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Abstract
We study variants of locally decodable and locally correctable codes in computationally bounded,
adversarial channels, under the assumption that collision-resistant hash functions exist, and
with no public-key or private-key cryptographic setup. Specifically, we provide constructions
of relaxed locally correctable and relaxed locally decodable codes over the binary alphabet, with
constant information rate, and poly-logarithmic locality. Our constructions compare favorably
with existing schemes built under much stronger cryptographic assumptions, and with their
classical analogues in the computationally unbounded, Hamming channel. Our constructions
crucially employ collision-resistant hash functions and local expander graphs, extending ideas
from recent cryptographic constructions of memory-hard functions.
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Introduction
An error-correcting code is a tuple (Enc,Dec), where a sender encodes a message m of k
symbols from an alphabet Σ, into a codeword c of block-length n, consisting of symbols
over the same alphabet, using encoding algorithm Enc : Σk → Σn; a receiver uses decoding
algorithm Dec : Σn → Σk to recover the message m from a received word w ∈ Σn. Codes
with both large information rate, defined as k/n, and large error rate, which is the tolerable
fraction of errors in the received word, are most desirable.

In modern uses of error-correcting codes, one may only need to recover small portions
of the message, such as a single bit. Given an index i ∈ [n], and oracle access to w, a local
decoder must make only q = o(n) queries into w, and output the bit mi. The locality of the
decoder is defined to be q. Codes that admit such fast decoders are called locally decodable
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codes (LDCs) [12, 15]. A related notion is that of locally correctable codes (LCCs), where the
local decoder must output bits of the codeword c, instead of bits of the message m.

Ben-Sasson et al. [4] propose the notion of relaxed locally decodable codes (RLDCs) as
a way to remedy the dramatic tradeoffs of classical LDCs. In this notion the decoding
algorithm is allowed to output “⊥” sometimes; however, it should not output an incorrect
value too often. More formally, given i ∈ [k], and oracle access to the received word w, which
is assumed to be relative close to some codeword c = Enc(m) ∈ Σn, the local decoder: (1)
outputs mi if w = c; (2) outputs either mi or ⊥ with probability 2/3, otherwise; and, (3) the
set of indices i such that the decoder outputs mi (the correct value) with probability 2/3,
has size at least ρ · k for some constant ρ > 0. The relaxed definition allows them to achieve
RLDCs with constant query complexity and blocklength n = k1+ε.

Recently, Gur et al. [9] introduce the analogous notion of relaxed locally correctable codes
(RLCCs). The results in [9] obtain significantly better parameters for RLCCs than for classical
LCCs; namely, they construct RLCCs with constant query complexity, polynomial block
length, and constant error rate, and RLCCs with quasipolynomial query complexity, linear
blocklength (constant rate), with the caveat that the error rate is subconstant. These results
immediately extend to RLDCs, since their codes are systematic, meaning that the initial part
of the encoding consists of the message itself.

Computationally bounded, adversarial channels
All the above constructions of local codes assume a channel that may introduce a bounded
number of adversarial errors, and the channel has as much time as it needs to decide
what positions to corrupt (i.e., the standard Hamming channel). In this work we study
RLDCs and RLCCs in the computationally bounded, adversarial channel model, introduced
by Lipton [13]. In this model we require that the adversary who determines which bits of
the codeword to corrupt must run in probabilistic polynomial time. Existing constructions
of locally correctable codes in the computationally bounded channel model typically require
preliminary trusted setup [14, 10, 11, 7] (e.g., the sender and receiver have established
cryptographic keys). By contrast, our results do not require the sender and the receiver
to share a secret key for a symmetric cipher, nor do we assume the existence of a public
key infrastructure (PKI). Instead our constructions are based on the existence of collision-
resilient hash functions, a standard cryptographic assumption. Because the parameters of a
collision-resistant hash function are public, any party (sender/receiver/attacker) is able to
evaluate it.

Our Contributions
We now define our model. Our codes interact with an adversarial channel, so their strength
is measured both in their error correction and locality capabilities (as for RLCCs/RLDCs),
and in the security they provide against the channel.

I Definition 1. A computational adversarial channel A with error rate τ is an algorithm
that interacts with a local code (Gen,Enc,Dec) of rate k/n in rounds, as follows. In each
round of the execution, given a security parameter λ,
(1) Generate s← Gen(1λ); s is public, so Enc, Dec, and A have access to s
(2) The channel A on input s hands a message x to the sender.
(3) The sender computes c = Enc(s, x) and hands it back to the channel (in fact, the channel

can compute c without this interaction).
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(4) The channel A corrupts at most τn entries of c to obtain a word w ∈ Σn; w is given to
the receiver’s Dec with query access, together with a challenge index i ∈ [n]

(5) The receiver outputs b← Decw(s, i).
(6) We define A(s)’s probability of fooling Dec on this round to be pA,s = Pr[b 6∈ {⊥, ci}],

where the probability is taken only over the randomness of the Decw(s, i). We say that
A(s) is γ-successful at fooling Dec if pA,s > γ. We say that A(s) is ρ-successful at
limiting Dec if |GoodA,s| < ρ · n, where GoodA,s ⊆ [n] is the set of indices j such that
Pr[Decw(s, j) = cj ] > 2

3 . We use FoolA,s(γ, τ, λ) (resp. LimitA,s(ρ, τ, λ)) to denote the
event that the attacker was γ-successful at fooling Dec (resp. ρ-successful at limiting Dec)
on this round.

I Definition 2 ((Computational) Relaxed Locally Correctable Codes (CRLCC)). A local code
(Gen,Enc,Dec) is a (q, τ, ρ, γ, µ(·))-CRLCC against a class A of adversaries, if Decw makes
at most q queries to w and satisfies the following:
(1) For all public seeds s if w ← Enc(s, x) then Decw(s, i) outputs b = (Enc(s, x))i.
(2) For all A ∈ A we have Pr[FoolA,s(γ, τ, λ)] ≤ µ(λ), where the randomness is taken over

the selection of s← Gen(1λ) as well as A’s random coins.
(3) For all A ∈ A we have Pr[LimitA,s(ρ, τ, λ)] ≤ µ(λ), where the randomness is taken over

the selection of s← Gen(1λ) as well as A’s random coins.
When µ(λ) = 0 and A is the set of all (computationally unbounded) channels we say that the
code is a (q, τ, ρ, γ)-RLCC. When µ(·) is a negligible function and A is restricted to the set of
all probabilistic polynomial time (PPT) attackers we say that the code is a (q, τ, ρ, γ)-CRLCC
(computational relaxed locally correctable code). We say that a code that satisfies conditions
1 and 2 is a Weak CRLCC, while a code satisfying 1, 2 and 3 is a Strong CRLCC.

Results and Techniques. At a technical level our constructions use local expander graphs
and collision resistant hash functions (CRHF) as main building blocks.

Local expanders have several nice properties that have been recently exploited in the
design and analysis of secure memory hard functions [8, 1, 2, 6, 3]. Given a graph G = (V,E)
and distinguished subsets A,B ⊆ V of nodes such that A and B are disjoint and |A| = |B|,
we say that the pair (A,B) contains a δ-expander if for all X ⊆ A and Y ⊆ B with |X| > δ|A|
and |Y | > δ|B|, there is an edge connecting X and Y . A δ-local expander is a directed acyclic
graph G with n nodes V (G) = {1, . . . , n} with the property that for any radius r > 0 and
any node v ≥ 2r the sets A = {v − 2r + 1, . . . , v − r} and B = {v − r + 1, . . . , v} contain a
δ-expander. For any constant δ > 0 it is possible to construct a δ-local expander with the
property that indeg(G) ∈ O (logn) and outdeg(G) ∈ O (logn) [8, 3].

A CRHF function is a pair (GenH, H) of PPT algorithms, where for security parameter 1λ,
GenH outputs a public seed s ∈ {0, 1}∗ that is passed as the first input to H : {0, 1}∗×Σ∗ →
Σ`(λ). The length of the hash function is `(λ). (GenH, H) is said to be collision-resistant if
any PPT adversary can produce a collision with only negligible probability.

Using local expander graphs we first construct Weak CRLCCs and then Strong CRLCCs
against PPT adversaries, under the assumption that CRHFs exist. Our constructions are
systematic, so they immediately imply the existence of CRLDCs with the same parameters.

I Theorem 3. Assuming the existence of a CRHF (GenH, H) with length `(λ), there exist
constants 0 < τ, ρ, γ < 1 and a negligible function µ, such that there exists a constant rate
(polylogn, τ, ρ, γ, µ(·))-Strong CRLCC of blocklength n over the binary alphabet. In particular,
if `(λ) = polylog λ and λ ∈ Θ(n) then the code is a (polylogn, τ, ρ, γ, µ(·))-Strong CRLCC.
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The classical RLCCs of [9] achieve (logn)O(log logn) query complexity, constant information
rate, but subconstant error rate, in the Hamming channel.
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