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Abstract
In monotone submodular function maximization, approximation guarantees based on the curva-
ture of the objective function have been extensively studied in the literature. However, the notion
of curvature is often pessimistic, and we rarely obtain improved approximation guarantees, even
for very simple objective functions.

In this paper, we provide a novel approximation guarantee by extracting an M\-concave
function h : 2E → R+, a notion in discrete convex analysis, from the objective function f : 2E →
R+. We introduce a novel notion called the M\-concave curvature of a given set function f ,
which measures how much f deviates from an M\-concave function, and show that we can obtain
a (1 − γ/e − ε)-approximation to the problem of maximizing f under a cardinality constraint
in polynomial time, where γ is the value of the M\-concave curvature and ε > 0 is an arbitrary
constant. Then, we show that we can obtain nontrivial approximation guarantees for various
problems by applying the proposed algorithm.
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1 Introduction

A set function f : 2E → R is called monotone if f(X) ≤ f(Y ) for any X ⊆ Y ⊆ E and
called submodular if f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) for any X,Y ⊆ E. In monotone
submodular function maximization under a cardinality constraint, given a nonnegative
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monotone submodular function f : 2E → R+ and k ∈ Z+, we want to compute a set S ⊆ E
with |S| ≤ k that maximizes f(S). This simple problem includes various optimization
problems in theory and practice, such as facility location, combinatorial auctions [7, 14], viral
marketing in social networks [11], and sensor placement [13, 12].

Although monotone submodular function maximization is an NP-hard problem, the
greedy algorithm achieves a (1− 1/e)-approximation, and this approximation ratio is known
to be tight [20]. In practice, however, the greedy algorithm exhibits an approximation ratio
much better than 1 − 1/e, sometimes close to one [13]. This gap between the theoretical
guarantee and the practical performance in “real-world” instances has been a major mystery
in submodular function maximization. The first attempt to explain this gap goes back to
Conforti and Cornuéjols [6]. They introduced a parameter called the (total) curvature of a
monotone submodular function, with which we can derive a tighter approximation ratio.

I Definition 1 (Curvature). The curvature c of a monotone submodular function f : 2E → R+
is

c := 1−min
i∈E

f(i | E − i)
f(i) .

Here, f(i) and f(i | E − i) are shorthand for f({i}) and f(E)− f(E − i), respectively. We
note that f(i | E − i) ≤ f(i) holds from the submodularity of f ; hence, c ∈ [0, 1] holds.
Roughly speaking, the curvature of a function measures how close it is to a modular function,
where a set function g : 2E → R is called modular if g(X) + g(Y ) = g(X ∩ Y ) + g(X ∪ Y )
for every X,Y ⊆ E. Indeed, we can easily observe that c = 0 if and only if f is modular.

It is shown in [6] that the greedy method achieves a (1− e−c)/c-approximation, which
is at least 1− 1/e and tends to 1 as c→ 0. This approximation has recently improved to
1− c/e− ε for any ε > 0 using a more sophisticated algorithm by Sviridenko, Vondrák, and
Ward [24]. Since the curvature is easy to analyze, it has been shown that we can obtain
refined approximation guarantees for various settings by exploiting the curvature [10, 1].

However, we might ask does the curvature explain the gap completely? The answer seems
to be negative. The concept of curvature is still unsatisfactory because monotone submodular
functions in practical applications are often far from modular functions, and the curvature
does not explain why we can obtain high approximation ratios. For instance, let us consider
a very simple function f(X) =

√
|X|. Since this function has a curvature of 1−O(1/

√
n)

for n = |E|, the approximation guarantee is (roughly) 1− 1/e, while the greedy algorithm
obviously finds an optimal solution!

1.1 Our contributions
To narrow the gap discussed above, in this work we consider a larger and richer class of
functions that are easy to maximize. For such a class of functions, we exploit M\-concave
functions, introduced in the discrete convex analysis literature [18]. A set function f : 2E → R
is called M\-concave3 if, for any X,Y ⊆ E and i ∈ X \Y , either (i) f(X)+f(Y ) ≤ f(X− i)+
f(Y + i) or (ii) there exists j ∈ Y \X such that f(X) + f(Y ) ≤ f(X − i+ j) + f(Y + i− j).
Intuitively speaking, we can increase the sum f(X) + f(Y ) by making X and Y closer, which
resembles concave functions. We note that an M\-concave function is submodular, and an
M\-concave function can be maximized in polynomial time with the greedy algorithm (see,

3 For a set function, M\-concave functions are essentially equivalent to valuated matroids.
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e.g., [16]). Hence, M\-concave functions can be regarded as a class of “easy” submodular
functions.

Now, we start with the following observation. For a monotone submodular function
f : 2E → R+, we define a modular function h as h(X) :=

∑
i∈X f(i | E − i). Then, f can be

decomposed as f = g + h, where g is another monotone submodular function. One can show
that h(X) ≥ (1−c)f(X) for any X ⊆ E, where c is the curvature of f . The modular function
h can be regarded as an “easy” part of f and g as a “difficult” part, and the curvature
measures the contribution of the modular part h to the entire function f . Observing that any
modular function is M\-concave, we can think of decompositions into a monotone submodular
function and an M\-concave function, which gives the following definition:

I Definition 2 (M\-concave curvature). Suppose that a monotone submodular function
f : 2E → R+ is decomposed as g + h, where g : 2E → R+ is monotone submodular, and
h : 2E → R+ is M\-concave. Then, the M\-concave curvature γ(g, h) of f is the minimum
value of γ such that h(X) ≥ (1− γ)f(X) for every X ⊆ E, or equivalently

γ(g, h) = 1− min
X⊆E

h(X)
f(X) = max

X⊆E

g(X)
f(X) ,

where we conventionally assume that 0
0 :=∞.

We abbreviate γ(g, h) by γ if g and h are clear from the context. We note that the M\-concave
curvature is defined for a decomposition f = g+h, whereas the standard curvature is defined
for the function f itself. By the argument above, we can always find a decomposition
f = g + h such that the M\-concave curvature is no greater than the standard curvature.

Our main contribution is the following generalization of the results of [24, 16] in terms of
the M\-concave curvature.

I Theorem 3. Let f : 2E → R+ be a monotone submodular function that can be decomposed
as f = g + h, where g is monotone submodular, and h is M\-concave. Assume that we have
value oracles of g and h. Then, for an integer k ∈ Z+ and a constant ε > 0, we can find a
random subset X of size k such that E[f(X)] ≥ (1− γ(g, h)/e− ε)f(O) in polynomial time,
where O is an optimal solution.

Applications. M\-concave functions include many nontrivial functions such as (weighted)
matroid rank functions and laminar concave functions, which are far from modular functions.
Our result immediately implies that if the significant part of f = g + h is due to the
M\-concave part h, we can obtain a better approximation ratio, although it might not be
straightforward to find such a decomposition of f into g and h even if f is a compactly
represented function. In Section 4, we provide a general algorithm for finding a decomposition
from the value oracle of f . This algorithm always finds a decomposition that is at least as
good as the decomposition via the standard curvature. In Section 5, we provide problem-
specific decompositions for several problems such as facility location, which yield improved
approximation guarantees.

1.2 Proof technique
Our main result (Theorem 3) is proved by modifying the continuous greedy algorithm. The
continuous greedy algorithm is a powerful and flexible framework for submodular function
maximization, which has been applied to a matroid constraint, a knapsack constraint, and
even combinations of various constraints [2, 4, 5]. At a high level, the continuous greedy

ICALP 2018
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algorithm generates a sequence x(t) in the convex hull of feasible solutions for t ∈ [0, 1]
by the following differential equation: dx

dt = v(t) and x(0) = 0, where v is a prescribed
velocity vector. Then, we round the final point x(1) into a feasible solution X via a rounding
algorithm. The previous result of [24] relies on the property that for a modular function
h = w(X), if w>v(t) ≥ α holds for t ∈ [0, 1], then w>x(1) ≥ α. This property enables us to
find a fractional solution x(1) that simultaneously optimizes h and g; that is, x(1) achieves
the optimal value for the modular part h and a (1− 1/e)-approximation for the remaining
monotone submodular part g.

Continuous greedy algorithm with a multilinear extension and concave closure. To run
the continuous greedy algorithm, we require continuous extensions of set functions. For
submodular functions, the multilinear extension is typically used. In addition, a modular
function is trivially extendable. However, for M\-concave functions, it is nontrivial to choose
a continuous extension because if we just use the multilinear extension, we end up with a
(1−1/e)-approximation. To remedy this, we use a different continuous extension, namely, the
concave closure. The concave closure is difficult to evaluate in general, but for M\-concave
functions, we can evaluate their concave closures in polynomial time thanks to the results
of discrete convex analysis. This property enables us to run a modified continuous greedy
algorithm with the following strong guarantee; that is, our continuous greedy algorithm
finds a fractional solution that achieves the optimal value for the M\-concave part and a
(1− 1/e)-approximation for the remaining monotone submodular part.

Rounding algorithm preserving the values of a multilinear extension and concave closure.
A difficulty also arises in the rounding phase. Typically, a rounding algorithm finds a feasible
subset that preserves the value of the multilinear extension. However, since our modified
continuous greedy algorithm also involves a concave closure, we need to design a rounding
algorithm that preserves the values of the multilinear extension and concave closure. To this
end, we extend the swap rounding [4] algorithm for M\-concave functions. The original swap
rounding algorithm is designed for rounding a fractional solution in a matroid base polytope
into a matroid base without losing the value of a multilinear extension. We prove that
almost the same strategy works for our purpose by exploiting the combinatorial structures of
M\-concave functions.

1.3 Related work
The concept of curvature was introduced by Conforti and Cornuéjols, and they proved that
the classical greedy algorithm of [20] achieves a (1− e−c)/c-approximation for a cardinality
constraint. In [25], Vondrák introduced a slightly relaxed variant of the curvature, namely,
the curvature with respect to the optimum. He obtained the same approximation guarantee
(1− e−c∗)/c∗ for a matroid constraint, where c∗ is the curvature with respect to the optimum,
and also showed that the approximation guarantee is tight for general submodular functions.
Later, this result was refined with the total curvature by Sviridenko, Vondrák, and Ward [24].
For a knapsack constraint, Yoshida [26] proved a better approximation ratio of 1− c/e. Iyer
and Bilmes [10] studied a general reduction between submodular function maximization and
a submodular cover, and they proved that if the curvature of the functions involved is small,
the two problems reduce to each other.

Discrete convex analysis originated with Murota [16]. We note that discrete convex
functions are usually defined on the integer lattice ZE , although we focus on set functions in
this paper. Discrete convex functions admit various attractive properties such as Fenchel
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duality, the separation theorem, and descent-type algorithms, which are analogous to convex
analysis in the Euclidean space. The applications of discrete convex analysis include economics,
system analysis for electrical circuits, phylogenetic analysis, etc. Shioura [22] studied
maximization of the sum of M\-concave set functions subject to a matroid constraint. He
showed that pipage rounding [2] can be explained from the viewpoint of discrete convexity.
For details, the reader is referred to a monograph [16] or recent survey [17].

The M\-natural concavity is equivalent to the gross-substitutability [17], a central concept
in economics. Roughgarden, Talgam-Cohen, and Vondrák [21] studied approximation for
maximizing set functions that are close to the gross-substitute functions and others. Recently,
Chatziafratis, Roughgarden, and Vondrák [3] provided improved approximation guarantees
via a different concept called perturbation stability. They proved that the greedy and local
search algorithms achieve a better approximation for submodular function maximization for
various set systems under a stability assumption.

1.4 Organization
In Section 2, we introduce the notation and basic concepts for submodular function maximiz-
ation and discrete convex analysis. Our main theorem and continuous greedy algorithms
are presented in Section 3. We describe a general algorithm for finding a decomposition of
a given monotone submodular function into a monotone submodular function and an M\-
concave function in Section 4. In Section 5, we provide several examples of problem-specific
decompositions and the theoretical bounds of the M\-concave curvature.

2 Preliminaries

For a set S ⊆ E, 1S denotes the characteristic vector of S; that is, 1S(i) = 1 if i ∈ S, and
1S(i) = 0 otherwise. The dimension of the ambient space should be clear from the context.
For a ∈ R, we define [a]+ := max{a, 0}. For a vector x ∈ RE and X ⊆ E, we use the
shorthand notation: x(X) :=

∑
i∈X x(i).

A pair consisting of a finite set E and a set family of I ⊆ 2E is called a matroid if (i)
∅ ∈ I; (ii) if X ∈ I, then any subset of X also belongs to I; and (iii) if X,Y ∈ I and
|X| < |Y |, then there exists i ∈ Y \X such that X + i ∈ I. A member of I is called an
independent set. A maximal independent set is called a base. The base polytope of a matroid
is the convex hull of all characteristic vectors of its bases. The rank function of a matroid is
the following set function: r(X) = max{|I| : I ⊆ X, I ∈ I}. Although it is well-known that
matroid rank functions are monotone and submodular, they are indeed included in the more
tractable class called M\-concave functions.

I Definition 4 (M\-concave function [19]). A set function f : 2E → R is M\-concave if for
X,Y ⊆ E and i ∈ X \ Y , either

f(X) + f(Y ) ≤ f(X − i) + f(Y + i), (1)

or there exists j ∈ Y \X such that

f(X) + f(Y ) ≤ f(X − i+ j) + f(Y − i+ j). (2)

It is known that M\-concave functions are submodular. Note that M\-concave functions
are not necessarily monotone. We give several examples of M\-concave functions below.

ICALP 2018
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I Example 5 (M\-concave functions from univariate concave functions). Let φ : R+ → R be a
concave function. Then, f(X) := φ(|X|) is an M\-concave function. For example, X 7→

√
|X|

and X 7→ min{|X|, α} (α > 0) are M\-concave. More generally, let L be a laminar family
on E and φL : R+ → R be a concave function for L ∈ L. Then, f(X) :=

∑
L∈L φL(|X ∩ L|)

is an M\-concave function. Here, as a special case, a separable concave function f(X) =∑
i∈E φi(|X ∩ {i}|) is M\-concave.

I Example 6 (M\-concave functions from matroids). Let M = (E, I) be a matroid and
w ∈ RE

+. The weighted matroid rank function is the following set function: f(X) =
max{w(I) : I ⊆ X, I ∈ I}. That is, f(X) is the maximum weight of independent sets in X.
In particular, the matroid rank function is M\-concave.

If we restrict the domain of an M\-concave function to all subsets of the same cardinality,
the condition in (1) can be omitted. Such functions are called M-concave functions.

For exploiting continuous greedy algorithms, we require continuous extensions of set
functions.

I Definition 7 (Multilinear extension). The multilinear extension F : [0, 1]E → R of a set
function f : 2E → R is defined as

F (x) =
∑

X⊆E

f(X)
∏
i∈X

x(i)
∏

i∈E\X

(1− x(i)).

I Definition 8 (Concave closure). The concave closure f̄ : [0, 1]E → R of a set function
f : 2E → R is defined as

f̄(x) := max

∑
Y⊆E

λY f(Y ) :
∑

Y

λY 1Y = x,
∑

Y

λY = 1, λY ≥ 0 (Y ⊆ E)

 . (3)

If f is an M\-concave function, then f̄(x) can be computed in polynomial time for any
x ∈ [0, 1]E [23]. Furthermore, the subgradients of f̄ can be computed in polynomial time [23].
This yields a separation oracle for the constraint of the form f̄(x) ≥ α.

3 Algorithms

In this section, we prove Theorem 3. To this end, we show the following, which simultaneously
optimizes g and h:

I Theorem 9. Let f : 2E → R+ be a monotone submodular function decomposed as f = g+h
for a monotone submodular function g : 2E → R+ and an M\-concave function h : 2E → R,
and let k be a positive integer. Then, there exists a polynomial-time algorithm that finds a
random set X ⊆ E of cardinality k such that

E[g(X)] ≥
(

1− 1
e

)
g(O)− εM, E[h(X)]≥ h(O)− εM,

for any constant ε > 0, where O is an optimal solution for max{f(X) : |X| ≤ k} and
M = maxe∈E max{g(e), h(e)}.

We note that the special case in which h is modular is proved in [24].
Before proving Theorem 9, we see that Theorem 3 is an easy consequence of Theorem 9:
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Algorithm 1 Modified Continuous Greedy Algorithm

Require: g(O), h(O) ∈ R+, value oracles of G, h̄ : [0, 1]E → R+, and a value oracle of
∇G : [0, 1]E → RE

+.
1: Set x(0) := 0 ∈ RE

2: From t = 0 to t = 1, compute x(t) ∈ [0, 1]E following the differential equation dx
dt =

v(t), where v ∈ [0, 1]E is a vector satisfying v(t)>∇G(x) ≥ g(O) − G(x), h̄(v(t)) ≥
h(O), and v(t) ∈ Pk.

3: return x(1).

Proof of Theorem 3. By Theorem 9, we can compute a random X ⊆ E of size k such that

E[f(X)] ≥
(

1− 1
e

)
g(O) + h(O)− 2εM =

(
1− 1

e

)
f(O) + 1

e
h(O)− 2εM

≥
(

1− 1
e

)
f(O) + 1− γ

e
f(O)− 2εM =

(
1− γ

e

)
f(O)− 2εM

≥
(

1− γ

e
−O(ε)

)
f(O),

where in the last inequality, we used the fact that M = maxe∈E max{g(e), h(e)} ≤ g(O) +
h(O). J

In the rest of this section, we fix f and its decomposition f = g + h, and the goal is a
proof of Theorem 9.

3.1 Continuous-time algorithm for simultaneous optimization
First, we present a continuous-time version of our algorithm. Although we cannot run this
version in polynomial time, it is helpful to grasp the overall idea.

Our algorithm is based on the continuous greedy framework [2]. Let G : [0, 1]E → R+ be
the multilinear extension of g and h̄ : [0, 1]E → R+ be the concave closure of h, and let Pk

be the convex hull of all characteristic vectors of subsets of size at most k. We assume that
we have value oracles of G, ∇G, and h̄. We also assume that we know g(O) and h(O), where
O is the optimal solution to max{f(X) : |X| ≤ k}. We discuss how we can remove these
assumptions in Section 3.2. The pseudocode of the continuous greedy algorithm is given in
Algorithm 1.

I Remark. One can find v in Algorithm 1 in polynomial time. First, the problem of finding
v is a feasible problem of a convex program. This problem is feasible because 1O ∈ RE is a
feasible solution. Moreover, we have a separation oracle for h̄(v) ≥ h(O). Hence, we can find
a feasible solution using the ellipsoid method.

The following lemma shows that Algorithm 1 provides the guarantee required in The-
orem 9:

I Lemma 10. Let x(t) be the sequence computed in Algorithm 1. Then, we have G(x(1)) ≥
(1− 1/e)g(O) and h̄(x(1)) ≥ h(O).

Proof. By adopting the standard analysis of the continuous greedy algorithm, we can see
that G(x(1)) ≥ (1 − 1/e)g(O) (see, e.g., [2]). On the other hand, since h̄ is a concave
function, h̄(x(1)) = h̄

(∫ 1
0 v(t)dt

)
≥
∫ 1

0 h̄(v(t))dt ≥ h(O), where the first inequality follows
from Jensen’s inequality. J

ICALP 2018
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3.2 Discrete-time algorithm for simultaneous optimization
Now, we describe the discrete-time version of Algorithm 1, which can be run in polynomial
time. Again, we basically follow the argument in [24] and explain the modifications to
Algorithm 1. We define M = maxe∈E max{g(e), h(e)} as the maximum marginal gain of
adding a single element. The detail and proof are deferred to the full version.

I Lemma 11. For any constant ε > 0, there exists a polynomial-time algorithm that finds a
vector x ∈ Pk such that G(x) ≥ (1− 1/e)g(O)− εM and h̄(x) ≥ h(O)− εM .

3.3 Rounding
In this section, we show the following:

I Lemma 12. Let x ∈ Pk be a vector. Then, there exists a polynomial-time randomized
rounding algorithm that outputs X ⊆ E with |X| ≤ k such that E[g(X)] ≥ G(x) and
E[h(X)] ≥ h̄(x).

Theorem 9 is obtained by combining Lemmas 11 and 12. In the following, we show a
rounding method, provided that a convex combination of h̄(x) is known. The details on how
to compute a convex combination is described in the full version.

Suppose that we have a convex combination of h̄(x); that is, we have λ1, . . . , λm > 0 and
X1, . . . , Xm ⊆ E of size k with

∑
i λi = 1,

∑
i λi1Xi = x, and

h̄(x) =
m∑

i=1
λih(Xi). (4)

Our rounding is a random process, and the condition |Xi| = k (i ∈ [m]) is always preserved
throughout the process.

If X1 = · · · = Xm, then we are done, and we output the set X := X1(= · · · = Xm), which
is of size k. Otherwise, find 1 ≤ a < b ≤ m such that Xa\Xb 6= ∅ and Xa\Xb 6= ∅. Then, we
fix i ∈ Xa \Xb and find j ∈ Xb \Xa such that h(Xa)+h(Xb) ≤ h(Xa− i+ j)+h(Xb + i− j),
whose existence is guaranteed by the M\-concavity of h. Then, we replace Xa with Xa− i+ j

with the probability λb/(λa + λb), replace Xb with Xb + i − j with the complementary
probability, and repeat this process again.

We now analyze the expected value of h at the end of the rounding process.

I Lemma 13. Let X ⊆ E be the output set. Then, we have E[h(X)] ≥ h̄(x).

Proof. Suppose that we have a chosen i ∈ Xa \Xb and j ∈ Xb \Xa in an iteration of the
process. Then, the expected change in the value of λah(Xa) + λbh(Xb) at this iteration is

λaλb

λa + λb
[h(Xa − i+ j)− h(Xa) + h(Xb + i− j)− h(Xb)] ≥ 0.

Therefore, the expected value of
∑m

i=1 λih(Xi) is at least h̄(x). The lemma holds by induction
on the number of iterations. J

Next, we analyze the expected value of g at the end of the rounding process. Let
xt =

∑
i λi1Xi

be the random vector after the tth exchange (t = 0, 1, . . . ). One can check
that (i) x0 = x, (ii) xt+1 − xt has at most one positive coordinate and at most one negative
coordinate, and (iii) E[xt+1 | xt] = xt. The following lemma establishes that such a random
process preserves the value of the multilinear extension of a monotone submodular function.
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I Lemma 14 ([4, Lemma VI.2]). Let xt be a vector-valued random process satisfying the
above conditions (i), (ii), and (iii). Then, for the multilinear extension F of any monotone
submodular function f : 2E → R, we have E[F (xt)] ≥ F (x) for t = 0, 1, . . . .

By Lemmas 13 and 14, we have the following lemma.

I Lemma 15. Let X be the output of the above rounding process. Then, we have E[g(X)] ≥
G(x) and E[h(X)] ≥ h̄(x).

Thus, we can round a fractional solution into an integral solution without losing the
objective value (in the expectation).

I Remark. Although the continuous greedy step also applies to any down-closed and solvable
polytope, the rounding step is able to handle only cardinality constraints. For example,
if we consider a matroid constraint, we need to a rounding algorithm that preserves the
value of h̄ in a matroid polytope. Since the face of h̄(x) ≥ α is another matroid polytope,
we must essentially deal with a matroid intersection constraint. Unfortunately, there is no
known rounding algorithm for matroid intersection preserving the value of the multilinear
extensions4. We can use a contention resolution scheme [5] instead, but this does not preserve
the of the value of the multilinear extension and results in an approximation ratio worse
than 1− 1/e.

4 Decomposition via M\-concave Quadratic Functions

In this section, we describe a general decomposition scheme that exploits M\-concave quadratic
functions.

For a vector d ∈ RE , we define Diag(d) ∈ RE×E as a diagonal matrix such that
Diag(d)ii = d(i) for every i ∈ E. The following characterization of M\-concave quadratic set
functions is known:

I Lemma 16 ([9], also see [17, Theorem 4.3]). Let A ∈ RE×E be a symmetric matrix, and
define h : 2E → R as h(X) = 1

2 1>XA1X = 1
2
∑

i∈X aii +
∑

i,j∈X:i 6=j aij. Then, h(X) is
M\-concave if and only if

Aij ≤ 0 for any distinct i, j ∈ E, and (5)
Aij ≤ max{Aik, Ajk} for any distinct i, j, k ∈ E. (6)

Note that the condition in (6) says that Aij must form an ultrametric. The above condition
is closely related to the concept of a discrete Hessian matrix:

I Definition 17. The discrete Hessian Hessf (X) ∈ RE×E of a set function f : 2E → R at a
set X ⊆ E is defined as

Hessf (X)ij = f(X + i+ j) + f(X)− f(X + i)− f(X + j). (i, j ∈ E)

We note that Hessf (X)ij = 0 when i or j belongs to X. By definition, a set function
f : 2E → R is submodular if and only if Hessf (X)ij ≤ 0 for any X ⊆ E and distinct i, j ∈ E.
A characterization of an M\-concave function in terms of a discrete Hessian is also known:

4 For a special class of submodular functions, a rounding algorithm for a matroid intersection is proposed
in [4].
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I Lemma 18 ([17, Theorem 4.3]). A set function f : 2E → R is M\-concave if and only if
its discrete Hessian satisfies the conditions in (5) and (6) at any X ⊆ E.

For a monotone submodular function f : 2E → R+, consider a decomposition f = g + h,
where h(X) = 1

2 1>XA1X (X ⊆ E) for some matrix A ∈ RE×E . In the following, we derive
a sufficient condition of A that makes g nonnegative monotone submodular and makes h
nonnegative M\-concave so that we can apply Theorem 3.

For the monotonicity of g, we must have g(i | X) = f(i | X)− h(i | X) ≥ 0 for any i ∈ E
and X ⊆ E − i. This yields∑

k∈X

Aik + 1
2Aii ≤ f(i | X). (i ∈ E,X ⊆ E − i) (7)

We note that, if (7) was satisfied, g becomes automatically nonnegative as h(∅) = 0.
For the submodularity of g, we must have Hessg(X)ij = Hessf (X)ij − Hessh(X)ij ≤ 0

for any distinct i, j ∈ E and X ⊆ E \ {i, j}. This yields

Aij ≥ Hessf (X)ij . (i, j ∈ E, i 6= j,X ⊆ E \ {i, j}) (8)

Finally, for the nonnegativity of h, we must have

1>XA1X ≥ 0 (X ⊆ E). (9)

It is difficult to handle these conditions simultaneously. Fortunately, we can show that
we need to consider only the condition in (8) and the nonpositivity constraint.

I Lemma 19. Suppose that a matrix A ∈ RE×E satisfies the conditions in (5), (6), and (8).
Then, h(X) = 1

2 1>XA1X is nonnegative M\-concave, and g = f − h is nonnegative monotone
submodular.

Trivially, we can take A = 2 Diag(f(i | E − i) : i ∈ E), which yields h(X) =
∑

i∈X f(i |
E − i). This decomposition corresponds to that via the standard curvature. In the following,
we discuss how we can find a nontrivial matrix A satisfying the conditions in (5), (6), and (8).

4.1 Ultrametric fitting problem
Assume that we can compute Hij such that max

X⊆E−i−j
Hessf (X)ij ≤ Hij ≤ 0 for any distinct

i, j ∈ E. Once we are given such Hij , finding a matrix A satisfying the conditions in (5), (6),
and (8) boils down to the ultrametric fitting problem [8]. In this problem, given Hij ≤ 0
for distinct i, j ∈ E, we are to find Aij ∈ [Hij , 0] for distinct i, j ∈ E satisfying (6) that
minimizes maxi 6=j |Aij−Hij |. Farach et al. [8] gave an O(n2)-time algorithm for this problem.
Therefore, we can find a matrix A satisfying the conditions in (5), (6), and (8) that is close
to Hij . Although this method is general, it is difficult to theoretically bound the M\-concave
curvature of the resulting decomposition.

4.2 Coverage function
Let G = (E, V ;A) be a bipartite graph. Note that here we denote by E the one of
the vertex sets (i.e., the ground set) for the sake of consistency with the other parts of
this paper. The coverage function f : 2E → R associated with G is defined as f(X) :=∑

v∈V min{1, |Γ(v) ∩X|}, where Γ(v) ⊆ E is the set of neighbors of v ∈ V . It is well-known
that f is a monotone submodular function.
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Now, we consider decomposing f into a monotone submodular function and monotone M\-
concave function. For each v ∈ V , we define fv : 2E → R as fv(X) = min{1, |Γ(v)∩X|}. Then,
for distinct i, j ∈ E and X ⊆ E− i−j, Hessfv

(X)ij is equal to −1 if v 6∈ Γ(X) and i, j ∈ Γ(v)
and 0 otherwise. Thus, we have Hessf (X)ij = −|Γ(i) ∩ Γ(j)− Γ(X)|. Since Hessf (X)ij is
obviously nondecreasing, we can compute the exact value of maxX⊆E\{i,j}Hessf (X)ij =
Hessf (E− i− j)ij = −cij , where cij = |Γ(i)∩Γ(j)−Γ(E− i− j)|. Note that the quantity cij

is the number of v ∈ V whose neighbors are exactly i and j. Then, we can run the algorithm
presented in Section 4.1 with Hij = −|Γ(i) ∩ Γ(j) − Γ(E − i − j)| to obtain a matrix A
satisfying the conditions in (5), (6), and (8). We note that the standard curvature can only
handle vertices in V that have only one neighbor in E, whereas our argument can handle
vertices in V that have two neighbors in E.

5 Applications

In this section, we apply Theorem 3 to obtain better approximation guarantees for the facility
location problem and the sum of weighted matroid rank functions. In these applications, we
need to use the specific structures of these problems.

5.1 Facility location
In the facility location problem, there are a set I of customers and a set E of possible locations
of facilities. Each customer i ∈ I has a revenue wij ≥ 0 for the facility j ∈ E. We assume
that customers will select the available facility of maximum revenue. The task is to select a
set X ⊆ E of cardinality k that maximizes

f(X) =
∑
i∈I

max
j∈X

wij ,

where we conventionally define f(∅) = 0. Evidently, f is a nonnegative monotone submodular
function.

We can decompose f into g and h as follows. For i ∈ I, we denote wi,min := minj∈E wij

and let w̄ij := wij − wi,min (i ∈ I, j ∈ E). Then, we can rewrite f as

f(X) =
∑
i∈I

max
j∈X

w̄ij +
(∑

i∈I

wi,min

)
[X 6= ∅],

where [X 6= ∅] is the indicator function of the nonemptiness of X. Let f̃(X) =∑
i∈I maxj∈X w̄ij be the first term. We further subtract a modular function `(X) =∑
j∈X f̃(j | E − j) from f̃ . Note that since f(j | E − j) =

∑
i∈I [wij − maxk 6=j wij ]+ =∑

i∈I [w̄ij − maxk 6=j w̄ij ]+ = f̃(j | E − j) for j ∈ E, this modular term is exactly the
same one in the curvature decomposition for the original function f . Then, we define
g(X) := f̃(X)− `(X) and h(X) := `(X) +

(∑
i∈I wi,min

)
[X 6= ∅]. One can easily check that

g is monotone submodular and h is M\-concave.
We can show that γ(g, h) is no more than the standard curvature c.

I Lemma 20. γ(g, h) ≤ c−
∑

i∈I
wi,min∑

i∈I
wi,max

, where wi,max := maxj∈E wij (i ∈ E).

Proof. For any nonempty X ⊆ E, we have
h(X)
f(X) = `(X)

f(X) +
∑

i∈I wi,min

f(X) ≥ 1− c+
∑

i∈I wi,min

f(E) = 1− c+
∑

i∈I wi,min∑
i∈I wi,max

,

where the inequality follows from the definition of the curvature and the monotonicity of f .
Therefore, γh = 1−minX⊆E

h(X)
f(X) ≤ c−

∑
i∈I

wi,min∑
i∈I

wi,max
. J
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5.2 Sums of weighted matroid rank functions
A weighted matroid rank function is an M\-concave function (see Example 6), and its sum
is a monotone submodular function. A sum of weighted matroid rank functions includes
the coverage function, the facility location function, and many others, but not all monotone
submodular functions. Here, we show that if the objective function is a sum of weighted
matroid rank functions, we can obtain an improved approximation guarantee.

Let f(X) =
∑

i∈I fi(X), where fi(X) = max{wi(J) : J ⊆ X, J ∈ Ii} for some vector
wi ∈ RE

+, and Ii is the independent set family of a matroid (i ∈ I). For i ∈ I, let
wi,min := mine∈E wi(e). Let f̃(X) =

∑
i∈I g̃i(X), where g̃i(X) is the weighted matroid

rank function with the reduced weight wi − wi,min1 for i ∈ I. Define `(X) =
∑

j∈X f̃(j |
E − j) =

∑
j∈X f(j | E − j), where the second equality follows from the fact that all

matroid bases have the same cardinality. Finally, let us define g(X) := f̃(X) − `(X) and
h(X) := `(X) + (

∑
i∈I wi,min)[X 6= ∅]. The proof of the following lemma is similar to that

of Lemma 20.

I Lemma 21. γ(g, h) ≤ c−
∑

i∈I
wi,min∑

i∈I
Wi

, where c is the standard curvature, and Wi := fi(E)

is the maximum weight of the bases in (E, Ii) for each i.

In [15], Lin and Bilmes proposed a linear mixture model of simple monotone submodular
functions. One of the most general classes in their model is a linear mixture of weighted
matroid rank functions. Suppose that a function f : 2E → R+ is obtained by inference
for this linear mixture model. Then, we can write f(X) =

∑
i∈I αifi(X), where αi > 0

is a mixture coefficient, and fi(X) is a weighted matroid rank function (i ∈ I). If some
coefficient αi∗ is dominant, one can consider the following straightforward decomposition:
g(X) =

∑
i6=i∗ αifi(X) and h(X) = αi∗fi∗(X). Then, we can expect the resulting curvature

to be small, although the actual value depends on the form of fi (i ∈ I).

6 Conclusion and Open Problems

We propose a new concept the M\-concave curvature, which measures how a given submodular
function deviates from M\-concave functions. Based on this concept, we designed a polynomial-
time algorithm given a decomposition in the form of f = g + h, which generalizes the result
of [24]. We complemented our algorithm by devising an algorithm for finding such a
decomposition, which always yields a decomposition that is as good as a decomposition based
on the standard curvature. We showed examples in which the the M\-concave curvature is
better than the standard curvature.

We believe that the M\-concave curvature is generally useful for analysing the performance
of algorithms for submodular maximization. Although in this paper we focused on the
continuous greedy algorithm, it is quite natural to analyze the performance of other algorithms,
e.g., local search. Our algorithm is able to handle only a cardinality constraint due to the
difficulty in the rounding step. A possible direction for future work is dealing with more
complicated constraints such as matroid constraints and knapsack constraints.
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