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Abstract
We show that a broad class of (+, �) vector products (for binary integer functions �) are equi-
valent under one-to-polylog reductions to the computation of the Hamming distance. Examples
include: the dominance product, the threshold product and `2p+1 distances for constant p. Our
results imply equivalence (up to poly logn factors) between complexity of computation of All
Pairs: Hamming Distances, `2p+1 Distances, Dominance Products and Threshold Products. As
a consequence, Yuster’s (SODA’09) algorithm improves not only Matoušek’s (IPL’91), but also
the results of Indyk, Lewenstein, Lipsky and Porat (ICALP’04) and Min, Kao and Zhu (CO-
COON’09). Furthermore, our reductions apply to the pattern matching setting, showing equi-
valence (up to poly logn factors) between pattern matching under Hamming Distance, `2p+1
Distance, Dominance Product and Threshold Product, with current best upperbounds due to
results of Abrahamson (SICOMP’87), Amir and Farach (Ann. Math. Artif. Intell.’91), Atallah
and Duket (IPL’11), Clifford, Clifford and Iliopoulous (CPM’05) and Amir, Lipsky, Porat and
Umanski (CPM’05). The resulting algorithms for `2p+1 Pattern Matching and All Pairs `2p+1,
for 2p+ 1 = 3, 5, 7, . . . are new.

Additionally, we show that the complexity of AllPairsHammingDistances (and thus of
other aforementioned AllPairs- problems) is within poly logn from the time it takes to multiply
matrices n× (n ·d) and (n ·d)×n, each with (n ·d) non-zero entries. This means that the current
upperbounds by Yuster (SODA’09) cannot be improved without improving the sparse matrix
multiplication algorithm by Yuster and Zwick (ACM TALG’05) and vice versa.
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1 Introduction

Many classical algorithmic problems received new attention when formulated as algebraic
problems. In pattern matching we can define a similarity score between two strings and ask
for this score between the pattern P of length m and every m-substring of the text T of length
n ≥ m. For example, scores of Hamming distance or L1 distance between numerical strings
generalize the classical pattern matching. All those problems share an additive structure, i.e.
for an input pattern P and text T, the score vector O is such that O[i] =

∑
j P[j] �T[i+ j]
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Table 1 Summary of different score functions and the corresponding problems. 1[ϕ] is 1 iff ϕ
and 0 otherwise.

Name Score function Pattern Matching problem All Pairs problem

Hamming 1[x 6= y] O[i] = |{j : P[j] 6= T[i+ j]}| O[i][j] = |{k : Ai[k] 6= Bj [k]}|

Dominance 1[x ≤ y] O[i] = |{j : P[j] ≤ T[i+ j]}| O[i][j] = |{k : Ai[k] ≤ Bj [k]}|

δ-Threshold 1[|x− y| ≥ δ] O[i] = |{j : |P[j]−T[i+ j]| > δ}| O[i][j] = |{k : |Ai[k]−Bj [k]| > δ}|

`1 distance |x− y| O[i] =
∑

j
|P[j]−T[i+ j]| O[i][j] =

∑n

k=1 |Ai[k]−Bj [k]|

for some binary function �. Just as those pattern matching generalizations are based on
convolution, there is a family of problems based on matrix multiplication, varying in flavour
according to the vector product used. There, we are given two matrices A and B and the
output is the matrix O[i][j] =

∑
k A[i][k] �B[k][j]. This is equivalent to the computation of

all pairwise (+, �)-vector products for two vector families, the so called AllPairs- problems.
For a certain class of score functions, pattern matching generalizations admit independently
algorithms of identical complexity O(n

√
m logm) (c.f. [1–3,8]). For the same score functions,

the best algorithms for corresponding AllPairs- problems are of complexity O(n(ω+3)/2) or
similar (c.f. [6, 8, 11]).

Our contribution:

We show that for a wide class of (+, �) products, the corresponding problems are of (almost)
equivalent hardness. This class includes Hamming distance or Dominance, but also any
piecewise polynomial function of two variables (for appropriate definition of piecewise
polynomiality, c.f. Definition 2) excluding certain degenerate forms (e.g. polynomials). Thus
we should not expect the problems based on (+, �) products to be significantly harder to
compute than e.g. ones based on Hamming distance. The reduction applies both to Pattern
Matching setting and to All Pairs- setting alike. We refer to Table 1 for a summary of
considered problems and to Figure 1 for a summary of the old and new reductions. It implies
that Yuster’s [11] improvement to the exponent of AllPairsDominanceProducts applies
to all other AllPairs- problems considered here. Additionally, any tradeoffs between vectors
dimension and runtime (c.f. [5, 8]), or input sparsity and runtime (c.f. [4, 9, 10]) translates
between problems. Additionally, we link the complexity of AllPairsHammingDistances
(and thus to other AllPairs- problems) to one of a sparse rectangular matrix multiplication
(c.f. Theorem 4): an instance of APHam can be expanded to an instance of sparse matrix
multiplication of rectangular matrices, and any matrix multiplication instance with those
parameters can be contracted back to APHam. It is interesting to observe that applying the
fastest existing sparse matrix multiplication algorithm (c.f. [12]) to the resulting instance
results in the same runtime as solving APHam directly.

2 Preliminaries

For vectors A,B and matricesA,B, we denote the (+, �) vector product as vprod(�,A,B) def=∑
i A[i]�B[i], the (+, �) convolution as conv(�,A,B) = C where C[k] =

∑
i+j=k A[i]�B[j]

and the (+, �) matrix product as mprod(�,A,B) = C where C[i, j] =
∑
kA[i, k] � B[k, j].

Thus, e.g. defining Ham(x, y) def= 1[x 6= y], then vprod(Ham, ·, ·), conv(Ham, ·, ·) and
mprod(Ham, ·, ·) correspond to Hamming Distance between vectors, HamPM and APHam.
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Figure 1 Existing and new reductions between problems, together with problem classes.

I Definition 1. We say that � reduces preserving linearity to instances of �1, . . . ,�K , if
there are functions f1, . . . , fK and g1, . . . , gK and coefficients α1, . . . , αK , such that for any
x, y:1 x � y =

∑
i αi ·

(
fi(x) �i gi(y)

)
.

Given Definition 1, we have for any vectors A,B and matrices A,B: vprod(�,A,B) =
∑
i αi ·

vprod(�i, fi(A), gi(B)), conv(�,A,B) =
∑
i αi · conv(�i, fi(A), gi(B))

and mprod(�,A,B) =
∑
i αi · mprod(�i, fi(A), gi(B)), where f(A) and f(A) denotes a

coordinate-wise application of f to vector A and matrix A, respectively.

3 Main results

I Remark. We assume that all input values and coefficients are integers bounded in absolute
value by poly(n).

I Definition 2. For integers A,B,C and polynomial P (x, y) we say that the function
P (x, y) · 1[Ax+By + C > 0] is halfplane polynomial. We call a sum of halfplane polynomial
functions a piecewise polynomial. We say that a function is axis-orthogonal piecewise
polynomial, if it is piecewise polynomial and for every i, Ai = 0 or Bi = 0.

Observe that Ham(x, y) = 1[x > y] + 1[x < y], max(x, y) = x · 1[x ≥ y] + y · 1[x < y],
|x− y|2p+1 = (x− y)2p+1 ·1[x > y] + (y−x)2p+1 ·1[x < y], and Thrδ(x, y) def= 1[|x− y| ≥ δ] =
1[x ≤ y − δ] + 1[x ≥ y + δ].

I Theorem 3. Let � be a piecewise polynomial of constant degree and poly logn number of
summands.

If � is axis orthogonal, then � is “easy”: (+, �) convolution takes Õ(n) time, (+, �) matrix
multiplication takes Õ(nω) time.
Otherwise, � is Hamming distance complete: under one-to-polylog reductions, (+, �)
product is equivalent to Hamming distance, (+, �) convolution is equivalent to HamPM
and (+, �) matrix multiplication is equivalent to APHam.

1 For the sake of simplicity, we are omitting in the definition the post-processing function necessary
e.g. ( · )1/p for Lp norms.
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I Theorem 4. The time complexity of APHam on n vectors of dimension d is (under
randomized Las Vegas reductions) within poly logn from time it takes to multiply matrices
n× (n · d) and (n · d)× n, each with (n · d) non-zero entries.
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