := δ(δ(q, u1), u2 · · ·un+1). We will fix the target semiautomaton, and
the initial and final states will be given in the input instance (in addition to the DAG). This
enforces closure under quotients (by choosing the initial and final states) and complement (by
toggling the final states). Further, to impose closure under intersection, the input instance
will specify a set of pairs of initial-final states, with a logical AND over them. The question
is to determine whether the input DAG achieves a word accepted by all the corresponding
automata; and this enforces closure under intersection.

We can now summarize the formal definition of our problem variants. The multi-letter
CTS-problem for a fixed semiautomaton S = (Q,A, δ) takes as input an A∗-DAG and a set
{(i1, F1), . . . , (ik, Fk)} of initial-final state pairs, where ij ∈ Q and Fj ⊆ Q for all 1 ≤ j ≤ k.
The input is accepted if there is a topological sort σ of G such that, for all 1 ≤ j ≤ k,
the word λ(σ) is accepted by the automaton (Q,A, δ, ij , Fj), i.e., δ(ij , λ(σ)) ∈ Fj . The
multi-letter CSh-problem for a fixed semiautomaton is defined in the same way, imposing
that the input A∗-DAG is a union of directed path graphs.

Dichotomy result Our dichotomy will apply to the multi-letter CTS and CSh problem for
semiautomata. However, we will need to make an additional assumption, namely, that the
semiautomaton is counter-free. This assumption means that our dichotomy will only apply
to a well-known subset of regular languages, namely, the star-free languages, that are better
understood algebraically; it excludes in particular the tricky case of group languages that we
will study separately in Section 6. Formally, a semiautomaton is counter-free if, for every
state q and word u ∈ A∗, if δ(q, un) = q for some n > 1, then we have δ(q, u) = q. Under
the counter-free assumption, we can prove the following dichotomy, using our hardness and
tractability results in Sections 3 and 4:

I Theorem 5.2. Let S be a counter-free semiautomaton. Then the multi-letter CSh-problem
and CTS-problem for S are either both in NL, or both NP-complete. The dichotomy is
effective: given S, it is PSPACE-complete to decide which case applies.

We conclude the section by introducing some technical tools used for this result and for
Section 6, and by giving a proof sketch. The criterion of the dichotomy on S is phrased
in terms of the transition monoid of S, which we now define (see, e.g., [23] for details).
Remember that a monoid is a set that has an associative binary operation and a neutral
element. The transition monoid T (S) of a semiautomaton S = (Q,A, δ) is the set of functions
f : Q → Q that are “achieved” by S in the following sense: there is a word u ∈ A∗ such
that δ(q, u) = f(q) for all q ∈ Q. In particular, the neutral element is the identity function,
which is achieved by taking u := ε; and the binary operation on T (S) is function composition,
which is associative. Note that the transition monoid is finite and can be computed from S.

We assumed that S is counter-free, and this is equivalent [20] to saying that T (S) is in
the class A of aperiodic finite monoids (formally defined by the equation xω+1 = xω where ω
is the idempotent power [23] of the monoid). Within A, our dichotomy criterion on T (S) is
based on a certain subclass of A, called DA (see [30]): S is tractable iff T (S) is in DA, and
it is PSPACE-complete [31] to test whether this holds (using the formal definition of DA by
the equation (xy)ωx(xy)ω = (xy)ω). We can now sketch the proof of Theorem 5.2:
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Proof sketch. We first show that if T (S) is in DA then the multi-letter CTS and CSh
problems for S are in NL. For this, we rely on one characterization of DA (from [30]): if
T (S) is in DA then the regular languages recognized by S (for any set of initial-final states)
are unions of unambiguous monomials, in particular they are unions of monomials, so we
have tractability by Corollary 4.2 and Theorem 4.3.

For the converse direction, we use a second characterization of DA (from [29]): if T (S) is
not in DA then there is a choice of initial-final state pairs for which S computes a language K
whose inverse image by some morphism is either (ab)∗ or (ab + b)∗. We know that these
languages are intractable (Theorem 3.6 and Proposition 3.9) so we conclude by showing a
PTIME reduction from one of these two languages: this is possible in our alternative problem
phrasing, in particular using the multi-letter labels to invert the morphism. J

6 Lifting the Counter-Free Assumption for CSh

Our dichotomy theorem in the previous section (Theorem 5.2) was shown for an alternative
phrasing of our problems (with semiautomata and multi-letter inputs), and made the
additional assumption that the input semiautomaton is counter-free. In this section, we
study how to lift the counter-free assumption. In exchange for this, we restrict our study to
the constrained shuffle problem (CSh) rather than CTS.

To extend Theorem 5.2 for the CSh-problem, we will again classify the semiautomata S
based on their transition monoid T (S). However, instead of DA, we will use the two classes
DO and DS introduced in [27] (formally DO is defined by the equation (xy)ω(yx)ω(xy)ω =
(xy)ω and DS by the equation ((xy)ω(yx)ω(xy)ω)ω = (xy)ω for ω the idempotent power).
Both DO and DS are supersets of DA, specifically we have DA ⊆ DO ⊆ DS, and we can
test in PSPACE in S whether T (S) is in each of these classes [31]. Our main result is then:

I Theorem 6.1. Let S be a semiautomaton. If T (S) is in DO, then the multi-letter
CSh-problem for S is in NL. If T (S) is not in DS, then it is NP-complete.

This result generalizes Theorem 5.2 for the CSh-problem, because both DO and DS
collapse to DA for aperiodic monoids (see [27] and [2, Chapter 8]); formally, DO ∩A =
DS∩A = DA. However, DO covers more languages than DA: the main technical challenge
to prove Theorem 6.1 is to show that CSh is tractable for these languages. One important
example are the group languages over A: these are the regular languages recognized, for some
choice of initial-final state pairs, by a semiautomaton S over A such that T (S) is a group.
A more general example are district group monomials, which are the languages of the form
K1a1 · · ·KnanKn+1 where, for all i, we have ai ∈ A and Ki is a group language over some
alphabet Ai ⊆ A. Note that district group monomials are more expressive than the group
monomials defined in earlier work [25] (which set Ai := A for all i), and they also generalize
the monomials that we studied in Section 4 (any A∗i is trivially a group language over Ai,
even though it is not a group language over A). In fact, to prove Theorem 6.1, what we need
is to generalize Theorem 4.3 (for CSh) from monomials to district group monomials:

I Theorem 6.2. Let K be a district group monomial. Then CSh[K] is in NL.

Note that this theorem, like Theorem 4.3, applies to the original phrasing of CSh, not the
alternative phrasing with semiautomata and multi-letter DAGs. Thus, Theorem 6.2 implies
that the original CSh-problem is tractable for many languages that we had not covered
previously, e.g., (ab∗a+ b)∗c(ba∗b+ a)∗, the language testing whether there is one c preceded
by an even number of a and followed by an even number of b. The proof of Theorem 6.2 is
our main technical achievement, and we sketch it below (see the long version [5] for details):
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Proof sketch. We focus on the simpler case of a group language, for a finite group H. The
problem can be rephrased directly in terms of H: given a tuple I of strings over H and a
target element g ∈ H, determine if there is an interleaving of I that evaluates to g under the
group operation. Our approach partitions H into the rare elements Hrare, that occur in a
constant number of strings, and the frequent elements Hfreq, that occur in sufficiently many
strings. For the frequent elements, we can build a large antichain C from the strings where
they occur, with each element of Hfreq occuring many times in C. Now, as topological sorts
can choose any order on C, they can intuitively achieve all elements of the subgroup 〈Hfreq〉
generated by Hfreq, except that they cannot change “commutative information”, e.g., the
parity of the number of elements. We formalize the notion of “commutative information”
using relational morphisms, and prove an antichain lemma that captures our intuition that
all elements of 〈Hfreq〉 with the right commutative information can be achieved.

For the rare elements, we can simply follow a dynamic algorithm on the constantly many
strings where they occur. However, we must account for the possibility of inserting elements
of 〈Hfreq〉 from the other strings, and we must show that it suffices to do constantly many
insertions, so that it was sufficient to impose a constant lower bound on |C|. We formalize
this as an insertion lemma, which we prove using Ramsey’s theorem. J

We close the section by commenting on the two main limitations of Theorem 6.1. The first
limitation is that it is not a dichotomy: it does not cover the semiautomata with transition
monoid in DS \DO. We do not know if the corresponding languages are tractable or not;
we have not identified intractable cases, but we can show tractability, e.g., for (a+b+a+b+)∗,
the language of words with an even number of subfactors of the form a+b+.

I Proposition 6.3. Let K = (a+b+a+b+)∗. Then CSh[K] is in NL.

However, it would be difficult to show tractability for all of DS, because DS is still poorly
understood in algebraic language theory. For instance, characterizing the languages with a
syntactic monoid in DS has been open for over 20 years [2, Open problem 14, page 442].

The second limitation of Theorems 6.1 and 6.2 is that they only apply to CSh. New
problems arise with CTS: for instance, an {a, b}-DAG G may contain large antichains Ca

and Cb of a-labeled and b-labeled vertices, and yet contain no antichain with many a-labeled
and b-labeled vertices (e.g., if G is the series composition of Ca and Cb). The missing proof
ingredient seems to be an analogue of Dilworth’s theorem for labeled DAGs (see also [3]).

7 Conclusion and Open Problems

We have studied the complexity of two problems, constrained topological sort (CTS) and
constrained shuffle (CSh): fixing a regular language K, given a labeled DAG (for CTS) or a
tuple of strings (for CSh), we ask if the input DAG has a topological sort achieving K. We
have shown tractability and intractability for several regular languages using a variety of
techniques. These results yield a coarser dichotomy (Theorem 5.2) in an alternate problem
phrasing that imposes some closure assumptions.

Our work leaves the main dichotomy conjecture open (Conjecture 2.3). Even in the alter-
nate problem phrasing of Theorem 5.2, our dichotomy only covers counter-free semiautomata:
the restriction is lifted in Section 6 but only for CSh, and with a gap between tractability and
intractability. In the original phrasing, there are many concrete languages that we do not
understand: Does Proposition 4.4 extend to (ab)∗ +A∗aiA∗ for i > 2? Does Proposition 4.6
extend to (ai + b)∗ for i > 2, or to CTS rather than CSh? Can we show Conjecture 3.10?
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Another direction would be to connect CSh and CTS to the framework of constraint
satisfaction problems (CSP) [11], which studies the complexity of homomorphism problems
for fixed “constraints” (right-hand-side of the homomorphism). If this were possible, it could
lead to a better understanding of our tractable and hard cases. However, CTS does not seem
easy to rephrase in CSP terms: topological sorts and regular language constraints seems
hard to express in terms of homomorphisms, even in extensions such as temporal CSPs [6, 7].

One last question would be to investigate CTS and CSh for non-regular languages. The
simplest example is the Dyck language, which appears to be NP-hard for CTS (at least
in the multi-letter setting), but tractable for CSh, via a connection to scheduling; see [12],
problem SS7. More generally, CTS and CSh could be studied, e.g., for context-free languages,
where the complexity landscape may be equally enigmatic.
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