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Abstract
The FHEW fully homomorphic encryption scheme (Ducas and Micciancio, Eurocrypt 2015) of-
fers very fast homomorphic NAND-gate computations (on encrypted data) and a relatively fast
refreshing procedure that allows to homomorphically evaluate arbitrary NAND boolean circuits.
Unfortunately, the refreshing procedure needs to be executed after every single NAND compu-
tation, and each refreshing operates on a single encrypted bit, greatly decreasing the overall
throughput of the scheme. We give a new refreshing procedure that simultaneously refreshes n
FHEW ciphertexts, at a cost comparable to a single-bit FHEW refreshing operation. As a result,
the cost of each refreshing is amortized over n encrypted bits, improving the throughput for the
homomorphic evaluation of boolean circuits roughly by a factor n.
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1 Introduction

Since Gentry’s first construction of a Fully Homomorphic Encryption (FHE) scheme [13],
much research has been done to improve both the security and efficiency of FHE. On the
security front, a line of works [14, 8, 4, 6, 19] has led to a FHE scheme of Brakerski and
Vaikuntanathan [9] based on learning with errors for polynomial approximation factors
and therefore essentially as secure as regular (non-homomorphic) lattice-based public-key
encryption [23].

On the efficiency front, major progress has been achieved too, but we are still very far from
reaching the ideal goal of an FHE scheme as efficient as public key encryption. Brakerski,
Gentry, and Vaikuntanathan [6] give a scheme for homomorphic evaluation of circuits of depth
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100:2 Ring Packing and Amortized FHEW Bootstrapping

L and security parameter λ requiring Õ(λ · L3) per-gate computation. Gentry, Halevi, and
Smart [18] used similar techniques to achieve homomorphic evaluation of width-Ω(λ) circuits
with only polylog(λ) per-gate computation. However, these schemes place restrictions on
circuit depth or size and additionally rely on the hardness of RingLWE for quasi-polynomial
approximation factors, a stronger assumption than that used for public-key encryption.

Gentry’s bootstrapping technique [13] is still the only known method to achieve fully
homomorphic encryption, i.e., an encryption scheme capable of evaluating homomorphically
arbitrary circuits. We recall that Gentry’s bootstrapping technique involves the homomorphic
computation of the decryption function on an encryption of the decryption key, a rather
complex operation, and this operation needs to be performed on all wires, for every few
layers of the circuit. Therefore, improving the effectiveness of bootstrapping has been the
main goal of many papers aimed at making FHE faster.

Improvements to bootstrapping have been pursued following two different approaches. The
first approach, extensively studied in [5, 18, 17, 16, 15, 24, 20, 21], involves the construction
of FHE schemes that can pack several messages into a single ciphertext, and operate on
them in parallel. While bootstrapping such a scheme may still be very expensive, it can
simultaneously refresh a large number of ciphertexts in a single bootstrapping execution. This
reduces the total number of times that the bootstrapping procedure needs to be executed,
and the amortized cost of bootstrapping over a large (and sufficiently wide) circuit.

A newer approach, explored in [1, 2, 12, 10], works towards reducing the cost of boot-
strapping a single ciphertext as much as possible, even at the price of having to perform a
bootstrapping operation for every gate of the circuit. Alperin-Sheriff and Peikert [2] intro-
duced a bootstrapping technique requiring Õ(λ) homomorphic operations. Building upon
this technique, Ducas and Micciancio [12] brought the running time of a single bootstrapping
execution down to a fraction of a second, with further improvements from Chillotti, Gama,
Georgieva, and Izabachène [10]. However, it comes with the limitation that the bootstrapping
procedure needs to be executed for essentially every gate of the circuit, without packing
several messages into a single ciphertext. So bootstrapping is much faster than, say, in HElib
[20, 21], but the amortized cost per gate is still quite high.

The goal of this work is to combine the advantages of these two approaches, and show how
to simultaneously refresh O(n) messages (where n = Õ(λ)), but at a cost comparable to that
of [1, 2, 12, 10]. Our starting point is the FHEW bootstrapping method of [12]. We remark
that FHEW has been improved in some follow-up works: [3] extended the FHEW scheme
to larger gates, and [10] further reduced the running time of bootstrapping, partly at the
cost of making a stronger security assumption on Ring-LWE with binary secrets.1 However,
while practically relevant, both improvements are asymptotically modest: the method of [3]
is limited to gates with at most O(logn) input wires, and the speed-up achieved in [10] is at
most polylogarithmic. In fact, in this paper, we will make bootstrapping even slower than
[12], by a factor O(nε). The advantage is that, while the bootstrapping cost gets slightly
higher, we will simultaneously refresh O(n) messages, reducing the amortized bootstrapping
cost per message by almost a factor of n to Õ(31/εnε) and for ε < 1/2.

In the remainder of the introduction, we provide a detailed description of the FHEW
bootstrapping problem, followed by a technical overview of the high level structure of our
solution.

1 In [10], and in this work, Ring-LWE is used with binary secrets, which may be justifiable based on the
best known cryptanalysis methods, but would still benefit from more theoretical investigations.
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1.1 The FHEW bootstrapping problem

The starting point of this work is the “FHEW” fully homomorphic encryption scheme of
[12]. In this overview, we assume some basic familiarity with LWE encryption, and use
notation LWEt/qn [m, δ] for the LWE encryption of a message m ∈ Zt, with secret key in Znq
and noise level δ. Similarly, we write RingLWEt/qd [m, δ] for Ring LWE ciphertexts over the
dth cyclotomic ring encrypting a polynomial m(X) of degree ϕ(d).2 The reader is referred to
Section 2.4 for background information on LWE, and for a formal definition of the notation. In
its most basic form, FHEW uses a function HomNAND : LWE4/q

n [δ]×LWE4/q
n [δ]→ LWE2/q

n [∆],
mapping the encryption of two bits b0, b1 ∈ {0, 1} ⊂ Z4 (encoded as integers modulo 4),
to the encryption of their logical “NAND”, b0 ∧̄ b1 = ¬(b0 ∧ b1), but with somewhat larger
noise ∆ and encoded as an integer modulo 2. (We refer the reader to the full version of
the paper for a formal definition and analysis of the HomNAND function.) Since these
operations are not immediately composable, to evaluate arbitrary circuits on encrypted
data, [12] also provides a refreshing procedure, Refresh : LWE2/q

n [∆]→ LWE4/q
n [δ], that maps

noisy ciphertexts modulo 2, back to ciphertexts modulo 4 with low noise δ. This refreshing
involves the homomorphic computation of the decryption function, and it is rather costly:
on a first approximation, it involves Õ(n) homomorphic modular multiplications on data
encrypted under a ring/symmetric-key variant of the GSW cryptosystem [19], which we
recall in Section 2.5.

Our goal is to show that one can simultaneously refresh a large number of ciphertexts
(say, O(n)) at a cost comparable to a single FHEW refreshing: approximately O(n1+ε)
homomorphic modular multiplications on GSW ciphertexts. This reduces the amortized cost
of refreshing to just O(nε) homomorphic (GSW) multiplications per ciphertext, rather than
O(n) as in the original FHEW cryptosystem.

I Theorem 1. For every 0 < ε < 1/2, there exists an algorithm Refresh which on input O(n)
LWE2/q

n [∆] ciphertexts, refreshes them to LWE4/q
n [δ] ciphertexts of larger message space and

smaller error, using Õ(31/εn1+ε) homomorphic operations, for 0 < ε < 1/2.

1.2 High level outline

Our scheme involves a number of different parameters. As in the FHEW cryptosystem, we
will use a “small” modulus q and dimension n = 2l−1 as parameters for the input ciphertexts.
(We write n = 2l−1 as we will frequently need to refer to l = logn+ 1). A larger modulus
Q is used by intermediate ciphertexts. We will give a procedure to simultaneously refresh
ϕ(d) = 2 · 3k−1 FHEW ciphertexts, where Q > q > n > d. Details follow.

We start with ϕ(d) (high noise) ciphertexts in LWE2/q
n [∆], as produced by the FHEW

HomNAND operation, working on LWE encryption in dimension n. The key idea required to
simultaneously refresh all of them is to first combine them into a single RingLWE ciphertext,
in a polynomial ring of degree ϕ(d). Specifically, as a first step, we use a variant of the key
switching technique from [8] to evaluate a function

PackLWE :
[
LWE2/q

n [mi,∆]
]
i<ϕ(d)

→ RingLWE2/q
d [m(X),∆′] (1)

2 We will be using primarily only two cyclotomic rings Rd = Z[X]/(Xd/2 + 1) ≡ Zϕ(d) for d = 2k and
ϕ(d) = d/2, and Rd = Z[X]/(X2d/3 + Xd/3 + 1) ≡ Zϕ(d) for d = 3k and ϕ(d) = 2d/3.

ICALP 2018



100:4 Ring Packing and Amortized FHEW Bootstrapping

which maps ϕ(d) arbitrary LWE ciphertexts (encrypting scalar messages m0, . . . ,mϕ(d)−1)
to a single ciphertext encrypting the polynomial m(X) =

∑
i<ϕ(d)mi ·Xi. The details of

this packing step are given in Section 3.
Looking ahead, the final step of the homomorphic decryption procedure will produce

LWE ciphertexts of dimension equal to half the modulus of its input ciphertext. Therefore,
to simplify the composition of HomNAND and Refresh operations, we use modulus switching
after packing to reduce the modulus of the packed ciphertext to 2n. We use a ring version of
the modulus switching technique of [8] to compute a function

R-ModSwitch : RingLWE2/q
d [m(x),∆′]→ RingLWE2/2n

d [m(x), n
q

∆′ + ω(
√
d log d) · ‖z‖]

(2)

mapping ciphertexts modulo q under key z ∈ Rd/q to ciphertexts modulo 2n, with the stated
error bound (with high probability over the randomized rounding). Details of the modulus
switching operation are provided in the full version.

We can now move on to homomorphically decrypt this Ring LWE ciphertext. Following
the general bootstrapping framework of [13], refreshing is performed by evaluating the
decryption function homomorphically, on an encryption of the secret key. The homomorphic
registers encrypting the entries of the secret key are implemented using a symmetric-key/ring
variant of the GSW cryptosystem, that we denote abstractly as REG2n/Q[·]. Note that the
message modulus 2n matches the ciphertext modulus of RingLWE2/2n

d , which is required for
entrywise encryption of the RingLWE2/2n decryption key.

Using this notation, we can describe the refreshing procedure as the combination of
two steps. The first is the primary technical contribution of this work, the homomorphic
decryption function

RingDecrypt : RingLWE2/2n
d [m(x),∆′′]→

[
REG2n/Q[m̃i, δ

′]
]
i<ϕ(d)

(3)

which takes (as an implicit parameter) the encryption REG2n/Q[encode(z)] of a suitably
encoded version of the RingLWE2/2n secret key z ∈ Zϕ(d)

2n . The RingDecrypt function is
homomorphic in z, and it is computed simply by evaluating the linear component of the
RingLWE decryption function homomorphically on REG2n/Q[encode(z)]. This entails the
multiplication of an encrypted polynomial by a known polynomial, which introduces some
technical challenges.

We recall that FHEW accumulators (and the cryptographic registers used in this paper)
encode a message v ∈ ZN using a ring variant of the GSW cryptosystem with, as a message
space, the set of polynomials in a formal variable X of degree bounded by ϕ(N). These
polynomials are used to encode scalar values, mapping each v ∈ ZN to the monomial
Xv. Encoding v in the exponent limits the operations available to a candidate refreshing
algorithm. Addition may be performed, using the multiplicatively homomorphic property
of the GSW cryptosystem to compute Xv · Xw = Xv+w, but other operations are not
so straightforward. Multiplication by (known) scalars (mapping Xv 7→ Xvc) requires
homomorphic exponentiation, and even a simple subtraction or negation (mapping Xv 7→
X−v) would require homomorphic inversion, all operations unsupported by the GSW or any
other known cryptosystem.

Standard FFT algorithms, on the other hand, require both the evaluation of addition and
subtractions (in each “butterfly” of the FFT), as well as scalar multiplication by “twiddle”
factors, i.e., powers of the root of unity used to compute the FFT. In order to support
subtraction, we represent each register in a redundant way, holding both an encryption of Xv
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and an encryption of X−v. To reduce the number of scalar multiplications required by our
refreshing procedure, we resort to a variant of Nussbaumer negacyclic convolution algorithm
[22].

In its original formulation, the Nussbaumer algorithm operates on polynomials in X

(where X2k = 1) by writing them as bivariate polynomials in X,Y , with both X and Y of
degree at most

√
n =

√
2k. Alternatively, one can look at these bivariate polynomials as

univariate polynomials in X with coefficients in Z[Y ]. By taking Y = X
√
n, the coefficients

belong to the ring R = Z[Y ]/(Y
√
n+ 1), which admits Y as a 2

√
nth root of unity and can be

used to compute the FFT of polynomials in R[X]. Multiplication by roots of unity can now
be expressed simply by additions, subtractions and rotations of values in Z[Y ]/(Y

√
n + 1).

Furthermore, because the FFT outputs elements of R, the algorithm can be recursively
applied to each of the pointwise multiplications following the FFT.

Our refreshing procedure will require some modifications to the Nussbaumer algorithm
as described above, which are detailed in Section 4.4. Most critically, if the algorithm is to
be used recursively, we must be careful in bounding its recursive depth. The noise of the
refreshing algorithm depends exponentially on the depth of the circuit computing it, and we
must restrict ourselves to constant depth to achieve polynomial noise overhead. So rather
than setting Y = X

√
ni for ni = 2i

√
n at the ith level of recursion, we fix Y = Xnε for all

steps. Therefore, for all ε, the algorithm admits at most 1/ε recursive calls. This is the main
intuition behind our bootstrapping procedure: the Nussbaumer algorithm reduces polynomial
multiplication to multiplications of many lower-degree polynomials, without introducing
multiplications by constants or excessive noise overhead. A naive multiplication algorithm
can then be used to compute the smaller polynomial products, and the transforms inverted
to give the encrypted product required for homomorphic ring decryption.

The second step of the refreshing procedure is the “rounding” of the REG ciphertexts to
low-noise LWE4/Q

n ciphertexts. Since REG[·] encrypts each coefficient of m̃(X) individually,
the values REG2n/Q[m̃i, δ

′] are already refreshed, low-noise ciphertexts of the original messages
m0, . . . ,md−1, but using a (noisy) input encoding m̃i, a different cryptosystem and a large
modulus Q. Each one of them is very similar to the intermediate output of the original FHEW
refreshing procedure, as if we had computed it on each LWE2/q

2n [mi,∆] ciphertext individualy.
So, they can be mapped to LWE4/q

2n ciphertexts as in the original FHEW scheme by calling
a “most-significant-bit” extraction function msbExtract : REG2n/Q[m̃i, δ

′]→ LWE4/Q
n [mi, δ

′]
and the standard modulus switching procedure

ModSwitch : LWE4/Q
n [δ′]→ LWE4/q

n [ q
Q
δ′ +

√
2π(1 + ‖s‖2)] (4)

for a LWE ciphertext under key s ∈ Z2n
Q , which increases the noise by a small additive term .

Parameters will be set in such a way that the resulting noise is small enough to apply the
HomNAND function and keep computing on encrypted data. This completes the high level
description of our boootstrapping method.

2 Preliminaries

2.1 Basic notation
We write column vectors over a ring R with bold font a ∈ Rn. Matrices are similarly written
in capitalized bold font as A ∈ Rn×m. The L2 norm of a vector a = (a1, . . . , an) ∈ Rn is
‖a‖ =

√∑
i |ai|2. The concatenation of elements a, b, . . . into a row vector is written as

[a, b, . . .]. We write (a, b, . . .) for concatenation as a column vector.

ICALP 2018



100:6 Ring Packing and Amortized FHEW Bootstrapping

2.2 Distributions
A random variable X has subgaussian distribution over R of parameter α if its tails are
dominated by a Gaussian of parameter α, so that Pr{|X| ≥ t} ≤ 2e−πt2/α2 for all t ≥ 0.
A subgaussian variable X with parameter α > 0 satisfies E[e2πtX ] ≤ eπα

2t2 , for all t ∈ R.
We note that a centered random variable X, where |X| ≤ β always holds, is subgaussian,
specifically with parameter β

√
2π. For example the randomized rounding function d(x)c$

(which takes value bxc with probability dxe−x, and equals dxe otherwise) is
√

2π-subgaussian.
A random vector x of dimension n is subgaussian of parameter α if for all unit vectors
u ∈ Rn, its one-dimensional marginals 〈u,x〉 are also subgaussian of parameter α. This
extends to random matrices, where Xm×n is subgaussian of parameter α if for all unit vectors
u ∈ Rm,v ∈ Rn, utXv is subgaussian of parameter α. It follows immediately from these
definitions that the concatenation of independent subgaussian vectors, all with parameter α,
interpreted as either a vector or matrix, is also subgaussian with parameter α.

2.3 Cyclotomic Rings
For any positive integer N , let ΦN (X) =

∏
j∈Z∗

N
(X−ωjN ) be the Nth cyclotomic polynomial,

where ωN = e2πi/N ∈ C is the complex Nth principal root of unity, and ZN is the group
of invertible integers modulo N . We recall that ΦN (X) ∈ Z[X] is a monic polynomial of
degree ϕ(N) = |Z∗N | with integer coefficients. The corresponding ring RN = Z[X]/ΦN (X) of
integer polynomials modulo ΦN is called the Nth cyclotomic ring. This ring can be identified
with RN ≡ Zϕ(N) (as additive groups) representing each element a ∈ RN by a polynomial of
degree less than ϕ(N), and mapping this polynomial a(X) =

∑
j<ϕ(N) aj ·Xj to its coefficient

vector ((a)) = (a0, . . . , aϕ(N)−1) ∈ Zϕ(N). For any ring element a ∈ RN , ‖a‖ is taken to mean
the L2 norm of the corresponding vector ((a)) ∈ Zϕ(N). Ring elements a, b ∈ RN also admit
a matrix representation Ma ∈ Zϕ(N)×ϕ(N) = [((a ·X0)), ((a ·X1)), . . . , ((a ·Xϕ(N)−1))] (used in
Section 4.5,) such that Ma · ((b)) = ((a · b)). For any positive integer q, we write RN/q for the
quotient RN/(q · RN ), i.e., the ring of polynomials RN with coefficients reduced modulo q.
Notice that RN/q ≡ Zϕ(N)

q as additive groups.
For concreteness, in this paper we only use cyclotomic rings RN for two special types

of the index N : N = n = 2l, giving the polynomial ring Rn = Z[X]/(Xn/2 + 1) of degree
ϕ(n) = n/2, and N = d = 3k, giving the polynomial ring Rd = Z[X]/(X2d/3 +Xd/3 + 1) of
degree ϕ(d) = 2d/3. In particular, Rd/q ≡ Z2d/3

q (for d = 3k) and Rn/q ≡ Zn/2q (for n = 2l).

I Fact 2 (Recall from [11], Fact 6). If D is a subgaussian distribution of parameter α over
RN , and R ← Dw×k has independent coefficients drawn from D, then, with overwhelming
probability, we have s1(R) ≤ α

√
N ·O(

√
w +
√
k + ω(

√
logN)).

2.4 (Ring) LWE Symmetric Encryption
In this subsection we introduce notation and working definitions for the basic LWE encryption
scheme that our bootstrapping procedure operates on. For complete definitions, we refer the
reader to the full version.

I Definition 3 ((Ring) LWE ciphertexts). The set of all (Ring) LWE ciphertexts over (cy-
clotomic) ring RN , encrypting message m ∈ RN/t, under key s ∈ RnN , modulo q and with
error bound β is denoted RN -LWEt/qs [m,β] = {(a, b) | a ∈ RnN/q, ‖a · s−mq/t‖ ≤ β}. When
the value of the key s ∈ RnN is clear from the context or unimportant, we simply write
RN -LWEt/qn [m,β], where the subscript n refers to the dimension of the secret s ∈ RnN .
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We use some abbreviated notation in the following important special cases: When N = 1, we
omit RN = Z, and write LWEt/qs [m,β] (or LWEt/qn [m,β]) for the set of standard (Z-) LWE
ciphertexts with n-dimensional secret s ∈ Zn. When n = 1, and s = s ∈ RN is a single ring
element, we write RingLWEt/qN as an abbreviation for RN -LWEt/q1 .

The (Ring) LWE decryption procedure plays a central role in our FHE bootstrapping pro-
cess, specifically in the RingDecrypt procedure. The decryption of an RN -LWEt/qs ciphertext
(a, b) ∈ (RnN ,RN )/q is Dec(s, (a, b)) = bt(b− a · s)/qe mod t ∈ RN/t ≡ Zϕ(N)

t . It is easy to
check that for all (a, b) ∈ LWEt/qs [m, q/2t], the decryption procedure correctly recovers the
encrypted message.

2.5 Ring-GSW encryption
The cryptographic accumulators of [12] (and the extended cryptographic registers defined
in our work) make use of a ring variant of the GSW encryption scheme [19], which we now
briefly describe. Let RN/Q be the Nth cyclotomic ring, modulo some suitably large integer
Q. The Ring-GSW cryptosystem, encrypts a message m ∈ ZN under key z ∈ RN/Q as
GSWN/Q

z (m) = [a,a · z + e] +m · g⊗ I2 where g = (B0, B1, B2, . . . , Q/B) for some base B.
Similarly as for LWE, we write GSWN/Q

z [m,β] for the set of ciphertexts encrypting m under
z with error at most ‖e‖ ≤ β. Decryption follows from the observation that the last row of a
ciphertext is a Ring-LWE encryption of m under z.

The Ring-GSW cryptosystem supports homomorphic addition and multiplication, and we
will primarily use the latter. GSWN/Q

z (m0 ·m1) = C0 × C1 is computed by first expressing
C0 =

∑
iB

iC0,i as a sum of matrices with B-bounded (polynomial) entries, and then
computing the matrix product [C0,0, . . . , C0,logQ] · C1. Letting e0 (resp. e1) denote the
error vector of C0 (resp. C1), the result can be written [a,a · z + e] +m0m1 · g⊗ I2, where
e =

∑
i C0,ie1,i +m1e0 depends asymmetrically on the error of the inputs. To minimize the

error growth resulting from a sequence of multiplications of GSW ciphertexts (with similar
initial error), then, the multiplications should be evaluated in a right-associative sequence.

3 Ciphertext Packing

We describe a variant of the LWE key-switching technique that can be used to convert a
set of ϕ(d) LWE ciphertexts {(ai, bi)}, each encrypting a message mi, to a single “packed”
Ring-LWE ciphertext encrypting the message m(X) =

∑
imiX

i−1.

I Lemma 4. There exists a quasi-linear time algorithm that on input ϕ(d) ciphertexts ci ∈
LWEt/qs (mi,∆) (for i = 0, . . . , ϕ(d)− 1, all under the same secret key s ∈ Znq ) and a packing
key consisting of Ring-LWE encryptions Kj,l ∈ RingLWEq/qz̃ [sl2j , βP ] (for l = 0, . . . , n−1, j =
0 . . . , dlog qe−1 and key z̃ ∈ Rd,q,) outputs a Ring-LWE encryption c ∈ RingLWEt/qz̃ [m(X), β]
of m(X) =

∑
imiX

i under z̃ with error at most β = O(
√
d∆ +

√
dn log qβP ).

The proof of Lemma 4 and accompanying pseudocode may be found in the full version,
but we summarize its conclusion here. Let Kj,l = (ã′j,l, b̃′j,l) be the entries of the packing
key and ci = (ai, bi) be the input ciphertexts. Defining

∑
j<log q ãj2j =

∑
i ai ·Xi−1 ∈ Rnd,q

and taking ã′′ = −
∑
j,l ãj,lã

′
j,l and b̃′′ = b̃−

∑
j,l ãj,l · b̃′j,l gives the desired packed ciphertext

(ã′′, b̃′′) encrypting m(X).
The homomorphic decryption procedure produces LWE ciphertexts of dimension n = q/2

equal to the modulus of the packed ciphertext. This is problematic because on subsequent
refreshing operations, the resulting error bound will become larger than q log q, and the

ICALP 2018
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ciphertexts will no longer be decryptable. Before proceeding, we switch to a smaller modulus
which we take to be 2n for simple composability. The details of the modulus switching
procedure and its associated error bounds are omitted here, but provided in the full version
of the paper.

4 Homomorphic Decryption

The homomorphic decryption procedure takes as input a single Ring-LWE ciphertext (a, b) ∈
RingLWEt/2nz̃ (m,β) ⊆ (Rd/2n)2 and the encryption of some function of the secret key
z̃ ∈ Rd/2n. The decryption procedure needs to compute the ring element b−a·z̃ ∈ Rd/2n, and
then “round” the result to ϕ(d) LWE ciphertexts. All this should be done homomorphically,
given the encryption of (some function of) z̃. We can represent the computation of this ring
element as an arithmetic circuit C with inputs in Z2n, but to begin designing such a circuit,
we must first consider the cryptographic registers on which we will be computing. We begin
this section with a description of the registers used in our ciphertext refreshing procedure, to
be followed by a description and analysis of the components of our homomorphic decryption
procedure.

4.1 Homomorphic Registers
We use a symmetric/ring variant of the GSW cryptosystem to implement the cryptographic
registers used by the homomorphic decryption procedure, similar to the accumulators of
FHEW. Registers supporting arithmetic modulo 2n are implemented using the GSW2n/Q

N

cryptosystem based on the Nth cyclotomic ring, for N a power of 2 with 2n|N .
We recall that in FHEW, a value v ∈ Z2n is represented by GSW2n/Q

N (Y v), where Y = Xi

is a primitive 2nth root of unity. In this scheme we take N = 2n, and therefore X is our
root of unity. To reduce redundancy given this choice of parameters, we omit the subscript
N when referring to GSW ciphertexts, writing GSW2n/Q. This choice of parameters is more
thoroughly justified in Section 4.5, but as the homomorphic decryption procedure will produce
LWE ciphertexts of dimension N/2, taking N/2 = n, where n is the original dimension of the
LWE ciphertexts, allows us to omit an additional step of key switching back to dimenion n.

These GSW registers support the following operations:
Initialization (v ← w): uXwG, with u ∈ ZQ, u ≈ Q/2t, and invertible mod Q.
Increment (v ← v + c): C 7→ C ·Xc

Addition: GSW2n/Q(uXv)× GSW2n/Q(uXw) = GSW2n/Q
z (uXv+w).

Extraction: map the accumulator to an LWE ciphertext.

To support subtraction, we represent a value v ∈ Z2n as a pair (GSW(uXv),GSW(uX−v)).
Addition is computed componentwise: (C0, C

′
0)+(C1, C

′
1) = (C0×C1, C

′
0×C ′1).We implement

negation simply by swapping the elements of a pair, and subtraction by combining the two
operations. This gives us cryptographic registers supporting all operations required by our
refreshing algorithm. To avoid explicitly writing these pairs, we define

REGq/Qz (v, β) = (GSWq/Q
N (uXv),GSWq/Q

N (uX−v)).

4.2 Slow Multiplication
The use of the REG scheme restricts our arithmetic circuits to use only the operations
described above. Given the asymmetric error growth of the underlying GSW operations,
we must also be careful in how we design our circuit, as we don’t want both inputs to any
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addition or subtraction gate to have already accumulated significant error. For the rest of
this section, however, we omit explicit references to the REG scheme wherever possible, to
simplify the presentation of the homomorphic decryption algorithm. We instead use the
notation JcK to denote a register or registers encrypting value(s) c.

Our goal, then, is to specify an efficient circuit which is parameterized by the input
ciphertext (a, b), meets our restrictions, and outputs an encryption of the desired ring element
Jb− a · z̃K that will then allow each coefficient to be homomorphically rounded to an LWE
ciphertext. We discuss the rounding procedure in Section 4.5. In the next few sections, we
specify an arithmetic circuit computing Jb−a · z̃K, where this circuit takes as input a function
of the secret key, Jf(z̃)K, and computes the linear decryption step Ca,b(Jf(z̃)K) = Jb− a · z̃K.
We will start with a comparatively straightforward, but inefficient, such construction in
which we compute a · z̃ homomorphically with a slow multiplication algorithm.

Let l = logn + 1 and f(z̃) ∈ Zl×ϕ(d)
2n be defined by f(z̃)j,k = z̃k2j . Let ai,j be

the jth bit of the binary decomposition of ai so that ai =
∑l−1
j=0 ai,j2j . We may ex-

press multiplication of z̃k by ai by computing z̃k · ai =
∑l−1
j=0 ai,j z̃k2j . Then we define

Cai(Jf(z̃)K, k) =
∑l−1
j=0 ai,jJf(z̃)j,kK to be a circuit computing this multiplication homomor-

phically using only additions, as the ai,j values are binary. We may then define a circuit Ca,
computing a slow multiplication algorithm (mod Φd) using these Cai subcircuits, addition,
and subtraction gates.

I Lemma 5. Let B be the base of the geometric progression defining g in GSW encryption,
and let db = dlogB Qe. There is an algorithm

SlowMult : a ∈ Rd/2n× (REGs(f(z̃)j,k, β))j,k → (REGs((a · z̃)i, β′))i
requiring Õ(d2) homomorphic operations, and where β′ ≤ Õ(βB

√
ndBd) with high probability.

The proof of Lemma 5 appears in the full version, and the analysis of error growth is similar
to that of [11]. To briefly justify its stated complexity, we observe that SlowMult is just naive
polynomial multiplication algorithm using only additions, and therefore taking time O(l)
per scalar multiplication. Therefore its complexity is Õ(d2). The original FHEW refreshing
procedure requires only Õ(n) homomorphic additions per ciphertext, so we already see this
algorithm offers no improvement over sequential refreshing of d ciphertexts using FHEW.
We will instead use variants of existing fast multiplication algorithms for the homomorphic
computation of a · z̃, using SlowMult as a subroutine.

4.3 Homomorphic DFT
We briefly recall and introduce notation for the discrete Fourier transform. We denote
the discrete Fourier transform of a length m sequence of elements x ∈ Rm, where ring
R has mth principal root of unity ωm, by x̄i = DFT (x)i =

∑m−1
k=0 xkω

ik
m and its inverse

xk = DFT−1(x̄)k =
∑m−1
i=0 x̄iω

−ik
m . The polynomial product a · z̃ for a, z̃ ∈ Rd/2n may then

be computed as

(a ∗ z̃ mod Xm − 1) mod Φd = DFT−1( 1
m
DFT (a) ·DFT (z̃)) mod Φd

provided an mth principal root of unity ωm exists in Rd/2n (and m > 4
3d ≥ deg(a · z̃)).

But to compute the DFT homomorphically, we need to be able to homomorphically
compute multiplication by ω−ikm . If we take ωm ∈ Z2n, each multiplication by ω−ikm requires l
homomorphic operations per coefficient (as described in Section 4.2). Furthermore, reducing
the quadratic complexity of the DFT requires FFT techniques, recursing to depth logm. At
each step of recursion, then, we perform homomorphic operations on registers produced from
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the last step, with some increase in error from the previous set of operations. We therefore
cannot take advantage of the asymmetric error growth of the GSW scheme underlying our
registers and the error growth of our algorithm will become quasi-polynomial in n, exceeding
the desired polynomial bound on error overhead. This brings us to the last component of
the algorithm, which avoids these scalar multiplications, and achieves efficient multiplication
without sacrificing polynomial error growth.

4.4 Nussbaumer Transform
In order to efficiently compute the polynomial product a · z̃ ∈ Rd/2n, we define a variation
of the Nussbaumer transform, suited for multiplication of polynomials modulo a power of
3 cyclotomic. Informally, the transform first maps an element a ∈ Rd/2n to a bivariate
polynomial in such a way that it may be represented by a coefficient vector of dimension
smaller than ϕ(d), over Rd1−ε/2n. Taking the DFT of this coefficient vector allows us to
reduce the computation of a · z̃ to the pointwise multiplication of two vectors with entries in
Rd1−ε/2n. The inverse map on the inverse DFT of the smaller polynomial products yields
a · z̃ ∈ Rd/2n. We now give a more detailed description of the algorithm.

Let d = 3k, m = dε with d ≥ 3m2, and r = ϕ(d)/m = ϕ(d1−ε). To multiply two polyno-
mials, the transform maps each polynomial to a bivariate polynomial by the isomorphism

ψ : Z2n[X]/(Φd)→ (Z2n[Y ]/(Φd/m(Y )))[X]/(Xm − Y )

a(X) =
ϕ(d)∑
i=0

aiX
i 7→

m−1∑
j=0

r−1∑
i=0

ami+jY
iXj where Y = Xm.

Because ψ(a) and ψ(z̃) have degree at most m− 1 in X, computing ψ(a) · ψ(b) modulo any
polynomial of degree greater than 2m− 2 in X prior to reducing by Xm − Y will not change
the result. We also note that Y is a principal d/mth root of unity in Z2n[Y ]/(Φd/m(Y )), and
therefore Y d/3m2 = Y 3k(1−2ε)−1 is a 3mth root which can also be shown to be principal.

This allows us to efficiently compute ψ(a) · ψ(z̃) first modulo X3m − 1 by pointwise
multiplication of the respective DFTs, followed by a reduction modulo (Xm − Y ). Since the
“points” of the DFT pointwise multiplication step are elements of Z2n[Y ]/(Φd/m(Y )), these
multiplications can be performed by recursive application of the transform or SlowMult.

Without recursion, this gives a key preprocessing function

f(z̃) = (1, 2, 4, ..., n)⊗ [ 1
3mDFT (ψ(z̃))i]i<3m ∈ (Rd/m/2n)l×3m (5)

where the DFT evaluates ψ(z̃) at root of unity ω3m = Y d/3m
2
.

Let āi = DFT (ψ(a))i be the ith of the 3m degree < r polynomials produced by the
Nussbaumer transform. Let Cāi denote a circuit computing SlowMult of known polynomial
āi (of degree < r) with an encrypted polynomial given as input (along with encryptions of all
power of 2 multiples of the polynomial’s coefficients, for 2l ≤ n, as in Section 4.2). Let CF∗

be a circuit homomorphically computing the inverse DFT for length 3m vectors of encrypted
polynomials in Rd/m/2n. Then we may specify a circuit computing Ja · z̃K

Ca(Jf(z̃)K = CF∗([Cāi(Jf(z̃)(·),iK)]i) mod Xm − Y = Ja · z̃K.

Jb− a · z̃K is then computed by negating each of the registers REG((a · z̃)i) and incrementing
each one by the corresponding bi, computing Ca,b(Jf(z̃)K) = −Ca(Jf(z̃)K) + b.

The map ψ is purely representational, so requires no computation. The forward and
inverse DFT steps require evaluating polynomials at the roots of unity ωi3m = Y id/3m

2 ,
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which is implemented by rotation of the coefficient vectors with negation, addition, and
subtraction to implement the reduction in Rd/m/2n. SlowMult was defined using only the
operations of addition and subtraction, and the final reduction modulo Xm − Y similarly
only requires additions and subtractions. This circuit then satisfies our criteria, allowing for
the homomorphic computation of a · z̃ without use of multiplication gates.

The Nussbaumer transform admits a recursive algorithm that gives tradeoffs between
runtime and error growth of the cryptographic registers, but we defer consideration of the
recursive formulation to Section 4.7.

I Lemma 6. Let KR be a refreshing key

KR = KR
i,j,k = REGN/Qz ([f(z̃)i,j,k]) = REGN/Qz

[
1

3mDFT (ψ(z̃))i,k2j , βR
]
(from Eq. 5)

where DFT (ψ(z̃))i,k indicates the kth coefficient of the ith polynomial output by the Nuss-
baumer transform (giving i < 3m, j < l, k < r). For every 0 < ε < 1

2 , there is an algorithm
RingDecrypt that on input KR and RingLWE ciphertext (a, b) ∈ RingLWE2/2n

z̃ [m,β] under z̃ ∈
Rd/2n, outputs ϕ(d) ciphertexts

[
REGN/Qz [m̃i, β

′]
]
i<ϕ(d)

with β′ < Õ
(
βB4(ndB)3.5dε+.5

)
,

and requiring Õ(d2−ε) homomorphic operations.

The proof of Lemma 6 may be found in the full version of the paper, but the stated com-
plexity is justified here informally. Lemma 5 states that SlowMult requires Õ(d2) operations
on input polynomials of degree O(d). The RingDecrypt algorithm multiplies 3m polynomials
of degree O(d/m), so these multiplications contribute Õ(d2−ε) homomorphic operations. The
complexity of the DFT step, which performs 3m summations of 3m polynomials with degree
O(d/m), will then be dominated by that of SlowMult for all permissible ε, and therefore
RingDecrypt will require Õ(d2−ε) many homomorphic operations.

Once we have performed the RingDecrypt procedure, it remains to round the resulting
vector of ciphertexts to yield ϕ(d) refreshed LWE ciphertexts.

4.5 msbExtract
Once we have computed the sequence of registers [REG2n/Q

z [bi−(a · z̃)i]]i<ϕ(d), we must homo-
morphically perform the rounding step of decryption and recover a sequence of reduced-error
LWE ciphertexts encrypting each mi. This can be accomplished as in FHEW, by applying
the msbExtract procedure of [12] to each of the ϕ(d) registers produced by RingDecrypt. As
in FHEW, this procedure produces refreshed ciphertexts with the GSW modulus Q, so must
be followed by ModSwitch to convert them to the smaller intial modulus q.

We note that our msbExtract procedure differs somewhat from that of FHEW, in that
we omit the step of key switching. In FHEW, the procedure takes as additional input a
switching key. This key enables the LWE encryptions under key ((z)) that are recovered at an
intermediate stage of the rounding algorithm to be converted to LWE encryptions under the
initial key s. Choosing our REG key z such that ((z)) = s obviates the need for key switching,
as the intermediate LWE ciphertexts will already be encrypted under the proper key. This
choice of key requires assuming the security of RingLWE with binary secrets, as assumed in
[10], but this assumption may be removed at the cost of the additional key switching step.
The proof of Lemma 7 may be found in the full version, and is similar to that of [12].

I Lemma 7. There is an algorithm msbExtract that, given a cryptographic register of the form
REG2n/Q

z (bi−(a · z̃)i, β) as input, with ((z)) = s, outputs a LWE ciphertext LWE4/Q
s (mi,

√
n ·β).
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4.6 Refreshing Algorithm
We now present the amortized bootstrapping algorithm from start to finish and give an
analysis of its runtime and error growth.

The algorithm takes as input ϕ(d) ciphertexts for d = 3k, under the same key s ∈ Znq and
with error at most ∆, to be simultaneously refreshed. It also requires key material for the
PackLWE and RingDecrypt procedures, described in their respective sections, but recalled here
for reference. The packing key KP = KP

j,l is required to pack the LWE ciphertexts into a single
RingLWE ciphertext under a new key z̃ ∈ Rd/q, and is given by KP

j,l = RingLWEq/qz̃ (sl2j , βP ).
The refreshing key KR = KR

i,j,k encrypts a function of the RingLWE secret f(z̃) under a REG
key z ∈ R2n/Q, and is required for the homomorphic decryption of the resulting RLWE
ciphertext. Its entries are given by KR

i,j,k = REG2n,Q
z

( 1
3mDFT (ψ(z̃))i,k)2j , βR

)
.

I Theorem 8. For every 0 < ε < 1
2 , there exists an algorithm Refresh that, on the input

described above, produces ϕ(d) LWE ciphertexts with error Õ
(
‖s‖+ q

Q · βR(Bn)4d3.5
B dε+.5

)
,

and requires Õ(d2−ε) homomorphic operations.

Proof. From Lemma 6, we already have that the homomorphic complexity of RingDecrypt is
Õ(d2−ε), and this dominates the complexity of RingDecrypt.

The correctness of this refreshing scheme will rely on the error bounds at two stages of
the algorithm. For msbExtract to recover the correct mi’s from the output of RingDecrypt,
the error of each m̃i = 2n

t mi + e must not exceed n
t (for t = 2, the message space of mi).

From the error bounds of Theorem 4 and Equation 2, we have that the ciphertext output
by ModSwitchR will have error bounded by O

(
2n
q (
√
d∆ +

√
dn log qβP ) + ω(

√
d log d) · ‖z̃‖

)
.

To bound this by n/2, we restrict z̃ to ‖z̃‖ = O(
√
d). Then so long as the LWE ciphertext

error ∆ satisfies ∆ < O( q√
d
), d
√

log d < O(n), and d2n < O( q2

log q ), the packed ciphertexts
will be decryptable with high probability.

We also need to guarantee that the ciphertexts output by Refresh will have error small
enough that this scheme is composable. From the bounds of Lemma 6, Lemma 7, and
Equation 4, this requires us to bound the error of the ciphertexts output by Refresh by
β′ = Õ

(
‖s‖+ q

Q · βR(nB)4d3.5
B dε+.5

)
< q√

d
. Letting s be a binary secret, (which does

not reduce hardness of the associated LWE instance, as shown in [7]), this gives us that
Q

(dB)3.5 > βRn
4√lognB4d1+ε, so taking B = Θ(1) and Q > Õ(βRn4d1+ε(log d)3.5) will

guarantee correct decryption with high probability. J

4.7 Recursive optimization
In this section we summarize a recursive formulation of the Nussbaumer transform, and how
it can improve the complexity of the RingDecrypt algorithm, at the cost of an increase in the
error. The proof of Theorem 9 may be found in the full version.

The Nussbaumer transform as described in Section 4.4 can be thought of as a reduction
from a single multiplication of two polynomials in Z2n[X]/(Φd(X)) to 3m multiplications of
pairs of polynomials in Z2n[Y ]/(Φd/m(Y )). We may recursively apply this transformation
ρ times, provided we have a 3mth root of unity in the ring Z2n[Y ]/(Φd/mρ(Y )), which will
be the case as long as d/mρ ≥ 3m. ε is fixed and so this bounds the recursive depth of the
algorithm by ρ < 1

ε − 1.

I Theorem 9. The recursive RingDecryptρ algorithm, with constant parameter ε and recursive
depth ρ < 1

ε − 2, requires Õ(3ρd2−ρε + 3ρd1+ε) homomorphic operations and yields an error
growth of Õ(B3ρ+1(ndB)3ρ√ndBd1+ρε).
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